Electronic Supporting information for the paper "On-Surface Synthesis of Polyethylenedioxythiophene"

Iolanda Di Bernardo, ${ }^{\text {a,c }}$ Peter Hines, ${ }^{\text {b }}$ Maryam Abyazisani, ${ }^{\text {c Nunzio Motta, }}{ }^{\text {b,c Jennifer MacLeod }}{ }^{\text {b,c }{ }^{+} \text {and Josh }}$ Lipton-Duffin ${ }^{\text {b,c }}$

Detailed Experimental Methodology

Sample Preparation: Single crystal metal samples were cleaned by repeated cycles of Ar^{+}bombardment at 1 keV for 10 minutes, followed by 10 minutes of annealing at $400^{\circ} \mathrm{C}$, until no residual contaminants of carbon or oxygen could be detected by SRPES. DCEDOT was purchased from Tokyo Chemical Industry ($>98.0 \%$) and was used without further refinement. The molecule was deposited onto the cleaned surfaces through a high-precision leak valve. Surface coverages in Langmuir were calculated by the apparent pressure rise during molecular deposition, though the gauge used to record the pressure was not modified from its default calibration (for nitrogen). A residual gas analyser (SRS RGA100) was used to monitor the mass species of the background gas during dosing, to ensure that the observed pressure rise corresponded to DCEDOT-related mass fragments, rather than spurious readings due to air or contamination.

Photoemission and x-ray absorption spectroscopy: SRPES was performed at the Soft X-Ray (SXR) spectroscopy beamline of the Australian Synchrotron. All experiments were performed using linearly polarized light with a PHOIBOS 150 electron energy analyzer (SPECS GmbH) in normal emission geometry, with the incident radiation falling on the sample surface at an angle of 55° to the sample normal. The excitation energy for all core levels was $h v=400 \mathrm{eV}$, except for the oxygen 1s line which was measured using $h v=850 \mathrm{eV}$. Binding energies are referenced to the Fermi level, which was measured at each of the experimental steps. Carbon K-edge NEXAFS experiments were performed over a range of incidence angles with respect to the sample normal, from grazing incidence (p polarisation, with the electric field vector inclined 20° from the sample normal) to normal incidence (s-polarisation, with the electric field vector parallel to the surface plane), using swept photon energies in the range from $h v=270$ eV to $\mathrm{hv}=320 \mathrm{eV}$. NEXAFS data were treated using the QANT routines ${ }^{1}$ in Igor Pro (Wavemetrics). Spectra were double normalized against the incoming photon flux by measuring the current from a gold mesh in the path of the beam, and against spectra collected over the same energy range from a pristine substrate.

Scanning probe microscopy: STM experiments were performed at room temperature in UHV by using an Omicron VT-AFM/XA system with electrochemically etched tungsten tips. Bias voltages are reported from the tip to the sample. Images were processed using the free WSxM software. ${ }^{2}$

Calculations: DFT calculations were performed using the projector-augmented wave (PAW) pseudopotentials in Quantum ESPRESSO ${ }^{3}$ under the generalized gradient approximation (GGA) with Perdue-Burke-Ernzerhof (PBE) parameterization for the exchange-correlation functional. ${ }^{4}$ The exchange correlation was modified by adding an ab initio nonlocal van der Waals correlation contribution (vdW-DF), which is known to improve the description of the long-range dispersive forces of the standard GGA. ${ }^{5}$ The $\mathrm{Ag}(111)$ surface was modeled using a 7-layer slab, holding the bottom three layers fixed and allowing the top four layers to relax. These top four layers were then used to model the absorption of PEDOT at high-symmetry sites. A vacuum gap of $10 \AA$ was used to prevent communication of the molecules in the top layer with the Ag atoms of the bottom layer. The unit cell used for the geometry optimization was a (1-2|62) cell ($2 \sqrt{ } 7 \times \sqrt{ } 7$ R40), as implied by STM images. The Brillouin zone was paved with a $3 \times 2 \times 1$ k-point grid during the optimization, and this was increased to $20 \times 10 \times 1$ to produce the simulated STM images. The latter were performed in the Tersoff-Hamann formalism, ${ }^{6}$ with an additional Gaussian blurring to simulate the finite radius of the STM tip.

