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Methods and Characterizations

Synthesis of Hollow Interwoven Structured Sb/TiO,. The template of nanosized Ti
(30~300 nm) was purchased from Aladdin Reagent Co.; Ltd. (China) and stored in glove box.
Typically, 2.281 g SbCl; were dispersed in 80 mL ethylene glycol first, in which 48 mg Ti
powders were added under magnetic stirring in glove box. After the reaction for 15 min, the
solution was then transferred to a Teflon-lined autoclave and maintained at 160 °C for 12 h.
The autoclave was cooled down to room temperature naturally. The product of intermediates
(i.e.; Sb/TiX) was filtrated and washed by absolute ethanol for several times and then dried
under vacuum at 50 °C overnight. Calcination of the intermediates at 450 °C for 2 h under the
flow Ar atmosphere give rise to hollow interwoven structured Sb/TiO,. Besides, the solid
composite of Sb/TiO, with the mass ratio of 4:1 were mixed by the TiO, and Sb particles for
the comparative experiment. In this experiment, excess SbCl; was used to react with the Ti
template, where the residual chloride ion (CI) in intermediate compounds (i.e., Sb/TiX) was

washed completely after the reaction. Besides, the Sb nanocrystals were protected under the

inert Ar flow during the calcination.

Materials Characterizations. The morphology of products was characterized by the
scanning electron microscopy (SEM) operating on a Hitachi S-4800 SEM analyzer, while the
structural evolution and elemental mapping was observed by the transmission electron
microscopy (TEM) on a FEI G2 S-Twin instrument. The crystallographic structure of
samples were characterized by power X-ray diffractometer (XRD, Bruker D8 Focus) at a
scan speed of 2° min-! with copper Ka radiation. Note that the Ti template is very easily to be
oxidized in XRD test, thus a mixed phase of Ti and TiO can be detected and abbreviated as
Ti(O) in XRD description. The chemical component and valence status were collected using
X-ray photoelectron spectrometer (XPS, ESCALABMKLL) with Al Ka radiation, that emits

1.4866 keV x-ray with corresponding wavelength of 8.53 A.



Electrochemical Measurements. The Sb/TiO, based electrode consist of the active material
of Sb/TiO, composite, acetylene black, and carboxymethyl cellulose (CMC, Alfa Aesar) with
a weight ratio of 7:2:1. The mixture was milled in distilled water to form a form uniform
slurry, and then it was casted on copper foil and dried in vacuum at 60 °C for 24 h. The
electrode was then punched into circular electrode pieces and the areal density of active
material is about 1.0 mg cm2. The cell was assembled in glove box filled with argon gas, in
which the moisture and oxygen content was strictly controlled below 0.1 ppm. The CR-2025
type coin cell with the configuration of the metallic lithium or sodium foil counter | Celgard
2400 membrane separator | as-prepared electrode, in which the electrolyte of 1.0 M LiPF¢ in
ethylene carbonate/diethylene carbonate (1/1 in volume) with 2% fluoroethylene carbonate
(FEC) additive or the electrolyte of 1.0 M NaClOy, in propylene carbonate (PC) with 5% FEC
were used for lithium and sodium battery separately. The cut-off voltages for lithium and
sodium battery were controlled at 0.01-2.5 V and 0.01-2.0 V respectively, where the
galvanostatic charge-discharge curves were recorded by the programmable battery testing
system (LAND CT2001A). The cyclic voltammogram (CV) under the scan rate of 0.1 mV s-!

were tested by the Bio-Logic VMP3 electrochemical workstation.



Table S1 Standard electrode potential of materials which can be reduced in theory by the

metallic Ti.

Electrode progress

EA/V

TiZ" 4+ 2e- — Ti
Ti3* +3e — Ti
Sn?* 4+ 2e”— Sn
Zn*t +2e — Zn
Cr’*+3e — Cr
Cd**+2e— Cd
Co?*" +2e — Co
NiZt +2e- — Ni
Pb%* +2e- — Pb
Fe3* + 3¢ — Fe
Bi’* + 3e- — Bi
Cu?"+2e — Cu
Aglt+e — Ag
Au'"+e — Au

-1.63
-1.37
-0.138
-0.7618
-0.744
-0.43
-0.28
-0.257
-0.126
-0.037
0.308
0.342
0.799
1.692




Figure S1 | SEM of Ti powders with (a) a low and (b) a high magnification. The results show

that the Ti powders has a wide range of particle size distribution.
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Figure S2 | Comparative ratio of the inner radius of hollow void and the shell thickness with

the researches reported before.!-13
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Figure S3 | Elemental and valence status analysis. (a) EDX and (b) XPS survey scan

spectra, (¢) Sb3d and (d) Ti2p of hollow interwoven structured Sb/Ti0,.
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Figure S4 | Typical voltage vs. capacity profiles of hollow interwoven structured Sb/TiO; in

rate capability test for lithium battery.
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Figure S5 | Typical voltage vs. capacity profiles of hollow interwoven structured Sb/TiO, in

rate capability test for sodium battery.



Table S2 Comparison of the electrochemical performances of hollow interwoven structured
Sb/Ti0, and those of the previous Sb-based composites as anode in lithium ion battery (LIBs)
and sodium ion batteries (SIBs) (where define 1C = 660mA g!).

Materials LIBs/SIBs  Current Cycle numbers Capacity References
density (mAh g'!)
Sb@TiO, LIBs 0.15C 100 450 16
Sb/Ti0,/C LIBs 0.15C 100 408 17
Sb/AlO,/C LIBs 0.15C 100 431 17
Sb/MoO,/C LIBs 0.15C 100 376 17
Sb/Al,0;/C LIBs 0.15C 300 440 18
Sb/Ti0,/C LIBs 0.15C 300 445 19
FeSb,/AL,O5/C LIBs 0.15C 500 350 20
NiSb/Al,03/C  LIBs 0.15C 100 300 21
Sb/Ti0O, LIBs 0.15C 100 475 This Work
Sb@C SIBs 0.15C 500 385 22
I-Sb/rGo SIBs 0.75C 150 173 23
Sb-C-Go SIBs 0.15C 100 274 24
Sb/C SIBs 0.15C 100 372 25

Sb/Ti0, SIBs 0.15C 100 403 This work
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