Supplementary Information

Brønsted acid-catalyzed formal [5+2+1] cycloaddition of

ynamides and isoxazoles with water: access to

oxygen-bridged tetrahydro-1,4-oxazepines

Yingying Zhao,^{a,b} Chunxiang Wang,^a Yancheng Hu,*^{,a} and Boshun Wan*^{,a}

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road,

Dalian 116023, China.

^bUniversity of Chinese Academy of Sciences, Beijing 10049, China

*E-mail: ychu@dicp.ac.cn; bswan@dicp.ac.cn

Table of Contents

1.	General information	S1
2.	Synthesis and characterization data of ynamides	S1
3.	Synthesis and characterization data of isoxazoles	S7
5.	Tf_2NH -catalyzed [5+2+1] cycloaddition of ynamides and isoxazoles with water	S10
6.	Characterization data of O-bridged tetrahydro-1,4-oxazepines	S12
7.	Gold-catalyzed cycloaddition in the presence of water	S24
8.	Scale-up experiment	S25
9.	Further transformations to dihydrooxazoles	S26
10.	Mechanistic studies	S29
11.	References	S33
12.	NMR spectroscopy of ynamides	S34
13.	NMR spectroscopy of isoxazole 2b	S66
14.	NMR spectroscopy of O-bridged tetrahydro-1,4-oxazepines	S68
15.	NMR spectroscopy of pyrrole 4g	S122
16.	NMR spectroscopy of dihydrooxazoles 5	S124
17.	NMR spectroscopy of amide 6a	S132

1. General information

Unless otherwise stated, all reactions were conducted under inert atmosphere using standard Schlenk techniques or in an argon-filled glove-box. All chemicals were obtained from commercial sources and were used directly without further purification. Solvents were treated prior to use according to the standard methods. Column chromatography was conducted on silica gel (300–400 mesh) using a forced flow of eluent at 0.3–0.5 bar pressure. NMR Spectra were recorded at room temperature in CDCl₃, DMSO- d_6 or acetone- d_6 on 400 MHz spectrometers. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with CDCl₃ (7.26 ppm), DMSO- d_6 (2.50 ppm) or acetone- d_6 (2.05 ppm) as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.16 ppm), DMSO- d_6 (39.52 ppm) or acetone- d_6 (29.84 ppm) as the internal standard. Coupling constants (J) are reported in hertz and refer to apparent peak multiplications. The abbreviations *s*, *d*, *t*, *q* and *m* stand for singlet, doublet, triplet, quartet and multiplet in that order. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

2. Synthesis and characterization data of ynamides

$$R^{1} = Br + HN \begin{pmatrix} EWG \\ R^{2} \end{pmatrix} \xrightarrow{(CuSO_{4} \cdot 5 H_{2}O (10 \text{ mol}\%))}_{1,10-\text{phenanthroline (20 mol\%)}} R^{1} = N \\ R^{2} \\ R^{2}$$

The ynamides were synthesized by copper-catalyzed cross-couplings of amides with the corresponding alkynyl bromides.¹ The substrates 1a-g are known compounds.^{2,3}

In a 25 mL flame-dried Schlenk tube, amides (2.5 mmol), $CuSO_4 \cdot 5H_2O$ (10 mol%, 63.0 mg), 1,10-phenanthroline (20 mol%, 90.0 mg), K_2CO_3 (2.0 equiv, 0.69 g) and toluene (10 mL) were added in sequence under argon atmosphere. Then alkynyl bromide (6.0 mmol) was introduced and the resulting mixture was stirred at 80 °C for 12–24 h. After which time, the crude mixture was filtered through a short pad of celite and washed with ethyl acetate. Removal of the solvent and purification by silica gel column chromatography afforded the desired ynamides (eluent: petroleum ether/ethyl acetate = 10/1).

Characterization data of ynamides:

N-Benzyl-N-(thiophen-2-ylethynyl)benzenesulfonamide (1h)

Brown solid; 592.9 mg; 67% yield; mp 98–99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 2H), 7.66–7.58 (m, 1H), 7.53–7.46 (m, 2H), 7.32–7.25 (m, 5H), 7.22–7.18 (m, 1H), 7.10–7.05 (m, 1H), 6.91 (dd, J = 5.2, 3.6 Hz, 1H), 4.59 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 134.3, 133.8, 133.0, 129.2, 128.8, 128.6, 128.5, 127.9, 127.7, 127.1, 122.7, 86.1, 64.8, 56.0. HRMS (ESI) calcd for C₁₉H₁₆NO₂S₂ [M + H]⁺ 354.0617, found 354.0614.

N-Benzyl-4-fluoro-N-(thiophen-2-ylethynyl)benzenesulfonamide (1i)

Brown solid; 525.5 mg; 56% yield; mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.79 (m, 2H), 7.33–7.28 (m, 5H), 7.25–7.23 (m, 1H), 7.19–7.13 (m, 2H), 7.11–7.09 (m, 1H), 6.96–6.89 (m, 1H), 4.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, *J* = 256.4 Hz), 134.2, 133.8 (d, *J* = 3.3 Hz), 133.2, 130.6 (d, *J* = 9.6 Hz), 128.9, 128.7, 128.6, 128.1, 127.1,

122.5, 116.5 (d, J = 22.7 Hz), 86.0, 65.0, 56.2. HRMS (ESI) calcd for C₁₉H₁₅FNO₂S₂ [M + H]⁺ 372.0523, found 372.0520.

N-Benzyl-4-chloro-N-(thiophen-2-ylethynyl)benzenesulfonamide (1j)

calcd for $C_{19}H_{15}CINO_2S_2 [M + H]^+ 388.0227$, found 388.0216.

N-Benzyl-N-((4-methoxyphenyl)ethynyl)-2,4,6-trimethylbenzenesulfonamide (1k)

132.1, 132.0, 129.0, 128.6, 128.3, 115.1, 113.9, 80.9, 72.4, 55.4, 54.3, 23.3, 21.2. HRMS (ESI) calcd for $C_{25}H_{26}NO_3S$ [M + H]⁺ 420.1628, found 420.1621.

N-Benzyl-N-(thiophen-2-ylethynyl)naphthalene-2-sulfonamide (11)

Brown solid; 511.3 mg; 51% yield; mp 112–113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.99–7.81 (m, 4H), 7.70–7.56 (m, 2H), 7.35–7.17 (m, 6H), 7.11–7.02 (m, 1H), 6.95–6.87 (m, 1H), 4.64 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 134.6, 134.3, 133.0, 132.1, 129.6, 129.53, 129.51, 129.4, 128.9, 128.6, 128.5, 128.1, 127.9, 127.8,

127.1, 122.8, 122.6, 86.3, 64.9, 56.2. HRMS (ESI) calcd for $C_{23}H_{18}NO_2S_2$ [M + H]⁺404.0773, found 404.0776.

