Supporting Information

Asymmetric Transfer Hydrogenation Reactions of *N*-Sulfonylimines by Using Alcohols as Hydrogen Sources

Fan Yang,^a Jingchao Chen,*^a Guoli Shen,^a Xuexin Zhang,^a and Baomin Fan*^{ab}

^a YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, 650500, China. E-mail: chenjingchao84@163.com (J.-C. Chen); adams.bmf@hotmail.com (B.-M. Fan)
^b Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, 650500, China

Table of Contents

A: General Information	S2
B: Procedure for the Reactions	S2
C: Characterization Data of Products	S2
D: NMR Spectra of Products	S9
E: HPLC Spectra of Products	S18
F: X-Ray Crystallography of Compound 3aa	\$33

A: General Information

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The enantioselective excesses were determined by Agilent 1260 Series HPLC using Daicel AD-H, AS-H, OJ-H and OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether and ethyl acetate as eluents.

B: Procedure for the reactions

Typical procedure for the preparation of *N***-sulfonylimines**^[1]**:** To a 50 mL Schlenck flask were charged with benzenesulfonamide (314 mg, 2.0 mmol), acetophenone (1.2 mL, 10 mmol) and Ti(OEt)₄ (1.7 mL, 8.0 mmol) in CH₂Cl₂ (30 mL). The resulting solution was heated to reflux and monitored by TLC monitoring until complete consumption of benzenesulfonamide. Then CH₃OH (6mL) and a few drops of NaHCO₃ were added. The solution was filtered through anhydrous Na₂SO₄ and washed with EtOAc. The solvent was removed under reduced pressure and the crude product was dissolved in 10 mL CH₂Cl₂ followed by the addition of *m*-CPBA (0.7 mg, 3.0 mmol). After the completion of the reaction, the solution was washed with saturated solution of NaHCO₃ and dried over anhydrous Na₂SO₄. The solvent was removed under reduced product was purified by column chromatography using hexanes and EtOAc (10:1) to obtain the corresponding *N*-sulfonylimine **1a** in 66% yield. Compounds **1a-o** were prepared in similar methods.

Typical procedure for the preparation of cyclic *N*-sulfonylimines^[2]: Saccharin (367 mg, 2.0 mmol) and THF (20 mL) were added to a Schlenk flask under argon atmosphere. Then phenylmagnesium bromide (4.4 mmol in THF 4.4 mL) was added dropwise at 25 °C. The resulting mixture was stirred overnight before quenching with a saturated aqueous NH₄Cl solution. The aqueous layer was extracted with CH₂Cl₂ and combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was dissolved in toluene (30 mL), followed by the addition of TsOH (200 mg, 1.2 mmol). The resulting solution was heated to reflux for overnight. The solvent was removed and then a saturated aqueous NH₄Cl solution (20 mL) was added. The aqueous layer was extracted with CH₂Cl₂, and the organic extracts were dried over anhydrous Na₂SO₄. After concentration, the residue was finally purified by column chromatography using hexanes and EtOAc (2:1) to afford the cyclic imine **1m** in 93% yield. Compounds **1n** was prepared in similar methods.

Typical procedure for the asymmetric transfer hydrogenation reaction of *N*-tosylimines: $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), (*R*)-Segphos (7.3 mg, 0.012 mmol) and 1.0 mL DCE were added to a Schlenk tube under argon atmosphere. The resulting mixture was stirred at room temperature for 30 min, then $Zn(OTf)_2$ (7.3 mg, 0.02 mmol) was added and stirred for additional 10 min, followed by the addition of 4 Å Molecular sieves (50.0 mg) and a solution of methanol (40 µL, 1 mmol) in DCE (1.0 mL), and the mixture was stirred for additional 10 min. After the addition of *N*-tosylimines **1a** (51.8 mg, 0.2mmol), a solution of trifluoromethanesulfonic acid (1µL) in DCE (0.1 mL) was added, the mixture was then stirred at 70 °C under argon atmosphere with TLC monitoring until complete consumption of **1a**. The reaction mixture was concentrated, and the residue residue was purified by chromatography on a silica gel column to afford the desired product **3aa** (48 mg, 93% yield).

