Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

for

Investigations of dynamic amyloid-like structures of the Wnt signalling pathway by solid-state NMR

M. E. Ward^a, M. A. Daniëls^a, E. C. van Kappel^b, M. M. Maurice^b, M. Baldus^a

^{a.} Bijvoet Center for Biomolecular Research, Universiteit Utrecht, Padualaan 8, Utrecht, The Netherlands
^{b.} Oncode Institute, Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands

Materials and methods

Expression and purification of the Axin DIX domain. The human Axin 1a DIX domain (residues 778-862) was cloned into a PET24 expression vector. Axin-DIX proteins were expressed in *E. coli* Rosetta2 cells. For isotopically labelled samples, M9 medium was supplemented with 13 C glucose and 15 NH₄Cl. Protein expression was induced in 1-l bacterial cultures at an OD₆₀₀ of ~0.6 with the addition of IPTG to a final concentration of 0.5 mM. Protein expression continued at 18 °C for ~20 h. Bacterial pellets were resuspended in 50 mM NaHPO₄ (pH = 8), 1 M NaCl, 10 mM imidazole, 1 mM β-mercaptoethanol and 20 mg/L lysozyme and were subsequently lysed by sonication. Lysates were cleared by centrifugation (30 min, 4 °C, 25 000 g) and filtration (0.45 μm). Proteins were purified by nickel-affinity chromatography (Quiagen) using a batch procedure. Following elution, proteins were concentrated using an Amicon Ultra-15 10 K centrifugal filter. At high concentrations, the Axin-DIX domain self-associates and can be pelleted through ultracentrifugation and packed into a solid-state NMR MAS rotor.

Two phase system. Organic molecule extraction from the purified Axin-DIX domain was performed as has been described previously 1 . To begin, 320 μ l of ice-cold MeOH (containing 50 μ g/ml of BHT) was added to approximately 0.25 mg of protein, followed by the addition of 640 μ l of ice-cold CHCl₃. This mixture was then incubated on ice for 20 min with occasional vortexing before high purity water (300 μ l) was added. The sample was then incubated on ice for an additional 10 min with occasional mixing. Next, the sample was centrifuged for 5 min at 2 000 g and the upper aqueous phase was removed and reextracted by addition of 500 μ l of ice-cold CHCl₃:MeOH (2:1, v/v) as above. The upper phase was discarded and both organic phases were combined and dried under nitrogen gas. The dried phase was then resuspended in 200 μ l CDCl₃.

Magic angle spinning solid-state NMR spectroscopy. All experiments were collected on Avance III spectrometers (Bruker Biospin, Billerica, MA) operating at either 700.13 MHz or 950.20 MHz using 3.2 mm triple resonance MAS probes at a sample temperature of ~ 5 °C. For both spectrometers typical $\pi/2$ pulses were 2.5-3 μ s for ¹H, 5 μ s for ¹³C, and 7 μ s for ¹⁵N.

Resonance assignments were obtained using a minimal set of three 3D experiments. CANCO, NCACX, and NCOCX experiments were collected on a narrow-bore Bruker Avance 700 MHz spectrometer with MAS at 13 kHz. The 1 H/X (where X is 15 N or 13 C) cross-polarization (CP) 2 contact times were 0.8-1 ms, with a constant radio frequency (rf) field of 35 and 50 kHz on nitrogen and carbon, respectively, while the proton lock field was ramped linearly around the n = 1 Hartmann/Hahn condition 3 . 15 N/ 13 Ca and 15 N/ 13 CO band-selective transfers 4 were implemented with a contact time of 4-5 ms. For the 13 CA/ 15 N CP, a constant lock field of 2.5×vr (vr = ω r/2 π , spinning frequency) strength was applied on 15 N, while the 13 C field was ramped linearly (10% ramp) around 1.5×vr. For the 13 CO/ 15 N transfer, a constant lock field of 3.5×vr field strength was applied on 13 C, while the 15 N field was ramped linearly (10% ramp) around 2.5×vr. Continuous wave proton decoupling at 83 kHz was used during 15 N/ 13 C CP. SPINAL64 5 decoupling optimized around 83 kHz was used during 15 N and 13 C direct and indirect chemical shift evolutions. For homonuclear 13 C- 13 C mixing, PARIS 6,7 mixing of 30 and 50 ms for the NCACX and NCOCX experiments, respectively, were used.

 $2D^{13}C^{-13}C$ experiments were collected on a narrow-bore Bruker Avance 950 MHz spectrometer equipped with a 3.2 mm triple-resonance E-Free MAS probe. To confirm and extend the assignments obtained using three dimensional spectroscopy, two dimensional $^{13}C^{-13}C$ spin diffusion experiments were obtained with MAS at 14.8 kHz⁸. In order to obtain distance restraints, a CHHC experiment with H-H mixing of 250 μ s was obtained, as well as additional $^{13}C^{-13}C$ experiments performed with MAS of 14 kHz and long mixing times with low-powered PARIS mixing (1 s). $2D^{13}C^{-13}C$ INEPT-TOBSY⁹ experiments were performed with a TOBSY mixing time of $^{\sim}9$ ms using the $P9^{1}_{6}$ mixing sequence.

