Chemoselective Deoxygenation of Ether-substituted Alcohols and Carbonyl

Compounds by $B(C_6F_5)_3$ -catalyzed Reduction with $(HMe_2SiCH_2)_2$

Wenyu Yang,^a Lu Gao^a, Ji Lu^{*b} Zhenlei Song^{*a}

^aSichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.

^b Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000 (China)

E-mail: ljlyt8631@163.com; zhenleisong@scu.edu.cn

Supporting Information

Table of Contents

1. General Methods	
2. General Procedure and Spectral Data	
2.1. Preparations of (HMe ₂ SiCH ₂) ₂	
2.2. Preparations and Spectral Data of Alcohols	
2.3. Preparations and Spectral Data of Carbonyl Compounds	
2.4 General Procedure of Deoxygenation to Synthesize Alkane	
2.5 Preparations and Spectral Data of 4a and 4b	
3. ¹ H and ¹³ C NMR Spectral Copies	

1. General Methods

Commercial reagents were used without any purification. B(C₆F₅)₃ was purchased from J&K Scientific. (ClMe₂SiCH₂)₂ was purchased from Duodian Chemistry (¥2200/200g). All reactions were performed using common anhydrous, inert atmosphere techniques. Reactions were monitored by TLC which was performed on glass-backed silica plates and visualized using UV, KMnO₄ stains, H₃PO₄•12MoO₃/EtOH stains, H₂SO₄(conc.)/anisaldehyde/ EtOH stains. Column chromatography was performed using silica gel (200-300 and 300-400 mesh) eluting with EtOAc/petroleum ether. ¹H NMR spectra were recorded at 400 MHz (Varian and Bruker) and 600 MHz (Agilent), and ¹³C NMR spectra were recorded at 100 MHz (Varian) and 150 MHz (Agilent) using CDCl₃ (except TMS where noted) with or residual solvent as standard. Dibromomethane and 1,3,5-trimethoxybenzene were used as internal standard to calculate NMR yields. Infrared spectra were obtained using KCl plates on a VECTOR22. High-resolution mass spectral analyses performed on Waters Q-TOF. DMF, CH₂Cl₂ and Et₃N were distilled from CaH₂. Et₂O and THF were distilled from sodium. All spectral data obtained for new compounds are reported here.

2. General Procedure and Spectral Data

2.1. Preparations of (HMe₂SiCH₂)₂

To a suspension of LiAlH₄ (3 g, 78.9 mmol) in tetraglyme (35 mL) was slowly added 1,2-bis-(chlorodimethylsilyl)ethane (10 g, 46.5 mmol) at 0 $^{\circ}$ C. Then the resulting mixture was stirred at 50 $^{\circ}$ C for 5 h. Purification by direct distillation from the resultant suspension under reduced pressure (64 $^{\circ}$ C/90 Torr) gave (HMe₂SiCH₂)₂ (5.6 g, 83% yield) as a colorless liquid.¹

2.2. Preparations and Spectral Data of Alcohols

Alcohols 1a, 1b, 1k and 1o are commercially available; $1e-1j^{2-6}$, $1l^7$ and $1p-1r^{10, 12-13}$ are

^{1. (}a) S. Hanada, Y. Motoyama and H. Nagashima, Eur. J. Org. Chem., 2008, 4097; (b) M. G. Steinmetz and B. S. Udayakumar, J. Organomet. Chem., 1989, 378, 1.

known compounds, which were prepared by the previously reported procedure.

Preparation of 1c

p-Chlorophenol (498 mg, 2.75 mmol), 6-bromo-1-hexanol (0.36 mL, 4.13 mmol) and K₂CO₃ (571 mg, 4.13 mmol) were stirred in DMF (8 mL) at 80 °C and for 4 h. After cooling to room temperature, the reaction was quenched with H₂O (15 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with sat. aq. NaCl (30 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) to afford **1c** (464 mg, 74% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.92 (t, *J* = 6.4 Hz, 2H), 3.66 (t, *J* = 6.4 Hz, 2H), 1.83–1.72 (m, 2H), 1.64–1.57 (m, 2H), 1.54–1.37 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 157.6, 129.2, 125.3, 115.7, 68.1, 62.8, 32.6, 29.1, 25.8, 25.5; IR (neat) cm⁻¹ 3356, 2936, 2861, 1597, 1580, 1491, 1472, 1284, 1264, 1242, 1169, 1092, 1057, 1005, 823, 736; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₈O₂Cl (M+H)⁺: 229.0990, found 229.0986.

Preparation of 1d

Using the same procedure as that used for **1c** afforded **1d** as a yellow oil (613 mg 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.82 (d, *J* = 8.0 Hz, 1H) 3.93 (t, *J* = 6.4 Hz, 2H), 3.66 (t, *J* = 6.4 Hz, 2H), 1.82–1.75 (m, 2H), 1.64–1.57 (m, 2H), 1.51–1.41 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 130.4, 123.5, 122.7, 117.7, 113.5, 68.0, 62.8, 32.6, 29.1, 25.8, 25.5; IR (neat) cm⁻¹ 3347, 2934, 2859, 1588, 1572, 1467, 1424, 1390, 1284, 1243, 1227, 1158, 1011, 991, 861, 765, 736, 680; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₈O₂Br (M+H)⁺: 273.0485, found 273.0488.

Preparation of 1e

Using the same procedure as that used for **1c** afforded **1e**² as a yellow oil (995 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 3.99 (t, J = 6.4 Hz, 2H), 3.66 (t, J = 6.4 Hz, 2H), 1.83–1.78 (m, 2H), 1.65–1.58 (m, 2H), 1.55–1.44 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 161.5, 126.8 (q, $J_1 = 3.75$ Hz), 124.4 (q, $J_2 = 267.45$ Hz), 122.6 (q, $J_3 = 32.3$ Hz), 114.4, 68.0, 62.8, 32.6, 29.0, 25.8, 25.5.

<u>Preparation of 1f</u>

Using the same procedure as that used for **1c** afforded **1f**² as a white solid (529 mg, 85% yield, mp = 60–62 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 4H), 3.91 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 3.65 (t, *J* = 6.4 Hz, 2H), 1.80–1.74 (m, 2H), 1.62–1.57 (m, 2H), 1.51–1.39 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 153.6, 153.2, 115.4, 114.6, 68.4, 62.8, 55.7, 32.6, 29.3, 25.8, 25.5.

Preparation of 1g

Using the same procedure as that used for **1c** afforded **1g**³ as a white solid (327 mg, 56% yield, mp = 87–88 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.79–6.73 (m, 4H), 4.76 (s, 1H), 3.89 (t, *J* = 6.4 Hz, 2H), 3.66 (t, *J* = 6.4 Hz, 2H), 1.80–1.73 (m, 2H), 1.62–1.56 (m, 2H), 1.49–1.42 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 153.2, 149.4, 116.0, 115.6, 685, 62.9, 32.7, 29.3, 25.9, 25.5.

