ESI

Synthetic Details

General Procedures. Solvents were purified by standard methods. ${ }^{1}$ Palladium(II) acetate, (p $\left.\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{SO}_{2}, 2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CHO},\left(p-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{O}$ and the phosphine $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm) were purchased from Sigma-Aldrich. All preparations were carried out under dry dinitrogen. Elemental analyses were performed with a Fisons elemental analyzer, Model 1108. IR espectra were recorded as Nujol mulls or polythene discs on Perking-Elmer 1330, Mattson Model Cygnus-100, and Bruker Model IFS-66V spectrophotometers. ${ }^{1} \mathrm{H}$ NMR spectra in solution were recorded in CDCl_{3}, DMSO- d_{6} or Acetone- d_{6} at room temperature on Bruker DPX 250 and Varian Mercury 300 spectrometer operating at 250.13 MHz and 300.14 MHz respectively using 5 mm o.d. tubes; chemical shifts, in ppm, are reported downfield relative to TMS using the solvent signal $\left(\mathrm{CDCl}_{3}, \delta^{1} \mathrm{H}=7.26 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}, \delta^{1} \mathrm{H}=2.46 \mathrm{ppm} ; \mathrm{MeCOMe}-\mathrm{d}_{6} \delta^{1} \mathrm{H}=2.05 \mathrm{ppm}\right)$ as reference. ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 161.91 MHz and 202.46 MHz on a Varian Inova 400 and Bruker AMX 500 spectrometer respectively using 5 mm o.d. tubes and are reported in ppm relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$. Coupling constants are reported in Hz . All chemical shifts are reported downfield from standard

Scheme 1ESI Reaction sequence leading to the synthesis of the double A-frame complexes.

Synthesis of $\left[2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{SO}_{2}(\mathrm{a})$

[^0]A 1:2 mixture of $\left(p-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{SO}_{2}(2.57 \mathrm{~g}, 10.33 \mathrm{mmol})$ and $2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CHO}(4.0 \mathrm{~g}$, 20.39 mmol) in chloroform ($50 \mathrm{~cm}^{3}$) was refluxed for 3 h . After cooling to room temperature, the solvent was removed under reduced pressure to give a yellow oil. Addition of diethyl ether and stirring for 24 h gave a pale-yellow solid, which was filtered and dried under vacuum. Yield: $4.891 \mathrm{~g}, 80 \%$. Anal. Found: C: 63.4, H: 5.2, N: 4.6, S: 5.3%; $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ ($604.67 \mathrm{~g} / \mathrm{mol}$); requires C: 63.6, H: 5.3, N: 4.6, S: 5.3 \%. IR(cm^{-1}): v(C=N) 1621. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, \delta / \mathrm{ppm}$, J / Hz): 8.58 (s, 2H, HC=N), 7.94 (d, 4H, H7H8, N = 8.2), 7.74 (d, 2H, H6, ${ }^{3} \mathrm{JH} 6 \mathrm{H} 5=8.9$), 7.33 (d, $4 \mathrm{H}, \mathrm{H} 9 \mathrm{H} 10, \mathrm{~N}=8.2$), 6.94 (d, 2H, H5, ${ }^{3} \mathrm{JH} 5 \mathrm{H} 6=8.9$), 3.90 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{MeO}$), 3.84 (s, 6H, MeO), 3.74 (s, 6H, MeO).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu_{2}-\mathrm{O}_{2} \mathrm{CMe}\right)\right\}_{2} \mathrm{SO}_{2}\right]_{2}$ (la)

The ligand a ($0.475 \mathrm{~g}, 0.785 \mathrm{mmol}$) and palladium(II) acetate ($0.355 \mathrm{~g}, 1.580 \mathrm{mmol}$) were added in toluene ($50 \mathrm{~cm}^{3}$) and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under argon. After cooling to r. t. the orange-brown solid formed was filtered off and dried under vacuum, to afford the final product as a dark orange solid. Yield: $0.70 \mathrm{~g}, 98 \%$. Anal. Found: C 46.4, H 4.2, N 3.2 , $\mathrm{S} 3.3 \%$; $\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{24} \mathrm{Pd}_{4} \mathrm{~S}_{2}(1867.16 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C} 46.3, \mathrm{H} 3.9, \mathrm{~N} 3.0, \mathrm{~S} 3.4 \%$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: $\mathrm{v}(\mathrm{C}=\mathrm{N})$ 1566. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, \delta \mathrm{ppm}, \mathrm{JHz}$): 8.26 (s, 4H, HC=N), 7.94 (m, 8H, H7H8), 7.52 (m, 8H, H9H10), 6.16 (s, 4H, H5), 3.83 (s, 12H, MeO), 3.77 (s, 12H, MeO), $3.65(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO})$, 1.91 (s, 12H, MeCO_{2}).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu_{2}-\mathrm{CI}\right)\right\}_{2} \mathrm{SO}_{2}\right]_{2}$ (Ila)

A solution of la ($0.407 \mathrm{~g}, 0.218 \mathrm{mmol}$) in $20 \mathrm{~cm}^{3}$ of acetone was treated with a saturated solution of NaCl in ca. $20 \mathrm{~cm}^{3}$ of water. The yellow precipitate formed was filtered off, washed with water and dried under vacuum. Yield: $393 \mathrm{mg}, 88 \%$. Anal. Found: C, 43.5, H, 3.2, N, 3.2, S 3.4%; $\mathrm{C}_{64} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Pd}_{4} \mathrm{~S}_{2}(1772.80 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 43.4, \mathrm{H}, 3.4, \mathrm{~N}, 3.2, \mathrm{~S}, 3.6 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: $v(C=N) 1570, v(\mathrm{Pd}-\mathrm{Cl}) 309,284 .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$, $\left.\delta \mathrm{ppm}, \mathrm{JHz}\right): 8.28$ (s, 4H, HC=N), 7.96 (m, 8H, H7H8, $N=8.5$), 7.54 (m, 8H, H9H10, $N=8.4$), 6.16 (s, 4H, H5), 3.85 (s, 12H, MeO), 3.79 (s, 12H, MeO), 3.67 (s, 12H, MeO).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2} \mathrm{SO}_{2}\right]_{2}$ (IIla)

