Supporting Information

A New Approach to Access Difluoroalkylated Diarylmethanes via Visible-Light Photocatalytic Cross-Coupling Reactions

Yin-Na Zhao, Yong-Chun Luo, Zhu-Yin Wang and Peng-Fei Xu*

Contents

1. General Information ..S1
2. Preparation of Substrates..S2
3. Optimization of Reaction Conditions ...S3
4. General Procedure and Analytical Data of Products 3.. S5
5. Applications of the Difluoroalkylation of p-QMs ..S14
6. Cyclic Voltammetry Experiments .. S15
7. Stern-Volmer Quenching Experiments ... S16
8. Radical Trapping Experiments ... S17
9. Determination of the Quantum Yield .. S19
10. X-ray Crystallographic Data...S21
11. References ... S 22
12. NMR Data of Products 3 .. S23

1. General Information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and compounds were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR spectra were recorded on a Bruker AM- 400 spectrometer $\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$, $100 \mathrm{MHz}{ }^{13} \mathrm{C}, 376 \mathrm{MHz}{ }^{19} \mathrm{~F}$). The spectra were recorded in CDCl_{3} as solvent at room temperature, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.00\right.$ ppm). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet, $\mathrm{dd}=$ double doublet), integration, coupling constant (Hz) and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift, multiplicity and coupling constant (Hz). Data for ${ }^{19} \mathrm{~F}$ NMR are reported in terms of chemical shift, multiplicity and coupling constant (Hz). HRMS were performed on a Bruker Apex II mass instrument (ESI). All luminescence spectra were surveyed on a PE-LS55 fluorescence spectrophotometer and equipped with a $1-\mathrm{cm}$ quartz cell.

2. Preparation of Substrates

2.1 para-Quinone Methides (p-QMs)

Substrates $\mathbf{1}(\mathbf{1 a - 1 p})$ were synthesized according to the reported literatures ${ }^{1-2}$ with slight modifications:

In a three-necked flask, a solution of 2,6-di-tert-butylphenol $\mathbf{S 1}(10 \mathrm{mmol})$ and the corresponding benzaldehyde $\mathbf{S} 2$ (1.2 equiv.) in toluene (60 ml) was heated to reflux. Then piperidine (2.0 equiv.) was added dropwise and the reaction mixture was continued to reflux for 24 h . After cooling the reaction mixture just below the boiling point of toluene, acetic anhydride (2.0 equiv.) was added and the reaction mixture was stirred for another 15 min . Then the reaction mixture was poured on ice-water (200 $\mathrm{mL})$ and extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent of the filtrate was removed under reduced pressure. The crude products were purified by flash column chromatography (petroleum ether/ethyl acetate), affording the desired $p-\mathrm{QMs}(\mathbf{1 a - 1 q})$.

2.2 Preparation of Difluoromethylated Bromides

2b

2c

2d

2e

$2 f$

Difluoromethylated bromides $\mathbf{2 b}{ }^{3}, \mathbf{2 c -} \mathbf{e}^{4}, \mathbf{2 f}{ }^{5}$ was synthesized following the published procedures with slight modifications.

3. Optimization of Reaction Conditions

Table S1. 4. The Optimization of Photocatalysts and Control Experiments

${ }^{a}$ Reaction conditions: 1a $(0.1 \mathrm{mmol})$, 2a (1.5 equiv.), photocatalyst ($1 \mathrm{~mol} \%$), $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (3.0 equiv.), $\mathrm{MeCN}(1 \mathrm{~mL}$), and blue LEDs under N_{2} at room temperature for $36 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Green LEDs. ${ }^{d}$ No light. ${ }^{e} \mathrm{NR}$ (No Reaction). ${ }^{f}$ No reductant.

Table S2. The Optimization of Reductants and Control Experiments

Entry ${ }^{\text {a }}$	Reductant	Yield(\%) ${ }^{\text {b }}$
1	$i-\mathrm{Pr}_{2} \mathbf{N E t}$	65
$2^{\text {c }}$	Hantzsch Ester	11
3	$\mathrm{Et}_{3} \mathrm{~N}$	32
4	$i-\mathrm{Pr}_{2} \mathrm{NH}$	38
5	Hantzsch Ester (1.0equiv.) $/ i$ - $\mathrm{Pr}_{2} \mathrm{NEt}$ (2.0equiv)	40
6	DABCO	39
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	NR ${ }^{\text {d }}$
8^{e}	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	23
9^{f}	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	39

[^0] (2.0 equiv.). ${ }^{f}$ - $\operatorname{Pr}_{2} \mathrm{NEt}$ (4.0 equiv.).

Table S3. The Optimization of Solvents and Substrate Concentration

Entry $^{\boldsymbol{a}}$	Solvent	Yield(\%) ${ }^{\boldsymbol{b}}$
1	DCM	26
2	MeOH	14
3	DMF	32
4	Toulene	47
5	THF	40
6	DCE	33
7	DMSO	20
$\mathbf{9}$	$1,4-$ dioxane	$\mathbf{4 c e t o n e}$
$\mathbf{1 0}^{\boldsymbol{c}}$	acetone	$\mathbf{6 9}$
11^{d}	acetone	$\mathbf{7 2}$
$12^{c e}$	acetone	65

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), 2a (1.5 equiv.), fac- $\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%), i-\operatorname{Pr}_{2} \mathrm{NEt}(3.0$ equiv.), solvent (1 mL), and blue LEDs under N_{2} at room temperature for 36 h . ${ }^{b}$ Isolated yield. ${ }^{c} \mathbf{2} \mathbf{2}$ (2.0 equiv.). ${ }^{d} \mathbf{2 a}$ (3.0 equiv.). ${ }^{e}$ Acetone (2 mL) .