C: Characterization Data of Products

(R)-N-(1-phenylethyl)benzenesulfonamide (3aa)^[3]

White solid, 93% yield, 98% *ee*. Mp 92-95 °C. $[\alpha]_D^{20}$ = +70.6 (c = 0.68, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.16-7.14 (m, 3H), 7.09-7.07 (m, 2H), 5.41-5.34 (m, 1H), 4.52-4.45 (m, 1H), 1.42 (d, *J* = 6.8 Hz, 3H). The *ee* of **3aa** was determined by HPLC analysis using two Daicel Chiralcel OJ-H columns (2 × 25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, 240 nm; *t*_{minor} = 12.5 min, *t*_{major} = 18.3 min.

(R)-N-(1-(p-tolyl)ethyl)benzenesulfonamide (3ba)^[3]

White solid, 85% yield, 97% *ee*. Mp 143-145 °C. $[\alpha]_D^{20}$ = +87.1 (c = 0.76, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.74-7.72 m, 2H), 7.51-7.47 (m, 1H), 7.414-7.37 (m, 2H), 7.00-6.95 (m, 4H), 4.97 (d, *J* =7.2Hz, 2H), 4.48-4.41 (m, 1H), 2.27 (s, 3H), 1.42 (d, *J* = 6.8 Hz, 3H). The *ee* of **3ba** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 0.5 mL/min, 240 nm; t_{major} = 10.4min, t_{minor} = 11.6min.

(R)-N-(1-(4-methoxyphenyl)ethyl)benzenesulfonamide (3ca)^[3]

White solid, 82% yield, 98% *ee*. Mp 98-99 °C. $[\alpha]_D^{20} = +78.7$ (c = 0.82, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.6Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 5.25 (d, *J* = 7.2 Hz, 1H), 4.39-4.32 (m, 1H), 3.65(s, 3H), 1.32 (d, *J* = 6.8 Hz, 3H). The *ee* of **3ca** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 240 nm; *t*_{major} = 20.0 min, *t*_{minor} = 23.3 min.

(R)-N-(1-(4-fluorophenyl)ethyl)benzenesulfonamide (3da)^[3]

White solid, 81% yield, 99% *ee*. Mp 141-142 °C. $[\alpha]_D^{20} = +64.7$ (c = 0.68, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.51-7.47(m, 1H), 7.40-7.35 (m, 2H), 7.07-7.04 (m, 2H), 6.85-6.80 (m, 2H), 5.46 (d, *J* = 7.2 Hz, 1H), 4.48 (m, 1H), 1.39 (d, *J* = 7.2 Hz, 3H). The *ee* of **3da** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 0.5 mL/min, 240 nm; $t_{major} = 10.9$ min, $t_{minor} = 12.3$ min.

(R)-N-(1-(4-chlorophenyl)ethyl)benzenesulfonamide (3ea)^[3]

White solid, 76% yield, 98% *ee*. Mp 153-155 °C. $[\alpha]_D^{20}$ = +81.3 (c = 0.62, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.71-7.69 (m, 2H), 7.53-7.49 (m, 1H), 7.40-7.36 (m, 2H), 7.14-7.11 (m, 2H), 7.04-7.01 (m, 2H), 5.25 (d, *J* = 6.8 Hz, 1H), 4.51-4.44 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 3H). The *ee* of **3ea** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 1 mL/min, 240 nm; *t*_{major} = 9.9 min, *t*_{minor} = 11.2 min.