N-Benzyl-*N*-(thiophen-2-ylethynyl)methanesulfonamide (1m)

Yellow solid; 3.0 mmol scale, 833.0 mg; 95% yield; mp 80–81 °C; ¹H MR (400 MHz, CDCl₃) δ 7.51–7.44 (m, 2H), 7.44–7.34 (m, 3H), 1m 7.30–7.24 (m, 1H), 7.22–7.16 (m, 1H), 7.02–6.92 (m, 1H), 4.71 (s, 2H), 2.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 134.5, 133.4, 129.1, 129.0, 128.9, 128.2, 127.2, 85.6, 65.0, 56.2, 39.3. HRMS (ESI) calcd for C₁₄H₁₄NO₂S₂ [M + H]⁺ 292.0460, found

292.0439.

4-Methyl-*N*-(2-methylbenzyl)-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1n)

Brown solid; 450.0 mg; 47% yield; mp 106–107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.26–7.08 (m, 5H), 7.03–7.00 (m, 1H), 6.91–6.88 (m, 1H), 4.55 (s, 2H), 2.46 (s, 3H),

2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 137.5, 134.3, 132.6, 132.1, 130.6, 130.4, 129.9, 128.7, 127.9, 127.5, 127.0, 126.1, 122.9, 86.3, 64.8, 53.7, 21.8, 19.3. HRMS (ESI) calcd for C₂₁H₂₀NO₂S₂ [M + H]⁺ 382.0930, found 382.0934.

N-(2-Methoxybenzyl)-4-methyl-N-(thiophen-2-ylethynyl)benzenesulfonamide (10)

 $(100 \text{ MHz}, \text{Acetone-}d_6) \delta 158.7, 145.8, 135.8, 133.2, 131.4, 130.8, 130.7, 128.7, 128.5, 128.1, 123.6, 123.3, 121.1, 111.5, 87.6, 64.5, 55.8, 51.5, 21.5. HRMS (ESI) calcd for C₂₁H₂₀NO₃S₂ [M + H]⁺ 398.0879, found 398.0889.$

N-(2-Chlorobenzyl)-4-methyl-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1p)

133.6, 133.1, 132.1, 130.94, 130.92, 130.4, 129.0, 128.6, 128.10, 128.08, 123.1, 86.9, 65.1, 53.7, 21.6. HRMS (ESI) calcd for $C_{20}H_{17}CINO_2S_2$ [M + H]⁺ 402.0384, found 402.0386.

4-Methyl-N-(3-methylbenzyl)-N-(thiophen-2-ylethynyl)benzenesulfonamide (1q)

Brown oil; 534.8 mg; 56% yield; ¹H NMR (400 MHz, Acetone- d_6) δ 7.85 (d, J = 8.4 Hz, 2H), 7.53–7.41 (m, 3H), 7.26–7.19 (m, 1H), 7.17–7.09 (m, 4H), 7.05–6.97 (m, 1H), 4.61 (s, 2H), 2.47 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 146.0, 138.9, 135.8, 135.6, 133.5, 130.8, 130.2,

129.8, 129.2, 129.0, 128.5, 128.1, 126.7, 123.4, 87.7, 65.1, 56.4, 21.6, 21.3. HRMS (ESI) calcd for $C_{21}H_{20}NO_2S_2$ [M + H]⁺ 382.0930, found 382.0927.

4-Methyl-N-(4-methylbenzyl)-N-(thiophen-2-ylethynyl)benzenesulfonamide (1r)

Ts Brown solid; 464.0 mg; 49% yield; mp 85–86 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.23–7.15 (m, 3H), 7.13–7.04 (m, 3H), 6.92–6.88 (m, 1H), 4.52 (s, 2H), 2.43 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 138.2, 134.8, 132.8,

131.4, 129.8, 129.3, 128.9, 127.8, 127.7, 127.0, 122.9, 86.4, 64.8, 55.7, 21.8, 21.3. HRMS (ESI) calcd for $C_{21}H_{20}NO_2S_2$ [M + H]⁺ 382.0930, found 382.0918.

N-(4-methoxybenzyl)-4-methyl-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1s)

86.4, 64.9, 55.5, 55.4, 21.8. HRMS (ESI) calcd for $C_{21}H_{20}NO_3S_2$ [M + H]⁺398.0879, found 398.0888.

N-(4-chlorobenzyl)-4-methyl-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1t)

Brown solid; 354.7 mg; 35% yield; mp 100–101 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.86 (d, J = 8.2 Hz, 2H), 7.54–7.44 (m, 3H), 7.42–7.34 (m, 4H), 7.14 (d, J = 3.6 Hz, 1H), 7.04–6.96 (m, 1H), 4.66 (s, 2H), 2.47 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 146.2, 135.6, 134.8, 134.6, 133.8, 131.3, 130.9, 129.4, 129.1, 128.5, 128.1, 123.1, 87.0, 65.2, 55.6, 21.6.

HRMS (ESI) calcd for $C_{20}H_{17}CINO_2S_2 [M + H]^+ 402.0384$, found 402.0381.

N-(4-bromobenzyl)-4-methyl-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1u)

1H), 6.96–6.85 (m, 1H), 4.51 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 134.5, 133.5, 133.2, 131.8, 130.5, 129.9, 128.0, 127.8, 127.1, 122.6, 122.5, 86.0, 64.9, 55.3, 21.8. HRMS (ESI) calcd for C₂₀H₁₇BrNO₂S₂ [M + H]⁺445.9879, found 445.9875.

4-Methyl-*N*-(naphthalen-1-ylmethyl)-*N*-(thiophen-2-ylethynyl)benzenesulfonamide (1v)

Brown solid; 443.3 mg; 42% yield; mp 107–108 °C; ¹H NMR (400 MHz, Acetone-*d*₆) δ 8.29 (d, *J* = 8.0 Hz, 1H), 8.00–7.87 (m, 4H), 7.63–7.47 (m, 5H), 7.47–7.41 (m, 1H), 7.40–7.35 (m, 1H), 7.02–6.98 (m, 1H), 6.97–6.91 (m, 1H), 5.07 (s, 2H), 2.46 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆) δ 146.2, 134.9, 134.8, 133.3, 132.5, 130.9, 130.6, 130.3, 129.7, 129.6, 128.8, 128.6, 128.0, 127.5, 126.8, 126.0, 124.3, 123.1, 87.1, 65.6, 54.4, 21.6. HRMS (ESI) calcd for $C_{24}H_{20}NO_2S_2$ [M + H]⁺418.0930, found 418.0928.