<u>Preparation of 1h</u>

^{2.} W. Yu, T. Gill, L. Wang, Y. Du, H. Ye, X. Qu, J. Guo, A. Cuconati, K. Zhao, T. M. Block, X. Xu and J. Chang, J. Med. Chem. 2012, 55, 6061.

^{3.} J. Lenoble, N. Maringa, S. Campidelli, B. Donnio, D. Guillon and R. Deschenaux, Org. Lett., 2006, 8, 1851.

Using the same procedure as that used for **1c** afforded **1h**⁴ as a yellow solid (455 mg, 70% yield, mp = 57–59 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.02 (t, *J* = 6.4 Hz, 2H), 3.66 (t, *J* = 6.4 Hz, 2H), 2.55 (s, 3H), 1.87–1.76 (m, 2H), 1.63–1.57 (m, 2H), 1.53–1.42 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 163.0, 130.5, 130.0, 114.1, 68.0, 62.7, 32.6, 29.0, 26.3, 25.8, 25.5.

Preparation of 1i

TBDPSO OH

1i was prepared according to a known procedure.⁵ **1i**: colorless oil, 1.33 g, 81% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 7.2 Hz, 4H), 7.44–7.38 (m, 6H), 3.70 (t, J = 6.0 Hz, 2H), 3.67 (q, J = 6.0 Hz, 2H), 2.01 (t, J = 5.4 Hz, 1H), 1.71–1.64 (m, 4H), 1.06 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 135.5, 133.6, 129.6, 127.6, 64.0, 62.7, 29.8, 29.2, 26.8, 19.1.

<u>Preparation of 1j</u>

BnO____OH

1j was prepared according to a known procedure.⁶ **1j**: colorless oil, 776 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.26 (m, 5H), 4.50 (s, 2H), 3.64 (t, *J* = 6.8 Hz, 2H), 3.48 (t, *J* = 6.8 Hz, 2H), 1.69–1.55 (m, 4H), 1.49–1.43 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 138.4, 128.2, 127.5, 127.4, 72.8, 70.2, 62.4, 32.3, 29.3, 22.3.

Preparation of 11

^{4.} I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc and X. Hu, Angew. Chem., Int. Ed., 2015, 54, 14523.

^{5.} A. W. J. Logan, J. S. Parker, M. S. Hallside and J. W. Burton, Org. Lett., 2012, 14, 2940.

^{6.} K. Kubota, E. Yamamoto and H. Ito, J. Am. Chem. Soc., 2015, 137, 420.

11 was prepared according to a known procedure.⁷ **11**: colorless oil, 675 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 2H), 7.21–7.18 (m, 3H), 5.78–5.64 (m, 2H), 4.09 (d, J = 4.8 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 2.38 (q, J = 8.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 141.6, 131.9, 129.5, 128.3, 128.2, 125.7, 63.4, 35.4, 33.8.

<u>Preparation of 1m</u>

To a solution of methyl hydrogen succinate (5 g, 37.8 mmol) in THF (30 mL) was added $BH_3 \cdot SMe_2$ (4.9 mL of 10 M solution in THF, 49.2 mmol) at 0 °C. The reaction mixture was stirred for 12 h at room temperature before quenching slowly with H_2O and K_2CO_3 . The mixture was then filtered by Celite and concentrated under reduced pressure to give crude **S2** (4.45 g), which was used in the next reaction without further purification.

To a solution of **S2** (2.8 g, 23.7 mmol), Et₃N (6.6 mL, 47.4 mmol) and DMAP (290 mg, 2.37 mmol) in CH₂Cl₂ (30 mL) was added *tert*-butyldiphenylsilylchloride (7.14 g, 26.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 12 h before quenching with sat. aq. NH₄Cl (15 mL) and then extraction with CH₂Cl₂ (3 × 20 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) to afford **2l** as a colorless liquid (6.6 g, 79% yield)⁸. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 6.8 Hz, 4H), 7.45–7.37 (m, 6H), 3.69 (t, *J* = 6.0 Hz, 2H), 3.66 (s, 3H), 2.47 (t, *J* = 7.6 Hz, 2H), 1.92–1.86 (m, 2H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 135.5, 133.7, 129.6, 127.6, 62.8, 51.5, 30.6, 27.7, 26.8, 19.2.

^{7.} I. Franzoni, L. Guénée and C. Mazet, *Chem. Sci.*, 2013, **4**, 2619.

^{8.} Y. Hayashi, J. Yamaguchi and M. Shoji, Tetrahedron, 2002, 58, 9839.

To a solution of $(i\text{-}Pr)_2$ NH (0.48 mL, 3.4 mmol) in THF (10 mL) at 0 °C was added *n*-BuLi (1.36 mL of 2.5 M solution in hexane, 3.4 mmol). The resulting solution was stirred for 15 min then cooled to -78 °C. A solution of **2l** (0.6 g, 1.7 mmol) in THF (5 mL) was added to the above mixture dropwise. The resulting mixture was stirred at -78 °C for 1 h before adding allylbromide (0.3 mL, 3.4 mmol). The reaction was stirred at -78 °C for 2 h. and quenched with sat. aq. NH₄Cl (5 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-5% of EtOAc/petroleum ether) to afford **S3** as a colorless oil (530 mg, 80% yield).⁹

To a solution of **S3** (380 mg, 0.96 mmol) in CH₂Cl₂ (10 mL) was added DIBAL-H (1.1 mL of 1.0 M solution in hexane, 1.1 mmol) at 0 °C. The reaction mixture was stirred for 30 min before quenching with sat. aq. potassium sodium tartrate (10 mL). The mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-20% of EtOAc/petroleum ether) to afford **1m** as a light yellow oil (251 mg, 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.2 Hz, 4H), 7.45–7.38 (m, 6H), 5.80–5.73 (m, 1H), 5.02 (d, *J* = 15.0 Hz, 1H), 5.00 (d, *J* = 8.4 Hz, 1H), 3.78–3.75 (m, 1H), 3.72–3.68 (m, 1H), 3.63–3.61 (m, 1H), 3.55–3.53 (m, 1H), 2.61 (s, 1H), 2.14–2.10 (m, 1H), 2.06–2.01 (m, 1H), 1.82–1.78 (m, 1H), 1.67–1.63 (m, 2H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 136.8, 135.5, 133.2, 129.7, 127.7, 116.3, 65.8, 62.6, 38.7, 36.2, 34.3, 26.8, 19.1; IR (neat) cm⁻¹ 3379, 3072, 2930, 2857, 1640, 1589, 1472, 1427, 1390, 1106, 1083, 1030, 997, 912, 822, 736, 699, 613; HRMS (ESI-TOF, m/z) calcd for C₂₃H₃₃O₂Si (M+H)⁺: 369.2244, found 369.2242.