(R)-N-(1-(4-bromophenyl)ethyl)benzenesulfonamide (3fa)^[3]

White solid, 65% yield, 99% *ee*. Mp 158-159 °C. $[\alpha]_D^{20} = +71.1$ (c = 0.54, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.61 (m, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 6.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 5.22 (d, *J* = 6.8 Hz, 1H), 4.42-4.35 (m, 1H), 1.31 (d, *J* = 6.8 Hz, 3H). The *ee* of **3fa** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 1 mL/min, 240 nm; $t_{major} = 13.3 \text{ min}$, $t_{minor} = 20.5 \text{ min}$.

(R)-4-methyl-N-(1-phenylethyl)benzenesulfonamide (3ga)^[2]

White solid, 90% yield, 99% *ee*. Mp 106-108 °C. $[\alpha]_D^{20} = +79.5$ (c = 0.86, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.20-7.14 (m, 5H), 5.23 (d, J = 7.2 Hz, 1H), 4.48-4.41 (m, 1H), 2.37 (s, 3H), 1.40 (d, J = 6.8 Hz, 3H). The *ee* of **3ga** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, 240 nm; $t_{minor} = 10.7$ min, $t_{major} = 16.1$ min.

(R)-N-(1-phenylpropyl)benzenesulfonamide (3ha)^[3]

White solid, 63% yield, 98% *ee*. Mp 101-103 °C. $[\alpha]_D^{20}$ = +66.6 (c = 0.44, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.57 (m, 2H), 7.37-7.32 (m, 1H), 7.24-7.19 (m, 2H), 7.05-7.03 (m, 3H), 6.92 (dd, *J* = 7.2, 3.6 Hz, 2H), 5.32 (d, *J* = 7.2 Hz, 1H), 1.76-1.60 (m, 2H), 0.72 (t, *J* = 7.6 Hz, 3H). The *ee* of **3ha** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =90/10, 0.5 mL/min, 240 nm; *t*_{minor} = 21.6 min, *t*_{major} = 22.9 min.

(R)-N-(1-(m-tolyl)ethyl)benzenesulfonamide (3ia)

Colorless oil, 87% yield, 97% *ee*. $[\alpha]_D^{20}$ = +70.8 (c = 0.76, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.29-7.26 (t, *J* = 7.6 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.80 (dd, *J* = 19.6, 7.6 Hz, 2H), 7.75 (s, 1H), 5.37 (d, *J* = 7.2 Hz, 1H), 4.40-4.33 (m, 1H), 2.10 (s, 3H), 1.33 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ

140.7, 139.7, 137.1, 131.2, 127.7, 127.4, 127.1, 125.9, 125.8, 122.1, 52.7, 22.5, 20.2. HRMS calcd for $C_{15}H_{17}NO_2S$ [M]⁺: 275.0980. Found: 275.0984. The *ee* of **3ia** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =80/20, 0.5 mL/min, 240 nm; t_{major} = 10.9 min, t_{minor} = 12.2 min.

3ja

(R)-N-(1-(o-tolyl)ethyl)benzenesulfonamide (3ja)

White solid, 73% yield, >99% *ee*. Mp 111-112 °C . $[\alpha]_D^{20}$ = +42.7 (c = 0.66, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.71 (m, 2H), 7.49-7.45 (m, 1H), 7.38-7.34 (m, 2H), 7.14-7.01 (m, 4H), 5.39 (d, *J* = 6.8 Hz, 1H), 4.82-4.75 (m, 1H), 2.22 (s, 3H), 1.42 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 140.6, 140.1, 134.5, 132.3, 130.4, 128.8, 127.3, 126.9, 126.4, 125.3, 49.8, 23.2, 18.9. HRMS calcd for C₁₅H₁₇NO₂S [M]⁺: 275.0980. Found: 275.0979. The *ee* of **3ja** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 1 mL/min, 240 nm; *t*_{minor} = 6.9 min, *t*_{major} = 10.5 min.

