Supporting information

Construction of β to carbonyl stereogenic centres by asymmetric 1,4addition of alkylzirconocenes to dienones and ynenones

Zhenbo Gao and Stephen P. Fletcher*

stephen.fletcher@chem.ox.ac.uk

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K.

Table of Contents

General information	4
Chemicals	5
General Methods	5
Characterization of compounds	9
(+)-(11b <i>S</i>)- <i>N</i> -((<i>S</i>)-2,3-dihydro-1 <i>H</i> -inden-1-yl)- <i>N</i> -(nonan-5-yl)dinaphtho[2,1- <i>d</i> :1',2'-	
<i>f</i>][1,3,2]dioxaphosphepin-4-amine (Ligand A)	9
S-ethyl 2-(diethoxyphosphoryl)ethanethioate	12
(3E, 5E)-6-phenylhexa-3, 5-dien-2-one (2a)	14
(3E, 5E)-hepta-3, 5-dien-2-one (2b)	17
(3E, 5E)-undeca-3, 5-dien-2-one (2c)	19
(3E, 5E)-6-(4-chlorophenyl) hexa-3, 5-dien-2-one (2f)	21
(3E, 5E)-6-(4-methoxyphenyl) hexa-3, 5-dien-2-one (2g)	23
(3E, 5E)-6-(4-nitrophenyl) hexa-3, 5-dien-2-one (2h)	25
S-ethyl (2E,4E)-5-phenylpenta-2,4-dienethioate (2j)	27
(+)-(<i>S</i> , E)-4-(2-cyclohexylethyl)-6-phenylhex-5-en-2-one (3a)	29
(+)-(4 <i>S</i> , E)-4-(2-(cyclohex-3-en-1-yl) ethyl)-6-phenylhex-5-en-2-one (3b)	
(+)-(<i>S</i> , E)-4-styryldec-9-en-2-one (3c)	35
(+)-(<i>S</i> , E)-8-((tert-butyldimethylsilyl) oxy)-4-styryloctan-2-one (3d)	
(+)-(<i>S</i> , E)-4-styryl-7- (trimethylsilyl) heptan-2-one (3e)	41
(+)-(<i>S</i> , E)-11-bromo-4-styrylundecan-2-one (3f)	44
(+)-(<i>S</i> , E)-10-chloro-4-styryldecan-2-one (3g)	47
(+)-(<i>S</i> , E)-4-(2-bromophenethyl) hept-5-en-2-one (3h)	50
(+)-(<i>S</i> , E)-8-phenyl-4-(prop-1-en-1-yl) octan-2-one (3i)	53
(+)-(<i>S</i> , E)-4-(4-phenylbutyl) undec-5-en-2-one (3j)	56
(+)-(<i>S</i>)-4-(2-methylprop-1-en-1-yl)-8-phenyloctan-2-one (3k)	59
(+)-(<i>S</i> , E)-11-bromo-4- (4-chlorostyryl) undecan-2-one (3m)	62
(+)-(E)-11-bromo-4- (4-methoxystyryl)undecan-2-one (3n)	65
(+)-(<i>S</i> , E)-11-bromo-4- (4-nitrostyryl) undecan-2-one (3o)	68
(+)-(<i>S,E</i>)-3-ethyl-1,5-diphenylpent-4-en-1-one (3p)	71
(+)-S-ethyl (S,E)-3-ethyl-5-phenylpent-4-enethioate (3q)	74
(E)-6-phenylhex-3-en-5-yn-2-one (4a)	77
S-ethyl (E)-5-phenylpent-2-en-4-ynethioate (4b)	80
(-)-(<i>S</i>)-4-(phenylethynyl) decan-2-one (5a)	82

(-)-(S)-4-(2-cyclohexylethyl)-6-phenylhex-5-yn-2-one (5b)	85
(-)-(4 <i>S</i>)-4-(2-(cyclohex-3-en-1-yl) ethyl)-6-phenylhex-5-yn-2-one (5c)	88
(-)-(<i>S</i>)-4-(phenylethynyl) dec-9-en-2-one (5d)	91
(-)-(<i>S</i>)-8-((tert-butyldimethylsilyl) oxy)-4-(phenylethynyl)octan-2-one (5e)	94
(-)-(<i>S</i>)-4-(phenylethynyl)-7-(trimethylsilyl) heptan-2-one (5f)	97
(-)-(<i>S</i>)-11-bromo-4-(phenylethynyl) undecan-2-one (5g)	100
(+)-S-ethyl (S)-10-bromo-3- (phenylethynyl)decanethioate (5h)	103
(+)-S-ethyl (3 <i>S</i>)-3-(2-(cyclohex-3-en-1-yl) ethyl)-5-phenylpent-4-ynethioate (5i)	106
References:	110

General information

Procedures were all carried out in flame-dried flasks with anhydrous solvents under argon protection. Analytical thin-layer chromatography was conducted on precoated glass-backed plates (Silica Gel 60 F_{254} , Merck). Visualization was performed by UV light (254nm), aqueous ceric ammonium molybdate (CAM), p-Anisaldehyde Stain, aqueous basic potassium permanganate stains (KMnO₄) and vanillin solution. Flash column chromatography was carried out using Apollo Scientific silica gel 60 (0.040 – 0.063 nm), VWR (40-63 µm) silica gel, Sigma Aldrich silica gel.

Reaction temperatures below 0 °C were obtained using a Julabo FT902 immersion cooler. 0 °C was achieved using an ice-water bath. Light sensitive reactions were processed under Aluminium foil protection.

All NMR spectra were recorded at room temperature; ¹H and ¹³C nuclear magnetic resonance experiments were carried out using Bruker DPX-200 (200/50 MHz), AVG-400 (400/100 MHz) , AVH-400 (400/100 MHz) or AVC-500 (500/125 MHz) spectrometers. Chemical shifts are reported in ppm from the residual solvent peak. Chemical shifts (δ) are given in ppm and coupling constants (J) are quoted in hertz (Hz). Resonances are described as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Assignments were made with the assistance of COSY, DEPT-135, HSQC and NOESY NMR spectra.

Chiral HPLC separations were achieved using an Agilent 1230 Infinity series normal phase HPLC unit and HP Chemstation software. Chiralpak® columns (250 × 4.6 mm), fitted with matching Chiralpak® Guard Cartridges (10 × 4 mm), were used as specified in the text. Solvents used were of HPLC grade (Fisher Scientific, Sigma Alrich or Rathburn); all eluent systems were isocratic.

Low-resolution mass spectra were recorded using a Walters LCT premier XE. Highresolution mass spectra (EI and ESI) were recorded using a Bruker Micro TOF spectrometer by the internal service at the University of Oxford.

Infrared measurements (ATR) were carried out using a Bruker Tensor 27 FT-IR with internal calibration in the range 4000-600 cm⁻¹.

Optical rotations were recorded using a Perkin-Elmer 241 Polarimeter;

In those cases where silver salts were used the resulting solutions were filtered using syringe filters PTFE (0.2 μ m, 13 mm diameter) from Camlab.

S4

Chemicals

Unless stated otherwise, commercially available reagents were purchased from Sigma-Aldrich, Fisher Scientific, Apollo Scientific, Acros Organics, Strem Chemicals, Alfa Aesar or TCI UK and were used without purification. Petroleum ether refers to petroleum boiling in the range 40-60°C. Deuterated solvents were purchased from Sigma-Aldrich (CDCl₃). Schwartz reagent was prepared according to the literature procedure from Cp₂ZrCl₂ provided by Alfa Aesar. CuCl which purity is 98% is purchased from Strem Chemicals, the 99.99% purity CuCl is from Sigma-Aldrich, and all of them were directly used without any further purification. All the Trimethylsilyl chloride (TMSCI) were distilled fresh and stored in Schlenk flaskes under an argon atmosphere. All phosphoramidite ligands were synthesized by the Fletcher group.

General Methods

1. Preparation of Schwartz reagent¹

Zirconocene dichloride (30.0 g, 0.103 mol) was added to a flame-dry 250 mL Schlenk flask wrapped with aluminium foil under argon. Dry THF (120 mL) was added and the suspension was stirred at 35 °C for 30 minutes. LiAlH₄ in Et₂O (1 M, 28.2 mmol) was added dropwise to the mixture over about 30 minutes. The resulting suspension was stirred at room temperature for 2 hours. The mixture was then Schlenk-filtered under argon and washed with tetrahydrofuran (200 mL), methylene chloride (200 mL), and diethyl ether (200 mL). The precipitate was dried under high vacuum for two hours to give a white powder (20.3 g, 75%), which is stored under argon in a small flame-dried schlenk flask while being protected from light.

2. Preparation of S-ethyl 2-(diethoxyphosphoryl) ethanethioate² ((EtO)₂POCHCOSEt)

A solution of diethylphosphonoacetic acid (1.0 eq.), ethanethiol (1.0 eq.), and DMAP (0.1 eq.) in DCM was cooled to 0°C. DCC (1.0 eq.) was added in portions. The reaction mixture was left to stir overnight under argon at room temperature. The mixture was filtered through a Celite pad, and DCM was used to rinse the pad. The organic layer was washed with aqueous NaHCO₃, water and brine. The organic phase was dried with anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The product was further purified by flash chromatography (ether: pentane) to colourless oil.

3. Preparation of amines³

 $R^{/NH_2}$ + $R^1 R^2$ \longrightarrow $HN^{/R} R^1 R^2$ R, R^1 , R^2 = Alkyl or H

According to a modified procedure from Davies and co-workers³. Ketone (2.0 eq.) was added to a stirring solution of amine in THF at room temperature. After 5 minutes, $Na(OAc)_{3}H$ (2.0 eq.) was tipped into the mixture. The reaction was kept under room temperature for 48 hours, and the resulting suspension was added to a 1:1 mixture of $Et_{2}O$ and $NaHCO_{3}$ (aq. sat.) and stirred for another half an hour. The mixture was partitioned between the aqueous and $Et_{2}O$ layers and the aqueous phase extracted with $Et_{2}O$ three times. The combined organic phase was concentrated in vacuo. Then HCl (aq.2 M) was added dropwise (pH = 1). The mixture was partitioned between the aqueous phases and NaOH (4 M) was added till the mixture became basic (pH>14). The mixture was partitioned between aqueous and organic phases. DCM was used to extract residual product from the aqueous layer (three extracts). The combined organic layers were concentrated, dried (MgSO₄), filtered and concentrated to give the, desired product.