N-Butyl-*N*-((4-methoxyphenyl)ethynyl)-4-methylbenzenesulfonamide (1w)

MeO- N_{nBu} Yellow oil; 741.1 mg; 83% yield; ¹H NMR (400 MHz, MeO- N_{nBu} Acetone- d_6) δ 7.87 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 1w 7.32 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H),

3.41 (t, J = 7.1 Hz, 2H), 2.46 (s, 3H), 1.72–1.61 (m, 2H), 1.42–1.36 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 160.6, 145.7, 135.6, 133.9, 130.7, 128.5, 115.6, 115.0, 82.0, 70.7, 55.7, 52.1, 27.5, 21.5, 20.1, 13.8. HRMS (ESI) calcd for C₂₀H₂₄NO₃S [M + H]⁺ 358.1471, found 358.1474.

3. Synthesis and characterization data of isoxazoles

3,5-Diethylisoxazole **2b** was prepared according to the known procedure.^[4] Other isoxazoles were obtained from commercial sources.

3,5-Diethylisoxazole (2b)

 $\begin{array}{l} \begin{array}{c} \begin{array}{c} O-N \\ Et \end{array} \begin{array}{c} O-N \\ 2b \end{array} \end{array} \begin{array}{c} Known \ compound; ^{4 \ 1}H \ NMR \ (400 \ MHz, \ Acetone-d_6) \ \delta \ 6.02 \ (s, \ 1H), \ 2.71 \ (q, \ J) \\ = \ 7.6 \ Hz, \ 2H), \ 2.60 \ (q, \ J = \ 7.6 \ Hz, \ 2H), \ 1.45-1.08 \ (m, \ 6H). \ ^{13}C \ NMR \ (100 \ MHz, \ Acetone-d_6) \ \delta \ 175.0, \ 165.5, \ 100.2, \ 20.6, \ 20.0, \ 13.0, \ 12.1. \end{array}$

4. Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions.^a

	PhN(Ts Bn	O-N H ₂ O (1.0 equiv) solvent, -10 °C	Ts Ph N-Bn	Ph N ^{Ts} H Bn
	1a	2a	3a	4a t observed
Entry	Acid	Solvent	x (mol%)	Yield $(\%)^b$
1	Tf ₂ NH	DCE	5	24
2	Tf_2NH	DCE	10	50
3	Tf ₂ NH	DCE	15	70
4	Tf_2NH	DCE	20	67
5^c	Tf_2NH	DCE	15	62
6^d	Tf_2NH	DCE	15	69
7^e	Tf_2NH	DCE	15	59
8^{f}	Tf_2NH	DCE	15	trace
9	-	DCE	-	0
10	Tf_2NH	DCM	15	50
11	Tf_2NH	THF	15	0
12	Tf_2NH	CH ₃ CN	15	21
13	Tf_2NH	Toluene	15	25
14	TfOH	DCE	15	28
15	TFA	DCE	15	0
16	TsOH	DCE	15	0
17	MsOH	DCE	15	0
18	TMSOTf	DCE	15	37

^{*a*} The reaction was performed at 0.1 mmol scale with **1a** (1.5 equiv), **2a** (0.1 M), H₂O (1 equiv) and acid (x mol% based on **2a**) in DCE (1 mL) at -10 °C for 6 hours unless otherwise stated. ^{*b*} Yields were determined by HPLC using naphthalene as an internal standard. ^{*c*} **1a/2a** = 1.2/1. ^{*d*} **1a/2a** = 2/1. ^{*e*} **1a/2a** = 1/1.5. ^{*f*} In the absence of H₂O.

We commenced our investigation with the optimization of the reaction conditions by choosing ynamide **1a** and 3,5-dimethylisoxazole **2a** as the model substrates (Table S1). Submitting 5 mol% of Tf₂NH to the mixture of **1a**, **2a** and H₂O in DCE at -10 °C afforded the oxygen-bridged tetrahydro-1,4-oxazepine **3a** in 24% yield (entry 1). The structure of **3a** was unambiguously confirmed by single-crystal X-ray diffraction analysis of its analogue **3g** (CCDC 1561884). The product yield can be improved to 70% by increasing the amount of catalyst to 15 mol% (entries 1 to 3). However, further increasing the catalyst loading to 20 mol% did not provide better yield (entry 4). Subsequently, the ratio of the substrates was

examined. It was found that the best yield could be obtained with a ratio of 1a/2a = 1.5/1 (entry 3 vs entries 5–7). Only a trace amount of **3a** was detected along with recovered starting material when the reaction was carried out in the absence of water (entry 8), suggesting that water is very crucial in the formation of **3a**. Remarkably, no reaction occurred in the absence of Tf₂NH (entry 9). The reaction in DCM gave a decreased yield (entry 10), since when adding Tf₂NH solution via syringe, the solution often spontaneously dropped out owing to the low boiling point of DCM. The reaction cannot take place in THF, while the poor solubility of ynamides in CH₃CN and toluene at low temperature resulted in low yields of **3a** (entries 11–13). The screening of other acids such as TfOH, TFA, TsOH and MsOH, as well as Lewis acid TMSOTf, revealed that only TfOH and TMSOTf could catalyze the cycloaddition, but gave inferior yields (entries 14–18). It is noteworthy that no 2-aminopyrrole product **4a** was formed during the optimization (including the one in the absence of water), revealing the distinct catalytic activity of acid catalysis from that of gold catalysis.

5. Tf₂NH-catalyzed [5+2+1] cycloaddition of ynamides and isoxazoles with water

Representative procedure for the reactions of ynamides **1***a*–*f with* 3,5-*dimethylisoxazole* **2***a*:

In a 10 mL flame-dried Schlenk flask, ynamide **1** (0.3 mmol, 1.5 equiv), **2a** (0.20 mmol, 20 μ L), H₂O (0.20 mmol, 3.6 μ L) and DCE (1.5 mL) were added in sequence and the resulting mixture were stirred at -10 °C for 20 min. Then a solution of Tf₂NH (15 mol%, 8.4 mg) in DCE (0.5 mL) was added quickly and further stirred for additional 6 hours. The reaction was quenched by Et₃N solution (10 vol% in pentane, 120 μ L). The crude product was purified by silica gel column chromatography to yield the desired products (eluent: petroleum ether/ethyl acetate = 10/1).

Representative procedure for the other reactions:

In a 10 mL flame-dried Schlenk flask, ynamides 1g-w (0.2 mmol), isoxazoles 2 (0.24 mmol, 1.2 equiv), H₂O (0.20 mmol, 3.6 µL) and DCE (1.5 mL) were added in sequence and

the resulting mixture were stirred at - 20 °C for 20 min. Then a solution of Tf₂NH (15 mol%, 8.4 mg) in DCE (0.5 mL) was added quickly and further stirred for 12–24 h. The reaction was quenched by Et₃N solution (10 vol% in pentane, 120 μ L). The crude product was purified by silica gel column chromatography to yield the desired products (eluent: petroleum ether/ethyl acetate 10/1).