<u>Preparation of 1n</u>

OTBDPS Ph 1n

Using the same procedure as that used for **1i** afforded **1n** as a colorless oil (1.54 g, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (t, *J* = 7.2 Hz, 4H), 7.45–7.36 (m, 6H), 7.30–7.22 (m, 3H), 7.15 (d,

^{9.} A. Joosten, E. Lambert, J. Vasse and J. Szymoniak, Org. Lett., 2010, 12, 5128.

J = 7.2 Hz, 2H), 4.15–4.10 (m, 1H), 3.99–3.88 (m, 3H), 3.16–3.10 (m, 1H), 2.35 (t, J = 6.0 Hz, 1H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 139.5, 135.6, 135.5, 133.0, 132.97, 129.8, 129.75, 128.5, 128.1, 127.74, 127.73, 127.0, 67.3, 65.8, 49.8, 26.8, 19.1; IR (neat) cm⁻¹ 3417, 3070, 2930, 2857, 1589, 1494, 1472, 1427, 1390, 1361, 1265, 1109, 1029, 822, 758, 737, 698, 611; HRMS (ESI-TOF, m/z) calcd for C₂₅H₃₁O₂Si (M+H)⁺: 391.2088, found 391.2084.

Preparation of 1p

1p was prepared according to a known procedure¹⁰. **1p**: yellow oil, 670 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 6.58 (d, *J* = 3.2 Hz, 1H), 6.20 (d, *J* = 3.2 Hz, 1H), 3.93 (t, *J* = 6.0 Hz, 2H), 2.97 (t, *J* = 6.0 Hz, 2H), 1.83 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 152.9, 152.4, 130.8, 128.6, 127.0, 123.4, 108.7, 105.7, 61.0, 31.8.

<u>Preparation of 1q</u>

To a solution of **1i** (660 mg, 2 mmol) in CH₂Cl₂ (20 mL) was added Dess-Martin periodinane (1.0 g, 2.4 mmol) and NaHCO₃ (840 mg, 10 mmol). The resulting mixture was stirred at 0 °C until the starting material was completely consumed (monitored by TLC analysis). The reaction mixture was quenched with sat. aq. Na₂S₂O₃ (15 mL). The aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) to afford **2h**¹¹ as a colorless oil (528 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.66 (d, *J* = 7.2 Hz, 4H), 7.46–7.38 (m, 6H), 3.70 (t, *J* = 6.0 Hz, 2H), 2.56 (t, *J* = 6.8 Hz, 2H), 1.93–1.86 (m, 2H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 135.5, 133.5, 129.7, 127.7, 62.9, 40.7, 26.8, 25.2, 19.1.

^{10.} J. Li, L. Lu, Q. Pan, Y. Ren, B. Liu and B. Yin, Adv. Synth. Catal., 2017, 359, 2001.

^{11.} J. Luo, H. Li, J. Wu, X. Xing and W. Dai, *Tetrahedron*, 2009, **65**, 6828.

To a stirred solution of **2h** (260 mg, 0.8 mmol) in THF (12 mL) was added MeMgBr (1.2 mL of 1.0 M solution in THF, 1.2 mmol) at -78 °C, then the mixture was allowed to warm to 0 °C. After further stirring for 1 h, the reaction was quenched with sat. aq. NH₄Cl (5 mL) and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) to afford **1q**¹² as a colorless oil (196 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.67 (m, 4H), 7.44–7.37 (m, 6H), 3.86–3.81 (m, 1H), 3.70 (t, *J* = 6.4 Hz, 2H), 2.19 (d, *J* = 4.0 Hz, 1H), 1.67–1.51 (m, 4H), 1.20 (d, *J* = 6.4 Hz, 3H), 1.06 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 135.6, 133.6, 129.6, 127.6, 67.8, 64.2, 36.3, 28.9, 26.8, 23.4, 19.1.

Preparation of 1r

To a stirred solution of **2l** (178 mg, 0.5 mmol) in dry Et₂O (5 mL) was added MeMgBr (1.5 mL of 1.0 M solution in THF, 1.5 mmol) at -20 °C. Then the mixture was allowed to warm to 0 °C and stirred until the starting material was completely consumed (monitored by TLC analysis). The reaction mixture was quenched with sat. aq. NH₄Cl (5 mL). The aqueous phase was extracted with EtOAc (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) to afford $1r^{13}$ as a colorless oil (150 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 6.8 Hz, 4H), 7.45–7.37 (m, 6H), 3.69 (t, *J* = 6.4 Hz, 2H), 1.82 (s, 1H), 1.70–1.55 (m, 4H), 1.23 (s, 6H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 133.7, 129.6, 127.6, 70.5, 64.6, 40.5, 29.3, 27.5, 26.8, 19.2.

2.3. Preparations and Spectral Data of Carbonyl Compounds

Aldehydes $2a-2b^{14}$, $2h^{11}$ and $2j-2l^{7-8, 15}$ are known compounds, which were prepared by the previously reported procedures.

^{12.} G. Pattenden, D. A. Stoker and N. M. Thomson, Org. Biomol. Chem., 2007, 5, 1776.

^{13.} K. Masutani, T. Minowa, Y. Hagiwara and T. Mukaiyama, Bull. Chem. Soc. Jpn., 2006, 79, 1106.

Preparation of 2a

Using the same procedure as that used for **2h** afforded **2a**¹⁴ as a colorless oil from **1a** (125 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.30 (t, *J* = 7.6 Hz, 2H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 2H), 4.32 (t, *J* = 6.0 Hz, 2H), 2.91 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 158.3, 129.5, 121.1, 114.5, 61.4, 43.2.

Preparation of 2b

Using the same procedure as that used for **2h** afforded **2b**¹⁴ as a colorless oil from **1b** (199 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 2H), 4.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 157.6, 129.7, 121.9, 114.5, 72.6.

<u>Preparation of 2c</u>

Using the same procedure as that used for **2h** afforded **2c** as a colorless oil from **1c** (175 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.22 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.92 (t, *J* = 6.4 Hz, 2H), 2.48 (t, *J* = 7.2 Hz, 2H), 1.83–1.76 (m, 2H), 1.74–1.67 (m, 2H), 1.54–1.47 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 202.4, 157.5, 129.2, 125.3, 115.7, 67.8, 43.7, 28.9, 25.6, 21.7; IR (neat) cm⁻¹ 2937, 28656, 2720, 1721, 1588, 1571, 1467, 1424, 1390, 1284, 1243, 1227, 1157, 1092, 1064, 1022, 991, 859, 767, 680; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₆O₂Cl (M+H)⁺: 227.0833, found 227.0831.