(R)-N-(1-(thiophen-2-yl)ethyl)benzenesulfonamide (3ka)

White solid, 94% yield, 95% *ee*. Mp 93-95 °C. $[\alpha]_{D}^{20}$ = +63.3 (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.80 (m, 2H), 7.55-7.51 (m, 1H), 7.46-7.42 (m, 2H), 7.09 (dd, J = 5.2, 1.2Hz, 1H), 6.80-6.72 (m, 1H), 6.75-6.74 (m, 1H), 5.30 (d, J = 7.6 Hz, 1H), 4.80-4.73 (m, 1H), 1.52 (d, J = 6.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 145.9, 140.6, 132.6, 129.0, 127.1, 126.7, 124.8, 124.5, 49.3, 24.0. HRMS calcd for C₁₂H₁₃NO₂S₂ [M]⁺: 267.0387. Found: 267.0391. The *ee* of **3ka** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =90/10, 1 mL/min, 240 nm; t_{major} = 12.2 min, t_{minor} = 14.2 min.

(R)-N-(3,3-dimethylbutan-2-yl)benzenesulfonamide (3la)^[4]

White solid, 80% yield, 96% *ee*. Mp 116-119 °C. $[\alpha]_D^{20}$ = +4.5 (c = 0.44, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.91-7.89 (m, 2H), 7.59-7.49 (m, 3H), 4.61 (d, *J* = 7.6 Hz, 2H),

3.11-3.03 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.83 (s, 9H). The *ee* of **3la** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =95/5, 0.5 mL/min, 240 nm; t_{minor} = 20.1 min, t_{major} = 21.4 min.

(R)-N-(1-phenylethyl)methanesulfonamide (3ma)^[5]

Colorless oil, 81% yield, 99% *ee*. $[\alpha]_D^{20} = 52.6$ (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.28 (m, 5H), 5.18(d, *J* = 7.2 Hz, 1H), 4.64 (m, 1H), 2.60 (s, 3H), 1.54 (d, *J* = 7.2, 3H). The *ee* of **3ma** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =70/30, 0.5 mL/min, 220 nm; $t_{minor} = 18.7$ min, $t_{major} = 19.3$ min.

(S)-3-phenyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (3pa)^[6]

White solid, 90% yield, 90% *ee*. Mp 115-118 °C. $[\alpha]_D^{20} = +71.5$ (c = 0.54, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.77 (m, 1H), 7.53-7.51 (m, 2H), 7.36-7.35 (m, 5H), 7.13-7.11 (m, 1H), 5.71 (d, *J* = 4.0 Hz, 1H), 5.37-5.32 (m, 1H). The *ee* of **3ma** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, 230 nm; t_{major} = 15.3 min t_{minor} = 17.8 min.

(S)-3-methyl-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (3qa)^[6]

White solid, 62% yield, 84% *ee*. Mp 95-98°C. $[\alpha]_D^{20}$ =-15.5 (c =0.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz ,1H), 7.64 (t, *J* = 7.4 Hz ,1H), 7.53 (t, *J* = 7.4 Hz ,1H), 7.40 (d, *J* = 8.0 Hz, 1H), 5.12(d, *J* = 27.6 Hz ,1H), 4.83-4.77 (m, 1H), 1.61 (dd, *J* = 6.8, 2.4 Hz, 3H). The *ee* of **3na** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 0.8mL/min, 230 nm; *t*_{major} = 24.6 min, *t*_{minor} = 31.3 min.

Notes and references:

[1] Q. Yang, G. Shang, W.-Z. Gao, J.-G. Deng, X.-M. Zhang, *Angew. Chem. Int. Ed.*, 2006, **45**, 3832-3835

[2] C.-B. Yu, D.-W. Wang, Y.-G. Zhou, J. Org. Chem., 2009, 74, 5633-5635.

[3] R. Giles, J. O'Neill, J. H. Lee, M. K. Chiu, K. W. Jung, *Tetrahedron Lett.*, 2013, **54**, 4083-4085.

[4] Z. Petkova, M. Stoyanova, V. Dimitrov, *Tetrahedron Lett.*, 2014, **55**, 2093-2096.

[5] A. D. Gillie, R. J. Reddy, P. W. Davies, *Adv. Synth. Catal.*, 2016, **358**, 226-239.