4. Preparation of phosphoramidite ligands⁴

Triethylamine (5.0 eq.) was added dropwise to a stirred, ice-cooled solution of PCI_3 (1.0 eq.) in DCM. The ice bath was removed and the solution left to warm to room temperature

before second amine (1.0 eq.) was added to the stirred solution in one portion. After 5 hours, (*S*)-binaphthol (1.0 eq.) was tipped into the suspension and the reaction mixture was left to stir for another 15 hours. The mixture was then filtered over an ~ 2cm pad of celite and silica gel, and DCM was used to rinse the pad. The filtrate was concentrated to give a yellow residue and after flash column chromatography (petroleum ether: DCM: Et₃N, 80:20:1; SiO₂) the ligand was obtained as a white crystalline solid.

5. Preparation of linear α , β , γ , δ -unsaturated substrates

Substrate **2d**, **2e**, and **2i** were commercially available. Others were prepared according to the procedures below.

General procedure HWE olefination (from aldehyde)⁵

n-BuLi (1.5 eq. solution in hexane) was added to a stirring solution of Horner reagent (1.5 eq.) in THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of aldehyde (1.0 eq.) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et_2O ; 90:10; SiO₂) to afford the desired product.

6. Copper catalysed addition on α , β , γ , δ -Unsaturated Substrates

a. Racemic product

CuCl (0.1 eq.), and the racemic phosphoramidite ligand (0.1 eq.) were added to a flame dried round bottom flask containing 1 ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (0.11 eq.) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of alkene (2.5 eq.) in DCM, under an argon atmosphere was added Cp_2ZrHCI (2.0 eq.), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before substrate (1.0 eq.) and TMSCI (5.0 eq.) were sequentially added dropwise over about 1 min for each. Stirring at room temperature was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product.

b. Asymmetric product

CuCl (0.1 eq.), and the phosphoramidite ligand (0.1 eq.) were added to a flame dried round bottom flask containing 1ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (0.11 eq.) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of alkene (2.5 eq.) in DCM, under an argon atmosphere was added Cp_2ZrHCl (2.0 eq.), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before substrate (1.0 eq.) and TMSCI (5.0 eq.) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product.

S8

Characterization of compounds

(+)-(11bS)-N-((S)-2,3-dihydro-1*H*-inden-1-yl)-N-(nonan-5-yl)dinaphtho[2,1d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (Ligand A)

Triethylamine (8.46 mL, 5.0 eq., 63 mmol), was added dropwise to a stirred, ice-cooled solution of PCl₃ (1.13 mL, 1.0 eq., 12.6 mmol) in CH₂Cl₂ (60 ml). The ice bath was removed and the solution left to warm to room temperature before (*S*)-N-(nonan-5-yl)-2,3-dihydro-1H-inden-1-amine (3.28g, 1.0 eq. 12.6 mmol) was added to the stirred solution in one portion. After 5 hours, (*S*)-binaphthol (3.16 g, 1.0 eq. 12.6 mmol.) was tipped into the suspension and the reaction mixture was left to stir for another 15 hours. The mixture was then filtered over an ~ 2cm pad of celite and silica gel, and CH₂Cl₂ (150 mL) was used to rinse the pad. The filtrate was concentrated to give a yellow residue and after flash column chromatography (petroleum ether: CH₂Cl₂: Et₃N, 80:20:1; SiO₂) the ligand was obtained as a white crystalline solid (2.35 g, 32%).

¹H NMR (500 MHz, CDCl₃) δ_{H} /ppm 7.95 (d, J = 8.8 Hz, 1H, Ar-*H*), 7.90 (dd, J = 8.4 Hz, 2.2 Hz, 3H, Ar-*H*), 7.72 (d, J = 7.6 Hz, 1H, Ar-*H*), 7.61 (d, J = 8.8 Hz, 1H, Ar-*H*), 7.49 (d, J = 8.7 Hz, 1H, Ar-*H*), 7.44 – 7.37 (m, 3H, Ar-*H*), 7.34 (td, J = 7.2 Hz, 6.7 Hz, 2.0 Hz, 1H, Ar-*H*), 7.28 (tt, J = 3.9 Hz, 2.0 Hz, 2H, Ar-*H*), 7.27 – 7.19 (m, 3H, Ar-*H*), 4.76 (dt, J = 15.4 Hz, 7.8 Hz, 1H, PhC*H*NH), 3.11 – 2.86 (m, 2H, PhC*H*₂), 2.75 (dt, J = 16.1 Hz, 8.3 Hz, 1H, NHC*H*), 2.44 (d, J = 11.3 Hz, 1H, PhCH₂C*H*₂), 2.26 – 2.00 (m, 1H, PhCH₂C*H*₂), 1.78 (tt, J = 12.3 Hz, 4.4 Hz, 1H, C*H*₂), 1.72 – 1.61 (m, 1H, C*H*₂), 1.55 – 1.38 (m, 5H, C*H*₂), 1.39 – 0.97 (m, 5H, C*H*₂), 0.92 (t, J = 7.3 Hz, 3H, C*H*₃), 0.87 (t, J = 7.2 Hz, 3H, C*H*₃).

¹³C NMR (126 MHz, Chloroform-d) δ_{C} /ppm 150.2 (d, J = 8.3Hz), 149.9, 144.5, 143.3, 132.8, 131.3, 130.4, 130.2, 129.5, 128.2, 128.1, 127.4, 127.1, 127.1, 126.4, 125.9, 125.8, 125.2, 124.8, 124.60, 124.3, 124.0 (d, J = 5.4 Hz), 122.3 (d, J = 2.0 Hz)(2C), 122.3, 121.8 (d, J = 2.4 Hz), 59.7 (d, J = 21.3 Hz), 55.15 (d, J = 4.3 Hz), 36.90 (d, J = 5.4 Hz), 34.70, 31.62, 30.4, 29.3, 28.7, 23.1, 22.8, 14.23, 14.1.

 ^{31}P NMR (162 MHz, Chloroform-d) δ_p/ppm 149.9.

IR (v_{max}/cm⁻¹, CHCl₃) 2955, 2857, 1590, 1462, 1024, 947, 749, 697

MS (GCMS Ammonica CI Spectrum) m/z calc. for $C_{38}H_{40}O_2NP$ [M+H]⁺: 574.2875, found: 574.2876

[α]²⁰₅₈₉ = +126.3 ° (c 1.0, CHCl₃)

This data was concordant with literature values⁶.

S-ethyl 2-(diethoxyphosphoryl)ethanethioate

A solution of diethylphosphonoacetic acid (10.0 ml, 60.8 mmol, 1.0 eq.), ethanethiol (5.60ml, 60.8 mmol, 1.0 eq.), and DMAP (742mg, 6.08mmol, 0.1 eq.) in DCM was cooled to 0°C. DCC (12.6g, 60.8mg, 1.0 eq.) was added in portions. The reaction mixture was left to stir overnight under argon at room temperature. The mixture was filtered through a Celite pad, and DCM was used to rinse the pad. The organic layer was washed with aqueous NaHCO₃, water and brine. The organic phase was dried with anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The product was further purified by flash chromatography (ether: pentane; 30:70) to colourless oil (10.5 g, 44mmol, 72% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 4.12 (dqd, *J* = 8.0 Hz, 7.0 Hz, 1.1 Hz, 4H, OC*H*₂CH₃), 3.16 (d, *J* = 21.3 Hz, 2H, C*H*₂COSEt), 2.88 (qd, *J* = 7.4 Hz, 0.6 Hz, 2H, COSC*H*₂CH₃), 1.29 (td, *J* = 7.1Hz, 0.6 Hz, 6H, OCH₂CH₃), 1.22 (t, *J* = 7.4 Hz, 3H, COSCH₂CH₃).

¹³C NMR (101 MHz, Chloroform-*d*) $\delta_{\rm C}$ /ppm 190.2 (d, *J* = 6.9 Hz), 62.8, 62.7, 42.8(d, J = 131.1 Hz), 24.2, 16.3, 16.2, 14.4.

³¹P NMR (162 MHz, Chloroform-*d*) δ_P /ppm 18.2.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 2360,1738,1680,1380,1257,1019,966

HRMS (ESI) m/z calc. for C₈H₁₈O₄P³²S, [M+H]⁺: 241.0658, found: 241.0657

This data was concordant with literature values².

(3E, 5E)-6-phenylhexa-3, 5-dien-2-one (2a)

n-BuLi (9.6 ml, 1.5 eq in hexane, 15 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (2.92 ml, 1.5 eq, 15 mmol) in 30 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of cinnamaldehyde (1.25 ml, 1.0 eq., 10 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 90:10; SiO₂) to afford the desired product (1.32 g, 7.7 mmol, 77%).

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.57 – 7.44 (m, 2H, Ar-*H*), 7.43 – 7.26 (m, 4H, Ar-*H*, C*H*), 7.07 – 6.80 (m, 2H, C*H*), 6.28 (d, *J* = 15.5 Hz, 1H, C*H*), 2.34 (s, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.4, 143.4, 141.3, 136.0, 130.5, 129.2, 128.9 (2C), 127.3 (2C), 126.7, 27.4.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1668, 1652, 1586, 1258, 990

HRMS (ESI) m/z calc. for C₁₂H₁₂O³⁵CI [M+H]⁺: 173.0961, found: 173.0962

This data was concordant with literature values.⁷

(3E, 5E)-hepta-3, 5-dien-2-one (2b)

n-BuLi (4.8 ml, 1.5 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.46 ml, 1.5 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of (*E*)-but-2-enal (0.53 g, 1.0 eq., 5.0 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 90:10; SiO₂) to afford the desired product (0.35 g, 3.3 mmol, 65%).

¹H NMR (400 MHz, Chloroform-*d*) δ_H/ppm 7.18 – 6.91 (m, 1H, C*H*), 6.24 – 6.15 (m, 2H, C*H*), 6.03 (d, J = 15.1 Hz, 1H, C*H*), 2.24 (s, 3H, COC*H*₃), 1.97 – 1.80 (m, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.8, 143.9, 140.3, 130.3, 128.6, 27.2, 18.8.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 2359, 1681, 1558,1362, 1256, 981

HRMS (ESI) m/z calc. for C₇H₁₁O [M+H]⁺: 111.0804, found: 111.0803

This data was concordant with literature values.8

(3E, 5E)-undeca-3, 5-dien-2-one (2c)

n-BuLi (4.8 ml, 1.5 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.46 ml, 1.5 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of (*E*)-oct-2-enal (0.63 g, 1.0 eq., 5.0 mmol) in 20 ml THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 90:10; SiO₂) to afford the desired product (0.50 g, 3.0 mmol, 60%).