Preparation of 2d

^{14.} G. Foyer, B. H. Chanfi, B. Boutevin, S. Caillol and G. David, *Eur. Polym. J.*, 2016, 74, 296.

Using the same procedure as that used for **2h** afforded **2d** as a light yellow oil from **1d** (191 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.78 (s, 1H), 7.12 (t, *J* = 8.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 7.04 (s, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 3.94 (t, *J* = 6.6 Hz, 2H), 2.48 (t, *J* = 7.2 Hz, 2H), 1.82–1.77 (m, 2H), 1.73–1.68 (m, 2H), 1.53–1.48 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 202.3, 159.7, 130.5, 123.6, 122.7, 117.7, 113.4, 67.7, 43.7, 28.9, 25.6, 21.7; IR (neat) cm⁻¹ 2937, 2866, 2720, 1721, 1588, 1571, 1467, 1424, 1390, 1284, 1242. 1227, 1157, 1064, 1022, 991, 859, 767, 680; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₅BrNaO₂ (M+Na)⁺: 293.0148, found 293.0151.

Preparation of 2e

Using the same procedure as that used for **2h** afforded **2e** as a light yellow oil from **1e** (140 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 4.00 (t, *J* = 6.4 Hz, 2H), 2.49 (t, *J* = 7.2 Hz, 2H), 1.86–1.79 (m, 2H), 1.75–1.68 (m, 2H), 1.58–1.48 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 202.4, 161.4, 126.8 (q, *J*₁ = 3.75 Hz), 124.4 (q, *J*₂ = 269.25 Hz), 122.7 (q, *J*₃ = 32.4 Hz), 114.4, 67.7, 43.7, 28.8, 25.6, 21.7; IR (neat) cm⁻¹ 2941, 2870, 2723, 1723, 1615, 1590, 1519, 1324, 1310, 12559, 1177, 1158, 1107, 1066, 100, 835, 813, 736; HRMS (ESI-TOF, m/z) calcd for C₁₃H₁₅F₃NaO₂ (M+Na)⁺: 283.0916, found 283.0920.

Preparation of 2f

Using the same procedure as that used for **2h** afforded **2f** as a light yellow oil from **1f** (141 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 6.82 (s, 4H), 3.91 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 2.47 (t, *J* = 7.2 Hz, 2H), 1.82–1.67 (m, 4H), 1.55–1.47 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 202.5, 153.7, 153.1, 115.3, 114.6, 68.1, 55.7, 43.7, 29.1, 25.7, 21.8; IR (neat) cm⁻¹ 2937, 2865, 2722,

1721, 1506, 1466, 1442, 1391, 1288, 1226, 1180, 1107, 1036, 824, 736; HRMS (ESI-TOF, m/z) calcd for $C_{13}H_{19}O_3$ (M+H)⁺: 223.1329, found 223.1326.

Preparation of 2g

Using the same procedure as that used for **2h** afforded **2g** as a white solid from **1h** (142 mg, 73% yield, mp = 49–51 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.91 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.02 (t, *J* = 6.4 Hz, 2H), 2.54 (s, 3H), 2.48 (t, *J* = 7.2 Hz, 2H), 1.86–1.79 (m, 2H), 1.75–1.67 (m, 2H), 1.55–1.48 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 202.3, 196.7, 162.9, 130.5, 130.1, 114.0, 67.7, 43.7, 28.8, 26.2, 25.5, 21.6; IR (neat) cm⁻¹ 2941, 2867, 2825, 2724, 1721, 1710, 1671, 1599, 1575, 1509, 1474, 1358, 1305, 1251, 1169, 1116, 1045, 1008, 958, 834, 817, 734; HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₉O₃ (M+H)⁺: 235.1329, found 235.1325.

Preparation of 2i

Using the same procedure as that used for **2h** afforded **2i** as a light yellow oil from **1m** (272 mg, 81% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.68 (s, 1H), 7.64 (d, *J* = 7.1 Hz, 4H), 7.44–7.38 (m, 6H), 5.75–5.69 (m, 1H), 5.06–5.03 (m, 2H), 3.71–3.66 (m, 2H), 2.60–2.58 (m, 1H), 2.44–2.39 (m, 1H), 2.25–2.20 (m, 1H), 1.98–1.92 (m, 1H), 1.76–1.71 (m, 1H), 1.04 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 204.3, 135.5, 134.9, 133.4, 129.7, 127.7, 117.3, 61.3, 48.3, 32.8, 31.2, 26.8, 19.1; IR (neat) cm⁻¹ 3071, 2930, 2857, 2713, 1724, 1641, 1589, 1472, 1427, 1390, 1361, 1260, 1107, 997, 917, 822, 739, 701, 614; HRMS (ESI-TOF, m/z) calcd for C₂₃H₃₁O₂Si (M+H)⁺: 367.2088, found 367.2083.

<u>Preparation of 2j</u>

Using the same procedure as that used for **2h** afforded **2j**⁷ as a light yellow oil from **1l** (155 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 9.49 (d, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 6.88–6.84 (m, 1H), 6.14 (dd, *J* = 15.6, 7.8 Hz, 1H), 2.84 (t, *J* = 7.2 Hz, 2H), 2.68 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 193.9, 157.3, 140.2, 133.3, 128.5, 128.3, 126.3, 34.2, 34.0.

Preparation of 2k

TBDPSO

Using the same procedure as that used for **2h** afforded **2k**¹⁵ as a light yellow oil from **1q** (123 mg, 90% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.8 Hz, 4H), 7.44–7.37 (m, 6H), 3.67 (t, *J* = 6.0 Hz, 2H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.13 (s, 3H), 1.85–1.82 (m, 2H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 135.5, 133.7, 129.6, 127.6, 62.9, 40.1, 29.9, 26.8, 26.6, 19.2.

2.4. General Procedure of Deoxygenation to Synthesize Alkane

Preparation of 3a

Procedure A (from alcohol): To a solution of **1a** (30.4 mg, 0.2 mmol) and $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) in anhydrous CH₂Cl₂ (4 mL) under argon atmosphere was added (HMe₂SiCH₂)₂ (35.1 mg, 0.24 mmol) at room temperature. The resulting mixture was stirred for 12 h before quenching with H₂O (2 mL) and extraction with CH₂Cl₂ (3 × 3 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford **3a**¹⁶ (70%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

Procedure B (from aldehyde): To a solution of **2a** (30 mg, 0.2 mmol) and $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) in anhydrous CH_2Cl_2 (4 mL) under argon atmosphere was added (HMe_2SiCH_2)₂ (35.1 mg, 0.24 mmol) at room temperature. The resulting mixture was stirred for 12 h before quenching with H_2O (2 mL) and extraction with CH_2Cl_2 (3 × 3 mL). The combined organic layers were dried

^{15.} A. Rühling, H. J. Galla and F. Glorius, *Chem. Eur. J.*, 2015, **21**, 12291.