DCEDOT on $\mathrm{Cu}(111)-\mathrm{O} 1 \mathrm{~s}, \mathrm{Cl} 2 \mathrm{p}$ and S 2 p core levels

Figure 1: Core level spectra for DCEDOT on $\mathrm{Cu}(111)$, stacked as a function of annealing temperature for a) $\mathrm{S} 2 \mathrm{p}, \mathrm{b}) \mathrm{Cl} 2 \mathrm{p}$, and c$) \mathrm{O} 1 \mathrm{~s}$.

Inspection of the O1s core level spectra in Figure 1c indicates that substantial decomposition of the molecule occurs immediately upon adsorption of DCEDOT onto the Cu surface; the presence of lower-BE states of oxygen (530.5 eV) indicates that these heteroatoms are abstracted from the molecule to form a metal oxide.
The Cl 2 p spectra in Fig. 1b show that a small fraction of molecules remain halogenated at RT (pink doublet, $\mathrm{Cl}_{2} \mathrm{p}_{3 / 2}=$ 200.35 eV). We also find a lower-BE doublet (blue, $\mathrm{Cl} 2 \mathrm{p}_{3 / 2}=198.1 \mathrm{eV}$) which we associate with metal-chloride arising from Cl atoms detached from the molecular precursor. We attribute the retained halogen to a reorientation of the molecule following the rupture of the thiophene ring, which would orient one of the α-carbons away from the surface, preserving the $\mathrm{C}-\mathrm{Cl}$ bond. This rupture of the EDOT thiophene ring on $\mathrm{Cu}(111)$ is clearly recognized in the S2p spectra of Figure 1a: starting from RT, the high BE doublet (${\mathrm{S} 2 \mathrm{p}_{3 / 2}}^{2}$ at 163.3 eV), originating from S in the intact molecule, is accompanied by another doublet at lower BE (${\mathrm{S} 2 \mathrm{p}_{3 / 2}}^{\text {at } 161.4 \mathrm{eV} \text {) that we assign to } \mathrm{S}-\mathrm{Cu} \text { bonds. After }}$ the first annealing step the first of these two components is essentially eliminated, confirming the abstraction of sulfur from all EDOT moities.

DCEDOT on $\mathrm{Au}(111)-\mathrm{O} 1 \mathrm{~s}, \mathrm{Cl} 2 p$ and $\mathrm{S} 2 p$ core levels

Figure 2: Core level spectra for DCEDOT on $\mathrm{Au}(111)$, stacked as a function of annealing temperature for a) $\mathrm{S} 2 \mathrm{p}, \mathrm{b}) \mathrm{Cl} 2 \mathrm{p}$, and c) O 1 s .

The S 2 p spectra (Figure 2a) show that at room temperature the thiophene ring is intact, with only the moleculerelated peaks present in the spectrum. Following annealing, the metal-associated low BE doublet emerges and increases in intensity, and the overall weight of the spectral region is reduced, suggesting fragmentation and desorption.
The spectral shape of the $\mathrm{Cl} 2 p$ doublet on $\mathrm{Au}(111)$ (Figure 2b) indicates a partial dehalogenation of the monomer when adsorbed on the substrate at room temperature. As the surface is annealed the metal-associated (green) chlorine peak does not grow significantly, indicating that chlorine atoms detached from the monomer through the heating process are likely desorbed into the vacuum.
The oxygen core level on $\mathrm{Au}(111)$ is of rather weak intensity, and time-dependent studies (see below) seem to indicate that the synchrotron beam causes a fragmentation of the DCEDOT around the oxygen atoms. This would seem to explain the low signal intensity and is consistent with previous reports on non-halogenated precursors.

DCEDOT on $\mathrm{Ag}(111)-\mathrm{O} 1 \mathrm{~s}, \mathrm{Cl} 2 \mathrm{p}$ and S 2 p core levels

Figure 3: Core level spectra for DCEDOT on $\mathrm{Ag}(111)$, stacked as a function of annealing temperature for a) $\mathrm{S} 2 \mathrm{p}, \mathrm{b}) \mathrm{Cl} 2 \mathrm{p}$, and c$) \mathrm{O} 1 \mathrm{~s}$.