A solution of la ($0.224 \mathrm{~g}, 0.120 \mathrm{mmol}$) in $20 \mathrm{~cm}^{3}$ of acetone was treated with a saturated solution of LiBr in ca. $20 \mathrm{~cm}^{3}$ of water. The yellow precipitate formed was filtered off, washed with water and dried under vacuum. Yield: $350 \mathrm{mg}, 95.6 \%$. Anal. Found: C, 39.4, H, 3.2, N, 3.0, $\mathrm{S}, 3.1 \% ; \mathrm{C}_{64} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Pd}_{4} \mathrm{~S}_{2}$ (1950.61 g/mol) requires C, 39.4, H, 3.1, N, 2.9, S, 3.3\%. IR(cm^{-1}): v(C=N) 1621. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, \delta \mathrm{ppm}, \mathrm{JHz}\right): 8.52(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 7 \mathrm{H} 8, N=8.5), 8.28(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{HC}=\mathrm{N}$), $7.95(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 9 \mathrm{H} 10, N=8.4), 7.38(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 5), 3.83(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO}), 3.78(\mathrm{~s}, 12 \mathrm{H}$, MeO), 3.65 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{MeO}$).

Synthesis of $\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-P, P\right)\right]_{2} \mathrm{SO}_{2} \cdot 2 \mathrm{PF}_{6}$ (1a)

$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(0.029 \mathrm{~g}, 0.075 \mathrm{mmol})$ was added to a suspension of lla ($0.033 \mathrm{~g}, 0.019 \mathrm{mmol}$) in acetone $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 30 min , after which an excess of ammonium hexafluorophosphate was added. The mixture was stirred for a further 1 h , the complex precipitated out by addition of water, filtered off and dried in vacuo. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: vC=N: 1568. ${ }^{1} \mathrm{H}$ NMR (MeCOMe $\left.-\mathrm{d}_{6}, \delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz}\right): 8.53\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{N},{ }^{4} \mathrm{JHP}_{\text {trans }}=5.9\right), 6.04(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H} 5$, ${ }^{4} \mathrm{JH} 5 \mathrm{P}=10.5,{ }^{4} \mathrm{JH} 5 \mathrm{P}=7.9$), $4.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.98(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeO}), 3.71$ (s, 6H, MeO), 3.20 (s, 6H, MeO). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{MeCOMe}-\mathrm{d}_{6}, \delta \mathrm{ppm}, \mathrm{JHz}$): -37.2 (d, $\mathrm{P}_{\text {transc }},{ }^{2} \mathrm{JPP}=72.1$), -12.9 (d , $\left.P_{\text {transN }},{ }^{2} \mathrm{JPP}=72.1\right),-149.9\left(\mathrm{sept}, \mathrm{PF}_{6}{ }^{1} \mathrm{JPF}=709.5\right)$.

Abstract

Synthesis of $\left\{\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-\mathrm{P}, \mathrm{P}\right)\right]_{2}(\mu-\mathrm{Cl}) \mathrm{SO}_{2}\right\}_{2} \cdot 2 \mathrm{PF}_{6}$ (2a) $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(8.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ and ammonium hexafluorophosphate ($0.004 \mathrm{~g}, 0.024$ mmol) were added to a solution of lla ($8.5 \mathrm{mg}, 0.005 \mathrm{mmol}$) in acetone $-\mathrm{d}_{6}\left(0.6 \mathrm{~cm}^{3}\right)$ and left to stand until complete conversion. Yield: $16 \mathrm{mg}, 93 \%$ related to Ila. Anal. Found: \%; C, 55.3, H, 4.4, $\mathrm{N}, 1.6, \mathrm{~S}, 1.8 \% ; \mathrm{C}_{164} \mathrm{H}_{148} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{10} \mathrm{Pd}_{4} \mathrm{~S}_{2}(3529.42 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 55.8, \mathrm{H}, 4.2, \mathrm{~N}$, 1.6, S, 1.8 \% IR(cm-1): uC=N: 1597, uPd-Cl: 280m. ${ }^{1} \mathrm{H}$ NMR (MeCOMe-d ${ }_{6}$, $\left.\delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz}\right): 8.10$ (s, 4H, HC=N), 7.02 (m, 4H, H5), 4.25 (s, 12H, MeO), 3.58 (s, 12H, MeO), 3.48 (s, 12H, MeO). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (MeCOMe- $\left.\mathrm{d}_{6}, \delta \mathrm{ppm}\right): 1.48$ (s), -150.0 (sept, PF ${ }_{6},{ }^{1}$ JPF 707.7).

