Electronic Supplementary Information

The Near-UV Absorber OSSO and Its Isomers

Zhuang Wu,^a Huabin Wan,^a Jian Xu,^a Bo Lu,^a Yan Lu,^a André K. Eckhardt,^b Peter R. Schreiner,^{*b} Changjian Xie,^c Hua Guo,^c and Xiaoqing Zeng^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 China; E-mail: xqzeng@suda.edu.cn
^bInstitute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; E-mail: prs@uni-giessen.de
^cDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA

Table of Contents:

Experimental and calculation detailsS3
IR spectra in solid N ₂ -matrices (Figures S1–S2)S5
IR spectra for the experiments with 5-methyl-1,3,4-oxthiazol-2-one (Figure S3)S7
IR spectrum for the ¹⁸ O labeling experiment (Figure S4)S8
Frontier molecular orbitals of S ₂ O ₂ isomers (Figure S5)S9
TD-DFT computed vertical transitions of S ₂ O ₂ isomers (Table S1)S10
Computed and observed IR spectra of S ₂ O ₂ isomers (Tables S2-S5)S11
Computed and observed ¹⁸ O isotopic shifts of S ₂ O ₂ isomers (Table S6)S12
References S16
Computed atomic coordinates and energies of S ₂ O ₂ isomersS17

Experimental details

Sample preparation. Ethylene episulfoxide were prepared according to the published protocols^[1]. The purity was checked by using ¹H and ¹³C NMR spectroscopy (Bruker Avance III HD 400 spectrometer). Ar (\geq 99.999%, Messer) and N₂ (\geq 99.999%, Messer) gases were used without further purification. 5-Methyl-1,3,4-oxthiazol-2-one was prepared according to literature.^[2]

Matrix-isolation IR spectroscopy. Matrix IR spectra were recorded on a FT-IR spectrometer (Bruker 70V) in a reflectance mode by using a transfer optic. A KBr beam splitter and liquid-nitrogen cooled broadband MCT detector were used in the mid-IR region (4000–400 cm⁻¹). Typically, 200 scans at a resolution of 0.5 cm⁻¹ were co-added for each spectrum. Gaseous ethylene episulfoxide was mixed by passing a flow of Ar or N₂ gas through a U-trap containing ca. 20 mg of ethylene episulfoxide at -27 °C or 5-methyl-1,3,4-oxthiazol-2-one at -28 °C. Then the mixture (estimated ratio of 1:1000) was passed through an aluminum oxide furnace (o.d. 2.0 mm, i.d. 1.0 mm), which can be heated over a length of ca. 25 mm by a tantalum wire (o.d. 0.4 mm, resistance 0.4 Ω), deposited (2 mmol h⁻¹) in a high vacuum (~10⁻⁶ pa) onto the Rh-plated Cu block matrix support (15.0 K for Ar and N₂) using a closed-cycle helium cryostat (Sumitomo Heavy Industries, SRDK-408D2-F50H) inside the vacuum chamber. Temperatures at the second stage of the cold head were controlled and monitored using a LakeShore 335 digital cryogenic temperature controller a Silicon Diode (DT-670). The voltage and current used in the pyrolysis experiments are 5.0 V and 3.45 A, respectively. Photolysis experiments were performed using an Nd³⁺: YAG laser (266 and 532 nm, MPL-F-266, 10 mW), and UV flashlight (365 nm, Boyu T648, 20 W).

Matrix-isolation UV/Vis spectroscopy.