For all experiments, the carbon chemical shifts were indirectly referenced to 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) by adjusting the position of the ¹³C adamantane downfield peak to 40.48 ppm¹⁰. Data processing was performed using the software NMRPIPE¹¹ or Topspin 3.5 (Bruker, Karlsruhe, Germany). Noise analysis, peak picking, and assignments were performed in the CARA¹² environment.

Sets of sequential ¹³C-¹³C peaks were generated using FANDAS¹³ and sets of peaks representing atoms which were close in space were generated using a homemade script. Inter-residue ¹³C-¹³C peaks in the SD and PARIS spectra were assigned based off comparison to these sets.

Solution NMR. Reference 1 H- 13 C HSQC NMR spectra performed on DOPE were recorded at on an Avance 600 Bruker NMR spectrometer equipped with a cryogenic triple-resonance gradient probe. Spectra were recorded with spectral widths of 12/100 ppm, centered at 4.7/40 ppm, with 1,024/300 points in 1 H/ 13 C, respectively. 1 H- 13 C HSQC NMR spectra performed on the organic phase of Axin-Dix samples were recorded on an Avance 900 Bruker NMR spectrometer equipped with a triple resonance probe. Spectra were recorded with spectral widths of 20/105 ppm, centered at 4.7/50 ppm, with 1,024/128 points in 1 H/ 13 C, respectively. All spectra were recorded with a recycle delay of 1.0 s.

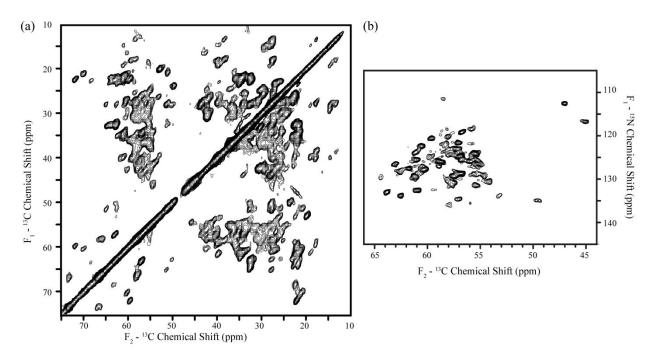
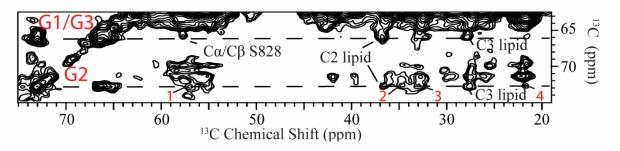



Fig. S1 (a) 13 C PARIS (mixing time 30 ms) and (b) 15 N- 13 C spectra recorded on the isolated Axin-DIX domain

 $\textbf{Table S1} \ \ \text{Non-sequential peaks observed in 2D}^{\ 13} \text{C}^{\ -13} \text{C and HCCH experiments on the Axin-DIX domain.}$