Table S4. The Optimization of the Amount of the Additive $\mathrm{H}_{2} \mathrm{O}$

Entry ${ }^{\text {a }}$	$\mathrm{H}_{2} \mathrm{O}$ (equiv.)	Yield(\%) ${ }^{\text {b }}$
1	0.5	78
2	1.0	85
3	1.5	80
4	2.0	79
5	3.0	76

${ }^{a}$ Reaction conditions: 1a (0.1 mmol), 2a (2.0 equiv.), fac- $\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%), i-\operatorname{Pr}_{2} \mathrm{NEt}(3.0$ equiv.), acetone (1 mL), $\mathrm{H}_{2} \mathrm{O}$ (additive), and blue LEDs under N_{2} at room temperature for 24 h . ${ }^{b}$ Isolated yield.

4. General Procedure and Analytical Data of Products 3

4.1 General Procedure for the Synthesis of Products 3

A mixture of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%), p-\mathrm{QMs} 1(0.1 \mathrm{mmol}, 1.0$ equiv.), bromodifluoroacetates 2 ($0.2 \mathrm{mmol}, 2.0$ equiv.), $i-\mathrm{Pr}_{2} \mathrm{NEt}\left(50 \mu \mathrm{~L}, 3.0\right.$ equiv.), $\mathrm{H}_{2} \mathrm{O}$ (2 $\mu \mathrm{L}, 1.0$ equiv.) and acetone (1 mL) was degassed by three cycles of freeze-pump-thaw. The mixture was stirred under nitrogen atmosphere at room temperature while irradiated by blue LEDs for $24-48 \mathrm{~h}$. After completion of the reaction, the crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the pure products 3 .

4.2 Analytical Data of Products 3

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-phenyl-propanoate (3aa)
 Following the general synthesis procedure, the product 3aa was obtained as a pale yellow liquid in 85% yield $(35.6 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.30 (m, 2H), 7.28-7.24 (m, 1H), 7.18 (s, 2H), 5.16 (s, 1H), $4.64(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0(\mathrm{t}, J=32 \mathrm{~Hz}$), 153.3, 136.1, 135.7, 129.5, $128.4,127.5,126.2,125.8,116.1(\mathrm{t}, J=255 \mathrm{~Hz}), 62.4,55.4(\mathrm{t}, J=21 \mathrm{~Hz}), 34.3,30.2$, 13.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.68(\mathrm{~d}, J=254.9 \mathrm{~Hz}, 1 \mathrm{~F}),-107.07(\mathrm{~d}, J=$ $255.3 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{O}_{3}\right]$: 419.2392, found: 419.2400.

Following the general synthesis procedure, the product 3ba was obtained as a pale yellow solid in 78% yield $(32.4 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ $50: 1$). m. p.: $84-86^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.84(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) 1.39(\mathrm{~s}, 18 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1(\mathrm{t}, J=32 \mathrm{~Hz}), 153.2,136.7,135.6,134.8(\mathrm{~d}, J=5 \mathrm{~Hz})$, 130.7, 128.0, 127.4, 126.7, 126.1, 125.0, $116.3(\mathrm{t}, J=256 \mathrm{~Hz}), 62.5,50.5(\mathrm{t}, J=22$ $\mathrm{Hz}), 34.2,30.2,20.1,13.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.83(\mathrm{~d}, J=256.1 \mathrm{~Hz}$, $1 \mathrm{~F}),-108.11(\mathrm{~d}, J=256.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{KO}_{3}\right]$: 471.2108, found: 471.2096 .

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(m-tolyl)propanoate (3ca)

 Following the general synthesis procedure, the product 3ca was obtained as a pale yellow liquid in 80% yield ($34.6 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}$, 2H), 7.09-7.07 (m, 1H), 5.16 (s, 1H), 4.59 (t, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16-4.05 (m, 2H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0(\mathrm{t}, J=32 \mathrm{~Hz}), 153.2,137.9,135.9,135.7,130.4,128.2,128.2$, 126.4, 126.2, 125.9, $116.1(\mathrm{t}, J=254 \mathrm{~Hz}), 62.4,55.4(\mathrm{t}, J=21 \mathrm{~Hz}), 34.2,30.2,21.4$, 13.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.77(\mathrm{~d}, J=254.6 \mathrm{~Hz}, 1 \mathrm{~F}),-106.88(\mathrm{~d}, J=$ $254.6 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NaO}_{3}\right]: 455.2368$, found: 455.2358 .