The cryostat used was an APD Cryogenics HC-2 closed-cycle refrigerator system with BaF_2 window for UV/Vis measurements. UV/Vis spectra with a Jasco V670 spectrometer (spectral range of 190–850 nm with a scanning speed of 1 nm s⁻¹). For the combination of high-vacuum flash pyrolysis with matrix isolation, a small, home-built, water-cooled oven directly connected to the vacuum shroud of the cryostat was used. The pyrolysis zone consisted of a completely empty quartz tube (inner diameter 8 mm, length of heating zone 50 mm) resistively heated by a coax heating wire. The temperature was controlled through a Ni/CrNi thermocouple. A gas mixture of ethylene episulfoxide and Ar (1:1000) was prepared in a 2 L storage bulb and evaporated at room temperature into the quartz pyrolysis tube. Immediately after leaving the tube, at a distance of ca. 50 mm, all pyrolysis products were condensed (typically 30 to 60 mbar in one hour) on the surface of the 12.0 K matrix window. For irradiation UV light (365 nm), and low-pressure mercury lamp (254 nm) were used.

Computational details

Molecular structures and IR frequencies of stationary points were computed using UB3LYP/6-311+G(3df)^[3] and UCCSD(T)-F12b/VTZ-F12.^[4] Local minima were confirmed by vibrational frequency analysis. The time-dependent TD-B3LYP method was performed for the prediction of vertical excitations.^[5] These computations were performed using the Gaussian 09 software package.^[6] The CCSD(T)-F12 computations were performed using the MOLPRO^[7] packages.

Figure S1. A) IR spectrum of matrix isolated HVFP (1000 K) products of ethylene episulfoxide (**a**) in N_2 (1:1000) at 15 K. B) IR difference spectrum reflecting the change of the same matrix upon green light irradiation (532 nm, 25 min).

Figure S2. A) IR difference spectrum reflecting the depletion of **e** and **f** and the formation of **d**, **g**, and **h** upon UV light irradiation (365 nm, 5 min) in solid N₂ matrix. B) IR difference spectrum reflecting the depletion of **h** and the formation of **d**, **e**, and **f** upon green light irradiation (532 nm, 5 min). C) IR difference spectrum reflecting the depletion of **g** and the formation of **e** and **f** upon UV light irradiation (266 nm, 8 min).

Figure S3. A) IR spectrum of matrix isolated 5-methyl-1,3,4-oxthiazol-2-one (i) in solid Ar matrix (1:1000) at 15 K. B) HVFP (850 K) products of 5-methyl-1,3,4-oxthiazol-2-one (i) in Ar (1:1000) at 15 K. C) IR difference spectrum reflecting the depletion of **m** and the formation of SO₂ (d) and S₂O₂ isomers (**e**, **f**, **g**, and **h**) upon UV light irradiation (266 nm, 22 min). The pyrolysis of 5-methyl-1,3,4-oxthiazol-2-one (i) has been studied in literatures.^[8]

Figure S4. A) IR difference spectrum reflecting the depletion of **e** and **f** and the formation of **d**, **g**, and **h** upon UV light irradiation (365 nm, 5 min); B) IR difference spectrum reflecting the depletion of doubly-¹⁸O labeled **e** and **f** and the formation of **d**, **g**, and **h** upon UV light irradiation (365 nm, 5 min).

Figure S5. Frontier molecular orbitals of S_2O_2 isomers computed at the B3LYP/6-311+G(3df) level.

species	energy (nm)	oscillator strength (f)	main contribution
syn-OSSO	495	0.0000	$MO-23 \rightarrow MO-25$
	350	0.0706	$MO-24 \rightarrow MO-25$
	306	0.0000	$MO-24 \rightarrow MO-26$
	281	0.0034	$MO-23 \rightarrow MO-26$
	256	0.0005	$MO-22 \rightarrow MO-25$
anti-OSSO	542	0.0000	$MO-23 \rightarrow MO-25$
	400	0.0698	$MO-24 \rightarrow MO-25$
	295	0.0000	$MO-24 \rightarrow MO-26$
	264	0.0005	$MO-22 \rightarrow MO-25$
	261	0.0060	$MO-23 \rightarrow MO-26$
syn-OSOS	1190	0.0000	$MO-24 \rightarrow MO-25$
	436	0.1453	$MO-23 \rightarrow MO-25$
	334	0.0120	$MO-24 \rightarrow MO-26$
	314	0.0000	$MO-23 \rightarrow MO-26$
	286	0.0016	$MO-22 \rightarrow MO-25$
	232	0.0153	$MO-24 \rightarrow MO-27$
cyclic OS(=O)S	451	0.0001	$MO-24 \rightarrow MO-25$
	339	0.0012	$MO-24 \rightarrow MO-26$
	257	0.0265	$MO-23 \rightarrow MO-25$
	244	0.0381	$MO-23 \rightarrow MO-26$
	233	0.0300	$MO-22 \rightarrow MO-25$