^{16.} Y. Zheng, P. Ye, B. Chen, Q. Meng, K. Feng, W. Wang, L. Wu and C. Tung, Org. Lett., 2017, 19, 2206.

over Na₂SO₄, filtered and concentrated under reduced pressure to afford **3a** (68%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

3a: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.6 Hz, 2H), 6.96–6.90 (m, 3H), 3.93 (t, *J* = 6.8 Hz, 2H), 1.86–1.78 (m, 2H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 129.4, 120.4, 114.5, 69.4, 22.6, 10.5.

Preparation of 3b

Using the same procedure as that used for **3a**.

Procedure A: 1b (27.6 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h to afford **3b**¹⁶ (62%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

Procedure B: 2b (30 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h to afford **3b** (65%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

3b: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 8.0, 2H), 6.95-6.89 (m, 3H), 4.04 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.9, 129.459, 120.5, 114.4, 63.3, 14.8.

<u>Preparation of 3c</u>

Using the same procedure as that used for **3a**.

Procedure A: 1c (45.6 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford $3c^{17}$ as a colorless oil (34.4 mg, 81% yield). **Procedure B: 2c** (22.6 mg, 0.1 mmol), $B(C_6F_5)_3$ (2.5 mg, 0.005 mmol) and $(HMe_2SiCH_2)_2$ (17.6

^{17.} I. Chatterjee, D. Porwal and M. Oestreich, Angew. Chem., Int. Ed., 2017, 56, 3389.

mg, 0.12 mmol) in CH₂Cl₂ (2 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford 3c (17.0 mg, 80% yield).

3c: ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 3.92 (t, *J* = 6.4 Hz, 2H), 1.80–1.73 (m, 2H), 1.45–1.43 (m, 2H), 1.35–1.33 (m, 4H), 0.91 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 129.2, 125.2, 115.7, 68.3, 31.6, 29.2, 25.7, 22.6, 14.0.

Preparation of 3d

Using the same procedure as that used for **3a**.

Procedure A: 1d (54.4 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford $3d^{17}$ as a colorless oil (42 mg, 82% yield). **Procedure B: 2d** (27 mg, 0.1 mmol), $B(C_6F_5)_3$ (2.5 mg, 0.005 mmol) and $(HMe_2SiCH_2)_2$ (17.6 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3d** (22.3 mg, 87% yield).

3d: ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 3.93 (t, *J* = 6.8 Hz, 2H), 1.80–1.73 (m, 2H), 1.47–1.43 (m, 2H), 1.35–1.34 (m, 4H), 0.91 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.9, 130.4, 123.5, 122.7, 117.7, 113.5, 68.2, 31.5, 29.1, 25.7, 22.6, 14.0.

Preparation of 3e

Using the same procedure as that used for **3a**.

Procedure A: 1e (52.4 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3e**¹⁷ as a colorless oil (37.4 mg, 76% yield). **Procedure B: 2e** (52 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg,

0.24 mmol) in CH_2Cl_2 (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3e** (35.9 mg, 73% yield).

3e: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.00 (t, *J* = 6.4 Hz, 2H), 1.84–1.77 (m, 2H), 1.49–1.44 (m, 2H), 1.37–1.35 (m, 4H), 0.92 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 161.6, 126.8 (q, *J*₁ = 3.75 Hz), 124.5 (q, *J*₂ = 269.55 Hz), 122.6 (q, *J*₃ = 32.4 Hz), 114.4, 68.2, 31.5, 29.1, 25.7, 22.6, 14.0.

Preparation of 3f

Using the same procedure as that used for **3a**.

Procedure A: 1f (44.8 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3f**¹⁸ as a colorless oil (24.6 mg, 59% yield). **Procedure B: 2f** (22.2 mg, 0.1 mmol), $B(C_6F_5)_3$ (2.5 mg, 0.005 mmol) and $(HMe_2SiCH_2)_2$ (17.6 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3f** (12.7 mg, 61% yield).

3f: ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 4H), 3.90 (t, *J* = 6.8 Hz, 2H), 3.77 (s, 3H), 1.79–1.72 (m, 2H), 1.46–1.43 (m, 2H), 1.35–1.33 (m, 4H), 0.91 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 153.6, 153.3, 115.4, 114.6, 68.7, 55.7, 31.6, 29.3, 25.7, 22.6, 14.0.

Preparation of 3g

Using the same procedure as that used for **3a**.

Procedure A: 1g (42 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (70.3 mg, 0.48 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h to afford $3g^{17}$ (36%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

^{18.} Y.-X. Wang, C.-S. Zhou, and R.-H. Wang, Green Chem., 2015, 17, 3910.

3g: ¹H NMR (400 MHz, CDCl₃) δ 6.80–6.74 (m, 4H), 4.93 (s, 1H), 3.90 (t, *J* = 6.4 Hz, 2H), 1.79–1.72(m, 2H), 1.46–1.42 (m, 2H), 1.38–1.33 (m, 4H), 0.90 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 153.2, 149.4, 116.0, 115.6, 68.8, 31.6, 29.3, 25.7, 22.6, 14.0.

Preparation of 3h

3h

Using the same procedure as that used for **3a**.

Procedure A: 1h (47.2 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (70.3 mg, 0.48 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3h** as a colorless oil (33 mg, 80% yield).

Procedure B: 2g (46.8 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (70.3 mg, 0.48 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3h** (32.1 mg, 78% yield).

3h: ¹H NMR (600 MHz, CDCl₃) δ 7.11 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 3.94 (t, *J* = 6.6 Hz, 2H), 2.59 (q, *J* = 7.8 Hz, 2H), 1.80–1.75 (m, 2H), 1.47–1.45 (m, 2H), 1.35–1.34 (m, 4H), 1.22 (t, *J* = 7.8 Hz, 3H), 0.91 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.2, 136.2, 128.6, 114.4, 68.0, 31.6, 29.3, 28.0, 25.8, 22.6, 15.9, 14.0; IR (neat) cm⁻¹ 2958, 2928, 2859, 1612, 1583, 1511, 1468, 1389, 1297, 1238, 1175, 1115, 1032, 938, 826, 801, 750; HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₂O (M+Na)⁺: 229.1563, found 229.1568.