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(p-tolyl)propanoate (3da)

Following the general synthesis procedure, the product 3da was obtained as a pale yellow liquid in 77% yield $(32.3 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (s, 2H), 7.13 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1(\mathrm{t}, J=32 \mathrm{~Hz}), 153.3,137.2,135.7,133.1(\mathrm{~d}, J$ $=4 \mathrm{~Hz}), 129.4,129.1,126.2,126.1,116.2(\mathrm{t}, J=254 \mathrm{~Hz}), 62.4,55.2(\mathrm{t}, J=21 \mathrm{~Hz})$, $34.3,30.2,21.0,13.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.55(\mathrm{~d}, J=254.6 \mathrm{~Hz}, 1 \mathrm{~F})$, -107.24 (d, $J=254.6 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NaO}_{3}\right]$:

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(4-methoxyphenyl)propanoate (3ea)

Following the general synthesis procedure, the product 3ea was obtained as a pale yellow liquid in 84% yield ($37.6 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 30:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.17(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.9(\mathrm{t}, J=32 \mathrm{~Hz}$), 158.9, 153.2, 135.7, 130.6, 128.1, 126.2, 126.1, $116.1(\mathrm{t}, J=254 \mathrm{~Hz}), 113.8,62.3,55.0,54.6$ (t, $J=22 \mathrm{~Hz}), 34.2$, 30.1, 13.5. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.88(\mathrm{~d}, J=255.3 \mathrm{~Hz}, 1 \mathrm{~F}),-107.12(\mathrm{~d}$, $J=254.2 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NaO}_{4}\right]: 471.2317$, found: 471.2309.

Ethyl 3-(2-chlorophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoropropanoate (3fa)

Following the general synthesis procedure, the product 3fa was obtained as a pale yellow liquid in 83% yield $(35.7 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ $50: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38-7.36(m, 1H), 7.29-7.28 (m, 1H), 7.22-7.18 (m, 3H), $5.33(\mathrm{t}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 1H), 4.14(q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7(\mathrm{t}, J=32 \mathrm{~Hz}), 153.4,135.7,134.8,134.4$ (d, $J=5 \mathrm{~Hz}$), 129.9, 129.7, 128.7, 126.9, 126.6, 124.6, 116.0 (t, $J=255 \mathrm{~Hz}$), 62.7, $50.5(\mathrm{t}, J=23 \mathrm{~Hz}), 34.3,30.2,13.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-103.91(\mathrm{~d}, J=$ $256.8 \mathrm{~Hz}, 1 \mathrm{~F}),-107.02(\mathrm{~d}, J=256.8 \mathrm{~Hz}, 1 \mathrm{~F}) . \mathrm{HRMS}(\mathrm{ESI}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClF}_{2} \mathrm{NaO}_{3}\right]: 475.1822$, found: 475.1811 .

Ethyl 3-(3-chlorophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoropropanoate (3ga)

Following the general synthesis procedure, the product 3ga was obtained as a pale yellow liquid in 73% yield ($33.0 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.19-4.07(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 163.8(\mathrm{t}, J=32 \mathrm{~Hz}), 153.5,138.1(\mathrm{~d}, J=4 \mathrm{~Hz}), 136.0,134.2,129.9,129.7$, $127.8,127.6,126.2,125.2(\mathrm{~d}, J=5 \mathrm{~Hz}), 115.8(\mathrm{t}, J=254 \mathrm{~Hz}), 62.7,55.1(\mathrm{t}, J=22$

Hz), 34.3, 30.2, 13.6. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-104.71(\mathrm{~d}, J=256.1 \mathrm{~Hz}, 1 \mathrm{~F})$, -107.94 (d, $J=256.1 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClF}_{2} \mathrm{NaO}_{3}\right]$: 475.1822, found: 475.1826 .

Ethyl 3-(4-chlorophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoropropanoate (3ha)

Following the general synthesis procedure, the product 3ha was obtained as a pale yellow liquid in 82% yield $(37.1 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~s}$, $2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~s}, 18 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.8(\mathrm{t}, J=$ $32 \mathrm{~Hz}), 153.4,135.9,134.7(\mathrm{~d}, J=4 \mathrm{~Hz}), 133.5,130.9,128.6,126.1,125.4(\mathrm{~d}, J=5$ $\mathrm{Hz}), 115.9(\mathrm{t}, J=254 \mathrm{~Hz}), 62.6,54.7(\mathrm{t}, J=22 \mathrm{~Hz}), 34.3,30.2,13.6 .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-104.65(\mathrm{~d}, J=256 \mathrm{~Hz}, 1 \mathrm{~F}),-107.99(\mathrm{~d}, J=256.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClF}_{2} \mathrm{NaO}_{3}\right]: 475.1822$, found: 475.1814.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(4-fluorophenyl)propanoate (3ia)

Following the general synthesis procedure, the product 3ia was obtained as a pale yellow liquid in 69% yield $(30.1 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.14$ (s , $2 \mathrm{H}), 7.26(\mathrm{t}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.9(\mathrm{t}, J=32 \mathrm{~Hz}), 162.2(\mathrm{~d}, J=245 \mathrm{~Hz}), 153.4,135.9,131.9$, $131.6(\mathrm{~d}, J=8 \mathrm{~Hz}), 126.1,125.7(\mathrm{~d}, J=5 \mathrm{~Hz}), 115.9(\mathrm{t}, J=255 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=21$ $\mathrm{Hz}), 62.6,54.6(\mathrm{t}, J=22 \mathrm{~Hz}), 34.3,30.2,13.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-105.34(\mathrm{~d}, J=255.7 \mathrm{~Hz}, 1 \mathrm{~F}),-107.73$ (d, $J=255.7 \mathrm{~Hz}, 1 \mathrm{~F}),-114.92$ (s, 1F). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NaO}_{3}\right]: 459.2118$, found: 459.2112 .