Synthesis of $\left[\mathbf{2 , 3 , 4}-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{O}$ (b)

A 1:2 mixture of $\left(p-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{O}(1.0 \mathrm{~g}, 4.99 \mathrm{mmol})$ and $2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CHO}(2.0 \mathrm{~g}, 9.98$ mmol) in ethanol ($50 \mathrm{~cm}^{3}$) was stirred at room temperature for 24 h . The white precipitate formed was filtered off, washed with water and dried under vacuum. Yield: $2.273 \mathrm{~g}, 82 \%$. Anal. Found: C: 68.8, H: 5.9, N: $5.1 \% ; \mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}(556.61 \mathrm{~g} / \mathrm{mol})$ requires C: 69.0, H: 5.8, $\mathrm{N}: 5.0 \%$. IR $\left(\mathrm{cm}^{-1}\right)$: $\mathrm{v}(\mathrm{C}=\mathrm{N}) 1609 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{-} \mathrm{d}_{6}, ~ \delta / \mathrm{ppm}, \mathrm{J} / \mathrm{Hz}$): $8.64(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{N}$); 7.75 (d, 2H, H6, ${ }^{3} \mathrm{JH} 6 \mathrm{H} 5=8.7$); 7.25 (d, 4H, H9H10, $\mathrm{N}=8.3$); 7.03 (d, 4H, H7H8, $\mathrm{N}=8.3$); 6.93 (d, 2H, H5, ${ }^{3} \mathrm{JH} 5 \mathrm{H6}=8.7$); 3.86 (s, 6H, MeO); 3.84 (s, 6H, MeO); 3.75 (s, 6H, MeO).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right\}_{2} \mathrm{O}\right]_{2}(\mathrm{Ib})$

The ligand $\mathbf{b}(0.500 \mathrm{~g}, 0.898 \mathrm{mmol})$ and palladium(II) acetate $(0.403 \mathrm{~g}, 1.795 \mathrm{mmol})$ were added in toluene $\left(30 \mathrm{~cm}^{3}\right)$ and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 24 h . After cooling to r. t. the red oil formed was separated, to afford the final product as a red solid. Yield: $300 \mathrm{mg}, 40 \%$. Anal. Found: C 48.6, H 4.2, N 3.3 \%; $\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{22} \mathrm{Pd}_{4}(1771.04 \mathrm{~g} / \mathrm{mol}$) requires C 48.8, H 4.1, N 3.2%. $\operatorname{RR}\left(\mathrm{cm}^{-1}\right): u(\mathrm{C}=\mathrm{N}) 1564 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta \mathrm{ppm}, \mathrm{JHz}\right): 8.02$ (s, 4H, HC=N), 6.97 (d, 8H, H9H10, N = 8.3); 6.76 (d, 8H, H7H8, N = 8.3), 5.92 (s, 4H, H5), 3.74 (s, 12H, MeO), 3.65 (s, 12H, MeO), 3.57 (s, 12H, MeO), 2.17 (s, 6H, MeCO_{2}), 1.48 (s, 6H, MeCO_{2}).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu_{2}-\mathrm{Cl}\right)\right\}_{2} \mathrm{O}\right]_{2}(\mathrm{llb})$

A solution of $\mathrm{lb}(0.472 \mathrm{~g}, 0.266 \mathrm{mmol})$ in $25 \mathrm{~cm}^{3}$ of dichloromethane was treated with a 0.05 M solution of NaCl in ca. $35 \mathrm{~cm}^{3}$ of water. The organic part was separated and the solvent was removed under reduced pressure. Later the residue was recrystallized on a mixture of dichloromethane-hexane giving a yellow solid. Yield: $312.8 \mathrm{mg}, 70 \%$. Anal. Found: C, 46.2, H, $3.7, \mathrm{~N}, 3.2$ \% $\mathrm{C}_{64} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{Pd}_{4}(1676.67 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 45.9, \mathrm{H}, 3.6, \mathrm{~N}, 3.3 \%$. IR($\left.\mathrm{cm}^{-1}\right)$: uC=N: 1572, uPd-Cl: 310, uPd-Cl: 294. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $\delta \mathrm{ppm}, \mathrm{JHz}$): 8.08 (s, 4H, HC=N), 7.24 (d, 8H, $-\mathrm{O}-\mathrm{Ph}, N=8.7$), 6.91 (d, 8H, $-\mathrm{O}-\mathrm{Ph}, N=8.7$), 6.74 (s, 4H, H5), 3.97 (s, 12H, MeO), 3.94 (s, 12H, MeO), 3.79 (s, 12H, MeO).

Synthesis of $\left[\left\{\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu_{2}-\mathrm{Br}\right)\right\}_{2} \mathrm{O}\right]_{2}$ (IIIb)

A solution of $\mathbf{l b}(0.100 \mathrm{~g}, 0.056 \mathrm{mmol})$ in $10 \mathrm{~cm}^{3}$ of dichloromethane was treated with a 0.05 M solution of NaBr in ca. $8 \mathrm{~cm}^{3}$ of water. The organic part was separated and the solvent was removed under reduced pressure. Later the residue was recrystallized on a mixture of dichloromethane-hexane giving a red solid. Yield: $35.5 \mathrm{mg}, 34 \%$. Anal. Found: C, 41.2, H, 3.2, $\mathrm{N}, 3.1 \% ; \mathrm{C}_{64} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{Pd}_{4}(1854.48 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 41.5, \mathrm{H}, 3.3, \mathrm{~N}, 3.0 \% . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: $\mathrm{vC=N}: 1570 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}, \mathrm{JHz}\right): 8.12(\mathrm{~s}, 4 \mathrm{H}, \mathrm{HC=N}), 7.24(\mathrm{~d}, 8 \mathrm{H},-\mathrm{O}-\mathrm{Ph}, \mathrm{N}=9.3)$, 6.93 (d, 8H, -O-Ph, $N=9.3$), 6.91 (s, 4H, H5), 3.96 (s, 12H, MeO), 3.95 (s, 12H, MeO), 3.79 (s, $12 \mathrm{H}, \mathrm{MeO}$).
${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$, $\delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz}$): 8.20 (s, 4H, HC=N), 7.30 (m, 8H, -O-Ph, N = 7.5), 7.30 (s, $4 \mathrm{H}, \mathrm{H} 5$), 6.99 (m, $8 \mathrm{H},-\mathrm{O}-\mathrm{Ph}, N=7.5$), 3.83 (s, 12H, MeO), 3.75 (s, 12H, MeO), 3.64 (s, 12H, MeO).