6. Characterization data of O-bridged tetrahydro-1,4-oxazepines

N-Benzyl-*N*-(3,5-dimethyl-7-phenyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methyl benzenesulfonamide (3a)

Ts N-Bn White solid; 58.0 mg; 61% yield; mp 127–128 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.28–7.12 (m, 12H), 6.06 (s, 1H), 4.87–4.66 (m, 2H), 2.52 (d, J = 18.0 Hz, 1H), 2.42–2.32 (m, 4H), 1.75 (s, 3H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 143.0, 139.1, 135.9, 129.9, 128.8, 128.6, 128.4, 127.90, 127.87, 127.6, 126.8, 126.3, 103.9, 103.8, 85.4, 49.7, 44.1, 25.4, 23.6, 21.6. HRMS (ESI) calcd for C₂₇H₂₉N₂O₄S [M + H]⁺477.1843, found 477.1841.

N-Benzyl-*N*-(3,5-dimethyl-7-(*o*-tolyl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methy lbenzenesulfonamide (3b)

Colorless oil; 38.8 mg; 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H), 7.33–7.27 (m, 1H), 7.17–7.06 (m, 10H), 6.26 (s, 1H), 4.78 (s, 2H), 2.61 (d, J = 18.1 Hz, 1H), 2.48–2.44 (m, 4H), 2.35 (s, 3H), 1.87 (s, 3H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 142.7, 139.6, 138.6, 137.0, 133.7, 130.6, 129.9, 128.8, 128.7, 128.6, 127.8, 127.0,

126.9, 125.1, 103.7, 103.2, 83.7, 49.0, 44.3, 25.5, 23.7, 21.6, 20.3. HRMS (ESI) calcd for $C_{28}H_{31}N_2O_4S \ [M + H]^+ 491.1999$, found 491.1995.

N-Benzyl-*N*-(7-(2-methoxyphenyl)-3,5-dimethyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1yl)-4-methylbenzenesulfonamide (3c)

168.2, 157.3, 142.3, 140.3, 139.4, 128.71, 128.66, 128.5, 128.3, 127.7, 126.9, 126.6, 124.6, 119.9, 110.0, 103.6, 103.3, 81.5, 55.2, 48.9, 44.3, 25.3, 23.8, 21.6. HRMS (ESI) calcd for

 $C_{28}H_{31}N_2O_5S$ [M + H]⁺ 507.1948, found 507.1945.

N-Benzyl-*N*-(3,5-dimethyl-7-(*p*-tolyl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methy lbenzenesulfonamide (3d)

128.8, 128.7, 128.5, 128.4, 127.9, 126.8, 126.3, 103.9, 103.7, 85.5, 49.7, 44.1, 25.5, 23.7, 21.6, 21.3. HRMS (ESI) calcd for C₂₈H₃₁N₂O₄S [M + H]⁺ 491.1999, found 491.1996.

N-Benzyl-*N*-(7-(4-methoxyphenyl)-3,5-dimethyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1yl)-4-methylbenzenesulfonamide (3e)

White solid; 45.0 mg; 45% yield; mp 175–176 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.76 (d, J = 8.1 Hz, 2H), 7.36–7.27 (m, 4H), 7.24–7.11 (m, 5H), 6.80 (d, J = 8.6 Hz, 2H), 6.01 (s, 1H), 4.74 (d, J = 16.2 Hz, 1H), 4.65 (d, J = 16.2 Hz, 1H), 3.77 (s, 3H), 2.60 (d, J = 18.2 Hz, 1H), 2.49 (d, J = 18.3 Hz, 1H), 2.40 (s, 3H), 1.78 (s, 3H), 1.49 (s, 3H). ¹³C

NMR (100 MHz, Acetone-*d*₆) δ 170.6, 160.1, 144.0, 140.7, 140.1, 129.6, 129.4, 129.0, 128.9, 128.6, 128.2, 127.3, 113.9, 104.6, 104.6, 85.5, 55.4, 50.5, 44.3, 25.4, 23.7, 21.4. HRMS (ESI) calcd for C₂₈H₃₁N₂O₅S [M + H]⁺ 507.1948, found 507.1949.

N-Benzyl-*N*-(7-(4-chlorophenyl)-3,5-dimethyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl) -4-methylbenzenesulfonamide (3f)

White solid; 67.7 mg; 66% yield; mp 149–150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.31–7.23 (m, 2H), 7.22–7.12 (m, 7H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.03 (s, 1H), 4.80–4.65 (m, 2H), 2.52 (d, *J* = 18.0 Hz, 1H), 2.38 (s, 3H), 2.33 (d, *J* = 18.0 Hz, 1H), 1.76 (s, 3H), 1.56

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 143.2, 139.0, 138.9, 134.4, 133.3, 128.9, 128.6, 128.04, 127.97, 127.6, 127.0, 104.0, 103.7, 84.7, 49.8, 44.0, 25.5, 23.6, 21.7. HRMS (ESI) calcd for C₂₇H₂₈ClN₂O₄S [M + H]⁺511.1453, found 511.1455.

N-Benzyl-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4 -methylbenzenesulfonamide (3g)

White solid; 70.7 mg; 73% yield; mp 135–136 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.71 (d, J = 8.4 Hz, 2H), 7.44 (dd, J = 4.9, 1.4 Hz, 1H), 7.37–7.28 (m, 4H), 7.27–7.18 (m, 3H), 6.96–6.86 (m, 2H), 5.96 (s, 1H), 4.69 (d, J = 16.7 Hz, 1H), 4.58 (d, J = 16.7 Hz, 1H), 2.62 (d, J = 18.4 Hz, 1H), 2.42–2.32 (m, 4H), 1.81 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100 MHz,

DMSO- d_6) δ 171.5, 143.3, 139.4, 138.2, 138.0, 129.1, 128.0, 127.7, 127.5, 127.1, 126.7, 126.6, 126.2, 103.9, 102.4, 81.4, 49.4, 43.2, 25.4, 23.0, 21.0. HRMS (ESI) calcd for $C_{25}H_{27}N_2O_4S_2$ [M + H]⁺483.1407, found 483.1411.

N-Benzyl-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)b enzenesulfonamide (3h)

18.3, 1H), 2.40 (d, J = 18.3 Hz, 1H), 1.86 (s, 3H), 1.43 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 171.9, 143.0, 140.5, 139.5, 133.3, 129.2, 129.0, 128.8, 128.5, 127.8, 127.4, 126.8, 126.7, 104.9, 103.8, 83.2, 50.5, 44.2, 25.8, 23.5. HRMS (ESI) calcd for C₂₄H₂₅N₂O₄S₂ [M + H]⁺ 469.1250, found 469.1258.