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(4-nitrophenyl)propanoate (3ja)

Following the general synthesis procedure, the product $\mathbf{3 j a}$ was obtained as a pale brown liquid in 45% yield $(20.8 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 30:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.73(\mathrm{~m}$, $1 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}), 1.07(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 163.3(\mathrm{t}, J=32 \mathrm{~Hz}), 153.7,147.2,143.5(\mathrm{~d}, J=3 \mathrm{~Hz}), 136.2,130.4,126.0$,
$124.4(\mathrm{~d}, J=6 \mathrm{~Hz}), 123.5,115.5(\mathrm{t}, J=254 \mathrm{~Hz}), 62.8,54.9(\mathrm{t}, J=22 \mathrm{~Hz}), 34.2,30.1$, 13.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-102.66(\mathrm{~d}, J=257.9 \mathrm{~Hz}, 1 \mathrm{~F}),-109.24(\mathrm{~d}, J=$ $257.9 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{NO}_{5}\right]$: 464.2243, found: 464.2234.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(4-(trifluoromethyl)phenyl)propanoate (3ka)

Following the general synthesis procedure, the product 3ka was obtained as a pale yellow liquid in 68% yield ($33.1 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ $50: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~s}$, $2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.06(\mathrm{~m}, 2 \mathrm{H}), 1.41$ ($\mathrm{s}, 18 \mathrm{H}$), $1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6(\mathrm{t}, J=32 \mathrm{~Hz}$), 153.6, 140.3, 136.1, 129.9, 129.6, 126.1, 125.3 ($\mathrm{t}, J=4 \mathrm{~Hz}$), $125.0(\mathrm{~d}, J=5 \mathrm{~Hz}$), $124.0(\mathrm{q}, J=271 \mathrm{~Hz}), 115.8(\mathrm{t}, J=254 \mathrm{~Hz}), 62.7,55.2(\mathrm{t}, J=22 \mathrm{~Hz}), 34.3,30.1,13.5$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.61(\mathrm{~s}, 3 \mathrm{~F}),-103.65(\mathrm{~d}, J=256.8 \mathrm{~Hz}, 1 \mathrm{~F}),-108.67$ (d, $J=256.8 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{5} \mathrm{NaO}_{3}\right]: 509.2086$, found: 509.2078.

Ethyl 3-(4-cyanophenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2difluoropropanoate (31a)

 Following the general synthesis procedure, the product 31a was obtained as a pale yellow liquid in 76% yield $(33.7 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 15:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}$, $1 \mathrm{H}), 4.19-4.07(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 163.5(\mathrm{t}, J=32 \mathrm{~Hz}), 135.7,141.6(\mathrm{~d}, J=4 \mathrm{~Hz}), 136.3,132.2,130.3,126.1$, $124.6(\mathrm{~d}, J=6 \mathrm{~Hz}), 118.6,115.7(\mathrm{t}, J=254 \mathrm{~Hz}), 111.6,62.8,55.3(\mathrm{t}, J=22 \mathrm{~Hz}), 34.3$, 30.2, 13.6. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-103.10(\mathrm{~d}, J=257.9 \mathrm{~Hz}, 1 \mathrm{~F}),-109.02(\mathrm{~d}$, $J=257.6 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{NNaO}_{3}\right]: 466.2164$, found: 466.2160 .

Methyl 4-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-ethoxy-2,2-difluoro-3-

 oxopropyl)benzoate (3ma)

Following the general synthesis procedure, the product 3ma was obtained as a pale yellow liquid in 80% yield (38.1 mg , PE/EA $=15: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $4.71(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.05(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,163.8(\mathrm{t}, J=32 \mathrm{~Hz}), 153.5,141.3$ (d, $J=4 \mathrm{~Hz}$), 135.9, 129.7, 129.6, 129.4, 126.2, $125.1(\mathrm{~d}, J=5 \mathrm{~Hz}), 115.8(\mathrm{t}, J=254$ $\mathrm{Hz}), 62.7,55.3(\mathrm{t}, J=22 \mathrm{~Hz}), 52.1,34.3,30.2,13.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-104.92(\mathrm{~d}, J=256.8 \mathrm{~Hz}, 1 \mathrm{~F}),-107.49(\mathrm{~d}, J=256.8 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NaO}_{5}\right]: 499.2267$, found: 499.2259.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-(3,5-dimethoxyphenyl)-2,2difluoropropanoate (3na)

Following the general synthesis procedure, the product 3na was
 obtained as a pale yellow liquid in 55% yield $(26.3 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{~s}, 2 \mathrm{H}), 6.98-6.97$ (m, $2 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15-4.08 (m, 2H), 3.87 (s, 3H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.41$ ($\mathrm{s}, 18 \mathrm{H}$), 1.06 $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.9(\mathrm{t}, J=32 \mathrm{~Hz}), 153.2,148.6$, 148.4, 135.7, 128.4, 126.1, 125.9, 121.9, 116.1 (t, $J=254 \mathrm{~Hz}$), 112.8, 110.9, 62.3, $55.6,54.9(\mathrm{t}, J=22 \mathrm{~Hz}), 34.2,30.1,13.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-106.14(\mathrm{~d}$, $J=254.6 \mathrm{~Hz}, 1 \mathrm{~F}),-106.89(\mathrm{~d}, J=254.6 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{5}$]: 479.2604, found: 479.2601.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-(3,5-dichlorophenyl)-2,2difluoropropanoate (30a)