Synthesis of $\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-P, P\right)\right]_{2} \mathrm{O} \cdot 2 \mathrm{PF}_{6}$ (1b)

$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(8.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ and ammonium hexafluorophosphate ($0.004 \mathrm{~g}, 0.024$ mmol) were added to a solution of llb ($8.5 \mathrm{mg}, 0.005 \mathrm{mmol}$) or IIlb ($0.093 \mathrm{~g}, 0.005 \mathrm{mmol}$) in acetone ($0.6 \mathrm{~cm}^{3}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeCOMe}^{2} \mathrm{~d}_{6}, \delta \mathrm{ppm}, \mathrm{JHz}$): $8.50\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{HC=N},{ }^{4} \mathrm{JHP}_{\text {trans }} 6.8\right), 7.25$ (d, 4H, H9H10, N = 8.5), 6.55 (d, 4H, H7H8, N = 8.5), 6.01 (m, 2H, H5), 4.60 (m, 4H, PCH2P, N $=19.6$), 3.97 (s, 6H, MeO), 3.69 (s, 6H, MeO), 3.15 (s, 6H, MeO). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{MeCOMe}-\mathrm{d}_{6}$, $\delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz}): ~-36.0\left(\mathrm{~d},{ }^{2} \mathrm{JPP} 63.0\right),-12.2$ (d, ${ }^{2}$ JPP 63.0), -150.0 (sept, $\mathrm{PF}_{6},{ }^{1} \mathrm{JPF} 707.7$).

Synthesis of $\left\{\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-P, P\right)\right]_{2}(\mu-\mathrm{Cl}) \mathrm{O}\right\}_{2} \cdot 2 \mathrm{PF}_{6}$

 (2b)$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(8.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ and ammonium hexafluorophosphate ($0.004 \mathrm{~g}, 0.024$ mmol) were added to a solution of $\mathrm{Ilb}(8.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ in acetone- $\mathrm{d}_{6}\left(0.6 \mathrm{~cm}^{3}\right)$ and left to stand until complete conversion. Yield: $16 \mathrm{mg}, 95 \%$ related to llb. Anal. Found: C, 57.2, H, 4.5, $\mathrm{N}, 1.7 \% ; \mathrm{C}_{164} \mathrm{H}_{148} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{P}_{10} \mathrm{Pd}_{4}(3433.25 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 57.4, \mathrm{H}, 4.4, \mathrm{~N}, 1.6 \%$. IR(cm^{-1}): vC=N: 1594, vPd-CI: 279m. ${ }^{1} \mathrm{H}$ NMR (MeCOMe-d ${ }_{6}$, $\delta \mathrm{ppm}, \mathrm{JHz}$): 8.12 (s, 4H, $\mathrm{HC}=\mathrm{N}), 7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 5), 6.57(\mathrm{~d}, 8 \mathrm{H}, \mathrm{H} 7 \mathrm{H} 8, \mathrm{~N}=8.7), 4.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}\right), 4.23(\mathrm{~s}, 12 \mathrm{H}$, MeO), 3.55 (s, 12H, MeO), 3.42 (s, 12H, MeO). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (MeCOMe- $\left.\mathrm{d}_{6}, \delta \mathrm{ppm}\right): 1.5$ (s, 1P), -150.0 (sept, ${ }^{1}$ JPF 707.7).

Synthesis of $\left\{\left[\mathrm{Pd}\left\{2,3,4-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{CH})=\mathrm{NC}_{6} \mathrm{H}_{4}\right\}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-P, P\right)\right]_{2}(\mu-\mathrm{Br}) \mathrm{O}\right\}_{2} \cdot 2 \mathrm{PF}_{6}$ (3b)
$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(7.1 \mathrm{mg}, 0.018 \mathrm{mmol})$ and ammonium hexafluorophosphate ($0.003 \mathrm{~g}, 0.018$ mmol) were added to a solution of Illb $(8.5 \mathrm{mg}, 0.0046 \mathrm{mmol})$ in acetone $-\mathrm{d}_{6}\left(0.6 \mathrm{~cm}^{3}\right)$ and left to stand until complete conversion. Yield: $14 \mathrm{mg}, 90 \%$ related to Illb. Anal. Found: C, 55.9; H, 4.2; $\mathrm{N}, 1.6$ \%; $\mathrm{C}_{164} \mathrm{H}_{148} \mathrm{Br}_{2} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{P}_{10} \mathrm{Pd}_{4}(3522.21 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 55.9 ; \mathrm{H}, 4.2 ; \mathrm{N}, 1.6$ \%. IR(cm^{-1}): vC=N: 1590. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeCOMe}-\mathrm{d}_{6}, \delta \mathrm{ppm}, \mathrm{J} \mathrm{Hz}$): 8.16 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{HC}=\mathrm{N}$), 7.05 (m, 4H, $\mathrm{H} 5), 4.60\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{P}\right), 4.23(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO}), 3.55(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO}), 3.43(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeO}) .{ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR (MeCOMe-d $\left.{ }_{6}, \delta \mathrm{ppm}\right): 0.66$ (s, 1P), -150.0 (sept, ${ }^{1} \mathrm{JPF} 707.7$).