N-Benzyl-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4 -fluorobenzenesulfonamide (3i)

132.1 (d, J = 9.5 Hz), 128.8, 128.6, 127.9, 127.5, 126.9, 126.8, 116.1 (d, J = 22.7 Hz), 105.0, 103.8, 83.3, 50.4, 44.2, 25.8, 23.5. HRMS (ESI) calcd for $C_{24}H_{24}FN_2O_4S_2$ [M + H]⁺487.1156, found 487.1162.

N-Benzyl-4-chloro-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2en-1-yl)benzenesulfonamide (3j)

Colorless oil; 61.7 mg; 61% yield; ¹H NMR (400 MHz, Acetone- d_6) δ 7.80 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.40–7.31 (m, 3H), 7.27–7.17 (m, 3H), 6.95–6.87 (m, 2H), 6.04 (s, 1H), 4.88 (d, J = 16.4Hz, 1H), 4.75 (d, J = 16.4 Hz, 1H), 2.64 (d, J = 18.3 Hz, 1H), 2.43 (d, J = 18.3 Hz, 1H), 1.90 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 172.1, 141.9, 140.1, 139.2, 138.9, 130.8, 129.3, 128.9,

128.6, 128.0, 127.6, 126.9, 126.8, 105.1, 103.7, 83.3, 50.3, 44.2, 25.8, 23.5. HRMS (ESI) calcd for $C_{24}H_{24}ClN_2O_4S_2$ [M + H]⁺ 503.0861, found 503.0862.

N-Benzyl-*N*-(7-(4-methoxyphenyl)-3,5-dimethyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1yl)-2,4,6-trimethylbenzenesulfonamide (3k)

(d, J = 18.3 Hz, 1H), 2.56 (s, 6H), 2.37 (d, J = 18.3 Hz, 1H), 2.24 (s, 3H), 1.62 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 170.2, 160.2, 142.5, 141.2, 140.2, 139.1, 132.4, 129.6, 129.4, 129.0, 128.5, 127.9, 113.7, 104.8, 104.1, 85.0, 55.5, 50.1, 44.7, 24.8, 23.8, 23.4, 20.9. HRMS (ESI) calcd for C₃₀H₃₅N₂O₅S [M + H]⁺ 535.2261, found 535.2258.

N-Benzyl-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)n aphthalene-2-sulfonamide (3l)

White solid; 67.2 mg; 65% yield; mp 120–121 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 8.41 (s, 1H), 8.05–7.95 (m, 3H), 7.90–7.85 (m, 1H), 7.71–7.61 (m, 2H), 7.44–7.39 (m, 2H), 7.31 (d, J = 5.1, 1H), 7.25–7.18 (m, 3H), 7.00–6.96 (m, 1H), 6.91–6.87 (m, 1H), 6.18 (s, 1H), 4.95 (d, J = 16.3 Hz, 1H), 4.76 (d, J = 16.3 Hz, 1H), 2.55 (d, J = 18.3 Hz, 1H), 2.37 (d, J = 18.3 Hz, 1H), 1.83 (s, 3H), 1.41 (s,

3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 171.9, 140.4, 140.1, 139.5, 135.6, 132.8, 130.3, 130.1, 129.5, 129.0, 128.9, 128.59, 128.56, 128.1, 127.8, 127.5, 126.8, 126.7, 124.7, 104.9, 103.8, 83.3, 50.5, 44.1, 25.8, 23.5. HRMS (ESI) calcd for C₂₈H₂₇N₂O₄S₂ [M + H]⁺519.1407, found 519.1413.

N-Benzyl-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)m ethanesulfonamide (3m)

103.7, 82.8, 49.6, 44.2, 43.4, 26.0, 23.7. HRMS (ESI) calcd for $C_{19}H_{23}N_2O_4S_2$ [M + H]⁺ 407.1094, found 407.1095.

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methyl-*N*-(2-methylbenzyl)benzenesulfonamide (3n)

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-*N*-(2-meth oxybenzyl)-4-methylbenzenesulfonamide (30)

White solid; 70.2 mg; 68% yield; mp 139–140 °C; ¹H NMR (400 MHz, Acetone-*d*₆) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.36–7.33 (m, 3H), 7.15 (t, *J* = 7.7 Hz, 1H), 6.96–6.90 (m, 2H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.79 (t, *J* = 7.5 Hz, 1H), 6.08 (s, 1H), 4.76 (d, *J* = 17.9 Hz, 1H), 4.64 (d, *J* = 17.9 Hz, 1H), 3.78 (s, 3H), 2.58 (d,

J = 18.2 Hz, 1H), 2.41 (s, 3H), 2.36 (d, J = 18.2 Hz, 1H), 1.79 (s, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 171.7, 156.8, 144.2, 139.6, 139.4, 129.7, 129.32, 129.28, 128.6, 128.1, 127.0, 126.7, 120.6, 110.4, 104.9, 103.8, 83.1, 55.6, 45.6, 44.0, 25.8, 23.6, 21.4. HRMS (ESI) calcd for C₂₆H₂₉N₂O₅S₂ [M + H]⁺ 513.1512, found 513.1514.

N-(2-Chlorobenzyl)-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2 -en-1-yl)-4-methylbenzenesulfonamide (3p)

δ 172.5, 144.7, 139.3, 138.9, 138.0, 131.8, 130.4, 130.0, 129.5, 129.2, 128.6, 128.2, 127.2, 127.1, 126.8, 105.0, 103.9, 82.9, 48.5, 44.0, 25.9, 23.5, 21.5. HRMS (ESI) calcd for $C_{25}H_{26}CIN_2O_4S_2$ [M + H]⁺517.1017, found 517.1024.

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methyl-*N*-(3-methylbenzyl)benzenesulfonamide (3q)

Colorless oil; 76.9 mg; 77% yield; ¹H NMR (400 MHz, Acetone- d_6) δ 7.77 (d, J = 8.3 Hz, 2H), 7.35–7.28 (m, 3H), 7.16–7.12 (m, 2H), 7.08 (t, J = 7.7 Hz, 1H), 7.00–6.89 (m, 3H), 6.14 (s, 1H), 4.76 (d, J = 16.4 Hz, 1H), 4.66 (d, J = 16.4 Hz, 1H), 2.60 (d, J = 18.2 Hz, 1H), 2.43–2.36 (m, 4H), 2.22 (s, 3H), 1.87 (s,

3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 171.7, 144.0, 140.4, 140.1, 139.5, 137.8, 129.7, 129.4, 129.2, 128.4, 128.0, 127.8, 126.8, 126.7, 125.8, 104.9, 103.8, 83.2, 50.4, 44.2, 25.8, 23.6, 21.5, 21.4. HRMS (ESI) calcd for C₂₆H₂₉N₂O₄S₂ [M + H]⁺ 497.1563, found 497.1564.