Following the general synthesis procedure, the product 3oa was obtained as a pale yellow liquid in 80% yield $(38.9 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 50:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.50-7.49 (m, 1H), 7.41-7.40 (m, 1H), 7.28-7.25 (m, 1H), $7.11(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$, 4.65-4.56 (m, 1H), 4.19-4.07 (m, 2H), $1.41(\mathrm{~s}, 18 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6(\mathrm{t}, J=32 \mathrm{~Hz}), 153.7,136.4(\mathrm{~d}, J=4 \mathrm{~Hz}), 136.2$, 132.5, 131.8, 131.7, 130.3, 128.8, 126.0, 124.8 (d, $J=5 \mathrm{~Hz}$), 115.7 (t, $J=254 \mathrm{~Hz}$), 62.7, $54.5(\mathrm{t}, J=22 \mathrm{~Hz}), 34.3,30.2,13.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.70(\mathrm{~d}$,
$J=257.2 \mathrm{~Hz}, 1 \mathrm{~F}),-108.88(\mathrm{~d}, J=256.8 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{NaO}_{3}\right]: 509.1432$, found: 509.1423.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(naphthalen-1-yl)propanoate (3pa)

Following the general synthesis procedure, the product 3pa was
 obtained as a white solid in 62% yield ($29.1 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=50: 1$) m . p.: $126-128^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 2 \mathrm{H})$, $5.61-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1(\mathrm{t}, J=32 \mathrm{~Hz}), 153.3,135 ., 133.9$, 132.1, (d, $J=6 \mathrm{~Hz}$), 131.7, 128.9, 128.2, 126.5, 126.4, 126.1, (d, $J=4 \mathrm{~Hz}$), 125.5, 125.2 , (d, $J=3 \mathrm{~Hz}$), 125.1, 123.2, $116.3(\mathrm{t}, J=254 \mathrm{~Hz}), 62.5,49.6(\mathrm{t}, J=22 \mathrm{~Hz}), 34.2$, 30.1, 13.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.03(\mathrm{~d}, J=256.4 \mathrm{~Hz}, 1 \mathrm{~F}),-107.58$ (d, $J=256.4 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NaO}_{3}\right]: 491.2368$, found: 491.2361.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-1,3-diphenylpropan-1-one

 (3ab)

Following the general synthesis procedure, the product 3ab was obtained as a white solid in 52% yield ($23.4 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=15: 1$). m .
 $2 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H})$, 4.04-4.81 (m, 1H), $1.33(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.1$ ($\mathrm{t}, \mathrm{J}=29$ $\mathrm{Hz}), 153.2,136.7(\mathrm{~d}, J=4 \mathrm{~Hz}), 135.8,133.5,129.6,129.5(\mathrm{t}, J=4 \mathrm{~Hz}), 128.4,128.3$, 127.3, 126.6, $126.0(\mathrm{~d}, J=5 \mathrm{~Hz}), 119.3(\mathrm{t}, J=258 \mathrm{~Hz}), 55.4(\mathrm{t}, J=22 \mathrm{~Hz}), 34.2,30.1$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-98.80(\mathrm{~d}, J=268.1 \mathrm{~Hz}, 1 \mathrm{~F}),-103.40(\mathrm{~d}, J=268.1 \mathrm{~Hz}$, 1F). HRMS (ESI): $[\mathrm{M}+\mathrm{K}]^{+}$calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{KO}_{2}\right]: 489.2002$, found: 489.1993 .

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-N,3-diphenylpropanamide (3ac)

Following the general synthesis procedure, the product 3ac was obtained as a white solid in 77% yield ($35.8 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=20: 1$). m. p.: $140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~s}, 1 \mathrm{H})$, 7.49-7.48 (m, 2H), 7.35-7.32 (m, 2H), 7.29-7.27 (m, 4H), 7.26 (s , $2 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1(\mathrm{t}, J=28 \mathrm{~Hz}), 153.2,136.3,135.9,135.7,129.5,128.9$, $128.5,127.4,126.1,125.4,120.4,118.3(\mathrm{t}, J=258 \mathrm{~Hz}), 54.3(\mathrm{t}, J=22 \mathrm{~Hz}), 34.2,30.1$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-106.72(\mathrm{~d}, J=247.0 \mathrm{~Hz}, 1 \mathrm{~F}),-108.55(\mathrm{~d}, J=247.0$ $\mathrm{Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{NNaO}_{2}\right]$: 488.2372, found: 488.2368.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-phenyl-1-(piperidin-1-yl)-propan-1-one (3ad)

 Following the general synthesis procedure, the product 3ad was obtained as a pale yellow liquid in 78% yield $(35.6 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 15:1). m. p.: $154-156^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~s}$, $1 \mathrm{H}), 4.85(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.41(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.0(\mathrm{t}, J=28 \mathrm{~Hz}), 152.9,137.8,135.5,129.5$, 128.3, 127.3, 126.9, 126.5, $119.3(\mathrm{t}, J=258 \mathrm{~Hz}), 55.6(\mathrm{t}, J=22 \mathrm{~Hz}), 46.8,44.8,34.3$, 30.2, 26.3, 25.5, 24.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-98.39(\mathrm{~d}, J=267.7 \mathrm{~Hz}, 1 \mathrm{~F}$), -99.23 (d, $J=267.7 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{NO}_{2}\right]$: 458.2865, found: 458.2857.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-1-morpholino-3-phenylpropan-1-one (3ae)