Figure 1ESI. Time-dependent ${ }^{1} \mathrm{H}$ NMR plot for the $\mathbf{1 a} \boldsymbol{\mathbf { ~ }} \mathbf{2 a}$ shift at r.t. Compound $\mathbf{1 a}$, ${ }^{*}$. Compound 2a, ${ }^{\text {. }}$.

Crystal Structure Analysis

Three-dimensional, X-ray data were collected on a Bruker Kappa-APEX II; Siemens Smart CCD diffractometer by the ω scan method using graphite-monochromated Mo-K α radiation. All the measured reflections were corrected for Lorentz and polarisation effects and for absorption by semi-empirical methods based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least squares on F^{2}. Hydrogen atoms were included in calculated positions. Refinement converged at a final R1 $=0.0773$ and $w R 2=$ 0.1950 (compound $\mathbf{2 a}$), $\mathrm{R} 1=0.0442$, $w R 2=0.1292$ (compound $\mathbf{2 b}$), $\mathrm{R} 1=0.0437$ and $w R 2=$ 0.1252 (compound 3b) with allowance for thermal anisotropy of all non-hydrogen atoms. The structure solution and refinement were carried out using the program package SHELX-97.

Table 1 Crystal data and structure refinement for $\mathbf{2 a}$.

Identification code	2a
Empirical formula	$\mathrm{C}_{173} \mathrm{H}_{163} \mathrm{Cl}_{8} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{P}_{10} \mathrm{Pd}_{4} \mathrm{~S}_{2}$
Formula weight	3897.09
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\begin{aligned} & \mathrm{P} 21 / \mathrm{n} \\ & \mathrm{a}=14.8431(11) \AA \quad \alpha=90^{\circ} . \end{aligned}$
Unit cell dimensions	$\begin{aligned} & b=26.413(2) \AA \\ & 93.090(6)^{\circ} . \end{aligned} \quad \beta=$
	$\mathrm{c}=22.3504(19) \AA \quad \gamma=90^{\circ}$.
Volume	8749.8(12) \AA^{3}
Z	2
Density (calculated)	$1.479 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.718 \mathrm{~mm}^{-1}$
F(000)	3966
Crystal size	$0.19 \times 0.18 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	1.58 to 24.43°.
Index ranges	$\begin{aligned} & -17<=h<=16, \quad-30<=k<=30, \\ & 24<=1<=25 \end{aligned}$
Reflections collected	87544
Independent reflections	$14410[\mathrm{R}$ (int) $=0.2121]$
Completeness to theta $=$ 24.43°	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.928 and 0.865
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints parameters	14410 / 42 / 1074
Goodness-of-fit on F2	0.992
Final R indices [$1>2$ sigma(1]]	$\mathrm{R} 1=0.0773, \mathrm{wR} 2=0.1950$
R indices (all data)	$\mathrm{R} 1=0.1533, \mathrm{wR} 2=0.2570$
Largest diff. peak and hole	2.323 and -0.890 e. A^{-3}

Table 2 Selected bond lengths $[\AA$] for 2a

$$
\operatorname{Pd}(1)-C(1) \quad 1.996(9) \quad C(30)-\quad 1.863(9)
$$

		$P(1)$ $P d(1)-P(1)$	$2.334(3)$
		$\mathrm{C}(30)-$ $\mathrm{P}(2)$	$1.833(9)$
$\mathrm{Pd}(1)-\mathrm{P}(3)$	$2.342(3)$	$\mathrm{C}(31)-$ $\mathrm{P}(3)$	$1.816(9)$
$\mathrm{Pd}(1)-$	$2.452(2)$	$\mathrm{C}(31)-$	$1.859(9)$
$\mathrm{Cl}(1)$		$\mathrm{P}(4)$	
$\mathrm{Pd}(2)-$	$2.002(1$	$\mathrm{C}(7)-\mathrm{N}(1)$	$1.284(1$
$\mathrm{C}(17)$	$0)$		$2)$
$\mathrm{Pd}(2)-\mathrm{P}(2)$	$2.299(3)$	$\mathrm{C}(23)-$	$1.266(1$
		$\mathrm{N}(2)$	$2)$
$\mathrm{Pd}(2)-\mathrm{P}(4)$	$2.326(3)$	$\mathrm{C}(11)-$	$1.754(9)$
		$\mathrm{S}(1)$	
$\mathrm{Pd}(2)-$	$2.416(2)$	$\mathrm{C}(28)-$	$1.761(1$
$\mathrm{Cl}(1)$		$\mathrm{S}(1)$	$0)$
$\mathrm{Pd}(1)-$	$3.253(1)$		
$\mathrm{Pd}(2)$			