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.19 – 6.90 (m, 1H, CHCO), 6.25 – 6.15 (m, 2H, CH), 6.05 (d, J = 15.6 Hz, 1H, CH), 2.26 (s, 3H, COCH₃), 2.18 (dtd, J = 7.6 Hz, 5.3 Hz, 2.6 Hz, 2H, CH₂CH), 1.51 – 1.36 (m, 2H, CH₂), 1.39 – 1.22 (m, 4H, CH₂), 1.02 – 0.80 (m, 3H, CH₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.8, 145.9, 144.1, 128.8 (2C), 33.1, 31.4, 28.4, 27.2, 22.5, 14.0.

IR (v_{max}/cm⁻¹, CHCl₃) 2958, 2929, 1668, 1632, 1253, 997

HRMS (ESI) m/z calc. for C₁₁H₁₉O [M+H]⁺: 167.1430, found: 167.1431

(3E, 5E)-6-(4-chlorophenyl) hexa-3, 5-dien-2-one (2f)

n-BuLi (4.8 ml, 1.5 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.45 ml, 1.5 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of (E)-3-(4-chlorophenyl) acrylaldehyde (0.83 g, 1.0 eq., 5.0 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 7:3; SiO₂) to afford the desired product (0.37 g, 1.8 mmol, 36%).

¹H NMR (400 MHz, Chloroform-*d*) δ_H/ppm 7.43 – 7.34 (m, 2H, Ar-*H*), 7.34 – 7.26 (m, 2H, Ar-*H*), 7.23 (t, *J* = 7.7 Hz, 1H, C*H*), 6.94 – 6.76 (m, 2H, C*H*), 6.24 (d, *J* = 15.5 Hz, 1H, C*H*), 2.29 (s, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.4, 143.0, 139.7, 135.0, 134.5, 130.9, 129.1 (2C), 128.4 (2C), 127.2, 27.5.

IR (v_{max}/cm⁻¹, CHCl₃) 2980, 1650, 1616, 1588, 1360, 1251, 996

HRMS (ESI) m/z calc. for C₁₂H₁₂O³⁵CI [M+H]⁺: 207.0571, found: 207.0572

(3E, 5E)-6-(4-methoxyphenyl) hexa-3, 5-dien-2-one (2g)

n-BuLi (4.8 ml, 1.5 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.45 ml, 1.5 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of (*E*)-3-(4-methoxyphenyl) acrylaldehyde (0.81 g, 1.0 eq., 5.0 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 1:1; SiO₂) to afford the desired product (0.32 g, 1.6 mmol, 32%).

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.46 – 7.29 (m, 2H, Ar-*H*), 7.33 – 7.06 (m, 1H, C*H*), 6.92 – 6.75 (m, 3H, C*H*, Ar-*H*), 6.70 (m, 1H, C*H*), 6.15 (d, *J* = 15.5 Hz, 1H, C*H*), 3.77 (s, 3H, OC*H*₃), 2.24 (s, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.5, 160.6, 144.1, 141.1, 129.4 (3C), 128.8, 124.5, 114.3 (2C), 55.4, 27.3.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1653, 1594, 1511, 1251, 990

HRMS (ESI) m/z calc. for $C_{13}H_{15}O_2$ [M+H]⁺: 203.1067 found: 203.1066

(3E, 5E)-6-(4-nitrophenyl) hexa-3, 5-dien-2-one (2h)

n-BuLi (4.8 ml, 1.5 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.45 ml, 1.5 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of (*(E)-3-(*4-nitrophenyl) acrylaldehyde (0.89 g, 1.0 eq., 5.0 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 60:40; SiO₂) to afford the desired product (0.31 g, 1.4 mmol, 28%).

¹H NMR (400 MHz, Chloroform-*d*) δ_H/ppm 8.32 – 8.03 (m, 2H, Ar-*H*), 7.70 – 7.40 (m, 2H, Ar-*H*), 7.38 – 7.17 (m, 1H, C*H*), 7.07 – 6.77 (m, 2H, C*H*), 6.33 (d, *J* = 15.5 Hz, 1H, C*H*), 2.31 (s, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 198.1, 147.7, 142.1, 141.7, 138.0, 132.6, 130.8, 127.7 (2C), 124.2 (2C), 27.7.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1683, 1594, 1512, 1339, 997

HRMS (ESI) m/z calc. for C₁₂H₁₂O₃N [M+H]⁺: 218.0812, found: 218.0812

S-ethyl (2E,4E)-5-phenylpenta-2,4-dienethioate (2j)

n-BuLi (4.8 ml, 1.0 eq in hexane, 7.5 mmol) was added to a stirring solution of S-ethyl 2-(diethoxyphosphoryl)ethanethioate (1.8 ml, 1.0 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of cinnamaldehyde (0.66 g, 1.0 eq., 5.0 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 97:3; SiO₂) to afford the desired product (0.67 g, 3.1 mmol, 61%).

¹H NMR (400 MHz, Chloroform-d) δ_{H} /ppm 7.53 – 7.43 (m, 2H, Ar-*H*), 7.43-7.30 (m, 4H, Ar-*H*, *CH*), 6.97 (d, J = 15.5 Hz, 1H, *CH*), 6.84 (ddd, J = 15.5 Hz, 10.8 Hz, 0.8 Hz, 1H, *CH*), 6.28 (dt, J = 15.2 Hz, 0.7 Hz, 1H, *CH*), 3.00 (q, J = 7.4 Hz, 2H, SC*H*₂CH₃), 1.31 (t, J = 7.4 Hz, 3H, *CH*₃).

 ^{13}C NMR (101 MHz, Chloroform-d) $\delta_{\text{C}}/\text{ppm}$ 189.9, 141.7, 140.3, 136.0, 129.2, 128.9 (2C), 128.3, 127.2 (2C), 126.1, 23.3, 14.9.

IR (v_{max}/cm⁻¹, CHCl₃) 2976, 2361, 1653, 1594, 1022, 820

HRMS (ESI) m/z calc. for C₁₃H₁₅O³²S [M+H]⁺: 219.0838, found: 218.0840

(+)-(S, E)-4-(2-cyclohexylethyl)-6-phenylhex-5-en-2-one (3a)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of vinylcyclohexane (55 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (40 mg, 14 mmol, 70%).

HPLC analysis indicated an enantiomeric excess of 90 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 254 nm; major enantiomer tR = 6.90 min; minor enantiomer, tR = 7.40 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.28 – 7.17 (m, 4H, Ar-*H*), 7.16 – 7.08 (m, 1H, Ar-*H*), 6.30 (d, *J* = 15.8 Hz, 1H, C*H*), 5.92 (dd, *J* = 15.9 Hz, 8.7 Hz, 1H, C*H*), 2.68 – 2.49 (m, 1H, C*H*CH₂COCH₃), 2.44 (d, *J* = 6.9 Hz, 2H, C*H*₂COCH₃), 2.05 (s, 3H, COC*H*₃), 1.72 – 1.46 (m, 5H, C*H*₂ x C*H*₂), 1.45 – 1.21 (m, 2H, C*H*₂), 1.21 – 0.98 (m, 6H, 3 x C*H*₂), 0.88 – 0.70 (m, 2H, C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.1, 137.4, 133.3, 130.2, 128.5 (2C), 127.1, 126.1 (2C), 49.6, 39.3, 37.8, 35.0, 33.5, 33.3, 32.4, 30.7, 26.7, 26.4, 26.4.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382, 1154, 966

HRMS (ESI) m/z calc. for $C_{20}H_{29}O$ [M+H]⁺: 285.2213 found: 285.2211

 $[\alpha]^{20}_{589} = +10.0 \circ (c \ 1.0, \ CHCl_3)$

Absolute configuration was assigned by analogy to 3p.

HPLC trace

#	Time	Area	Height	Width	Area%	Symmetry
1	6.9	10948	1198	0.1366	95.152	0.9
2	7.396	557.8	51.4	0.1586	4.848	0.94

(+)-(4S, E)-4-(2-(cyclohex-3-en-1-yl) ethyl)-6-phenylhex-5-en-2-one (3b)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 4-vinylcyclohex-1-ene (54 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours,

before the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O . The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (39 mg, 14 mmol, 70%).

HPLC analysis indicated an enantiomeric excess of 92 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 254 nm; major enantiomer tR = 7.73 min; minor enantiomer, tR = 8.15 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.19 – 7.06 (m, 4H, Ar-*H*), 7.04 – 6.97 (m, 1H, Ar-*H*), 6.20 (d, *J* = 15.8 Hz, 1H, C*H*), 5.81 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 5.45 (d, *J* = 2.3, 2H, 2 x C*H*CH₂), 2.65 – 2.44 (m, 1H, C*H* CH₂COCH₃), 2.34 (d, *J* = 6.9 Hz, 2H, C*H*₂COCH₃), 1.94 (s, 3H, COC*H*₃), 1.90 – 1.76 (m, 2H, C*H*₂), 1.64 – 1.27 (m, 3H, C*H*, C*H*₂), 1.26 – 0.93 (m, 4H, 2 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.0, 137.4, 133.2, 130.3, 128.5 (2C), 127.2, 127.1, 126.5, 126.1 (2C), 49.5, 39.2, 34.2, 33.6, 32.4, 31.9, 30.7, 28.9, 25.3.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382, 1154, 966

HRMS (ESI) m/z calc. for C₂₀H₂₇O [M+H]⁺: 283.2056 found: 283.2057

 $[\alpha]^{20}_{589} = +4.7 \circ (c \ 1.0, \ CHCl_3)$

Absolute configuration assigned by analogy to **3p**.

HPLC trace

#	Time	Area	Height	Width	Area%	Symmetry
1	7.733	12380.4	756.9	0.2726	96.036	1.605
2	8.145	511	41.8	0.2038	3.964	0.769

(+)-(S, E)-4-styryldec-9-en-2-one (3c)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of hexa-1,5-diene (41 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The

reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (45 mg, 16 mmol, 78%).