Following the general synthesis procedure, the product 3ae was obtained as a white solid in 77% yield ($35.3 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=10: 1$). m . p.: $134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.09$ $(\mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.35(\mathrm{~m}, 7 \mathrm{H}), 3.26-3.22(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.3$ (t, $J=29 \mathrm{~Hz}$), 153.1, 137.3 (d, $J=3 \mathrm{~Hz}$), 135.7, 129.3, 128.3, 127.1, 126.7, (d, $J=4 \mathrm{~Hz}$), 126.4, $119.2(\mathrm{t}, J=258 \mathrm{~Hz}), 66.4$, $55.5(\mathrm{t}, J=22 \mathrm{~Hz}), 53.3,46.4,43.6,34.2,30.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-98.42$ (d, $J=265.8 \mathrm{~Hz}, 1 \mathrm{~F}),-99.69$ (d, $J=265.5 \mathrm{~Hz}, 1 \mathrm{~F}$). HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{NO}_{3}\right]: 460.2658$, found: 460.2650 .
 Following the general synthesis procedure, the product 3af was obtained as a colorless liquid in 70% yield $(32.4 \mathrm{mg}, \mathrm{PE} / \mathrm{EA}=$ 30:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76-7.74(\mathrm{~m}, 1 \mathrm{H})$, 7.53-7.49 (m, 3H), 7.41-7.34 (m, 2H), 7.32-7.29 (m, 2H), 7.25-7.22 (m, 1H), $7.16(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.4(\mathrm{t}, J=34 \mathrm{~Hz}), 153.2,150.3,140.1,136.4$, 135.6, 129.5, 128.5, 127.4, 126.4, 126.3, 126.0, 125.1, 121.1, 117.1 (t, $J=247 \mathrm{~Hz}$), 111.1, $57.1(\mathrm{t}, J=226 \mathrm{~Hz}), 34.2,30.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-98.74(\mathrm{~d}, J=$ $268.0 \mathrm{~Hz}, 1 \mathrm{~F}),-100.9(\mathrm{~d}, J=267.3 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{NO}_{2}\right]: 464.2396$, found: 464.2390.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-3-phenylpropanoate (3ag)

Following the general synthesis procedure, the product 3ag was obtained as a pale yellow liquid in 69% yield $(27.6 \mathrm{mg}, \mathrm{dr}=1: 1$, PE/EA $=30: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.21(\mathrm{~m}, 5 \mathrm{H})$, 7.12-7.11 (m, 2H), 5.51-5.37 (m, 1H), 5.12-5.10 (m, 1H), 4.52-4.42 $(\mathrm{m}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.9,168.8,168.7,168.6,152.8,152.8,140.0,139.9,138.9,135.8,135.6$, $129.9,129.8,128.9,128.8,128.7,128.5,128.4,128.3,126.9,126.8,125.6,125.6$, 125.1, 92.6, 92.5, 90.7, 90.6, 61.2, 53.5, 53.4, 53.3, 53.2, 34.3, 34.2, 30.2, 30.1, 13.8 , 13.7. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-192.63$ (s, 0.5 F), -193.32 (s, 0.5F). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FNaO}_{3}\right]: 423.2306$, found: 423.2297 .

5. Applications of the Difluoroalkylation of p-QMs

5.1 Gram-Scale Reaction of \boldsymbol{p}-QM 1e

A mixture of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(23.8 \mathrm{mg}, 1 \mathrm{~mol} \%), p-\mathrm{QM} \mathbf{1 f}(3.66 \mathrm{mmol}, 1.205 \mathrm{~g}, 1.0$ equiv.), ethyl bromodifluoroacetate 2a ($7.32 \mathrm{mmol}, 0.94 \mathrm{~mL}, 2.0$ equiv.), $i-\mathrm{Pr}_{2} \mathrm{NEt}$ ($10.98 \mathrm{mmol}, 1.80 \mathrm{~mL}, 3.0$ equiv), $\mathrm{H}_{2} \mathrm{O}$ ($3.66 \mathrm{mmol}, 66 \mu \mathrm{l}, 1.0$ equiv.) and acetone (37 mL) was degassed by three cycles of freeze-pump-thaw. The mixture was stirred under nitrogen atmosphere at room temperature while irradiated by blue LEDs for 4 days. After completion of the reaction, the crude mixture was purified by flash chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ to afford the pure product $\mathbf{3 f a}(1.361 \mathrm{~g}, 82 \%)$.

5.2 De-tert-Butylation of Product 3fa

AlCl_{3} ($78.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.) was added to a solution of $p-\mathrm{QM} \mathbf{1 e}$ (90.6 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) in benzene (5 mL) and the mixture was purged with Nitrogen three times. Then the reaction was kept at $30^{\circ} \mathrm{C}$ for 1 h . Afterwards, 5 mL water was added to quench the reaction, and the aqueous phase was extracted with 5 mL ethyl acetate for three times. The organic layer was dried over with anhydrous magnesium sulfate, filtered and concentrated. The residue was next purified in flash column chromatography $(\mathrm{PE} / \mathrm{EA}=5: 1)$ to give the pure product 4 in 53% yield (18.1 mg).