Table 3 Selected angles [${ }^{\circ}$] for 2a

$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$88.9(3)$	$\mathrm{P}(4)-\mathrm{Pd}(2)-$	$95.75($
		$\mathrm{Cl}(1)$	$9)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(3)$	$87.8(3)$	$\mathrm{Pd}(2)-\mathrm{Cl}(1)-$ $\mathrm{Pd}(1)$	$83.87($
		$8)$	
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(3)$	$168.20(9)$	$\mathrm{P}(2)-\mathrm{C}(30)-\mathrm{P}(1)$	$116.6($
			$5)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-$	$175.6(3)$	$\mathrm{P}(3)-\mathrm{C}(31)-\mathrm{P}(4)$	$116.8($
$\mathrm{Cl}(1)$		$5)$	
$\mathrm{P}(1)-\mathrm{Pd}(1)-$	$92.60(9)$	$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(8)$	$118.2($
$\mathrm{Cl}(1)$			$5)$
$\mathrm{P}(3)-\mathrm{Pd}(1)-$	$91.54(9)$	$\mathrm{O}(7)-\mathrm{S}(1)-$	$108.7($
$\mathrm{Cl}(1)$		$\mathrm{C}(11)$	$5)$
$\mathrm{C}(17)-\mathrm{Pd}(2)-$	$88.7(3)$	$\mathrm{O}(8)-\mathrm{S}(1)-$	$108.3($
$\mathrm{P}(2)$		$\mathrm{C}(11)$	$5)$
$\mathrm{C}(17)-\mathrm{Pd}(2)-$	$86.5(3)$	$\mathrm{O}(7)-\mathrm{S}(1)-$	$108.1($
$\mathrm{P}(4)$		$\mathrm{C}(28)$	$5)$
$\mathrm{P}(2)-\mathrm{Pd}(2)-\mathrm{P}(4)$	$173.61(1$	$\mathrm{O}(8)-\mathrm{S}(1)-$	$107.3($
	$0)$	$\mathrm{C}(28)$	$5)$
$\mathrm{C}(17)-\mathrm{Pd}(2)-$	$171.8(3)$	$\mathrm{C}(11)-\mathrm{S}(1)-$	$105.6($
$\mathrm{Cl}(1)$		$\mathrm{C}(28)$	$4)$
$\mathrm{P}(2)-\mathrm{Pd}(2)-$	$88.41(9)$		
$\mathrm{Cl}(1)$			

Table 4 Crystal data and structure refinement for 2b

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensi ons

Volume

2b

$\mathrm{C}_{176} \mathrm{H}_{172} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{20} \mathrm{P}_{10} \mathrm{Pd}_{4}$ 3697.37

97(2) K
0.71073 Å

Triclinic
P-1
$a=16.4987(6) \AA \quad \alpha=82.897(2)^{\circ}$.
$b=16.5332(6) \AA \quad \beta=71.882(2)^{\circ}$.
$c=17.1548(5) \AA \quad \gamma=75.240(2)^{\circ}$.
4295.6(3) \AA^{3}

Z	1
Density (calculated)	1.429 Mg/m ${ }^{3}$
Absorption coefficient	$0.614 \mathrm{~mm}^{-1}$
F(000)	1892
Crystal size	$0.250 \times 0.220 \times 0.160 \mathrm{~mm}^{3}$
Theta range for data collection	1.275 to 25.000°.
Index ranges	$\begin{aligned} & -19<=h<=19,-19<=k<=19,- \\ & 20<=\mid<=20 \end{aligned}$
Reflections collected	140354
Independent reflections	$15101[\mathrm{R}(\mathrm{int})=0.0442]$
$\text { Completeness to theta }=$ 25.000°	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9010 and 0.8216
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15101 / 774 / 1046
Goodness-of-fit on F2	1.091
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0442, \mathrm{wR} 2=0.1292$
R indices (all data)	$\mathrm{R} 1=0.0515, \mathrm{wR} 2=0.1339$
Largest diff. peak and hole	2.151 and -0.969 e. A^{-3}

Table 5 Selected bond lengths $[\AA \AA$] for 2b

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$1.997(4)$	$\mathrm{P}(1)-\mathrm{C}(81)$	$1.844($
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.3228($	$\mathrm{P}(2)-\mathrm{C}(81)$	$1.834($
	$8)$		$3)$
$\mathrm{Pd}(1)-\mathrm{P}(4)$	$2.3331($	$\mathrm{P}(3)-\mathrm{C}(26)$	$1.832($
	$9)$		$4)$
$\mathrm{Pd}(1)-$	$2.4328($	$\mathrm{P}(4)-\mathrm{C}(26)$	$1.831($
$\mathrm{Cl}(1)$	$8)$		$4)$
$\mathrm{Pd}(1)-$	$3.1735($	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.271($
$\mathrm{Pd}(2)$	$4)$		$5)$
$\mathrm{Pd}(2)-$	$1.994(4)$	$\mathrm{N}(2)-$	$1.278($
$\mathrm{C}(82)$		$\mathrm{C}(20) \# 1$	$5)$
$\mathrm{Pd}(2)-\mathrm{P}(3)$	$2.3168($	$\mathrm{O}(7)-\mathrm{C}(11)$	$1.388($
	$9)$		$5)$
$\mathrm{Pd}(2)-\mathrm{P}(1)$	$2.3569($	$\mathrm{O}(7)-\mathrm{C}(14)$	$1.400($
	$9)$		$5)$
$\mathrm{Pd}(2)-$	$2.4607($	$\mathrm{Pd}(1)-\mathrm{Pd}(2)$	$3.173($
$\mathrm{Cl}(1)$	$9)$		$4)$

Table 6 Selected angles [${ }^{\circ}$] for $\mathbf{2 b}$

$\mathrm{C}(1)-\mathrm{Pd}(1)-$	$84.98(10)$	$\mathrm{P}(3)-\mathrm{Pd}(2)-\mathrm{P}(1)$	$168.01(3)$
$\mathrm{P}(2)$			
$\mathrm{C}(1)-\mathrm{Pd}(1)-$	$85.96(10)$	$\mathrm{C}(82)-\mathrm{Pd}(2)-$	$176.62(1$
$\mathrm{P}(4)$		$\mathrm{Cl}(1)$	$1)$
$\mathrm{P}(2)-\mathrm{Pd}(1)-$	$168.62(3)$	$\mathrm{P}(3)-\mathrm{Pd}(2)-$	$91.27(3)$
$\mathrm{P}(4)$		$\mathrm{Cl}(1)$	
$\mathrm{C}(1)-\mathrm{Pd}(1)-$	$171.66(1$	$\mathrm{P}(1)-\mathrm{Pd}(2)-$	$96.33(3)$
$\mathrm{Cl}(1)$	$0)$	$\mathrm{Cl}(1)$	
$\mathrm{P}(2)-\mathrm{Pd}(1)-$	$93.40(3)$	$\mathrm{Pd}(1)-\mathrm{Cl}(1)-$	$80.85(3)$