Table S1. TD-DFT B3LYP/6-311+G(3df) calculated spin-allowed vertical excitation energy (> 230 nm) of S₂O₂ isomers.

comput	ted ^[a]							observed ^[d]			mode
B3LYP	9/6-31	1+G(3df)	CCSD(T)-	F12b/	MRCI/	fc-CCSD(Γ)/				
			VTZ-F12		cc-pV(T+d)Z ^[b]	cc-pV(Q+	$d)Z^{[c]}$				
normal		guess=mix	harmonic	anharmonic	harmonic	harmonic	anharrmonic	Ar-matrix	N ₂ -matrix	Ne-matrix	
1192 (7	71)	1192 (71)	1191	1173 (125)	1288 (110)	1187	1171 (47)	1159.3 (100)	1157.1 (100)	1162.8 (100)	ν_1
1139 (2	228)	1139 (228)	1139	1122 (738)	1234 (300)	1137	1120 (165)	1112.5 (38)	1107.2 (46)	1115.4 (31)	v ₂
490 (1))	490 (1)	492	482 (1)	526 (<1)	487	478 (0.3)				V 3
475 (18	3)	475 (18)	476	471 (40)	505 (49)	475	470 (17)				ν_4
286 (0))	286 (0)	279	275 (0)	275 (0)	277	274 (0)				V 5
138 (5))	138 (5)	134	136 (8)	162 (9)	130	131 (5)				ν_6

Table S2. Computed and observed IR frequencies (cm⁻¹) of *syn*-OSSO.

[a] Computed IR intensities (km mol⁻¹) in parentheses. [b] B. N. Frandsen, P. O. Wennberg, H. G. Kjaergaard, *Geophys. Res. Lett.* **2016**, *43*, 11146–11155. [c] M. A. Martin-Drumel, J. Van Wijingaarden, O. Zingsheim, F. Lewen, M. E. Harding, S. Schlemmer, S. Thorwirth, *J. Mol. Spectrosc.* **2015**, *307*, 33–39. [d] Observed band positions and relative intensities based on the integrated band areas in parentheses.

computed ^[a]					observed ^[c]			mode
B3LYP/6-311-	⊦G(3df)	CCSD(T)-F	12b/VTZ-F12	MRCI/cc-pV(T+d)Z ^[b]				
normal	guess=mix	harmonic	anharmonic	harmonic	Ar-matrix	N ₂ -matrix	Ne-matrix	
1160 (0)	1133 (0)	1160	1148 (0)	1250 (0)				ν_1
1131 (378)	1116 (300)	1133	1122 (1552)	1231 (560)	1105.5	1102.8	1110.2	v_2
580 (0)	428 (0)	571	561 (0)	584 (0)				V3
342 (0)	309 (0)	344	339 (0)	375 (0)				v_4
192 (12)	179 (18)	187	186 (20)	209 (49)				V5
186 (20)	166 (11)	180	180 (55)	189 (0)				ν_6

Table S3. Computed and observed IR frequencies (cm⁻¹) of *anti*-OSSO.