Preparation of 3i

TBDPSO

3i

Using the same procedure as that used for **3a**.

Procedure A: 1i (65.6 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3i**¹⁹ as a colorless oil (52.4 mg, 84% yield). **Procedure B: 2h** (65 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg,

^{19.} R. R. Hill and S. D. Rychnovsky, J. Org. Chem., 2016, 81, 10707.

0.24 mmol) in CH_2Cl_2 (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3i** (53.7 mg, 86% yield).

Procedure C: 2l (35.6 mg, 0.1 mmol), $B(C_6F_5)_3$ (2.5 mg, 0.005 mmol) and $(HMe_2SiCH_2)_2$ (17.6 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3i** (25.3 mg, 81% yield).

3i: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 6.4 Hz, 4H), 7.45–7.37 (m, 6H), 3.68 (t, *J* = 6.4 Hz, 2H), 1.60–1.53 (m, 2H), 1.45–1.35 (m, 2H), 1.06 (s, 9H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 135.6, 134.2, 129.5, 127.5, 63.7, 34.8, 26.9, 19.2, 19.0, 13.9.

Preparation of 3k

Using the same procedure as that used for **3a**.

Procedure A: 1k (34 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h to afford **3k**²⁰ (73%. The yield was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard).

3k: ¹H NMR (600 MHz, CDCl₃) δ 5.85–5.78 (m, 1H), 5.00 (d, *J* = 16.8 Hz, 1H), 4.93 (d, *J* = 9.6 Hz, 1H), 2.04 (q, *J* = 6.6 Hz, 2H),1.39–1.27 (m, 14H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 139.3, 114.1, 33.8, 31.9, 29.6, 29.5, 29.3, 29.2, 29.0, 22.7, 14.1.

Preparation of 31

Using the same procedure as that used for **3a**.

Procedure A: 11 (32.4 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h to afford **31**²¹ (80%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

Procedure B: 2j (32 mg, 0.2 mmol), B(C₆F₅)₃ (5.1 mg, 0.01 mmol) and (HMe₂SiCH₂)₂ (35.1 mg,

^{20.} A. Chatterjee, S. H. Hopen Eliasson, K. W. Törnroos and V. R. Jensen, ACS Catal., 2016, 6, 7784.

^{21.} M. Movassaghi and O. K. Ahmad, J. Org. Chem., 2007, 72, 1838.

0.24 mmol) in CH_2Cl_2 (4 mL) at room temperature for 12 h to afford **31** (70%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

31: ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, *J* = 7.6 Hz, 2H), 7.20–7.18 (m, 3H), 5.52–5.44 (m, 2H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.33–2.25 (m, 2H), 1.59 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.2, 130.6, 128.4, 128.2, 125.7, 125.4, 36.1, 34.4, 17.9.

Preparation of 3m

Using the same procedure as that used for **3a**.

Procedure A: 1m (73.6 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford $3m^{22}$ as a colorless oil (51.4 mg, 73% yield). **Procedure B: 2i** (36.1 mg, 0.1 mmol), $B(C_6F_5)_3$ (2.5 mg, 0.005 mmol) and $(HMe_2SiCH_2)_2$ (17.6 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3m** (26 mg, 74% yield).

3m: ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, *J* = 6.6 Hz, 4H), 7.44–7.37 (m, 6H), 5.80–5.72 (m, 1H), 5.01 (d, *J* = 16.8 Hz, 1H), 4.97 (d, *J* = 10.2 Hz, 1H), 3.58–3.55 (m, 2H), 2.24–2.20 (m, 1H), 2.12–2.08 (m, 1H), 1.54–1.51 (m, 1H), 1.44–1.33 (m, 2H), 1.07 (s, 9H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.3, 135.6, 134.0, 129.5, 127.5, 115.7, 65.4, 42.2, 35.2, 26.9, 23.2, 19.3, 11.3.

Preparation of 3n

Ph OTBDPS 3n

Using the same procedure as that used for **3a**.

Procedure A: 1n (78 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH_2Cl_2 (4 mL) at room temperature for 12 h to afford $3n^{17}$ (70%. The yield was determined by ¹H NMR analysis using dibromomethane as an internal standard).

^{22.} L. A. Paquette, M. Duan, I. Konetzki and C. Kempmann, J. Am. Chem. Soc., 2002, **124**, 4257.

3n: ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.2 Hz, 4H), 7.42–7.35 (m, 6H), 7.28–7.24 (m, 2H), 7.17–7.15 (m, 3H), 3.69 (t, *J* = 6.4 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 1.91–1.84 (m, 2H), 1.07 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 142.2, 135.6, 134.0, 129.5, 128.5, 128.3, 127.6, 125.6, 63.1, 34.2, 32.1, 26.9, 19.3.

Preparation of 3p

Using the same procedure as that used for **3a**.

Procedure A: 1p (38 mg, 0.2 mmol), $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol) and $(HMe_2SiCH_2)_2$ (35.1 mg, 0.24 mmol) in CH₂Cl₂ (4 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3p**²³ as a colorless oil (11.9 mg, 35% yield).

3p: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 6.55 (d, *J* = 3.2 Hz, 1H), 6.06 (d, *J* = 3.2 Hz, 1H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.6, 152.1, 131.2, 128.6, 126.7, 123.3, 106.1, 105.6, 21.5, 12.2.

Preparation of 3q

Using the same procedure as that used for **3a**.

Procedure A: 1q (51.3 mg, 0.15 mmol), $B(C_6F_5)_3$ (3.8 mg, 0.0075 mmol) and $(HMe_2SiCH_2)_2$ (26.3 mg, 0.18 mmol) in CH₂Cl₂ (3 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3q**²⁴ as a colorless oil (31.8 mg, 65% yield).

Procedure B: 2k (51 mg, 0.15 mmol), $B(C_6F_5)_3$ (3.8 mg, 0.0075 mmol) and $(HMe_2SiCH_2)_2$ (26.3 mg, 0.18 mmol) in CH₂Cl₂ (3 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3q** (33.9 mg, 69% yield).

^{23.} J. Izquierdo, S. Rodríguez and F. V. González, Org. Lett., 2011, 13, 3856.

^{24.} X.-S. Ma and S. B. Herzon, Chem. Sci., 2015, 6, 6250.

3q: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 6.4 Hz, 4H), 7.45–7.37 (m, 6H), 3.67 (t, *J* = 6.8 Hz, 2H), 1.61–1.55 (m, 2H), 1.32–1.31 (m, 4H), 1.06 (s, 9H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 135.6, 134.2, 129.4, 127.5, 64.0, 32.3, 28.0, 26.9, 22.4, 19.2, 14.1.