$\mathrm{Cl}(1)$		$\mathrm{Pd}(2)$	
$\mathrm{P}(4)-\mathrm{Pd}(1)-$	$94.58(3)$	$\mathrm{P}(4)-\mathrm{C}(26)-\mathrm{P}(3)$	$117.2(2)$
$\mathrm{Cl}(1)$			
$\mathrm{C}(82)-\mathrm{Pd}(2)-$ $85.79(10)$ $\mathrm{P}(2)-\mathrm{C}(81)-\mathrm{P}(1)$ $\mathrm{P}(3)$ $115.01(1$ $\mathrm{C}(82)-\mathrm{Pd}(2)-$ $86.30(10)$ $\mathrm{C}(11)-\mathrm{O}(7)-$ $\mathrm{P}(1)$ $\mathrm{C}(14)$ $117.9(3)$ 			

Table 7 Crystal data and structure refinement for $\mathbf{3 b}$.

Identification code	3b
Empirical formula	$\mathrm{C}_{85} \mathrm{H}_{80} \mathrm{Br} \mathrm{F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{5} \mathrm{Pd}_{2}$
Formula weight	1819.07
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
	$\begin{aligned} & a=16.4980(17) \AA \quad \alpha= \\ & 83.263(7)^{\circ} . \end{aligned}$
Unit cell dimensions	$\begin{aligned} & b=16.5610(16) \AA \quad \beta= \\ & 71.977(7)^{\circ} . \end{aligned}$
	$\begin{aligned} & c=17.1294(19) \AA \quad \gamma= \\ & 75.228(7)^{\circ} . \end{aligned}$
Volume	4299.7(8) \AA^{3}
Z	2
Density (calculated)	$1.405 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.042 \mathrm{~mm}^{-1}$
F(000)	1848
Crystal size	$0.160 \times 0.150 \times 0.090 \mathrm{~mm}^{3}$
Theta range for data collection	1.273 to 25.000°.
Index ranges	$\begin{aligned} & -19<=h<=19,-19<=k<=19,- \\ & 20<=\mid<=20 \end{aligned}$
Reflections collected	122609
Independent reflections	15141 [R(int) $=0.0595]$
Completeness to theta = 25.000°	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.912 and 0.851
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15141/0/962
Goodness-of-fit on F2	1.265
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0437, w R 2=0.1252$
R indices (all data)	$\mathrm{R} 1=0.0547, w R 2=0.1301$
Largest diff. peak and hole	2.036 and -0.918 e. A^{-3}

Table 8 Selected bond lengths $[\AA$] for 3b

$P d(1)-$	$2.006(4)$	$P(2)-$	$1.831(4)$
$\mathrm{C}(20)$		$\mathrm{C}(55)$	
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.3237(10)$	$\mathrm{P}(3)-$	$1.847(4)$
		$C(55)$	

$\mathrm{Pd}(1)-\mathrm{P}(5)$	$2.3338(11)$	$\mathrm{P}(4)-$	$1.828(4)$
$\mathrm{Pd}(1)-$	$2.5459(5)$	$\mathrm{C}(30)$	
$\mathrm{P}(5)-$	$1.835(4)$		
$\mathrm{Br}(3)$		$\mathrm{C}(30)$	
$\mathrm{Pd}(2)-\mathrm{C}(1)$	$1.995(4)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.281(5)$
$\mathrm{Pd}(2)-\mathrm{P}(4)$	$2.3168(11)$	$\mathrm{N}(2)-$	$1.276(5)$
$\mathrm{Cd}(2)-\mathrm{P}(3)$	$2.3557(11)$	$\mathrm{C}(26)$	$\mathrm{O}(1)-$
		$1.388(5)$	
$\mathrm{Pd}(2)-$	$2.5722(6)$	$\mathrm{C}(15)$	
$\mathrm{O}(1)-$	$1.404(5)$		
$\mathrm{Br}(3)$		$\mathrm{C}(11)$	
$\mathrm{Pd}(1)-$	$3.222(5)$		
$\operatorname{Pd}(2)$			

Table 9 Selected angles [${ }^{\circ}$] for 3b

$\begin{aligned} & C(20)-\operatorname{Pd}(1)- \\ & P(2) \end{aligned}$	85.06(11)	$\mathrm{P}(4)-\mathrm{Pd}(2)-\mathrm{P}(3)$	167.17(4)
$\mathrm{C}(20)-\mathrm{Pd}(1)-$	85.55(11)	$\mathrm{C}(1)-\mathrm{Pd}(2)-$	176.49(1
$\mathrm{P}(5)$		$\mathrm{Br}(3)$	
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{P}(5)$	167.79(4)	$\begin{aligned} & \mathrm{P}(4)-\mathrm{Pd}(2)- \\ & \operatorname{Br}(3) \end{aligned}$	91.19(3)
$\mathrm{C}(20)-\mathrm{Pd}(1)-$	171.50(1	$\mathrm{P}(3)-\mathrm{Pd}(2)-$	96.77(3)
$\mathrm{Br}(3)$	1)	$\mathrm{Br}(3)$	
$\mathrm{P}(2)-\mathrm{Pd}(1)-$	93.90(3)	$\mathrm{Pd}(1)-\mathrm{Br}(3)-$	78.039(1
$\mathrm{Br}(3)$		$\mathrm{Pd}(2)$	
$\mathrm{P}(5)-\mathrm{Pd}(1)-$	94.24(3)	$\mathrm{P}(2)-\mathrm{C}(55)-\mathrm{P}(3)$	115.8(2)
$\mathrm{Br}(3)$			
$\mathrm{C}(1)-\mathrm{Pd}(2)-\mathrm{P}(4)$	85.70(11)	$\mathrm{P}(4)-\mathrm{C}(30)-\mathrm{P}(5)$	118.2(2)
$\mathrm{C}(1)-\mathrm{Pd}(2)-\mathrm{P}(3)$	86.02(12)	$\mathrm{C}(15)-\mathrm{O}(1)-$	117.9(3)