6. Cyclic Voltammetry Experiments

Cyclic voltammetry experients were performed to measure the reduction potentials of $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}$ and $p-\mathrm{QM} \mathbf{1 a}$. Experiment conditions: $\mathbf{2 a} / \mathbf{1 a}[0.01 \mathrm{M}]$ in tetrabutylammonium tetrafluoroborat [0.1 M] in MeCN , scan rates equal to $0.1 \mathrm{~V} / \mathrm{S}$, glassy carbon electrode (GCE) as a working electrode, saturated calomel electrode (SCE, KCl saturated) as the reference electrode and Pt wire as the counter electrode. As shown in the results, the reduction potentials of $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}$ and $p-\mathrm{QM} \mathbf{1 a}$ respectively were -0.89 V and -0.20 V .

Figure S1. Cyclic Voltammetry of p-QM 1a

Figure S2. Cyclic Voltammetry of $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}$

7. Stern-Volmer Quenching Experiments

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of $0.1 \mathrm{mM} \mathrm{fac}-\operatorname{Ir}(\mathrm{ppy})_{3}$, in degassed dry acetone at room temperature. The solutions were irradiated at 395 nm and fluorescence was measured from 450 nm to 650 nm . Control experiments showed that the excited state $f a c-\operatorname{Ir}(\mathrm{ppy}))_{3}{ }^{*}$ was mainly quenched by $p-\mathrm{QM} \mathbf{1 a}$.

Figure S3. Fluorescence quenching date with $f a c-\operatorname{Ir}(p p y)_{3}$ and variable p-QM 1a ($10^{-5} \mathrm{M}$)

Figure S4. Fluorescence quenching date with $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ and variable $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}\left(10^{-5} \mathrm{M}\right)$

Figure S5. Fluorescence quenching date with $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ and variable $i-\operatorname{Pr}_{2} \operatorname{NEt}\left(10^{-5} \mathrm{M}\right)$

Figure S6. Stern-Volmer plots of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ and three quenchers. I_{0} and I are luminescence intensities in the absence and presence of the indicated concentrations $\left(10^{-5} \mathrm{M}\right)$ of the corresponding quencher, respectively

8. Radical Trapping Experiments

The radical trapping experiments were conducted with $p-\mathrm{QM}$ 1a and $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}$ under the standard conditions with two different trapping agents to capture the radical intermediates expected in our system, and the products were detected by HRMS techniques. Figure $\mathbf{S 7}$ showed that TEMPO, the most common trapping agent, captured diarylmethane radical with TEMPO-trapped compound 6 observed. HRMS (ESI): compound 6, $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{NO}_{2}\right]$: 452.3523, found: 452.3522 .

1a
2a
3aa, 0 \% yield

6, detected

Figure S7. p-QM 1a and $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} 2 \mathrm{a}$ under standard conditions with TEMPO (3.0 equiv.)

Additionally, both compound 7 and product 3aa were detected in Figure S8 when the scavenger 1-(phenylsulfonyl)-2-phenyl-2-propene 5 was used, indicating the existence of difluoroacetate radicals. HRMS (ESI): compound 7, $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{NaO}_{2}\right.$]: 268.0854, found: 268.0856. Product 3aa, $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for [$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{NaO}_{3}$]: 441.2212, found: 441.2214 .

Figure S8. p-QM 1a and $\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathbf{2 a}$ under standard conditions with 1-(phenylsulfonyl)-2-phenyl-2-propene 5 (3.0 equiv.)

9. Determination of the Quantum Yield

$$
\mathbf{1 a}(0.1 \mathrm{mmol}) \quad \text { 2a (2 equiv) }
$$

3aa, $125 \mathrm{~min}, 32 \%$ yield
The reaction was conducted under standard conditions in a quartz tube: A mixture of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%), p-\mathrm{QM} 1 \mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv.), ethyl bromodifluoroacetate 2a (0.2 mmol , 2.0 equiv.), $i-\mathrm{Pr}_{2} \mathrm{NEt}\left(50 \mu \mathrm{~L}, 3.0\right.$ equiv.), $\mathrm{H}_{2} \mathrm{O}$ (2 $\mu \mathrm{L}, 1.0$ equiv.) and acetone (1 mL) in an oven-dried 8 mL quartz vial with a magnetic stirring bar was degassed by three cycles of freeze-pump-thaw. The mixture was stirred under nitrogen atmosphere at room temperature while irradiated by blue light ($440-445 \mathrm{~nm}$) for 125 minutes (7500 s).

The reaction was irradiated in Parallel Light Reactor (WP-TEC-1020) (the diameter of hole was 16 mm with intensity of $1916.1 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$). After irradiation, the yield of the product 3aa was determined by ${ }^{1} \mathrm{H}$ NMR based on a 1,3,5-trimethoxybenzene standard and the final yield was 32%.

Next we determined the absorbance of the catalyst $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ in the reaction. The absorbance of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ in acetone was measured at the reaction concentration of $1.0 \times 10^{-3} \mathrm{M}$ and at a substantially diluted concentration of $1.0 \times 10^{-4} \mathrm{M}$. The absorbance of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ at 443 nm in a $1.0 \times 10^{-3} \mathrm{M}$ solution is $2.271(\mathrm{~A}=2.271)$.