HPLC analysis indicated an enantiomeric excess of 63 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 254 nm; major enantiomer tR = 7.01 min; minor enantiomer, tR = 8.10 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.39 – 7.23 (m, 4H, Ar-*H*), 7.25 – 7.17 (m, 1H, Ar-*H*), 6.39 (d, *J* = 15.8, 1H, C*H*), 6.00 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 5.79 (ddt, *J* = 16.9 Hz, 10.2 Hz, 6.7 Hz, 1H, C*H*), 5.17 – 4.80 (m, 2H, C*H*₂), 2.73 (q, *J* = 6.9 Hz, 1H, C*H*), 2.52 (d, *J* = 6.9 Hz, 2H, C*H*₂COCH₃), 2.13 (s, 3H, COC*H*₃), 2.04 (ddt, *J* = 9.3 Hz, 7.8 Hz, 4.0 Hz, 2H, C*H*₂CH=CH₂), 1.53 – 1.14 (m, 6H, 3 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.0, 138.9, 137.4, 133.1, 130.3, 128.5 (2C), 127.1, 126.1 (2C), 114.3, 49.5, 38.9, 34.9, 33.7, 30.7, 28.9, 26.7.

IR (v_{max}/cm⁻¹, CHCl₃) 2926, 2390, 2284, 1715, 1357, 966

HRMS (ESI) m/z calc. for C₁₈H₂₅O [M+H]⁺: 257.1900 found: 257.1900

 $[\alpha]^{20}_{589} = +6.1^{\circ}$ (c 1.0, CHCl₃)

Absolute configuration assigned by analogy to **3p**.

#	Time	Area	Height	Width	Area%	Symmetry
1	7.008	13762.1	1573.4	0.13	81.566	0.674
2	8.101	3110.3	321.3	0.1469	18.434	0.717

(+)-(S, E)-8-((tert-butyldimethylsilyl) oxy)-4-styryloctan-2-one (3d)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of tert-butyldimethyl(pent-4-en-1-yloxy)silane (100 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours,

before the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O . The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (57 mg, 16 mmol, 79%).

HPLC analysis indicated an enantiomeric excess of 92 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 254 nm; major enantiomer tR = 5.51 min; minor enantiomer, tR = 5.90 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.35 – 7.22 (m, 4H, Ar-*H*), 7.21 – 7.13 (m, 1H, Ar-*H*), 6.36 (d, *J* = 15.9 Hz, 1H, C*H*), 5.96 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 3.56 (t, *J* = 6.5 Hz, 2H, CH₂O), 2.69 (p, *J* = 7.5 Hz, 6.8 Hz, 1H, CHCH₂COCH₃), 2.50 (d, *J* = 6.9 Hz, 2H, CH₂COCH₃), 2.10 (s, 3H, COCH₃), 1.59 – 1.08 (m, 6H, 3 x CH₂), 0.84 (s, 9H 3 x CH₃), -0.00 (s, 6H, SiCH₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.0, 137.3, 133.1, 130.4, 128.5 (2C), 127.1, 126.1 (2C), 63.1, 49.5, 39.0, 34.9, 32.8, 30.7, 26.0 (3C), 23.5, 18.4, -5.3 (2C).

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1717, 1386, 1155,966

HRMS (ESI) m/z calc. for $C_{22}H_{37}O_2^{28}Si [M+H]^+$: 361.2557, 362.2590 found: 361.2558, 362.2585

 $[\alpha]^{20}_{589} = +4.4 \circ (c \ 1.0, \ CHCl_3)$

# Time		Area	Height	Width	Area%	Symmetry	
1	5.514	4564.9	673.4	0.1011	95.657	0.916	
2	5.904	207.3	24.7	0.1219	4.343	0.93	

(+)-(S, E)-4-styryl-7- (trimethylsilyl) heptan-2-one (3e)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of allyltrimethylsilane (57 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (45 mg, 16 mmol, 78%).

HPLC analysis indicated an enantiomeric excess of 86 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 252 nm; major enantiomer tR = 6.02 min; minor enantiomer, tR = 6.86 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.41 – 7.29 (m, 4H, Ar-*H*), 7.28 – 7.21 (m, 1H, Ar-*H*), 6.42 (d, *J* = 15.8 Hz, 1H, *CH*), 6.03 (dd, *J* = 15.9 Hz, 8.7 Hz, 1H, *CH*), 2.98 – 2.64 (m, 1H, *CH*CH₂COCH₃), 2.55 (d, *J* = 6.9 Hz, 2H, *CH*₂COCH₃), 2.17 (s, 3H, COCH₃), 1.54 – 1.19 (m, 4H, 2 x *CH*₂), 0.75 – 0.41 (m, 2H, *CH*₂Si), -0.00 (s, 9H, Si(*CH*₃)₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_P/ppm 209.7, 139.0, 134.9, 131.8, 130.1 (2C), 128.7, 127.7 (2C), 51.1, 40.6, 40.3, 32.3, 23.1, 18.2, 0.0(3C)

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382,1155, 966

HRMS (ESI) m/z calc. for $C_{18}H_{29}O^{28}Si [M+H]^+$: 289.1982, found: 289.1982

 $[\alpha]^{20}_{589} = +0.8 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	6.018	9225.2	1216	0.1125	93.136	0.638
2	6.856	679.9	79.6	0.1257	6.864	0.667

(+)-(S, E)-11-bromo-4-styrylundecan-2-one (3f)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The

reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (45 mg, 16 mmol, 78%).

HPLC analysis indicated an enantiomeric excess of 92 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 254 nm; major enantiomer tR = 9.78 min; minor enantiomer, tR = 10.60 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.34 – 7.22 (m, 4H, Ar-*H*), 7.22 – 7.13 (m, 1H, Ar-*H*), 6.36 (d, *J* = 15.9 Hz, 1H, C*H*), 5.96 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 3.36 (t, *J* = 6.9 Hz, 2H, C*H*₂Br), 2.68 (m, 1H, C*H*CH₂COCH₃), 2.49 (d, *J* = 6.9 Hz, 2H, C*H*₂COCH₃), 2.10 (s, 3H, COC*H*₃), 1.92 – 1.69 (m, 2H, C*H*₂), 1.49 – 1.13 (m, 10H, 5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.1, 137.3, 133.1, 130.3, 128.5 (2C), 127.2, 126.1 (2C), 49.5, 39.0, 35.0, 34.1, 32.8, 30.8, 29.4, 28.7, 28.1, 27.1.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 2929, 1715, 1381,1157, 966

HRMS (ESI) m/z calc. for C₁₉H₂₈O⁷⁹Br [M+H]⁺: 351.1318, 353 .1298 found: 351.1315, 353.1294

 $[\alpha]^{20}_{589} = +6.1 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry		
1	9.775	12637.7	945.1	0.2	96.056	0.903		
2	10.599	518.9	31.9	0.2399	3.944	0.986		

(+)-(S, E)-10-chloro-4-styryldecan-2-one (3g)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of 6-chlorohex-1-ene (59 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp_2ZrHCI (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-phenylhexa-3,5-dien-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours,

before the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O . The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (50 mg, 17 mmol, 85%).

HPLC analysis indicated an enantiomeric excess of 90 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 254 nm; major enantiomer tR = 9.81 min; minor enantiomer, tR = 11.37 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.33 – 7.21 (m, 4H, Ar-*H*), 7.20 – 7.11 (m, 1H, Ar-*H*), 6.34 (d, *J* = 15.8 Hz, 1H, C*H*), 5.95 (dd, *J* = 15.8 Hz, 8.8 Hz, 1H, C*H*), 3.47 (t, *J* = 6.7 Hz, 2H, CH₂Cl), 2.77 – 2.61 (m, 1H, C*H*), 2.48 (d, *J* = 6.9 Hz, 2H, CH₂COCH₃), 2.09 (s, 3H, CH₃), 1.71 (dq, *J* = 8.1 Hz, 6.8 Hz, 2H, CH₂CH), 1.50 – 1.14 (m, 8H, CH₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 207.9, 137.3, 133.1, 130.4, 128.5 (2C), 127.2, 126.1 (2C), 49.5, 45.1, 38.9, 35.0, 32.6, 30.7, 28.8, 27.1, 26.8.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1715, 1382,1158, 967

HRMS (ESI) m/z calc. for C₁₈H₂₆O³⁵Cl [M+H]⁺: 293.1667, 295.1637, found: 293.1669, 295.1639

[α]²⁰₅₈₉ = +9.8 ° (c 1.0, CHCl₃)

#	Time	Area	Height	Width	Area%	Symmetry
1	9.806	17003.9	1369.6	0.2069	94.637	0.628
2	11.371	963.6	76.1	0.2109	5.363	0.797

(+)-(S, E)-4-(2-bromophenethyl) hept-5-en-2-one (3h)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of 1-bromo-2vinylbenzene (91 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before ((3E, 5E)-hepta-3, 5-dien-2-one (22 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer

extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (35 mg, 12 mmol, 60%).

HPLC analysis indicated an enantiomeric excess of 90 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 210 nm; major enantiomer tR = 7.43 min; minor enantiomer, tR = 6.93 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.50 (dd, *J* = 7.8 Hz, 1.1, 1H, Ar-*H*), 7.30 – 7.10 (m, 2H, Ar-*H*), 7.03 (m, 1H, Ar-*H*), 5.62 – 5.44 (m, 1H, C*H*), 5.28 (m, 1H, C*H*), 2.75 (m, 1H, C*H*CH₂COCH₃), 2.61 (m, 2H, C*H*₂Ar), 2.50 – 2.37 (m, 2H, C*H*₂COCH₃), 2.10 (s, 3H, COC*H*₃), 1.68 (dd, *J* = 6.5 Hz, 1.6 Hz, 3H, C*H*₃), 1.66 – 1.61 (m, 1H, C*H*₂), 1.52 (m, 1H, C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.2, 141.7, 133.4, 132.8, 130.3, 127.5, 127.4, 126.3, 124.3, 49.6, 38.6, 35.3, 34.0, 30.6, 18.0

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382,1153, 966

HRMS (ESI) m/z calc. for $C_{15}H_{20}O^{79}Br [M+H]^+$: 295.0692, 297.0672, found: 295.0695, 297.0674

 $[\alpha]^{20}_{589} = +2.4 \circ (c \ 1.0, \ CHCl_3)$

HPCL trace

 #	Time	Area	Height	Width	Area%	Symmetry
1	6.928	457.8	67.4	0.1133	5.190	0.818
2	7.429	8363	942.5	0.1479	94.810	0.666

(+)-(S, E)-8-phenyl-4-(prop-1-en-1-yl) octan-2-one (3i)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of but-3-en-1ylbenzene (0.08 ml, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-hepta-3,5-dien-2-one (22 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer

extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (30 mg, 12 mmol, 61%).