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methyl-*N*-(4-methylbenzyl)benzenesulfonamide (3r)

129.7, 129.2, 129.1, 128.9, 127.7, 126.8, 126.6, 104.9, 103.9, 83.2, 50.2, 44.2, 25.8, 23.5, 21.4, 21.1. HRMS (ESI) calcd for C₂₆H₂₉N₂O₄S₂ [M + H]⁺ 497.1563, found 497.1565.

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-*N*-(4-meth oxybenzyl)-4-methylbenzenesulfonamide (3s)

White solid; 52.7 mg; 51% yield; mp 134–135 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.73 (d, J = 8.2 Hz, 2H), 7.35–7.25 (m, 5H), 6.95–6.86 (m, 2H), 6.76 (d, J = 8.6 Hz, 2H), 6.11 (s, 1H), 4.74 (d, J = 16.0 Hz, 1H), 4.62 (d, J = 16.0 Hz, 1H), 3.76 (s, 3H), 2.60 (d, J = 18.2 Hz, 1H), 2.45–2.36 (m, 4H), 1.90 (s, 3H), 1.44 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 171.7, 159.6, 143.9, 140.3, 139.6,

132.4, 130.4, 129.7, 129.1, 127.7, 126.9, 126.6, 113.9, 104.9, 103.9, 83.2, 55.4, 49.8, 44.2, 25.8, 23.6, 21.4. HRMS (ESI) calcd for $C_{26}H_{29}N_2O_5S_2$ [M + H]⁺ 513.1512, found 513.1516.

N-(4-Chlorobenzyl)-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2 -en-1-yl)-4-methylbenzenesulfonamide (3t)

White solid; 63.4 mg; 61% yield; mp 128–129 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.81 (d, J = 8.4 Hz, 2H), 7.39–7.31 (m, 5H), 7.23–7.16 (m, 2H), 6.98 (d, J = 3.5 Hz, 1H), 6.94–6.89 (m, 1H), 6.20 (s, 1H), 4.74 (d, J = 16.4 Hz, 1H), 4.60 (d, J = 16.4 Hz, 1H), 2.60 (d, J = 18.2 Hz, 1H), 2.45–2.37 (m, 4H), 1.88 (s, 3H), 1.44 (s, 3H). ¹³C

NMR (100 MHz, Acetone- d_6) δ 172.2, 144.3, 139.6, 139.4, 132.6, 130.5, 129.8, 129.2, 128.4, 127.8, 126.8, 126.7, 104.9, 103.8, 83.1, 50.0, 44.1, 25.8, 23.5, 21.4. HRMS (ESI) calcd for $C_{25}H_{26}CIN_2O_4S_2$ [M + H]⁺517.1017, found 517.1018.

N-(4-Bromobenzyl)-*N*-(3,5-dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2 -en-1-yl)-4-methylbenzenesulfonamide (3u)

White solid; 80.5 mg; 72% yield; mp 133–134 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.83 (d, J = 7.8 Hz, 2H), 7.38–7.32 (m, 5H), 7.32–7.26 (m, 2H), 7.02–6.97 (m, 1H), 6.95–6.90 (m, 1H), 6.22 (s, 1H), 4.72 (d, J = 16.4 Hz, 1H), 4.57 (d, J = 16.5 Hz, 1H), 2.60 (d, J = 18.3 Hz, 1H), 2.46–2.38 (m, 4H), 1.88 (s, 3H), 1.44 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 172.2, 144.3, 140.1, 139.42, 139.36, 131.3,

130.8, 129.8, 129.2, 127.7, 126.8, 126.7, 120.7, 104.9, 103.7, 83.0, 50.0, 44.1, 25.8, 23.4, 21.4. HRMS (ESI) calcd for $C_{25}H_{26}BrN_2O_4S_2$ [M + H]⁺ 561.0512, found 561.0513.

N-(3,5-Dimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methyl-*N*-(naphthalen-1-ylmethyl)benzenesulfonamide (3v)

White solid; 69.0 mg; 65% yield; mp 150–151 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 8.00–7.94 (m, 1H), 7.92–7.86 (m, 3H), 7.77–7.65 (m, 2H), 7.51–7.44 (m, 2H), 7.39–7.30 (m, 4H), 7.01–6.97 (m, 1H), 6.91–6.86 (m, 1H), 6.16 (s, 1H), 5.30–5.17 (m, 2H), 2.59 (d, J = 18.1 Hz, 1H), 2.42 (s, 3H), 2.37 (d, J = 18.2 Hz,

1H), 1.71 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 172.0, 144.3, 139.7, 139.4, 135.7, 134.2, 131.2, 129.8, 129.4, 128.3, 127.6, 127.0, 126.7, 126.6, 126.1, 126.0, 123.4, 105.0, 103.9, 83.2, 48.4, 44.1, 25.8, 23.6, 21.4. HRMS (ESI) calcd for C₂₉H₂₉N₂O₄S₂ [M + H]⁺ 533.1563, found 533.1570.

N-Butyl-*N*-(7-(4-methoxyphenyl)-3,5-dimethyl-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4-methylbenzenesulfonamide (3w)

N-Benzyl-*N*-(3,5-diethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct-2-en-1-yl)-4methylbenzenesulfonamide (3x)

= 7.5 Hz, 3H), 0.76 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 175.2, 144.0, 140.5, 140.1, 139.5, 129.8, 128.9, 128.5, 128.4, 128.0, 127.2, 126.8, 126.7, 106.9, 103.9, 83.6, 50.6, 41.7, 32.7, 21.4, 9.2, 6.9. HRMS (ESI) calcd for C₂₇H₃₁N₂O₄S₂ [M + H]⁺ 511.1720, found 511.1726.

N-Benzyl-*N*-(3-(chloromethyl)-5-methyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]o ct-2-en-1-yl)-4-methylbenzenesulfonamide (3y)

Colorless oil; 41.6 mg; 40% yield; ¹H NMR (400 MHz, Acetone- d_6) δ 7.78 (d, J = 8.4 Hz, 2H), 7.45–7.28 (m, 5H), 7.26–7.11 (m, 3H), 7.02–6.92 (m, 1H), 6.94–6.82 (m, 1H), 6.19 (s, 1H), 4.81 (d, J = 16.5 Hz, 1H), 4.63 (d, J = 16.5 Hz, 1H), 4.12 (d, J = 12.9 Hz, 1H), 4.05 (d, J = 12.9 Hz, 1H), 2.77 (d, J = 18.4 Hz, 1H), 2.64 (d, J = 18.4 Hz, 1H), 2.41 (s, 3H), 1.51 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 169.6, 144.4, 140.3, 139.7, 138.6, 129.9, 129.2, 128.8, 128.6, 127.9, 127.5, 127.0, 126.8, 105.2, 104.0, 83.3, 50.8, 47.4, 40.7, 23.5, 21.4. HRMS (ESI) calcd for $C_{25}H_{26}CIN_2O_4S_2$ [M + H]⁺517.1017, found 517.1008.