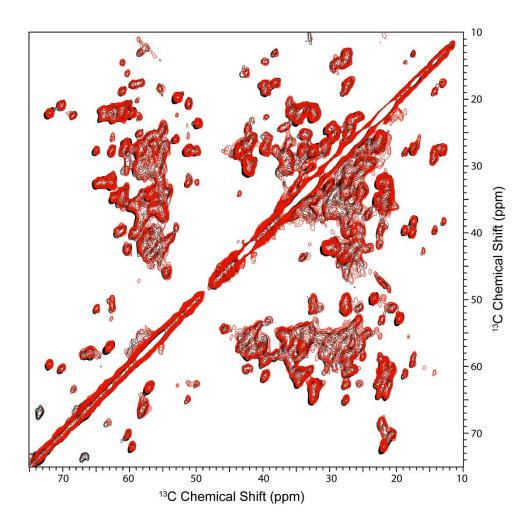

	Atom 1			Atom 2	2					
2D ¹³ C- ¹³ C										
131.9	CG	F850	30.2	CD	K825					
63.4	CA	V784	59.0	CA	1855					
15.8	CD1	1783	14.2	CD1	1854					
32.1	СВ	V784	24.4	CG	K853					
55.1	CA	Y788	17.5	CG2	1855					
56.7	CA	E839	49.6	CD	P848					
50.9	CA	A804	39.3	СВ	1854					
60.9	CA	V805	52.7	CA	L847					
34.7	СВ	V805	25.5	CG	L847					
61.0	CA	V805	25.7	CG	L847					
60.8	CA	1854	43.6	СВ	F824					
69.3	СВ	T798	41.5	СВ	L813					
22.3	CG1	V840	19.4	СВ	A845					
44.7	CA	G856	33.1	СВ	K825					
41.8	СВ	K825	17.5	CG2	1855					
60.7	CA	1854	25.7	CG	L847					
59.3	CA	V835	32.0	СВ	V827					
44.6	CA	G856	22.0	CD1	L847					
44.9	CA	G856	25.7	CG	L847					
59.3	CA	V835	23.7	CG	K826					
69.6	СВ	T798	55.2	CA	L813					
62.5	CA	P848	42.0	CE	K826					
39.4	СВ	1855	34.0	СВ	K825					
38.6	СВ	L847	28.6	CG1	1783					
71.5	СВ	T806	56.4	CA	E844					
68.4	СВ	T815	57.5	CA	E812					
51.1	CD	P795	23.6	СВ	A786					
52.7	CA	A845	46.4	CA	G808					
69.6	СВ	T798	28.3	СВ	E839					
38.0	СВ	1794	35.3	СВ	V835					
58.4	CA	L807	52.9	CA	L847					
CHHC										
20.7	СВ	A845	14.4	CD1	1854					
71.5	СВ	T806	62.7	CA	V846					
59.2	CA	T806	31.7	СВ	V846					
71.5	СВ	T806	56.4	CA	E844					
43.4	СВ	F824	18.2	CG2	1854					
63.5	CA	V784	54.2	CA	L799					
54.9	CA	Y787	50.9	CD	P795					
63.9	CA	V827	59.4	CA	V835					
53.9	CA	Y788	50.9	CD	P795					
45.2	CA	G856	27.4	CG	P848					
45.8	СВ	L799	63.6	CA	V784					
54.1	CA	L799	21.8	CG2	V784					
49.4	CD	P848	43.4	СВ	F824					
39.4	СВ	1855	34.0	СВ	K825					
43.0	CD	R841	22.3	CD2	L807					
39.2	СВ	1854	42.4	СВ	1783					
35.9	CA	V836	51.0	СВ	P795					

Fig. S2 Section of 2D ¹³C-¹³C low-power PARIS spectrum with 1 s of mixing showing correlations between the glycerol backbone of the co-purifying lipid as well as intra-molecular lipid peaks. Possible assignments for the indicated peaks are given in **Table S2**.

Table S2 List of potential protein assignments for peaks indicated in **Fig. S2**. Atoms which are close in space to the interface are indicated in yellow, those which are close in space to E852 are indicated in blue, and those which are close to helix $\alpha 1$ are indicated in green

1		2		3		4	
CA	D843	СВ	V805	СВ	K811	CG1	V835
CA	E851	СВ	V800	СВ	R821	CG1	V800
CA	Y796	СВ	V840	СВ	E859	CG2	T806
CA	S819	CG	Q809	СВ	P793	CG2	V840
CA	K 860	СВ	V858			CG1	V836
CA	Y822					CG2	V784
CA	E839					CG2	V827
CA	R841						
CA	K857						
CA	E844						

Fig. S3 2D ¹³C-¹³C PARIS (mixing time 30 ms) spectra of the Axin-DIX domain collected at the beginning (black) and end of 3D experiments (red). While the glycerol backbone peak is clearly reduced in the second spectrum, no other significant perturbations to the spectra are observed.

References

- J. Folch, M. Lees and G. H. Sloane Stanley, J. Biol. Chem., 1957, 226, 497–509.
- 2 A. Pines, M. G. Gibby and J. S. Waugh, *J Chem Phys*, 1973, **59**, 569–590.
- 3 S. Hartmann and E. Hahn, *Phys. Rev.*, 1962, **128**, 2042–2053.
- 4 M. Baldus, A. T. Petkova, J. Herzfeld and R. G. Griffin, *Mol Phys*, 1998, **95**, 1197–1207.
- 5 B. M. Fung, A. K. Khitrin and K. Ermolaev, *J Magn Reson*, 2000, **142**, 97–101.
- 6 M. Weingarth, P. Tekely, R. Brüschweiler and G. Bodenhausen, *Chem Commun*, 2010, **46**, 952–954.
- 7 M. Weingarth, G. Bodenhausen and P. Tekely, J. Am. Chem. Soc., 2009, **131**, 13937–13939.
- 8 K. Seidel, A. Lange, S. Becker, C. E. Hughes, H. Heise and M. Baldus, *Phys. Chem. Chem. Phys.*, 2004, **6**, 5090–5093.
- 9 M. Baldus and B. H. Meier, J. Magn. Reson. Ser. A, 1996, **121**, 65–69.
- 10 C. R. Morcombe and K. W. Zilm, *J Magn Reson*, 2003, **162**, 479–486.
- F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, *J Biomol NMR*, 1995, **6**, 277–293.
- 12 R. Keller, *The Computer Aided Resonance Assignment Tutorial, 1st edit.*, Goldau, Switzerland, 2004.
- S. Gradmann, C. Ader, I. Heinrich, D. Nand, M. Dittmann, A. Cukkemane, M. van Dijk, A. M. J. J. Bonvin, M. Engelhard and M. Baldus, *J. Biomol. NMR*, 2012, **54**, 377–387.