The enantiomeric excess of 97% was determined by SFC [Chiralpak® IG; 1500 psi, 30°C; 1% to 30% MeOH in 5 mins; flow: 1.5 ml/min; λ = 243 nm; minor enantiomer tR = 2.36 mins, major enantiomer tR = 2.23 mins]

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.12 – 7.01 (m, 2H, Ar-*H*), 7.01 – 6.86 (m, 3H, Ar-*H*), 5.32 – 5.11 (m, 1H, C*H*), 5.08 – 4.87 (m, 1H, C*H*), 2.37 (td, *J* = 7.8 Hz, 3.2 Hz, 2H, C*H*₂Ph), 2.26 (td, *J* = 8.2 Hz, 4.8 Hz, 1H, C*H*CH₂COCH₃), 2.23 – 2.06 (m, 2H, C*H*₂CO), 1.88 (s, 3H, COC*H*₃), 1.41 (dd, *J* = 6.4 Hz, 1.6 Hz, 3H, C*H*₃), 1.42 – 1.25 (m, 3H, C*H*₂), 1.24 – 0.93 (m, 3H, C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.7, 142.7, 133.9, 128.4 (2C), 128.2 (2C), 125.6, 125.5, 49.8, 38.7, 35.9, 35.0, 31.4, 30.6, 26.8, 17.9.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382,1153, 997

HRMS (ESI) m/z calc. for C₁₇H₂₅O [M+H]⁺: 245.1900, found: 245.1901

 $[\alpha]^{20}_{589} = +1.3 \circ (c \ 1.0, \ CHCl_3)$

SFC trace

(+)-(S, E)-4-(4-phenylbutyl) undec-5-en-2-one (3j)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of but-3-en-1-ylbenzene (0.08 ml, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-undeca-3, 5-dien-2-one (33 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before

the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O . The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (39 mg, 13 mmol, 65%).

The enantiomeric excess of 97% was determined by SFC [Chiralpak® IG; 1500 psi, 30°C; 1% to 30% MeOH in 5 mins; flow: 1.5 ml/min; λ = 210 nm; minor enantiomer tR = 2.99 mins, major enantiomer tR = 2.58 mins]

¹H NMR (400 MHz, Chloroform-d) δ_{H} /ppm 7.27 – 7.19 (m, 2H, Ar-*H*), 7.13 (td, m, 3H, Ar-*H*), 5.47 – 5.25 (m, 1H, C*H*), 5.10 (m, 1H, C*H*), 2.54 (tt, J = 8.9 Hz, 6.7 Hz, 2H, C*H*₂Ph), 2.48 – 2.39 (m, 1H, C*H*CH₂COCH₃), 2.37 – 2.26 (m, 2H, C*H*₂CO), 2.05 (s, 3H, COC*H*₃), 1.98 – 1.83 (m, 2H, C*H*₂CH=CH), 1.63 – 1.43 (m, 2H, C*H*₂), 1.39 – 1.08 (m, 10H, 5 x C*H*₂), 0.84 (t, J = 7.0 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-d) $δ_C$ /ppm 208.7, 142.7, 132.6, 131.4, 128.4 (2C), 128.2 (2C), 125.6, 49.9, 38.8, 35.9, 35.0, 32.5, 31.4, 31.4, 30.6, 29.2, 26.8, 22.5, 14.1

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1715, 1382,1153, 954

HRMS (ESI) m/z calc. for C₂₁H₃₃O [M+H]⁺: 301.2526, found: 301.2524

 $[\alpha]^{20}_{589} = +1.8 \circ (c \ 1.0, \ CHCl_3)$

SFC trace

13	Name	Retention Time (min)	Purity1 Angle	Purity1 Threshold	PDA/FLR Match1 Spect. Name	PDA/FLR Match1 Angle	PDA/FLR Match1 Threshold	PDA/FLR Match1 Lib. Name	Area (µV*sec)	% Area	Height (µV)	Int Type	Amount	Units	Peak Type
1		2.586							3001009	98.65	1341026	bb			Unknown
2		2.991							41152	1.35	17239	bb			Unknown
Г															
Г				0	С	8				арана Страна С Страна Страна С С С С С С С С С С С С С С С С С С					

(+)-(S)-4-(2-methylprop-1-en-1-yl)-8-phenyloctan-2-one (3k)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of but-3-en-1-ylbenzene (0.08 ml, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before ((E)-6-methylhepta-3, 5-dien-2-one (25 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (45 mg, 17 mmol, 87%).

HPLC analysis indicated an enantiomeric excess of 92 % [Chiralpak® AYH; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1.0; λ = 210 nm; major enantiomer tR = 7.24 min; minor enantiomer, tR = 6.97 min].

¹H NMR (400 MHz, Chloroform-d) δ_{H} /ppm 7.16 – 6.99 (m, 2H, Ar-*H*), 7.00 – 6.87 (m, 3H, Ar-*H*), 4.59 (dp, J = 9.8 Hz, 1.4 Hz, 1H, C*H*), 2.63 – 2.43 (m, 1H, C*H*CH₂COCH₃), 2.43 – 2.28 (m, 2H, C*H*₂Ph), 2.11 (qd, J = 15.1 Hz, 7.0 Hz, 2H, C*H*₂CO), 1.86 (s, 3H, COC*H*₃), 1.42 (m, 7H, 2 x C*H*₃, CH₂), 1.40 – 1.26 (m, 1H, CH₂), 1.25 – 0.91 (m, 4H, CH₂).

¹³C NMR (101 MHz, Chloroform-d) $δ_C$ /ppm 208.8, 142.8, 132.2, 128.4 (2C), 128.2 (2C), 128.1, 125.6, 50.1, 35.9, 35.7, 34.4, 31.6, 30.6, 26.9, 25.8, 18.2.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1382,1153, 966

HRMS (ESI) m/z calc. for C₁₈H₂₇O [M+H]⁺: 259.2056, found: 259.2058

 $[\alpha]^{20}_{589} = +9.9 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	6.968	260	31.6	0.1259	4.151	2.864
2	7.239	6004.5	339.5	0.2643	95.849	0.607

(+)-(S, E)-11-bromo-4- (4-chlorostyryl) undecan-2-one (3m)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-(4-chlorophenyl)hexa-3,5-dien-2one (41 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 70:30; SiO₂) to give the desired product (41 mg, 11 mmol, 53%).

HPLC analysis indicated an enantiomeric excess of 47 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 95: 5.0; λ = 210 nm; major enantiomer tR = 7.68 min; minor enantiomer, tR = 8.08 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.23 (s, 4H, Ar-*H*), 6.31 (dd, *J* = 15.8 Hz, 0.9 Hz, 1H, C*H*), 5.95 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 3.37 (t, *J* = 6.8 Hz, 2H, C*H*₂Br), 2.81 – 2.58 (m, 1H, C*H* CH₂COCH₃), 2.58 – 2.42 (m, 2H, C*H*₂COCH₃), 2.11 (s, 3H, COC*H*₃), 2.00 – 1.71 (m, 2H, C*H*₂), 1.51 – 1.05 (m, 10H, 5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 207.9, 135.8, 133.9, 132.7, 129.1, 128.6 (2C), 127.3 (2C), 49.4, 38.8, 34.9, 34.0, 32.8, 30.7, 29.4, 28.7, 28.1, 27.1.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 2929, 1716, 1490, 1091, 967

HRMS (ESI) m/z calc. for C₁₉H₂₇O⁷⁹Br³⁵Cl [M+H]⁺: 385.0928, 387.0908, 389.0878, 390.0912 found: 385.0928, 387.0905, 389.0879, 390.0911

 $[\alpha]^{20}_{589} = +3.2 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	7.676	6119.7	603.3	0.1523	73.366	0.949
2	8.082	2221.6	203.8	0.1652	26.634	0.992

(+)-(E)-11-bromo-4- (4-methoxystyryl)undecan-2-one (3n)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-(4-methoxyphenyl) hexa-3, 5-dien-2-one (40 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic

phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 70:30; SiO₂) to give the desired product (40 mg, 14 mmol, 70%).

HPLC analysis indicated an enantiomeric excess of 43 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 95: 5.0; λ = 254 nm; major enantiomer tR = 8.94 min; minor enantiomer, tR = 9.75 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.28 – 6.97 (m, 2H, Ar-*H*), 6.80 – 6.50 (m, 2H, Ar-*H*), 6.16 (d, *J* = 15.8 Hz, 1H, C*H*), 5.68 (dd, *J* = 15.8 Hz, 8.7 Hz, 1H, C*H*), 3.63 (s, 3H, O C*H*₃), 3.23 (t, *J* = 6.9 Hz, 2H, C*H*₂Br), 2.52 (t, *J* = 7.7 Hz, 1H, C*H*), 2.35 (d, *J* = 6.9 Hz, 2H, C*H*₂COCH₃), 1.97 (s, 3H, COC*H*₃), 1.78 – 1.53 (m, 2H, C*H*₂), 1.44 – 0.87 (m, 10H, 5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.2, 158.9, 131.0, 130.2, 129.6, 127.2 (2C), 113.9 (2C), 55.3, 49.7, 39.0, 35.1, 34.0, 32.8, 30.7, 29.4, 28.7, 28.1, 27.1.

IR (v_{max}/cm⁻¹, CHCl₃) 2927, 2853, 1713, 1510, 1247, 968

HRMS (ESI) m/z calc. for $C_{20}H_{30}O_2^{79}Br [M+H]^+$: 381.1424, 383.1403 found: 381.1427, 383.1406

 $[\alpha]^{20}_{589} = +6.5 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	8.935	15465.7	1274.8	0.1815	71.260	0.926
2	9.747	6237.6	467.7	0.1996	28.740	0.964

(+)-(S, E)-11-bromo-4- (4-nitrostyryl) undecan-2-one (3o)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (3E, 5E)-6-(4-nitrophenyl) hexa-3, 5-dien-2-one (43 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O .