Preparation of 3r

Using the same procedure as that used for **3a**.

Procedure A: 1r (53.4 mg, 0.15 mmol), $B(C_6F_5)_3$ (3.8 mg, 0.0075 mmol) and $(HMe_2SiCH_2)_2$ (26.3 mg, 0.18 mmol) in CH₂Cl₂ (3 mL) at room temperature for 12 h. Purification of the crude product by silica gel flash column chromatography to afford **3r** as a colorless oil (36.1 mg, 71% yield).

3r: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 6.4 Hz, 4H), 7.45–7.37 (m, 6H), 3.65 (t, *J* = 6.8 Hz, 2H), 1.59–1.50 (m, 3H), 1.27–1.19 (m, 2H), 1.06 (s, 9H), 0.87 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 135.6, 134.2, 129.5, 127.5, 64.3, 35.0, 30.4, 27.7, 26.9, 22.6, 19.2; IR (neat) cm⁻¹ 2954, 2930, 2896, 2857, 1589, 1471, 1427, 1386, 1304, 1105, 1090, 1008, 938, 822; HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₂NaOSi (M+Na)⁺: 363.2115, found 363.2114.

2.5 Preparations and Spectral Data of 4a and 4b

Preparation of 4a

To a solution of **1a** (315 mg, 2.1 mmol), Et₃N (0.36 mL, 2.6 mmol) and DMAP (21 mg, 0.17 mmol) in CH₂Cl₂ (5 mL) was added chlorodimethylethylsilane (210 g, 1.7 mmol) at rt. The reaction mixture was then stirred for 30 min before quenched with sat. NH₄Cl (3 mL). The mixture was extracted with CH₂Cl₂ (3 × 5 mL) and the combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-2% of EtOAc/petroleum ether) to afford **4a** as a colorless liquid (235 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.8 Hz, 2H), 6.95–6.90 (m, 3H), 4.06 (t, *J* = 6.0 Hz, 2H), 3.79 (t, *J* = 6.0 Hz, 2H), 2.03–1.97 (m, 2H), 0.94 (t, *J* = 8.0 Hz, 3H), 0.58 (q, *J* = 8.0 Hz, 2H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 129.4, 120.5, 114.4, 64.3,

59.0, 32.3, 7.9, 6.7, -2.8; IR (neat) cm⁻¹ 2954, 2875, 1601, 1497, 1470, 1395, 1300, 1246, 1172, 1087, 1014, 965, 835, 784, 752, 690; HRMS (ESI-TOF, m/z) calcd for $C_{13}H_{22}NaO_2Si$ (M+Na)⁺: 261.1281, found 261.1284.

Preparation of 4b

Using the same procedure as that used for **4a** afforded **4b** as a colorless liquid (355 mg, 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 7.8 Hz, 2H), 6.95–6.90 (m, 3H), 4.06 (t, *J* = 6.0 Hz, 2H), 3.83–3.81 (m, 1H), 3.79 (t, *J* = 6.0 Hz, 2H), 2.02–1.98 (m, 2H), 0.54–0.49 (m, 4H), 0.09 (s, 6H), 0.05 (d, *J* = 3.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 129.4, 120.5, 114.4, 64.2, 59.1, 32.3, 8.8, 5.6, -2.8, -4.9; IR (neat) cm⁻¹ 2955, 2875, 2320, 2106, 1601, 1497, 1470, 1403, 1300, 1245, 1172, 1085, 1018, 968, 886, 832, 773, 752, 690; HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₈NaO₂Si₂ (M+Na)⁺: 319.1520, found 319.1520.

YWY-4-45B2 C13 80 CDCI3 150MHz 95		~130.442 ~123.540 ~122.718 ~117.654 ~113.486	77.211 77.000 76.787 -68.031 -62.792	32.593 29.054 25.460	
Br O 1d	ОН				
Land approximately divide and a state of a s	Appletitude de la terraria de la terraria 1 - 1 - 1 - 1 0 - 160 - 150	ин	90 80 70 60 50	Anno 1997 40 30 20 10	, () () –

YWY-4-97P-1 C13 CDCl3 150MHz		115.573	77.211 77.000 76.788 -68.516 -62.938	32.651 29.322 25.875 25.522
t_{HO}	∕он			
lo 200 190 180 170 16	0 150 140 130	120 110 100 90 f1 (ppm) S32	80 70 60 50 4	0 30 20 10 0 -1

YWY-4-53P C13 CDCI3 150MHz	3					
		130.536130.023	—114.059	77.212 77.000 76.788 68.034 62.700	32.551 29.000 26.264 25.759 25.462	
MeOC	√					
		I				
10 200 190 18	0 170 160 150	140 130 13	20 110 100 f1 (ppm) S34	90 80 70 60 50	40 30 20 10	0 -]

YWY-H-62P1 C13 CDCI3 150MHz	-138.351 128.240 127.548 127.426	77.212 77.000 76.788 70.199 62.429	~32.315 ~29.305 ~22.292
o o j 1j			
lo 200 190 180 170 160 150	140 130 120 110 100 90	80 70 60 50 40	30 20 10 0 -

S38

YWY-4-16P2 C13 CDCl3 150MHz

Ph OH 1I			
lo 200 190 180 170 160	150 140 130 120 110 f1	100 90 80 70 60 (ppm)	 20 10 0 -1

S40

YWY-4-59P1 H1 CDCl3 600MHz

YWY-4-23A2 C13 CDCl3 150MHz	139.535 139.535 135.564 135.564 135.528 135.528 129.796 129.753 128.513 128.513 128.513 128.513 128.513 128.513 128.513 128.513 128.513	77.211 77.000 76.788 65.848 -49.773	-26.805 19.113
OTBDPS Ph OH 1n			
10 200 190 180	170 160 150 140 130 120 110 100 f1 (p S44	андиродивности и продок и и продокти и продок — — — — — — — — — — — — — — — — — — —	40 30 20 10 0 -:

YWY-4-51P1 C13 CDCl3 150MHz	<pre>_152.948 _152.447</pre>	 130.841 128.590 127.005 123.390 	~108.744 ~105.718	77.212 77.000 76.788	-61.040	
Ph O OH 1p						
				1		
10 200 190 180 170 1	60 150 140	130 120	110 100 90 f1 (ppm) S46	80 70	60 50 40	30 20 10 0 -

-200.311		 77.318 77.000 76.682	61.448	-43.175	
2a	H O				

YWY-4-105A3P H1 CDCl3 100MHz					
	-157.551	129.719 	77.318 77.000 76.682 72.556		
2b	H				
			1		
10 200 190 180 1	70 160 150 1	40 130 120 110 100 f1 (ppm S54	90 80 70 60)	50 40 30	20 10 0 -1