[6] Y.-Q. Wang, S.-M. Lu, Y.-G. Zhou, J. Org. Chem. 2007, 72, 3729-3734.

D: NMR Spectra of Products

E: HPLC Spectra of Products

18.499 BB

2

0.5420 1075.39185

30.67477

48.9334

Peak	RetTim	е Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		-			I	
1	12.512	вв	0.4159	163.57930	5.92804	0.9457
2	18.325	BB	0.7137	1.71332e4	366.95953	99.0543

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-			I	
1	10.425 BV	0.3015	1.88970e4	952.15991	98.5889
2	11.646 VB	0.4577	270.46820	8.13909	1.4111

Peak	RetTime	е Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	19.985	BB	0.8324	1.91996e4	349.21924	99.5148
2	23.273	MM	0.8097	93.60379	1.92672	0.4852

				I I	1	1
1	10.866	ΒV	0.3111	6383.38867	307.56976	49.7951
2	12.238	VВ	0.3634	6435.93359	266.83139	50.2049

Ket I IIIIe	rype	w luti	Alca	meight	Alca	
[min]		[min]	[mAU*s]	[mAU]	8	
-						
10.911 B	ΒV	0.3375	4954.62744	228.06793	49.7489	
16.735 B	ЗB	0.5481	5004.64063	140.33078	50.2511	
	[min] 	[min] 10.911 BV 16.735 BB	[min] [min] 10.911 BV 0.3375 16.735 BB 0.5481	[min] [min] [mAU*s] 	[min] [min] [mAU*s] [mAU] 10.911 BV 0.3375 4954.62744 228.06793 16.735 BB 0.5481 5004.64063 140.33078	[min] [min] [mAU*s] [mAU] % 10.911 BV 0.3375 4954.62744 228.06793 49.7489 16.735 BB 0.5481 5004.64063 140.33078 50.2511

0

12.157	вv	0.4498	2.77262e4	935.51746	97.459
14.214	VВ	0.5733	722.90405	18.36365	2.541

2

1 2

21.398 VB

0.6980 1.57540e4

352.79245

98.1919

гсак		те тур		Alca	meight	Alta
#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	15.695	ΒV	0.7141	1.37966e4	298.54706	49.7327
2	18.078	VВ	0.8524	1.39450e4	251.29665	50.2673

Peak	RetTin	ne Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
•		-				
1	15.318	BB	0.6659	8215.36719	190.59251	94.7649
2	17.816	BB	0.7735	453.83926	9.05881	5.2351

Peak	RetTim	ne Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		-			I	
1	24.549	ΒВ	0.6865	1.41048e4	303.89590	50.0131
2	30.997	BB	0.8585	1.40974e4	244.93741	49.9869

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-				
1	24.635 BB	0.6860	5185.42285	112.02570	92.3612
2	31.343 MM	0.7962	428.86328	8.97720	7.6388

X-ray of 3aa (CCDC 1820486)

Crystal data for mo_vyf961a_0m: C₁₄H₁₅NO₂S, M = 261.33, a = 8.4454(12) Å, b = 7.2057(10) Å, c = 10.9962(16) Å, a = 90 °, $\beta = 96.797(2)$ °, $\gamma = 90$ °, V = 664.47(16) Å³, T = 100(2) K, space group P21, Z = 2, μ (MoK α) = 0.237 mm⁻¹, 7384 reflections measured, 3779 independent reflections ($R_{int} = 0.0175$). The final R_I values were 0.0271 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0710 ($I > 2\sigma(I)$). The final R_I values were 0.0278 (all data). The final $wR(F^2)$ values were 0.0714 (all data). The goodness of fit on F^2 was 1.077. Flack parameter = 0.029(19).

View of a molecule of vyf961a with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of vyf961a.

Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement f	or mo_vyf961a_0m.		
Identification code	mo_vyf961a_0m		
Empirical formula	C14 H15 N O2 S		
Formula weight	261.33		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 8.4454(12) Å	<i>α</i> = 90 °.	
	b = 7.2057(10) Å	β= 96.797(2) °.	
	c = 10.9962(16) Å	$\gamma = 90$ °.	
Volume	664.47(16) Å ³		
Z	2		
Density (calculated)	1.306 Mg/m ³		
Absorption coefficient	0.237 mm ⁻¹		
F(000)	276		
Crystal size	1.200 x 0.270 x 0.250 mm ³		
Theta range for data collection	1.865 to 30.885 °.		
Index ranges	-12<=h<=12, -10<=k<=10, -15<=l<=15		
Reflections collected	7384		
Independent reflections	3779 [R(int) = 0.0175]		
Completeness to theta = 25.242°	99.8 %		

Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3779 / 1 / 164
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0710
R indices (all data)	R1 = 0.0278, wR2 = 0.0714
Absolute structure parameter	0.029(19)
Extinction coefficient	n/a
Largest diff. peak and hole	0.386 and -0.398 e.Å ⁻³

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for mo_vyf961a_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
S(1)	114(1)	10025(1)	8729(1)	13(1)
O(1)	-192(1)	10136(2)	9991(1)	21(1)
O(2)	-509(2)	11425(2)	7876(1)	21(1)
N(1)	-628(2)	8050(2)	8253(1)	14(1)
C(1)	5425(2)	9508(3)	8624(3)	37(1)
C(2)	4751(2)	8856(3)	9639(2)	31(1)
C(3)	3126(2)	9052(3)	9690(2)	22(1)
C(4)	2198(2)	9922(3)	8720(1)	15(1)
C(5)	-769(2)	7504(2)	6953(1)	16(1)
C(6)	780(2)	6841(2)	6516(1)	14(1)
C(7)	1908(2)	5814(2)	7268(1)	17(1)
C(8)	3305(2)	5220(3)	6838(2)	20(1)
C(9)	3579(2)	5606(3)	5638(2)	20(1)
C(10)	2452(2)	6599(3)	4878(2)	20(1)
C(11)	1068(2)	7226(2)	5319(1)	17(1)
C(12)	-2055(2)	5999(3)	6766(2)	26(1)
C(13)	2861(2)	10593(3)	7705(2)	23(1)
C(14)	4487(2)	10368(3)	7666(2)	34(1)

S(1)-O(2)	1.4339(13)
S(1)-O(1)	1.4435(12)
S(1)-N(1)	1.6166(14)
S(1)-C(4)	1.7632(14)
N(1)-C(5)	1.474(2)
N(1)-H(4)	0.8800
C(1)-C(14)	1.388(4)
C(1)-C(2)	1.393(4)
C(1)-H(1)	0.9500
C(2)-C(3)	1.387(3)
C(2)-H(15)	0.9500
C(3)-C(4)	1.395(2)
C(3)-H(3)	0.9500
C(4)-C(13)	1.393(2)
C(5)-C(6)	1.523(2)
C(5)-C(12)	1.531(2)
C(5)-H(5)	1.0000
C(6)-C(11)	1.395(2)
C(6)-C(7)	1.397(2)
C(7)-C(8)	1.389(2)
C(7)-H(9)	0.9500
C(8)-C(9)	1.395(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.388(2)
C(9)-H(2)	0.9500
C(10)-C(11)	1.392(2)
C(10)-H(6)	0.9500
C(11)-H(7)	0.9500
C(12)-H(12)	0.9800
C(12)-H(11)	0.9800
C(12)-H(10)	0.9800
C(13)-C(14)	1.388(3)
C(13)-H(14)	0.9500
C(14)-H(13)	0.9500
O(2)-S(1)-O(1)	119.74(8)
O(2)-S(1)-N(1)	108.06(8)

Table 3. Bond lengths [Å] and angles [] for mo_vyf961a_0m.