[a] Computed IR intensities (km mol⁻¹) in parentheses. [b] B. N. Frandsen, P. O. Wennberg, H. G. Kjaergaard, *Geophys. Res. Lett.* **2016**, *43*, 11146–11155. [c] Observed band positions and relative intensities based on the integrated band areas in parentheses.

computed ^[a]					observed ^[c]			mode
B3LYP/6-311+	G(3df)	CCSD(T)-F	12b/VTZ-F12	MRCI/cc-pV(T+d)Z ^[b]				
normal	guess=mix	harmonic	anharmonic	harmonic	Ar-matrix	N ₂ -matrix	Ne-matrix	
1254 (172)	1213 (142)	1243	1237 (157)	1330 (250)	1209.3 (100)	1213.3 (100)	1210.0 (100)	v ₁
745 (50)	744 (11)	784	740 (837)	971 (410)	764.6 (6)	n.o.	770.7 (5)	V 2
647 (25)	520 (12)	644	622 (88)	677 (69)				v ₃
514 (13)	493 (12)	515	508 (11)	538 (16)				v_4
335 (13)	244 (10)	306	302 (18)	267 (0)				V5
151 (0.5)	164 (1)	173	172 (0.3)	194 (9)				ν_6

Table S4. Computed and observed IR frequencies (cm⁻¹) of *syn*-OSOS.

[a] Computed IR intensities (km mol⁻¹) in parentheses. [b] B. N. Frandsen, P. O. Wennberg, H. G. Kjaergaard, *Geophys. Res. Lett.* **2016**, *43*, 11146–11155. [c] Observed band positions and relative intensities based on the integrated band areas in parentheses.

computed [a]					observed			mode
B3LYP/6-311	+G(3df)	CCSD(T)-F12b/V	/TZ-F12	MRCI/cc-pV(T+d)Z ^[b]				
normal	guess=mix	harmonic	anharmonic		Ar-matrix	N ₂ -matrix	Ne-matrix	
1272 (217)	1272 (217)	1284	1266 (339)	1396 (560)	1252.3 (100)	1248.9 (100)	1259.9 (100)	ν_1
805 (46)	805 (46)	819	803 (58)	894 (95)	795.7 (23)	793.6 (21)	793.9 (18)	v_2
559 (30)	559 (30)	570	559 (29)	593 (57)				V 3
442 (29)	442 (29)	466	459 (55)	505 (76)				ν_4
414 (14)	414 (14)	422	417 (20)	462 (39)				v ₅
266 (0.3)	266 (0.3)	275	272 (0.8)	302 (2)				ν_6

Table S5. Computed and observed IR spectra of *cyclic*-OS(=O)S.

[a] Computed IR intensities (km mol⁻¹) in parentheses. [b] B. N. Frandsen, P. O. Wennberg, H. G. Kjaergaard, *Geophys. Res. Lett.* 2016, 43, 11146–11155.

mode	syn-OSSO		anti-OSSO		syn-OSOS		cyclic-OS(=O)S
	calculated	observed	calculated	observed	calculated	observed	calculated	observed
ν_1	44.0	42.8	41.6		45.1	45.9	47.0	43.0
v_2	42.8	44.1	41.2	41.6	29.4	28.4	29.5	34.5
V 3	1.8		5.4		9.9		17.5	
v_4	11.7		8.5		21.0		6.9	
V5	7.3		7.4		9.3		16.9	
v_6	7.3		6.9		5.7		8.7	

Table S6. Computed (B3LYP/6-311+G(3df)) and observed ¹⁸O-isotopic shifts (cm⁻¹) of S₂O₂ isomers.

References:

(1) Hartzell, G. E.; Paige, J. N. J. Am. Chem. Soc. 1966, 88, 2616-2617.

(2) Howe, R. K.; Gruner, T. A.; Carter, L. G.; Black, L. L.; Franz, J. E. J. Org. Chem. 1978, 43, 3736–3742.

(3) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

(4) a) Adler, T. B.; Knizia, G.; Werner, H.-J.; *J. Chem. Phys.* **2007**, *127*, 221106; b) Knizia, G.; Adler, T. B.; Werner, H.-J. *J. Chem. Phys.* **2009**, *130*, 054104; c) Peterson, K. A.; Adler, T. B.; Werner, H.-J. *J. Chem. Phys.* **2008**, *128*, 084102.