The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 70:30; SiO₂) to give the desired product (49 mg, 12 mmol, 62%).

HPLC analysis indicated an enantiomeric excess of 86 % [Chiralpak® IA; flow: 1.0 mL/min; hexane/i-PrOH: 96: 4.0; λ = 210 nm; major enantiomer tR = 19.55 min; minor enantiomer, tR = 21.13 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 8.32 – 7.98 (m, 2H, Ar-*H*), 7.56 – 7.38 (m, 2H, Ar-*H*), 6.45 (d, *J* = 15.9 Hz, 1H, C*H*), 6.20 (dd, *J* = 15.9 Hz, 8.7 Hz, 1H, C*H*), 3.39 (t, *J* = 6.8, 2H, C*H*₂Br), 2.97 – 2.69 (m, 1H, C*H*), 2.67 – 2.38 (m, 2H, C*H*₂COCH₃), 2.14 (s, 3H, COC*H*₃), 1.95 – 1.70 (m, 2H, C*H*₂), 1.64 – 0.96 (m, 10H, 5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 207.3, 146.7, 143.8, 138.5, 128.6, 126.6 (2C), 124.0 (2C), 48.9, 38.8, 34.7, 34.0, 32.7, 30.7, 29.3, 28.6, 28.1, 27.1.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 2930, 1716, 1515, 1341,968

HRMS (ESI) m/z calc. for $C_{19}H_{26}O_3^{79}Br^{23}Na$ [M+Na]⁺: 418.0988,420.0968 found: 418.0985, 420.0964

 $[\alpha]^{20}_{589} = +1.2 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry	
1	19.548	36758.2	1210.1	0.4484	93.218	0.602	
2	21.133	2674.4	91.4	0.4878	6.782	0.925	

(+)-(S,E)-3-ethyl-1,5-diphenylpent-4-en-1-one (3p)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, Cp₂ZrHCl (103mg, 2.0 eq., 0.4 mmol) was added. A balloon filled with ethylene was used to purge the flask with ethylene for 5 min, and then DCM (0.2 ml) was added. After stirring for 15 min under an ethylene atmosphere (balloon), a clear yellow solution was obtained. The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before (2E,4E)-1,5-diphenylpenta-2,4-dien-1-one (47 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned

between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 95:5; SiO₂) to give the desired product (27 mg, 0.10 mmol, 51%).

The enantiomeric excess of 54% was determined by SFC [Chiralpak® IF; 1500 psi, 30°C; 1% to 30% MeOH in 5 mins; flow: 1.5 ml/min; λ = 243 nm; minor enantiomer tR = 3.12 mins, major enantiomer tR = 2.96 mins]

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.90 – 7.75 (m, 2H, Ar-*H*), 7.50 – 7.40 (m, 1H, Ar-*H*), 7.39 – 7.31 (m, 2H, Ar-*H*), 7.25 – 7.14 (m, 4H, Ar-*H*), 7.13 – 7.03 (m, 1H, Ar-*H*), 6.29 (d, J = 15.8 Hz, 1H, C*H*), 5.97 (dd, J = 15.8 Hz, 8.6 Hz, 1H, C*H*), 3.10 – 2.82 (m, 2H, C*H*₂CO), 2.80 – 2.64 (m, 1H, C*H*CH₂CH₃), 1.69 – 1.27 (m, 2H, C*H*₂CH₃), 0.84 (t, J = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 199.4, 137.5, 137.4, 133.3, 132.9, 130.4, 128.6
(2C), 128.5(2C), 128.1(2C), 127.0, 126.1(2C), 44.0, 40.8, 27.9, 11.8.
IR (v_{max}/cm⁻¹, CHCl₃) 2961, 2360, 1685, 1448, 748

HRMS (ESI) m/z calc. for $C_{19}H_{21}O \ [M+H]^+$: 265.1587 found: 265.1586

 $[\alpha]^{20}_{589}$ = +11.7 ° (c 0.6, CHCl₃)

Absolute configuration assigned by comparing optical rotations to literature.9

SFC trace

(+)_S_athvl	(S E)_3_oth	wl_5_nhor	winant_1_	onothioato	(34)

489421

242454 bb

23 14

CuCl (3.8 mg, 0.2 eq., 0.04 mmol), and the phosphoramidite ligand (22.8 mg, 0.2 eq., 0.04 mmol) were added to a flame dried round bottom flask containing 1ml 1ml Et₂O/DCM (1/1) under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (11.2 mg, 0.22 eq., 0.044 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, Cp_2ZrHCI (103 mg, 2.0 eq., 0.4 mmol) was added. A balloon filled with ethylene was used to purge the flask with ethylene for 5 min, and then DCM (0.2 ml) was added. After stirring for 15 min under an ethylene atmosphere (balloon), a clear yellow solution was obtained. The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before S-ethyl (2E,4E)-5-phenylpenta-2,4-dienethioate (43 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 97:3; SiO₂) to give the desired product (38 mg, 0.15 mmol, 77%).

The enantiomeric excess of 95% was determined by SFC [Chiralpak® IG; 1500 psi, 30°C; 1% to 30% MeOH in 5 mins; flow: 1.5 ml/min; λ = 243 nm; minor enantiomer tR = 2.25 mins, major enantiomer tR = 2.35 mins]

¹H NMR (400 MHz, Chloroform-d) δ_{H} /ppm 7.38 – 7.25 (m, 4H, Ar-*H*), 7.23 – 7.15 (m, 1H, Ar-*H*), 6.40 (d, J = 15.8 Hz, 1H, C*H*), 6.16 – 5.81 (m, 1H, C*H*), 2.85 (q, J = 7.4 Hz, 2H, SC*H*₂CH₃), 2.74 – 2.54 (m, 3H, C*H*₂CO, C*H*), 1.66 – 1.50 (m, 1H, C*H*₂CH₃), 1.46 – 1.33 (m, 1H, C*H*₂CH₃), 1.20 (t, J = 7.4 Hz, 3H, SCH₂C*H*₃), 0.91 (t, J = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-d) δ_C/ppm 198.4, 137.4, 132.3, 130.8, 128.5 (2C), 127.1, 126.2 (2C), 49.4, 42.1, 27.6, 23.4, 14.8, 11.6.

IR (v_{max}/cm⁻¹, CHCl₃) 2969, 2341, 1685, 1449, 1022, 748

HRMS (ESI) m/z calc. for C₁₅H₂₁O³²S [M+H]⁺: 249.1308 found: 249.1308

[α]²⁰₅₈₉ = +72.6 ° (c 1.0, CHCl₃)

13	Name	Retention Time (min)	Purity1 Angle	Purity1 Threshold	PDA/FLR Match1 Spect. Name	PDA/FLR Match1 Angle	PDA/FLR Match1 Threshold	PDA/FLR Match1 Lib. Name	Area (µV*sec)	% Area	Height (µV)	Int Type	Amount
1		2.253	1	1					174098	2.50	103097	bb	
2		2.352							6784662	97.50	2997311	bb	

(E)-6-phenylhex-3-en-5-yn-2-one (4a)

n-BuLi (4.8 ml, 1.0 eq in hexane, 7.5 mmol) was added to a stirring solution of Diethyl (2oxopropyl)phosphonate (1.45 ml, 1.0 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of 3-phenylpropiolaldehyde (0.98 g, 1.0 eq., 7.5 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 90:10; SiO₂) to afford the desired product (1.03 g, 6.0 mmol, 81%).

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.57 – 7.43 (m, 2H, Ar-*H*), 7.41 – 7.32 (m, 3H, Ar-*H*), 6.83 (d, *J* = 16.0 Hz, 1H, C*H*), 6.57 (d, *J* = 16.0 Hz, 1H, C*H*), 2.30 (s, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 197.0, 137.8, 132.0 (2C), 129.4, 128.5 (2C), 123.8, 122.2, 99.7, 86.7, 27.7.

IR (v_{max}/cm⁻¹, CHCl₃) 2980, 2196, 1671, 1586, 1361, 1248, 957

HRMS (ESI) m/z calc. for C₁₂H₁₁O [M+H]⁺: 171.0804, found: 171.0805

This data was concordant with literature values.¹⁰

S-ethyl (E)-5-phenylpent-2-en-4-ynethioate (4b)

n-BuLi (4.8 ml, 1.0 eq in hexane, 7.5 mmol) was added to a stirring solution of S-ethyl 2-(diethoxyphosphoryl)ethanethioate (1.8 ml, 1.0 eq, 7.5 mmol) in 20 ml THF at 0°C under argon. The mixture was stirred for another 20 min. A solution of 3-phenylpropiolaldehyde (0.98 g, 1.0 eq., 7.5 mmol) in THF was added dropwise. The mixture was slowly warmed to room temperature and was continued overnight. The mixture was quenched with aqueous NH₄Cl (sat.). The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O three times. The combined organic materials were dried (MgSO₄), filtered, concentrated, and further purified by flash column chromatography (pentane: Et₂O; 97:3; SiO₂) to afford the desired product (1.23 g, 5.7 mmol, 75%).

¹H NMR (400 MHz, Chloroform-d) δ_H /ppm 7.47 – 7.35 (m, 2H, Ar-*H*), 7.34 – 7.21 (m, 3H, Ar-*H*), 6.82 (d, J = 15.6 Hz, 1H, C*H*), 6.48 (d, J = 15.5 Hz, 1H, C*H*), 2.92 (q, J = 7.4 Hz, 2H, SC*H*₂), 1.23 (t, J = 7.4 Hz, 3H, C*H*₃).

 ^{13}C NMR (101 MHz, Chloroform-d) $\delta_{\text{C}}/\text{ppm}$ 188.9, 136.1, 132.0 (2C), 129.4, 128.5 (2C), 122.2, 120.7, 98.7, 86.8, 23.5, 14.7.

IR (v_{max}/cm⁻¹, CHCl₃) 2975, 2190, 1658, 1589, 1054, 976,756

HRMS (ESI) m/z calc. for C₁₃H₁₃O³²S [M+H]⁺: 217.0682, found: 217.0682

(-)-(S)-4-(phenylethynyl) decan-2-one (5a)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of hex-1-ene (42 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄Cl (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (36 mg, 14 mmol, 70%).