O(1)-S(1)-N(1)	104.65(8)
O(2)-S(1)-C(4)	108.39(8)
O(1)-S(1)-C(4)	107.46(7)
N(1)-S(1)-C(4)	108.04(8)
C(5)-N(1)-S(1)	122.17(12)
C(5)-N(1)-H(4)	118.9
S(1)-N(1)-H(4)	118.9
C(14)-C(1)-C(2)	120.54(18)
C(14)-C(1)-H(1)	119.7
C(2)-C(1)-H(1)	119.7
C(3)-C(2)-C(1)	119.89(19)
C(3)-C(2)-H(15)	120.1
C(1)-C(2)-H(15)	120.1
C(2)-C(3)-C(4)	118.91(18)
C(2)-C(3)-H(3)	120.5
C(4)-C(3)-H(3)	120.5
C(13)-C(4)-C(3)	121.73(15)
C(13)-C(4)-S(1)	119.07(12)
C(3)-C(4)-S(1)	119.04(12)
N(1)-C(5)-C(6)	114.55(12)
N(1)-C(5)-C(12)	107.08(14)
C(6)-C(5)-C(12)	110.95(14)
N(1)-C(5)-H(5)	108.0
C(6)-C(5)-H(5)	108.0
C(12)-C(5)-H(5)	108.0
C(11)-C(6)-C(7)	118.77(14)
C(11)-C(6)-C(5)	119.14(14)
C(7)-C(6)-C(5)	122.06(14)
C(8)-C(7)-C(6)	120.55(15)
C(8)-C(7)-H(9)	119.7
C(6)-C(7)-H(9)	119.7
C(7)-C(8)-C(9)	120.25(15)
C(7)-C(8)-H(8)	119.9
C(9)-C(8)-H(8)	119.9
C(10)-C(9)-C(8)	119.56(15)
C(10)-C(9)-H(2)	120.2
C(8)-C(9)-H(2)	120.2
C(9)-C(10)-C(11)	120.11(15)

C(9)-C(10)-H(6)	119.9
C(11)-C(10)-H(6)	119.9
C(10)-C(11)-C(6)	120.74(15)
C(10)-C(11)-H(7)	119.6
C(6)-C(11)-H(7)	119.6
C(5)-C(12)-H(12)	109.5
C(5)-C(12)-H(11)	109.5
H(12)-C(12)-H(11)	109.5
C(5)-C(12)-H(10)	109.5
H(12)-C(12)-H(10)	109.5
H(11)-C(12)-H(10)	109.5
C(14)-C(13)-C(4)	118.51(18)
C(14)-C(13)-H(14)	120.7
C(4)-C(13)-H(14)	120.7
C(1)-C(14)-C(13)	120.42(19)
C(1)-C(14)-H(13)	119.8
C(13)-C(14)-H(13)	119.8

Symmetry transformations used to generate equivalent atoms:

 U^{11} U^{22} U³³ U^{23} U^{13} U^{12} ____

Table 4.	Anisotropic displacement paramete	ers	(Å ² x 10 ³) for mo_	_vyf961a_0m.	The anisotropic
displaceme	nt factor exponent takes the form:	$-2\pi^{2}$	$^{2}[h^{2} a^{*2} U^{11} +$	+ 2 h k a* b* U	J ¹²]

S(1)	12(1)	14(1)	13(1)	-2(1)	2(1)	1(1)
O(1)	22(1)	25(1)	16(1)	-7(1)	7(1)	-1(1)
O(2)	21(1)	16(1)	24(1)	1(1)	-2(1)	3(1)
N(1)	14(1)	15(1)	14(1)	-1(1)	3(1)	-2(1)
C(1)	15(1)	31(1)	65(2)	-17(1)	9(1)	-2(1)
C(2)	17(1)	25(1)	49(1)	-8(1)	-7(1)	2(1)
C(3)	18(1)	20(1)	26(1)	-2(1)	-2(1)	1(1)
C(4)	12(1)	15(1)	18(1)	-4(1)	3(1)	0(1)
C(5)	16(1)	17(1)	13(1)	-3(1)	-1(1)	2(1)
C(6)	15(1)	12(1)	14(1)	-1(1)	1(1)	-1(1)
C(7)	19(1)	19(1)	15(1)	3(1)	4(1)	3(1)
C(8)	18(1)	21(1)	20(1)	2(1)	4(1)	5(1)
C(9)	17(1)	25(1)	20(1)	-2(1)	7(1)	0(1)