Figure S9. Absorbance of a $1.0 \times 10^{-3} \mathrm{M}$ solution of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ in acetone

Figure S10. Absorbance of a $1.0 \times 10^{-4} \mathrm{M}$ solution of $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ in acetone Then we determined the quantum yield as follows. ${ }^{6}$
$\Phi=$ Mole number for product/Mole number for absorption of photons $=3.0 * 1 \mathbf{1 0}^{\mathbf{- 4}}$ $\Phi=\frac{\mathrm{n}_{3 \mathrm{aa}} \mathrm{N}_{\mathrm{A}} / \mathrm{t}}{\mathrm{fP} \lambda / \mathrm{hc}}$
$\mathrm{n}_{3 \mathrm{aa}}$: the mole number of the product 3aa $\left(\mathrm{n}_{3 \mathrm{saa}}=3.2 \times 10^{-5} \mathrm{~mol}\right)$; t : the reaction time $(\mathrm{t}=$ $7500 \mathrm{~s})$; $\mathrm{N}_{\mathrm{A}}: 6.02 \times 10^{23} / \mathrm{mol} ; \mathrm{f}: 1-10^{-\mathrm{A}}(443 \mathrm{~nm}, \mathrm{~A}=2.271, \mathrm{f}=0.998) ; \mathrm{P}: \mathrm{P}=\mathrm{E}^{*} \mathrm{~S}(\mathrm{E}:$ illumination intensity, $\mathrm{E}=1.9161 \mathrm{~W} / \mathrm{cm}^{2} ; \mathrm{S}$: the area irradiated $\mathrm{S}=2.0 \mathrm{~cm}^{2}$); λ : wavelength $\left(\lambda=4.43 \times 10^{-7} \mathrm{~m}\right)$; h: planck constant $\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} * \mathrm{~s}\right)$; c: velocity of light ($\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

The result excluded the efficient chain process and the reaction was likely to undergo a photocatalyzed process.

10. X-ray Crystallographic Data

X-ray crystallographic data of product 3ae.

CCDC 1579852

Bond precision: Cell:	$\begin{aligned} & \mathrm{C}-\mathrm{C}=0.0052 \mathrm{~A} \\ & \mathrm{a}=10.6409(9) \\ & \text { alpha }=90 \end{aligned}$	Wavelength=0.71073	
		$\mathrm{b}=9.1391$ (7)	$\mathrm{c}=12.7748$ (10)
		beta=91.516(8)	gamma=90
Temperature:	294K		
	Calculated	Repor	
Volume	1241.89(17)	1241	
Space group	P n	P 1 n 1	
Hall group	P-2yac	P-2ya	
Moiety formula	C28 H37 F2 N O2	C28 H	N O2
Sum formula	C28 H37 F2 N O2	C28 H	2 NO 2
Mr	457.59	457.59	
Dx,g cm-3	1.224	1.224	
Z	2	2	
$\mathrm{Mu}(\mathrm{mm}-1)$	0.086	0.086	
F000	492.0	492.0	
F000'	492.24		
h, k, lmax	13, 11, 15	13, 11,	
Nref	4905[2458]	3189	
Tmin, Tmax	0.983, 0.988	0.811,	
Tmin'	0.981		
Correction method $=$ \# Reported T Limits: $\mathrm{Tmin}=0.811 \mathrm{Tmax}=1.000$			
AbsCorr $=$ MULTI-SCAN			
Data completeness $=1.30 / 0.65$	Theta $(\max)=26.020$		
R (reflections) $=0.0494(2694)$	$w R 2($ reflections $)=0.1499(3189)$		
$\mathrm{S}=0.969$	Npar $=308$		

11. References

(1) Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Angew. Chem. Int. Ed. 2013, 52, 9229.
(2) Richter, D.; Hampel, N.; Singer, T.; Ofial, A. R.; Mayr, H. Eur. J. Org. Chem. 2009, 19, 3203.
(3) Nihei, T.; Iwai, N.; Matsuda, T.; Kitazume, T. J. Org. Chem. 2005, 70, 5912.
(4) Wang, L.; Wei, X.-J.; Jia, W.-L.; Zhong, J.-J.; Wu, L.-Z.; Liu, Q. Org. Lett. 2014, 16, 5842.
(5) Dolbier Jr., W. R.; Burkholdera, C. R.; Médebielle, M. J. Fluorine Chem. 1999, 95,127.
(6) Liu, Y.-Y.; Yu, X.-Y.; Chen, J.-R.; Qiao, M.-M.; Qi, X.; Shi, D.-Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2017, 56, 9527.

12. NMR Data of Products 3

3ba

3ba

3ca

3fa

mo…

3ha

	¢ ${ }_{\text {M }}^{\text {- }}$
Ni in in in	¢ ¢ ¢
W/	

30a

¢ヶ\％	
ら்コ̇	
$\sqrt{ }$	

3ab

3ac

$$
\begin{aligned}
& \left.\right|^{\text {No. }}
\end{aligned}
$$

$3 a e$

3af

3ag

3 ag

[^0]: ${ }^{a}$ Reaction conditions: 1a $(0.1 \mathrm{mmol})$, 2a (1.5 equiv.), $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%)$, reductant (3.0 equiv.), MeCN (1 mL), blue LEDs, under N_{2} at room temperature for 36 h . ${ }^{b}$ Isolated yield. ${ }^{c}$ Reacted for $4 \mathrm{~h} .{ }^{d} \mathrm{NR}$ (No Reaction). ${ }^{e} i$ - $\mathrm{Pr}_{2} \mathrm{NEt}$