HPLC analysis indicated an enantiomeric excess of 94 % [Chiralpak® IB; flow: 0.8 mL/min; hexane/i-PrOH: 99: 1; λ = 210 nm; major enantiomer tR = 7.39 min; minor enantiomer, tR = 7.83 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.25 – 7.16 (m, 2H, Ar-*H*), 7.15 – 7.04 (m, 3H, Ar-*H*), 3.12 – 2.72 (m, 1H, C*H*), 2.58 (dd, *J* = 16.2 Hz, 7.6 Hz, 1H, C*H*₂COCH₃), 2.42 (dd, *J* = 16.2 Hz, 6.4 Hz, 1H, C*H*₂COCH₃), 2.04 (s, 3H, COC*H*₃), 1.47 – 1.05 (m, 10H, 5 x C*H*₂), 0.82 – 0.66 (m, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 207.0, 131.6 (2C), 128.2 (2C), 127.7, 123.6, 92.1, 81.9, 49.0, 34.9, 31.8, 30.6, 29.0, 27.8, 27.3, 22.7, 14.1.

IR (v_{max}/cm⁻¹, CHCl₃) 2980, 2929, 1717, 1362, 1159, 757

HRMS (ESI) m/z calc. for C₁₈H₂₅O [M+H]⁺: 257.1900 found: 257.1899

 $[\alpha]^{20}_{589}$ = -7.9 ° (c 1.0, CHCl₃)

Absolute configuration was assigned by analogy to **3p** or by comparing optical rotations to literature.¹¹

#	Time	Area	Height	Width	Area%	Symmetry
1	7.386	5667.8	602.4	0.1398	96.708	0.626
2	7.829	193	13.6	0.1961	3.292	0.368

(-)-(S)-4-(2-cyclohexylethyl)-6-phenylhex-5-yn-2-one (5b)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of vinylcyclohexane (44 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH_4CI (sat. aq.) and then Et_2O . The reaction

mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (49 mg, 17 mmol, 87 %).

HPLC analysis indicated an enantiomeric excess of 95 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 242 nm; major enantiomer tR = 6.00 min; minor enantiomer, tR = 6.39 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.35 – 7.26 (m, 2H, Ar-*H*), 7.24 – 7.15 (m, 3H, Ar-*H*), 2.97 (m, 1H, C*H*), 2.68 (dd, *J* = 16.2 Hz, 7.6 Hz, 1H, C*H*₂COCH₃), 2.52 (dd, *J* = 16.2 Hz, 6.4 Hz, 1H, C*H*₂COCH₃)), 2.15 (s, 3H, COC*H*₃), 1.74 – 1.53 (m, 5H, C*H*, 2 x C*H*₂), 1.52 – 1.02 (m, 7H, 3.5 x C*H*₂), 0.96 – 0.68 (m, 3, 1.5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 206.9, 131.6 (2C), 128.2 (2C), 127.7, 123.7, 92.1, 81.9, 49.0, 37.5, 35.0, 33.6, 33.2, 32.3, 30.6, 28.1, 26.7, 26.4(2C).

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1462, 1383, 1153, 954

HRMS (ESI) m/z calc. for C₂₀H₂₇O [M+H]⁺: 283.2056 found: 283.2057

 $[\alpha]^{20}_{589} = -5.8 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	6.003	12807.6	1712.9	0.1112	97.387	0.65
2	6.386	343.7	35.5	0.1369	2.613	0.558

(-)-(4S)-4-(2-(cyclohex-3-en-1-yl) ethyl)-6-phenylhex-5-yn-2-one (5c)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 4-vinylcyclohex-1-ene (43 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction

mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (47 mg, 17 mmol, 84 %).

HPLC analysis indicated an enantiomeric excess of 96 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 242 nm; major enantiomer tR = 6.49 min; minor enantiomer, tR = 7.01min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.23 – 7.15 (m, 2H, Ar-*H*), 7.11 – 7.01 (m, 3H, Ar-*H*), 5.63 – 5.32 (m, 2H, C*H*=C*H*), 3.04 – 2.79 (m, 1H C*H* CH₂COCH₃), 2.57 (dd, *J* = 16.3 Hz, 7.5 Hz, 1H, C*H*₂COCH₃), 2.41 (dd, *J* = 16.3 Hz, 6.5 Hz, 1H, C*H*₂COCH₃), 2.02 (s, 3H, COC*H*₃), 1.96 – 1.79 (m, 3H,CH=CHC*H*₂), 1.66 – 1.17 (m, 5H, CH=CHC*H*₂, 2 x C*H*₂), 1.13 – 0.95 (m, H, C*H*).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 206.8, 131.6 (2C), 128.2 (2C), 127.7, 127.1, 126.5, 123.6, 92.0, 82.0, 49.0, 34.2, 33.3, 32.3, 32.1, 30.6, 29.1, 28.0, 25.3.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1716, 1461, 1382, 1154, 955

HRMS (ESI) m/z calc. for C₂₀H₂₅O [M+H]⁺: 281.1900 found: 281.1901

[α]²⁰₅₈₉ = -11.1 ° (c 1.0, CHCl₃)

#	Time	Area	Height	Width	Area%	Symmetry
1	6.493	13472	1512.5	0.1359	97.707	0.704
2	7.012	316.2	24.8	0.1929	2.293	0.906

(-)-(S)-4-(phenylethynyl) dec-9-en-2-one (5d)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of hexa-1,5-diene (41 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄Cl (sat. aq.) and then Et₂O. The reaction

mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na_2SO_4), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO_2) to give the desired product (40 mg, 16 mmol, 79 %).

HPLC analysis indicated an enantiomeric excess of 92 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 210 nm; major enantiomer tR = 6.28 min; minor enantiomer, tR = 6.73 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.30 – 7.13 (m, 2H, Ar-*H*), 7.12 – 7.00 (m, 3H, Ar-*H*), 5.62 (m, 1H, C*H*=CH₂), 4.95 – 4.60 (m, 2H, CH=C*H*₂), 2.88 (m, 1H, C*H*), 2.56 (dd, *J* = 16.3 Hz, 7.5 Hz, 1H, C*H*₂COCH₃), 2.40 (dd, *J* = 16.3 Hz, 6.5 Hz, 1H, C*H*₂COCH₃), 2.02 (s, 3H, COC*H*₃), 1.88 (dtt, *J* = 8.0 Hz, 6.6 Hz, 1.3 Hz, 2H, C*H*₂CH=CH₂), 1.58 – 1.05 (m, 6H, 3 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 206.8, 138.9, 131.6 (2C), 128.2 (2C), 127.7, 123.6, 114.4, 91.9, 82.0, 49.0, 34.7, 33.7, 30.6, 28.6, 27.8, 26.8.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1717, 1462, 1383, 1154, 954

HRMS (ESI) m/z calc. for C18H23O [M+H]+: 255.1743 found: 255.1744

 $[\alpha]^{20}_{589} = -6.0 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	6.275	6623.2	794.4	0.1253	96.274	0.629
2	6.734	256.3	29.3	0.128	3.726	0.771

(-)-(S)-8-((tert-butyldimethylsilyl) oxy)-4-(phenylethynyl)octan-2-one (5e)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of tert-butyldimethyl(pent-4-en-1-yloxy)silane (80 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the

reaction was quenched by the addition of NH₄Cl (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (47 mg, 13 mmol, 66%).

HPLC analysis indicated an enantiomeric excess of 94 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 210 nm; major enantiomer tR = 5.64 min; minor enantiomer, tR = 6.04 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.39 – 7.32 (m, 2H, Ar-*H*), 7.30 – 7.20 (m, 3H, Ar-*H*), 3.61 (t, *J* = 5.9 Hz, 2H, CH₂OSi), 3.18 – 2.96 (m, 1H, C*H*), 2.89 – 2.67 (m, 1H, CH₂COCH₃), 2.58 (m, 1H, CH₂COCH₃), 2.20 (s, 3H, COCH₃), 1.71-1.26 (m, 6H, 3 x CH₂), 0.87 (s, 9H, SiC(CH₃)₃), 0.03 (s, 6H,Si(CH₃)₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 206.8, 131.6 (2C), 128.2 (2C), 127.7, 123.6, 91.8, 82.0, 63.0, 49.0, 34.7, 32.6, 30.6, 27.8, 26.0(3C), 23.7, 18.4, -5.3 (2C)

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1462, 1383, 1153, 955

HRMS (ESI) m/z calc. for $C_{22}H_{35}O_2^{28}Si [M+H]^+$: 359.2401, 360.2434 found: 359.2405, 360.2437

 $[\alpha]^{20}_{589} = -6.9 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	5.637	10323.9	1330.2	0.1165	96.937	0.646
2	6.041	326.2	36.5	0.1282	3.063	0.66

(-)-(S)-4-(phenylethynyl)-7-(trimethylsilyl) heptan-2-one (5f)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of allyltrimethylsilane (57 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer

extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (42 mg, 15 mmol, 75 %).