C(10)	21(1)	25(1)	14(1)	-1(1)	4(1)	-4(1)
C(11)	19(1)	19(1)	14(1)	1(1)	-1(1)	-1(1)
C(12)	16(1)	30(1)	32(1)	-14(1)	4(1)	-5(1)
C(13)	24(1)	23(1)	23(1)	-2(1)	9(1)	-5(1)
C(14)	27(1)	35(1)	45(1)	-10(1)	22(1)	-10(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_vyf961a_0m.

	Х	У	Z	U(eq)
H(4)	-958	7276	8788	17
H(1)	6536	9362	8587	44
H(15)	5403	8279	10295	38
H(3)	2652	8600	10374	26
H(5)	-1153	8606	6449	19
H(9)	1718	5518	8080	21
H(8)	4076	4550	7364	23
H(2)	4530	5191	5342	24
H(6)	2626	6852	4056	24
H(7)	312	7924	4798	21
H(12)	-1703	4903	7252	39
H(11)	-2236	5660	5898	39
H(10)	-3049	6470	7029	39
H(14)	2215	11191	7055	28
H(13)	4960	10807	6978	41

Table 6. Torsion angles [^o] for mo_vyf961a_0m.

O(2)-S(1)-N(1)-C(5)	42.60(14)
O(1)-S(1)-N(1)-C(5)	171.24(12)
C(4)-S(1)-N(1)-C(5)	-74.47(13)
C(14)-C(1)-C(2)-C(3)	0.6(3)
C(1)-C(2)-C(3)-C(4)	-0.7(3)
C(2)-C(3)-C(4)-C(13)	0.1(3)

C(2)-C(3)-C(4)-S(1)	175.51(15)
O(2)-S(1)-C(4)-C(13)	-21.82(18)
O(1)-S(1)-C(4)-C(13)	-152.55(15)
N(1)-S(1)-C(4)-C(13)	95.04(16)
O(2)-S(1)-C(4)-C(3)	162.69(14)
O(1)-S(1)-C(4)-C(3)	31.96(17)
N(1)-S(1)-C(4)-C(3)	-80.46(15)
S(1)-N(1)-C(5)-C(6)	78.20(16)
S(1)-N(1)-C(5)-C(12)	-158.32(12)
N(1)-C(5)-C(6)-C(11)	-145.80(15)
C(12)-C(5)-C(6)-C(11)	92.83(18)
N(1)-C(5)-C(6)-C(7)	35.9(2)
C(12)-C(5)-C(6)-C(7)	-85.43(19)
C(11)-C(6)-C(7)-C(8)	1.3(3)
C(5)-C(6)-C(7)-C(8)	179.59(16)
C(6)-C(7)-C(8)-C(9)	-1.6(3)
C(7)-C(8)-C(9)-C(10)	0.5(3)
C(8)-C(9)-C(10)-C(11)	0.8(3)
C(9)-C(10)-C(11)-C(6)	-1.1(3)
C(7)-C(6)-C(11)-C(10)	0.0(2)
C(5)-C(6)-C(11)-C(10)	-178.30(15)
C(3)-C(4)-C(13)-C(14)	0.5(3)
S(1)-C(4)-C(13)-C(14)	-174.89(15)
C(2)-C(1)-C(14)-C(13)	0.0(3)
C(4)-C(13)-C(14)-C(1)	-0.6(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6

Table 7. Hydrogen bonds for mo_vyf961a_0m [Å and].

N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6
N(1)-H(4)O(1)#1	0.88	2.19	2.882(2)	134.6

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2,-z+2