After deposition onto the heated surface, the Cl 2 p spectrum (Figure 3b) contains only the metal-coordinated state, indicating complete dehalogenation upon adsorption; the dehalogenative chemisorption is activated by the high substrate temperature, and mitigates the difficulty in sticking the molecule to $\mathrm{Ag}(111)$ at room temperature. Both the S 2 p (Figure 3a) and O 1 s (Figure 3c) show predominantly EDOT-related character upon deposition. As the sample is annealed the sulfur retains a thiophene-like character, with no significant growth of the metal sulfide state, but the oxygen signal progressively trades spectral weight for the metal-oxide state. This is consistent with the loss of the ethylene- C and $\beta-C$ peaks in the carbon 1 s shown in the main text.

DCEDOT on $\mathrm{Au}(111)$ - effect of beam damage

Figure 4: Beam damage effects of DCEDOT on $\mathrm{Au}(111)$

A beam damage study was carried out on the DCEDOT monolayer deposited on $\mathrm{Au}(111)$. Figure 4 shows the evolution of the C 1 s core level under continuous exposure to the synchrotron beam, immediately after deposition. An attenuation of the high-binding energy feature is observed, and the spectral weight is transferred to the lowbinding energy side. The change in C 1 s is accompanied by a lack of evolution in the S 2 p and Cl 2 p core levels, and we thus interpret the change as a fragmenting of the monomer at the oxygen-containing tail of the molecule.

NEXAFS spectra from all substrates

Spectra collected using linearly polarized light with a 55° tilt of the electric field vector with respect to the sample normal (the so-called magic angle), on $\mathrm{Cu}(111), \mathrm{Au}(111)$ and $\mathrm{Ag}(111)$ are shown in The NEXAFS spectra presented in this plot correspond to the surfaces just after the $100^{\circ} \mathrm{C}$ annealing step (for Cu and Au), and immediately after deposition at $150^{\circ} \mathrm{C}$ for Ag . It is evident that the signature of intact EDOT is obtained only for the $\mathrm{Ag}(111)$ surface, with sharp resonances observed at photon energies of $285.8 \mathrm{eV}, 286.9 \mathrm{eV}$ and 289.4 eV , respectively labeled α, β, and γ in Figure 5. These resonances cannot be readily identified on either of the other two substrates at any incidence angle, and lends credence to the hypothesis that the molecule does not adsorb intact on Cu or Au.

Figure 5: NEXAFS at the carbon K-edge for DCEDOT adsorbed on Ag, Cu, and Au surfaces.

Figure 6: Computed geometry of PEDOT chains on $\mathrm{Ag}(111)$

Calculated geometry for PEDOT on $\mathrm{Ag}(111)$

The calculated geometry of the pEDOT system on $\mathrm{Ag}(111)$ is shown in Figure 6. The overlaid arrows in the top pane indicate the viewing angles along which each of the side views in the lower panels is projected. The geometry is found to be largely planar, save for the twisting of the ethylene group, as suggested by the NEXAFS spectra. The calculated geometry finds a tilt of 22.3° of the C-C bond in the ethylene group with respect to the plane of the surface, and a tilt of tilt of the $\gamma \mathrm{C}-\mathrm{O}$ bonds of 13.4° from the surface plane in order to enable the γ-carbon geometry. The coordinates for the energy-minimised periodic cell are given below in crystallographic information file (CIF) format.


```
# CRYSTAL DATA
#-
data_VESTA_phase_1
```