N-Benzyl-*N*-(3,5-dimethyl-4-methylene-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oc t-2-en-1-yl)-4-methylbenzenesulfonamide (3z)

Colorless oil; 58.1 mg; 59% yield; ¹H NMR (400 MHz, Acetone- d_6) δ 7.74 (d, J = 8.3 Hz, 2H), 7.43–7.27 (m, 5H), 7.27–7.13 (m, 3H), 6.95–6.84 (m, 2H), 6.21 (s, 1H), 5.70 (s, 1H), 5.65 (s, 1H), 4.84 (d, J = 16.4 Hz, 1H), 4.71 (d, J = 16.4 Hz, 1H), 2.40 (s, 3H), 2.06 (s, 3H), 1.64 (s, 3H). ¹³C NMR (100 MHz, Acetone- d_6) δ 166.9, 144.2, 141.3, 140.5, 140.0, 139.2, 129.8, 129.1,

128.8, 128.6, 128.0, 127.5, 127.0, 126.9, 115.8, 105.1, 104.2, 82.2, 50.7, 21.4, 20.1. HRMS (ESI) calcd for $C_{26}H_{27}N_2O_4S_2$ [M + H]⁺495.1407, found 495.1405.

N-Benzyl-4-methyl-*N*-(3,4,5-trimethyl-7-(thiophen-2-yl)-6,8-dioxa-2-azabicyclo[3.2.1]oct -2-en-1-yl)benzenesulfonamide (3ge)

White solid; 47.4 mg; 48% yield; mp 118–119 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 7.75 (d, J = 8.0 Hz, 2H), 7.37–7.29 (m, 5H), 7.23–7.14 (m, 3H), 7.00–6.95 (m, 1H), 6.91 (t, J = 4.3 Hz, 1H), 6.11 (s, 1H), 4.77 (d, J =16.5 Hz, 1H), 4.66 (d, J = 16.4 Hz, 1H), 2.61 (q, J = 7.5 Hz, 1H), 2.41 (s, 3H), 1.87 (s, 3H), 1.43 (s, 3H), 1.26 (d, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz,

Acetone) $\delta 175.0$, 144.1, 140.6, 140.1, 139.1, 129.7, 129.2, 128.7, 128.5, 128.3, 127.3, 126.9, 126.7, 107.2, 103.4, 82.5, 50.5, 46.5, 23.6, 21.5, 21.4, 11.3. HRMS (ESI) calcd for $C_{26}H_{29}N_2O_4S_2$ [M + H]⁺497.1563, found 497.1562.

The relative stereochemistry of compound **3ge** was determined by nOe.

2D ¹H–¹H nOe NMR spectrum of compound **3ge** (700 MHz, Acetone- d_6).

Expanded regions of 2D $^{1}H^{-1}H$ nOe NMR spectrum of compound **3ge**.

7. Gold-catalyzed cycloaddition in the presence of water

In a 10 mL flame-dried Schlenk flask, ynamide **1g** (0.2 mmol, 73.4 mg), 3,5-dimethylisoxazole **2a** (0.24 mmol, 24 μ L), H₂O (0.20 mmol, 3.6 μ L) and DCE (1.5 mL) were added in sequence and the resulting mixture was stirred at indicated temperature for 20 min. Then a solution of IPrAuNTf₂ (15 mol%, 26 mg) in DCE (0.5 mL) was added quickly and further stirred for 6 hours. Direct purification by silica gel column chromatography yielded the pyrrole **4g** in 51% yield (47.2 mg, eluent: petroleum ether/ethyl acetate = 5/1).

N-(4-Acetyl-5-methyl-3-(thiophen-2-yl)-1H-pyrrol-2-yl)-*N*-benzyl-4-methylbenzenesulfo namide (4g)

Yellow oil; 47.2 mg; 51% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.33–7.22 (m, 5H), 7.24–7.14 (m, 3H), 6.81 (dd, J = 5.2, 3.5 Hz, 1H), 6.04 (d, J = 3.5 Hz, 1H), 4.45 (s, 2H), 2.47 (s, 3H), 2.37 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 144.1, 136.5, 136.0, 134.2, 133.7, 129.8, 128.70, 128.66, 128.4,

128.1, 127.8, 127.0, 126.6, 122.1, 121.4, 113.6, 54.1, 30.0, 21.8, 14.3. HRMS (ESI) calcd. for $C_{25}H_{25}N_2O_3S_2$ [M + H]⁺ 465.1301, found 465.1295.

8. Scale-up experiment

In a 10 mL flame-dried Schlenk flask, ynamide **1g** (1.36 mmol, 0.5 g), 3,5-dimethylisoxazole **2a** (1.2 equiv, 147 μ L), H₂O (1.0 equiv, 24.5 μ L) and DCE (13 mL) were added in sequence and the resulting mixture was stirred at -20 °C for 20 min. Then a solution of HNTf₂ (7.5 mol%, 28.7 mg) in DCE (1.0 mL) was added quickly and further stirred for 16 hours. The reaction was quenched by Et₃N solution (10 vol% in pentane, 0.45 mL). Purification by silica gel column chromatography afforded the desired product **3g** in 58% yield (0.38 g, eluent: petroleum ether/ethyl acetate = 10/1).

9. Further transformations to dihydrooxazoles

Procedure for eqn 1: In a 10 mL flame-dried Schlenk flask, ynamide 1g (0.1 mmol, 48.2 mg) and CDCl₃ (0.5 mL) were added and the resulting mixture was stirred at 50 °C for 8 hours. Purification by silica gel column chromatography afforded dihydrooxazole 5g in a nearly quantitative yield. The dr value was determined by NMR analysis of crude reaction mixture.

Procedure for eqn 2: In a 10 mL flame-dried Schlenk flask, ynamides **1** (0.2 mmol), 3,5-dimethylisoxazole **2a** (1.2 equiv, 24 μ L), H₂O (1.0 equiv, 4 μ L) and DCE (1.5 mL) were added in sequence and the resulting mixture was stirred at -10 °C for 20 min. Then a solution of HNTf₂ (15 mol%, 8.4 mg) in DCE (0.5 mL) was added quickly and stirred at this temperature for 6 hours. Subsequently, the mixture was further stirred at 50 °C for 8 hours. The reaction was quenched by Et₃N solution (10 vol% in pentane, 120 μ L). Purification by silica gel column chromatography yielded the dihydrooxazoles **5**. The configuration of the product was confirmed by single-crystal X-ray diffraction analysis of **5a** (CCDC 1819934). The dr value was determined by NMR analysis of crude reaction mixture.