HPLC analysis indicated an enantiomeric excess of 94 % [Chiralpak® IB; flow: 0.7 mL/min; hexane/i-PrOH: 99: 1; λ = 242 nm; major enantiomer tR = 7.57 min; minor enantiomer, tR = 7.96 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.42 – 7.33 (m, 2H, Ar-*H*), 7.31 – 7.24 (m, 3H, Ar-*H*), 3.10 (m, 1H, C*H*CH₂COCH₃), 2.75 (dd, *J* = 16.2 Hz, 7.7 Hz, 1H, C*H*₂COCH₃), 2.59 (dd, *J* = 16.2 Hz, 6.4 Hz, 1H, C*H*₂COCH₃), 2.22 (s, 3H, COC*H*₃), 1.70 – 1.23 (m, 4H, 2 x C*H*₂), 0.79 – 0.32 (m, 2H, C*H*₂Si), -0.00 (s, 9H, 3 x C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 208.5, 133.2 (2C), 129.8 (2C), 129.3, 125.3, 93.6, 83.6, 50.6, 40.2, 32.2, 29.2, 23.3, 17.9, 0.0 (3C)

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1461, 1383, 1251, 1153, 954

HRMS (ESI) m/z calc. for C₁₈H₂₇O²⁸Si [M+H]⁺: 287.1826, 288.1859 found: 287.1825, 288.1861

 $[\alpha]^{20}_{589} = -23.5 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	7.573	19621	2129	0.1375	96.907	0.653
2	7.958	626.2	54.3	0.1606	3.093	0.319

(-)-(S)-11-bromo-4-(phenylethynyl) undecan-2-one (5g)

CuCl (1.9 mg, 0.1 eq., 0.02 mmol), and the phosphoramidite ligand (11.4 mg, 0.1 eq., 0.02 mmol) were added to a flame dried round bottom flask containing 1ml Et₂O under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (5.6 mg, 0.11 eq., 0.022 mmol) was added and the mixture was stirred for an additional 15 min. To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCl (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before 6-phenylhex-5-yn-2-one (34 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered,

concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (53 mg, 15mmol, 76%). HPLC analysis indicated an enantiomeric excess of 96 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 210 nm; major enantiomer tR = 7.96 min; minor enantiomer, tR = 9.12 min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.22 – 7.14 (m, 2H, Ar-*H*), 7.11 – 7.03 (m, 3H, Ar-*H*), 3.20 (t, *J* = 6.9 Hz, 2H, C*H*₂Br), 3.01 – 2.75 (m, 1H, C*H*), 2.56 (dd, *J* = 16.3 Hz, 7.5 Hz, 1H, C*H*₂COCH₃), 2.40 (dd, *J* = 16.3 Hz, 6.5 Hz, 1H, C*H*₂COCH₃), 2.02 (s, 3H, COC*H*₃), 1.75 – 1.54 (m, 2H, C*H*₂), 1.46 – 0.97 (m, 10H, 5 x C*H*₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 206.8, 131.6 (2C), 128.2 (2C), 127.7, 123.6, 91.9, 82.0, 49.0, 34.8, 34.0, 32.8, 30.6, 29.1, 28.6, 28.1, 27.8, 27.2.

IR (v_{max}/cm⁻¹, CHCl₃) 2981, 1717,1462, 1154, 954

HRMS (ESI) m/z calc. for C₁₉H₂₆O⁷⁹Br [M+H]⁺: 349.1162, 351.1141 found: 349.1162, 351.1141

[α]²⁰₅₈₉ = -10.1 ° (c 1.0, CHCl₃)

#	Time	Area	Height	Width	Area%	Symmetry
1	7.963	2898.2	287	0.1498	97.954	0.66
2	9.117	60.5	5.1	0.1746	2.046	0.776

(+)-S-ethyl (S)-10-bromo-3- (phenylethynyl)decanethioate (5h)

CuCl (3.8 mg, 0.2 eq., 0.04 mmol), and the phosphoramidite ligand (22.8 mg, 0.2 eq., 0.04 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O/DCM (1/1) under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (11.2 mg, 0.22 eq., 0.044 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of 7-bromohept-1-ene (89 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp_2ZrHCI (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before S-ethyl (E)-5-phenylpent-2-en-4-ynethioate (43 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et_2O . The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et_2O ; 90:10; SiO₂) to give the desired product (52 mg, 15 mmol, 66%).

HPLC analysis indicated an enantiomeric excess of 97 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 243 nm; major enantiomer tR = 5.44 min; minor enantiomer, tR = 6.44min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.18 (m, 2H, Ar-*H*), 7.06 (m, 3H, Ar-*H*), 3.20 (t, J = 6.8 Hz, 2H, CH_2Br), 2.91 (td, J = 7.5 Hz, 3.9 Hz, 1H, CH), 2.71 (q, J = 7.4 Hz, 2H, SC H_2CH_3), 2.63 (dd, J = 14.8 Hz, 7.4 Hz, 1H, C H_2COCH_3), 2.52 (dd, J = 14.8 Hz, 7.1 Hz, 1H, C H_2COCH_3), 1.65 (p, J = 7.0 Hz, 2H, C H_2), 1.45 – 1.10 (m, 10H, 5 x C H_2), 1.06 (t, J = 7.4 Hz, 3H, C H_3).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 197.6, 131.6 (2C), 128.2 (2C), 127.8, 123.6, 91.1, 82.5, 49.1, 34.4, 34.0, 32.8, 29.3, 29.1, 28.6, 28.1, 27.1, 23.5, 14.8.

IR (v_{max}/cm⁻¹, CHCl₃) 3026, 2842, 1687, 1429, 1305, 1016, 911

HRMS (ESI) m/z calc. for C₂₀H₂₈O⁷⁹Br³²S [M+H]⁺: 395.1039, 397.1018, 398.1052, 399.0976 found: 395.1037, 397.1015, 398.1047, 399.0976

 $[\alpha]^{20}_{589} = +5.2 \circ (c \ 1.0, \ CHCl_3)$

#	Time	Area	Height	Width	Area%	Symmetry
1	5.436	5314.4	797.9	0.0997	98.346	0.662
2	6.439	89.4	10.3	0.1272	1.654	0.771

(+)-S-ethyl (3S)-3-(2-(cyclohex-3-en-1-yl) ethyl)-5-phenylpent-4-ynethioate (5i)

CuCl (3.8 mg, 0.2 eq., 0.04 mmol), and the phosphoramidite ligand (22.8 mg, 0.2 eq., 0.04 mmol) were added to a flame dried round bottom flask containing 1ml Et_2O/DCM (1/1) under argon and the resulting mixture was stirred at room temperature. After 1 hour, AgOTf (11.2 mg, 0.22 eq., 0.044 mmol) was added and the mixture was stirred for an additional 15 min.

To a second, flame dried, round bottom flask, containing a stirred solution of 4-vinylcyclohex-1-ene (54 mg, 2.5 eq., 0.5 mmol) in 0.2 ml DCM, under an argon atmosphere was added Cp₂ZrHCI (103 mg, 2.0 eq., 0.4 mmol), and after stirring for 15 min, a clear yellow solution was obtained.

The stirred solution containing the copper and ligand was transferred, and filtered – using a syringe filter, to the solution containing the zirconocene species. The resulting black mixture was stirred for another 10 min before S-ethyl (E)-5-phenylpent-2-en-4-ynethioate (43 mg, 1.0 eq., 0.2 mmol) and TMSCI (0.127 ml, 5.0 eq., 1.0 mmol) were sequentially added dropwise over about 1 min for each. Stirring at 0 °C was continued for 15 additional hours, before the reaction was quenched by the addition of NH₄CI (sat. aq.) and then Et₂O. The reaction mixture was partitioned between the aqueous and organic phases, and the aqueous layer extracted by Et₂O. The combined organic materials were dried (Na₂SO₄), filtered, concentrated, and the resulting yellow residual purified by flash column chromatography (Petrol: Et₂O; 90:10; SiO₂) to give the desired product (49 mg, 15 mmol, 75%).

HPLC analysis indicated an enantiomeric excess of 96 % [Chiralpak® IB; flow: 1.0 mL/min; hexane/i-PrOH: 99: 1; λ = 243 nm; major enantiomer tR = 4.76 min; minor enantiomer, tR = 5.16min].

¹H NMR (400 MHz, Chloroform-*d*) δ_{H} /ppm 7.23 – 7.13 (m, 2H, Ar-*H*), 7.13 – 6.97 (m, 3H, Ar-*H*), 5.45 (d, *J* = 2.3 Hz, 2H, 2 x C*H*), 3.07 – 2.80 (m, 1H, C*H*), 2.76 – 2.67 (m, 2H,SC*H*₂), 2.64 (dd, *J* = 14.7 Hz, 7.4 Hz, 1H, C*H*₂COCH₃), 2.53 (dd, *J* = 14.8 Hz, 7.1 Hz, 1H, C*H*₂COCH₃), 1.99 – 1.88 (m, 2H, C*H*₂CH=CH), 1.86 – 1.79 (m, 2H, C*H*₂CH=CH), 1.65 – 1.19 (m, 7H, C*H*, 3 x C*H*₂), 1.06 (t, *J* = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ_C/ppm 197.5, 131.6 (2C), 128.16 (2C), 127.7, 127.1, 126.5, 123.6 91.2, 82.5, 49.1, 34.1, 33.3, 31.9, 31.7, 29.6, 29.1, 25.3, 23.5, 14.8.

IR (v_{max}/cm⁻¹, CHCl₃) 3024, 2839, 1687, 1432, 1305, 1025, 912

HRMS (ESI) m/z calc. for $C_{21}H_{27}O^{32}S$ [M+H]⁺: 327.1777, 328.1811 found: 327.1776, 328.1811

 $[\alpha]^{20}_{589}$ = +18.4 ° (c 1.0, CHCl₃)

#	Time	Area	Height	Width	Area%	Symmetry
1	4.759	6489.8	915	0.1067	97.892	0.686
2	5.159	139.8	16.9	0.1205	2.108	0.669

References:

- 1 S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, B. T. Watson and S. M. King, *Org. Synth.*, 1993, **71**, 77.
- 2 B. t. Horst, J. v. Wermeskerken, B. L. Feringa and A. J. Minnaard, *Eur. J. Org. Chem.*, 2010, DOI: 10.1002/ejoc.200901120, 38–41.
- 3 A. F. Abdel-Magid and S. J. Mehrman, Org. Process Res. Dev. , 2006, **10**, 971–1031.
- 4 B. M. Trost, S. M. Silverman and J. P. Stambuli, J. Am. Chem. Soc., 2011, **133**, 19483-19497.
- 5 (a) Gary E. Keck, Eugene P. Boden and S. A. Mabury, *J. Org. Chem.*, 1985, **50**, 709-710; (b) Z. Gao and S. P. Fletcher, *Chem. Commun.*, 2017, **53**, 10216-10219.
- 6 Z. Gao and S. P. Fletcher, *Chem. Sci.*, 2017, **8**, 641-646.
- 7 K. Huang, H. Wang, L. Liu, W. Chang and J. Li, *Chem. Eur. J.*, 2016, **22**, 6458-6465.
- 8 T. Hayashi, S. Yamamoto and N. Tokunaga, Angew. Chem. Int. Ed., 2005, 44, 4224-4227.
- 9 Z. Ma, F. Xie, H. Yu, Y. Zhang, X. Wu and W. Zhang, *Chem. Commun.*, 2013, **49**, 5292-5294.
- 10 C. Xu, S. Wittmann, M. Gemander, V. Ruohonen and J. S. Clark, *Org. Lett.*, 2017, **19**, 3556-3559.
- 11 B. M. Trost, J. T. Masters, B. R. Taft and J. P. Lumb, *Chem. Sci.*, 2016, 7, 6217-6231.