YWY-4-46A1 C13 CDCl3 150MHz				
-202.420	-157.536	 77.211 77.000 76.788 -67.809	-43.719	~28.916 -25.605 -21.716
	H H			
10 200 190 180		 10 100 90 80 70 60 f1 (ppm) S56		

YWY-4-46A2-1 C13 CDCl3 150MHz	3					
-202.324		~130.456 ~123.613 ~122.720 ~117.655 ~113.440	77.212 77.000 76.788	-43.713	~28.863 ~25.593 ~21.701	
Br	о Н					
20	d					
						perior
					· · · · · · · · · ·	
10 200 190 180	170 160 150 1	.40 130 120 110 100 f1 (ppm) S58	90 80 70 60	50 40	30 20 10 0	-]

YWY-4-70A1 C13

CDCI3 150MHz

-202.364	-161.412 [127.137 [126.845	126.820 126.795 126.770 125.334 122.984 122.984 122.551 122.335	77.212 77.000 76.788 -67.747	-43.714	~28.843 ~25.593 ~21.698	
F ₃ C	о Н					
Ze						
Lo 200 190 180 17() 130 120 110 100 f1 (pp				0

YWY-4-70A2 C13						
CDCI3 150MHz	153.676	115.341	77.212 77.000 76.788 −68.141	55.662 43.747		
MeO 2f	O H					
						ndirysteriko yn oant fan skatstadierke
				60 50 40		
10 200 100 100	1.0 100 100 110	f1 (ppm S62)	U UU IU	00 20 10	0

202.288 196.708		<pre><130.492 <130.099</pre>	 77.212 77.000 76.788 −67.711	-43.657	28.794 26.239 25.532 21.645	
MeOC	P → 2g					

YWY-4-105A1 C13 CDCl3 100MHz				
-202.562	135.512 133.548 20.657 20.666	77.318 77.000 76.682 -62.879	-40.741 -26.786 -19.153	
TBDPSO 2h				
		*		
20 210 200 190 180 170 160	150 140 130 120 110 f1 (pr S66	100 90 80 70 60 m)	50 40 30 20	

YWY-4-60P H1 CDCI3 600MHz

	135.529 134.911 134.911 133.429 127.671 -117.250	77.212 77.000 76.789	-61.306	48.338	~32.755 31.225 26.773 ~19.114
	1				
TBDPSO					
21					
10 200 190 180 170 160 150	140 130 120 110 100 90 f1 (ppm) S68	80 70	60	50 40	30 20 10 0 -

—193.893	-157.263	~140.196 /133.310 /128.522 ~126.309	77.211 77.000 76.788	34.166 34.012	
Ph 7:	I				
2j					
	1				
			, printe des stats passes (Bourlas). Des stats a stats à part des distantes de services de services de services		
· · · ·	· · · · · ·		· · · · · · · · · · · · · · · · · · ·		

YWY-5-16A1 C13 CDCl3 100MHz				
-208.866	135.505 133.738 129.601 127.630	77.318 77.000 76.683 -62.942	-40.102 -29.947 -26.621 -19.182	
TBDPSO				
		ł		
				hard and a start of the start o
		<u>, , , , , , , , , , , , , , , , , , , </u>		I
220 210 200 190 180 170 1	60 150 140 130 120 110 1 f1 (ppm) S72	00 90 80 70 60 50	30 30 20 10 0	_

YWY-4-69A4-1 C13 CDCl3 150MHz		-129.374		77.211 77.000 76.788 69.363	-22.605 -10.526
Me 3a					
LO 200 190 180 170) 160 150	140 130	120 11	0 100 90 80 70 60 50 f1 (ppm) S76	40 30 20 10 0 -

YWY-4-69A3-1 C13 CDCl3 150MHz	—158.884	 -120.499 114.449	77.211 77.000 76.788	63.267	—14.846
o_Me 3b					

S78

YWY-4-72A2-1 C13 CDCI3 150MHz $Br _{} _{} O _{} _{} O _{} _{$	-159.928 Me	~130.437 ~123.495 ~122.743 ~117.684 ~113.526	77.212 76.789 −68.226	731.528 29.091 25.653 22.581 -14.017

YWY-4-71A3-1 C13 CDCl3 150MHz	-161.593	$\begin{bmatrix} 127.197\\ 126.839\\ 126.815\\ 126.790\\ 126.790\\ 126.790\\ 126.790\\ 122.881\\ 122.881\\ 122.881\\ 122.881\\ 122.233\\ 122.2322\\ 122.232\\ 122.232\\ 122.232\\ 122.232\\ 122.232\\ 122.232\\ 122.232$	77.212 77.000 76.788 -68.227	_31.537 _29.056 ~25.655 ~22.584 _14.002
0		Me		
F ₃ C 3e	~ ~			
LO 200 190 180 170) 160	150 140 130 120 110 100 f1 (nom)	90 80 70 60 50	40 30 20 10 0 -

YWY-4-82A2 C13 CDCl3 150MHz		115.632	77.212 77.000 76.788 68.782	∠31.590 -29.318 -25.704 22.591 -14.018
HO 3g	Me			
10 200 190 180 170	160 150 140	130 120 110 100 f1 (ppm \$88	90 80 70 60 5	50 40 30 20 10 0 -

YWY-4-76A3 H1 CDCl3 600MHz

YWY-4-76A3 C13 CDCI3 150MHz		—114.054	77.211 77.000 76.788	33.828 31.912 29.587 29.165 287 14.109
→→→ ₈ H 3k				
			Ņ	
			mini filozo kun energi ya katika ya katika ji katika ya kata dan ya miyan	
lo 200 190 180 170 160	150 140 130	120 110 100 f1 (ppn 504	90 80 70 60	0 50 40 30 20 10 0 -1

Ph Me 3I		
) 200 190 180 170 160	150 140 130 120 110 10	 50 40 30 20 10 0 -

S96

f1 (ppm) S100

-1

YWY-4-102P2 C13 CDCI3 100MHz	-158.987		—120.470 —114.433	77.318 77.000 76.682	64.267 59.049	-32.315	~7.890 ~6.692 —-2.768
0~~0 4a	Si		I				
10 200 190 180 170		, , , , , , , , , , , , , , , , , , ,	120 110	100 90 80 7 f1 (ppm)		40 30 20	

YWY-5-1P C13 CDCI3 100MHz			77.318 77.000 76.683	 -32.310	~8.827 ~5.630 ~-2.820 ~4.891
	γ				
4b	Si H				
lo 200 190 180	170 160 150 14	40 130 120 110	100 90 80 70 f1 (ppm)	 0 30 20	

S110