(5) a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. **1998**, 109, 8218. b) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. **1992**, 96, 135.

(6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, A.1; Gaussian, Inc.: Wallingford CT, 2009.

(7) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–3253.

(8) For examples, see: a) Pasinszki, T.; Kárpáti, T.; Westwood, N. P. C. J. Phys. Chem. A **2001**, *105*, 6258–6265; b) Franz, J. E.; Howe, R. K.; Pearl, H, K. J. Org. Chem. **1976**, *41*, 620–626; c) Kambouris, P.; Plisnier, M.; Flammang, R.; Terlouw, J. K.; Wentrup, C. Tetrahedron Lett. **1991**, *32*, 1487–1490.

Computed atomic coordinates (in Angstroms) and energies (in Hartrees). *syn*-OSSO

B3LYP/6-311+G(3df)			
0	1.64085500	0.88443500	0.00001000
0	-1.64079700	0.88448500	-0.00001000
S	1.00713100	-0.44222900	-0.00000800
S	-1.00716000	-0.44223100	0.00000800
7			0.000.475
Zero-point correction			0.008475
Thermal correction to	Energy=		0.012923
Thermal correction to	Enthalpy=		0.013868
Thermal correction to	Gibbs Free Ene	ergy= -().019779
Sum of electronic and	d zero-point Ene	rgies=	-946.887164
Sum of electronic and	d thermal Energi	es=	-946.882/15
Sum of electronic and	d thermal Enthal	pies=	-946.881771
Sum of electronic and	d thermal Free E	nergies=	-946.915418
B3LYP/6-311+G(3df) anti-OSSO S	0.00000000	1.01301700	0.00000000
0	-1.38041600	1.53669200	0.00000000
S	-0.00018900	-1.01396800	0.00000000
0	1.38079500	-1.53479100	0.00000000
Zana naint asmaation			0.000170
Thermal correction to	Enorari-		0.008178
Thermal correction to	Energy –		0.012/49
Thermal correction to	o Einnaipy=		0.015095
Sum of electronic on	d gang maint Eng	eigy= -(046 992521
Sum of electronic and	a zero-point Ene	rgies=	-940.882321
Sum of electronic and	a thermal Energi	es=	-940.877950
Sum of electronic and	a thermal Enthal	pies=	-946.877005
Sum of electronic and	a thermal Free E	nergies=	-946.910725
syn-OSOS			
B3LYP/6-311+G(3df)			
0	0.35683900	-0.76717200	0.00039300
0	-1.40586300	1.04089300	0.00019100
S	1.68865200	0.24860900	-0.00009700
S	-1.16414000	-0.38546900	-0.00019500
Zero-point correction	=		0.008305
Thermal correction to	Energy=		0.012617
Thermal correction to	- Entralny		0.013562
Thermal correction to	Gibbs Free Ene	rov(0.019502
Sum of electronic and	d zero-point Ene	rgies-	-946 851167
Sum of electronic and	d thermal Energi	as-	-946 846855
Sum of electronic and	d thermal Entral	nies-	-946 845910
Sum of electronic and	d thermal Free E	nergies=	-946.879281
		2	
anti-OSOS			
O	0.0000000	0 57200700	0.0000000
0	0.00000000	0.3/299/00	
c c	2.03410000	-0.00092300	0.00000000
ວ ເ	-1.03000200	0.77110200	0.00000000
3	0.0007/200	-0.0/413000	0.00000000