Table 10 Interactions between the dppm and the aromatic rings of the ditopic linkers for:
2a

$\pi \cdots \pi$ interactions	$\mathrm{Cg} \cdots \mathrm{Cg}$	α	β	γ
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(2)$	$3.612 \AA$	20.0°	18.7°	23.7°
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(3)$	$3.587 \AA$	18.5°	12.5°	14.9°

Cg rings (1): $\mathrm{C}(1)-\mathrm{C}(6) ;(2): \mathrm{C}(32)-\mathrm{C}(37) ;(3): C(56)-\mathrm{C}(61)$

2b

$\pi \cdots \pi$ interactions	$\mathrm{Cg} \cdots \mathrm{Cg}$	α	β	γ
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(2)$	$3.668 \AA$	23.3°	11.3°	18.9°
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(3)$	$3.657 \AA$	17.2°	21.6°	26.4

Cg rings (1): $\mathrm{C}(1)-\mathrm{C}(6) ;(2): \mathrm{C}(45)-\mathrm{C}(50) ;(3): \mathrm{C}(69)-\mathrm{C}(74)$

$\pi \cdots \pi$ interactions	$\mathrm{Cg} \cdots \mathrm{Cg}$	α	β	γ
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(2)$	$3.881 \AA$	29.0°	14.4°	26.3°
$\mathrm{Cg}(1) \cdots \mathrm{Cg}(3)$	$3.592 \AA$	21.7°	2.2°	19.7°

Cg rings (1): C(1)-C(6); (2): C(49)-C(54); (3): C(74)-C(79)

DFT report A-frame

Reaction studied

Scheme 2ESI: $\mathrm{P}=\mathrm{PPh}_{2}$.
In this case, both structures $\mathbf{1 b}$ and $\mathbf{2 b}$, have been optimised using the package of programs g09 ${ }^{2}$ and to the B3LYP/LANL2DZ-ECP $3 / 6-31-G(d)$ level of theory, frequency calculations were also performed giving not imaginary frequencies and thus confirming the stationary point in each case. For compound 1b two conformers were found according to the rotation of the COC angle of the ether link between the cyclometalated moieties (1b1 and 1b2); these belong to the structure with the cyclometalated moieties pointing to the same side (1b1) and to different sides (1b2). To the purpose of this reaction calculation the ion Cl^{-}has also been computed at the same level as the others. The aim of this study is to determine which of the molecules is more stable from a thermodynamic point of view ($\mathbf{1 b}$ or $\mathbf{2 b}$). The following equation has been used to calculate ΔG for the formation of $\mathbf{2 b}$:

$$
\Delta G_{\text {reaction }}=\Delta G_{2 b}-2 x\left(\Delta G_{1 b}+\Delta G_{C l}\right)
$$

The experimental part shows that, besides both compounds are formed during the reaction process (see NMR data), the A-frame complex (2b) shows higher thermodynamic stability being ${ }^{2}$ M. J. Frisch et al. Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT, 2013.
${ }^{3}$ P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283.
always the only one that crystallises and this is also corroborated by the DFT calculations which determine that the $\Delta \mathrm{G}$ of the reaction is equal to $-171 \mathrm{Kcal} / \mathrm{mol}$.

Figure 2ESI. Structures optimised in this paper. From left to the right 1b1, 1b2 and 2b.
The difference between $\mathbf{1 b 1}$ and $\mathbf{1 b 2}$ is $0.65 \mathrm{kcal} / \mathrm{mol}$, so they are almost isoenergetic, which means that the $C \hat{O} C$ angle has free rotation and not major steric hindrance is present.

In the tables below a compilation of the distances and angles that suffer changes during the reaction of formation of $\mathbf{2 b}$ is shown, together with the calculated structures of the compounds 1b1 and 1b2 and A-frame (Scheme 2ESI)

Table 7 Comparison of the main angles in ${ }^{\circ}$. Here it can be noticed that the $\mathrm{CC}=\mathrm{N}$ and $\mathrm{PCH}_{2} \mathrm{P}$ are bigger in the A-frame compound giving less constricted cycles, thus more stable.

Angle	$\mathbf{2 b}$	$\mathbf{1 b 1}$	$\mathbf{1 b 2}$
	123.2307		
	1		
	123.1937	119.3110	119.3277
$\mathbf{C C = N}$	3	5	9
	123.1929	119.1926	119.3560
	4	4	4
	123.1630		
	5		
	115.0105		
	0		
	117.1924		
$\mathbf{P C H}_{2}$	9	99.38091	99.29091
\mathbf{P}	117.1924	99.28186	98.88648
	9		
	114.9866		
	9		
$\mathbf{C O C}$	118.3220	121.0051	121.5760

[^0]: ${ }^{1}$ Perrin, D.D., Armarego, W.L.F. Purification of Laboratory Chemicals, Butterworth-Heinemann, London, $4^{\text {th }}$ ed., 1996