Ag23	1.0	0.523799	0.690479	0.416664	Ag
Ag24	1.0	0.095186	0.761914	0.416664	Biso 1.000000 Ag
Ag25	1.0	0.666701	0.833325	0.416664	g
Ag26	1.0	0.23	0.9	0.416664	g
Ag27	1.0	0.80	0.976220	0.416664	g
Ag28	1.0	0.380	0.047632	0.416664	Biso 1.000000 Ag
29	1.0	0.996150	0.999528	0.498846	Biso 1.000000 Ag
Ag30	1.0	0.568140	0.07051	0.499023	Biso 1.000000 Ag
Ag31	1.0	0.138	0.1	51	g
Ag3	1.0	0.7	0.2	0.499162	g
Ag	1.0	0.28	0.2	0.498672	Biso 1.000000 Ag
Ag34	1.0	0.852639	0.356490	0.498507	Biso 1.000000 Ag
Ag35	1.0	0.4	0.428393	0.499699	Biso 1.000000 Ag
Ag36	1.0	0.995	0.500	0.498241	000000 Ag
Ag37	1.0	0.566	0.57	0.499780	Biso 1.000000 Ag
Ag38	1.0	0.138293	0.642302	0.499973	Biso 1.000000 Ag
Ag39	1.0	0.709997	0.713381	0.499940	Biso 1.000000 Ag
Ag40	1.0	0.28	0.784084	0.498402	Biso 1.000000 Ag
Ag41	1.0	0.85	0.8	0.499614	Biso 1.000000 Ag
Ag42	1.0	0.424820	0.927390	0.499038	Biso 1.000000 Ag
H1	1.0	0.998146	0.417561	0.583605	Biso 1.000000 H
H2	1.0	0.213736	0.864761	0.585363	Biso 1.000000 H
C1	. 0	0.995741	0.416116	0.620905	Biso 1.000000 C
H3	1.0	0.861217	0.478382	0.633099	Biso 1.000000
S1	1.0	0.783123	0.216587	0.628929	Biso 1.000000 S
O1	1.0	0.987588	0.330560	0.635413	Biso 1.0000000
C2	1.0	0.162982	0.246185	0.631793	Biso 1.000000 C
C3	1.0	0.184334	0.154670	0.632566	Biso 1.000000 C
O2	1.0	0.351495	0.330494	0.625699	Biso 1.0000000
C4	1.0	0.031503	0.128296	0.632821	Biso 1.000000 C
C5	1.0	0.343960	0.246154	0.628175	Biso 1.000000 C
S2	1.0	0.43	0.066125	0.629467	Biso 1.000000 S
H4	1.0	0.18	0.4	0.627619	Biso 1.000000 H
C6	1.0	0.505232	0.154639	0.627025	Biso 1.000000 C
C7	1.0	0.710962	0.127915	0.627199	Biso 1.000000 C
C8	1.0	0.053027	0.036742	0.632729	Biso 1.000000 C
C9	1.0	0.219709	0.866695	0.622625	Biso 1.000000 C
C10	1.0	0.872199	0.036515	0.629318	Biso 1.000000 C
C11	1.0	0.172561	0.416062	0.640456	Biso 1.000000 C
O3	1.0	0.228695	0.952500	0.636267	Biso 1.0000000
04	1.0	0.864859	0.952019	0.628085	Biso 1.0000000
H5	1.0	0.355345	0.804637	0.634454	Biso 1.000000 H
H6	1.0	0.034630	0.804563	0.631914	Biso 1.000000 H
C12	1.0	0.044225	0.867395	0.643398	Biso 1.000000 C
H7	1.0	0.168467	0.417634	0.677736	Biso 1.000000 H
H8	1.0	0.049656	0.868128	0.680662	Biso 1.000000 H

References

1. E. Gann, C. R. McNeill, A. Tadich, B. C. Cowie and L. Thomsen, Journal of synchrotron radiation, 2016, 23.
2. I. Horcas, R. Fernández, J. Gomez-Rodriguez, J. Colchero, J. Gómez-Herrero and A. Baro, Review of Scientific Instruments, 2007, 78, 013705.
3. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni and I. Dabo, Journal of physics: Condensed matter, 2009, 21, 395502.
4. J. P. Perdew, K. Burke and M. Ernzerhof, Physical review letters, 1996, 77, 3865.
5. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, Physical review letters, 2004, 92, 246401;
T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard and D. C. Langreth, Physical Review B, 2007, 76, 125112;
G. Román-Pérez and J. M. Soler, Physical review letters, 2009, 103, 096102.
6. J. Tersoff and D. Hamann, in Scanning Tunneling Microscopy, Springer, 1985, pp. 59.