Thermal correction to	1-		0.007703
	o Energy=		0.012320
Thermal correction to	o Enthalpy=		0.013264
Thermal correction to	o Gibbs Free Ene	ergy= -(0.020481
Sum of electronic an	d zero-point Ene	rgies=	-946.842254
Sum of electronic an	d thermal Energi	es=	-946.837637
Sum of electronic an	d thermal Enthal	pies=	-946.836692
Sum of electronic an	d thermal Free E	nergies=	-946.870437
cyclic OS(=O)S			
B3LYP/6-311+G(3df)	1		
0	0.38712400	1.08690800	-0.27586300
0	-1.67964800	-0.42572400	-0.48783100
S	1.32948800	-0.39438600	-0.04740300
S	-0.68322600	0.06379400	0.42925000
Zero-point correction	1=		0.008559
Thermal correction t	o Energy=		0.012697
Thermal correction t	o Enthalpy=		0.013642
Thermal correction t	o Gibbs Free Ene	ergy= -(0.019004
Sum of electronic an	d zero-point Ene	rgies=	-946.869690
Sum of electronic an	d thermal Energi	es=	-946.865553
Sum of electronic an	d thermal Enthal	nies=	-946.864608
Sum of electronic an	d thermal Free E	nergies=	-946.897254
SSO ₂ B3LVP/6-311+G(3df)			
SSO ₂ B3LYP/6-311+G(3df)	-1 11105800	1 23598900	0.00006500
SSO ₂ B3LYP/6-311+G(3df) O	-1.11105800	1.23598900	0.00006500
SSO ₂ B3LYP/6-311+G(3df) O O S	-1.11105800 -1.11140200 1.49633900	1.23598900 -1.23581200 -0.00007900	0.00006500 0.00006600 -0.00006700
SSO ₂ B3LYP/6-311+G(3df) O S S	-1.11105800 -1.11140200 1.49633900 -0 38510900	1.23598900 -1.23581200 -0.00007900 -0.0000900	0.00006500 0.00006600 -0.00006700 0.0000200
SSO ₂ B3LYP/6-311+G(3df) O S S Zaro point correction	-1.11105800 -1.11140200 1.49633900 -0.38510900	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200
SSO ₂ B3LYP/6-311+G(3df) O S S Zero-point correction	-1.11105800 -1.11140200 1.49633900 -0.38510900	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119
SSO ₂ B3LYP/6-311+G(3df) O S S Zero-point correction Thermal correction to	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Entholou-	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022
SSO ₂ B3LYP/6-311+G(3df) O O S S Zero-point correction Thermal correction to Thermal correction to	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Enthalpy= o Cibbo Erec Free	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022 0.014966
SSO ₂ B3LYP/6-311+G(3df) O O S S Zero-point correction Thermal correction to Thermal correction to Thermal correction to	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Enthalpy= o Gibbs Free Ene	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022 0.014966 0.017404
SSO ₂ B3LYP/6-311+G(3df) O O S S Zero-point correction Thermal correction to Thermal correction to Thermal correction to Sum of electronic an	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Enthalpy= o Gibbs Free End d zero-point Ene	1.23598900 -1.23581200 -0.00007900 -0.00000900	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022 0.014966 0.017404 -946.896700
SSO ₂ B3LYP/6-311+G(3df) O O S S Zero-point correction Thermal correction to Thermal correction to Thermal correction to Thermal correction to Sum of electronic an	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Enthalpy= o Gibbs Free Ene d zero-point Ene d thermal Energi	1.23598900 -1.23581200 -0.00007900 -0.00000900 ergy= -(rgies= es=	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022 0.014966 0.017404 -946.896700 -946.892797
SSO ₂ B3LYP/6-311+G(3df) O O S S Zero-point correction Thermal correction to Thermal correction to Thermal correction to Thermal correction to Sum of electronic an Sum of electronic an	-1.11105800 -1.11140200 1.49633900 -0.38510900 n= o Energy= o Enthalpy= o Gibbs Free Ene d zero-point Ene d thermal Energi d thermal Enthal	1.23598900 -1.23581200 -0.00007900 -0.00000900 ergy= -(rgies= es= pies=	0.00006500 0.00006600 -0.00006700 0.00000200 0.010119 0.014022 0.014966 0.017404 -946.896700 -946.892797 -946.891853