N-Benzyl-4-methyl-*N*-(2-methyl-2-(2-oxopropyl)-5-phenyl-2,5-dihydrooxazol-4-yl)benze nesulfonamide (5a)

Yellow solid; 64.5 mg; 68% yield; mp 109–110 °C; ¹H NMR (400 MHz,
CDCl₃) δ 7.61–7.57 (m, 2H), 7.30–7.27 (m, 3H), 7.25–7.16 (m, 5H),
7.10–7.05 (m, 2H), 6.90–6.85 (m, 2H), 6.18 (s, 1H), 4.63 (d, J = 14.2 Hz,
1H), 4.52 (d, J = 14.2 Hz, 1H), 2.87–2.76 (m, 2H), 2.43 (s, 3H), 2.15 (s,

3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.0, 159.2, 144.7, 137.8, 135.3, 135.0, 129.9, 129.4, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 105.2, 86.4, 53.4, 51.7, 32.1, 28.8, 21.8. HRMS (ESI) calcd for C₂₇H₂₉N₂O₄S [M + H]⁺477.1843, found 477.1841.

N-Benzyl-*N*-(5-(2-methoxyphenyl)-2-methyl-2-(2-oxopropyl)-2,5-dihydrooxazol-4-yl)-4methylbenzenesulfonamide (5c)

Yellow solid; 57.0 mg; 56% yield; mp 132–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.30–7.21 (m, 8H), 6.85–6.79 (m, 1H), 6.70–6.61 (m, 1H), 6.48 (s, 1H), 6.40–6.32 (m, 1H), 4.79 (d, J = 14.9 Hz, 1H), 4.66 (d, J = 14.9 Hz, 1H), 3.70 (s, 3H), 2.85–2.72 (m, 2H), 2.42 (s, 3H), 2.10 (s, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 159.0, 157.5, 144.5,

135.8, 135.7, 130.1, 129.6, 129.6, 129.2, 128.1, 128.1, 127.8, 126.3, 120.6, 111.0, 105.3, 79.8, 55.5, 54.1, 51.5, 32.0, 28.1, 21.7. HRMS (ESI) calcd for $C_{28}H_{31}N_2O_5S$ [M + H]⁺ 507.1948, found 507.1948.

N-Benzyl-*N*-(5-(4-chlorophenyl)-2-methyl-2-(2-oxopropyl)-2,5-dihydrooxazol-4-yl)-4-met hylbenzenesulfonamide (5f)

159.1, 144.8, 136.5, 135.2, 134.7, 134.2, 130.0, 129.9, 129.6, 128.6, 128.0, 127.9, 127.9, 105.3, 85.8, 52.8, 51.9, 32.0, 29.0, 21.7. HRMS (ESI) calcd for $C_{27}H_{28}CIN_2O_4S$ [M + H]⁺ 511.1453, found 511.1477.

N-Benzyl-4-methyl-*N*-(2-methyl-2-(2-oxopropyl)-5-(thiophen-2-yl)-2,5-dihydrooxazol-4-y l)benzenesulfonamide (5g)

10. Mechanistic studies

In a 10 mL flame-dried Schlenk flask, ynamide **1g** (0.2 mmol, 73.4 mg), 3,5-dimethylisoxazole **2a** (0.24 mmol, 24 μ L), D₂O or H₂¹⁸O (0.40 mmol, 8.0 μ L) and DCE (1.5 mL) were added in sequence and the resulting mixture was stirred at -20 °C for 20 min. Then a solution of TMSOTf (15 mol%, 5.5 μ L) or Tf₂NH (15 mol%, 8.4 mg) in DCE (0.5 mL) was added quickly and further stirred for 12 hours. The reaction was quenched by Et₃N solution (10 vol% in pentane, 120 μ L). Purification by silica gel column chromatography afforded the desired product.

From ¹H, ¹³C NMR, and HSQC of compound **3g**, we conclude that 6.14 ppm in ¹H NMR and 83.1 ppm in ¹³C NMR were assigned to H2 and C2 atoms, respectively. Therefore, a splitting of the carbon signal (104.9 and 103.8 ppm) in ¹³C NMR of **3g**-[¹⁸O] (69% ¹⁸O) suggests that the ¹⁸O atom bridges 3 and 7 positions, rather than 2 and 7 positions of the tetrahydro-1,4-oxazepine ring.

f1 (ppm)

HRMS of compound **3g-**[¹⁸O]

In a 10 mL flame-dried Schlenk flask, ynamide **1a** (0.2 mmol, 72.2 mg), H₂O (0.20 mmol, 3.6 μ L) and DCE (1.5 mL) were added in sequence. Then a solution of Tf₂NH (15 mol%, 8.4 mg) in DCE (0.5 mL) was added quickly and stirred at room temperature for 12 hours. The reaction was quenched by Et₃N solution (10 vol.% in pentane, 120 μ L). Purification by silica gel column chromatography afforded the amide **6a** (62 mg, 83%).

N-Benzyl-2-phenyl-N-tosylacetamide (6a)

Colorless oil; 62 mg; 83% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4Hz, 2H), 7.46–7.01 (m, 9H), 7.12–6.76 (m, 2H), 5.07 (s, 2H), 3.87 (s, 2H), **6a** 2.42 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 171.4, 145.0, 136.7, 133.3, 129.8, 129.4, 128.8, 128.7, 128.1, 127.9, 127.8, 127.3, 49.8, 43.0, 21.8. HRMS (ESI) calcd. for C₂₂H₂₂NO₃S [M + H]⁺ 380.1315, found 380.1323.

11. References

- (1) Y. S. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz and E. L. Vera, Org. Lett., 2004, 6, 1151.
- (2) Y. Zhao, Y. Hu, C. Wang, X. Li and B. Wan, J. Org. Chem., 2017, 82, 3935.
- (3) Y. Zhao, Y. Hu, X. Li and B. Wan, Org. Biomol. Chem., 2017, 15, 3413.
- (4) R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed., 2017, 56, 1026.

12. NMR spectroscopy of ynamides

13. NMR spectroscopy of isoxazole 2b

14. NMR spectroscopy of *O*-bridged tetrahydro-1,4-oxazepines

15. NMR spectroscopy of pyrrole 4g

16. NMR spectroscopy of dihydrooxazoles 5

S127

17. NMR spectroscopy of amide 6a

