Supplementary Information

Table of Contents

1) Chemical Syntheses and Analysis	2
1.1 General Information	2
1.2 Preparation of Glycan—Aldehyde probes	3
1.3 Glycoalbumins for Cell- and Animal-based Studies	5
1.3.1 Preparation of Fluorescently Labeled Albumin	5
1.3.2 Preparation of Glycoalbumins 2a-f	7
1.4 Glycoalbumin Ligation Site Determination	21
1.4.1 Summary	21
1.4.2 Preparation of Glycoalbumins 5Gal-HSA, 10Gal-HSA	23
1.4.3 LC-MS/MS Analysis	26
1.4.4 MALDI-TOF/MS mass spectrometry	32
2) Cell-based Experiments	56
2.1 General Cell Culture Protocol	56
2.2 Imaging Studies	56
3) Animal-based Experiments	57
3.1 Excretion and Biodistribution Studies	57
4) References	58

1) Chemical Syntheses and Analysis

1.1 General Information

All commercially available reagents were used without further purification. 3,5-Dihydroxybenzyl alcohol, carbon tetrabromide, triphenylphosphine, sodium azide, and *N*hydroxysuccinimide (NHS) were purchased from Acros Organics (Geel, Belgium). Ethyl 7-bromoheptanoate and human serum albumin (HSA) were obtained from Sigma-Aldrich (Tokyo, Japan). 1-Ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) was provided by TCI chemicals (Tokyo, Japan). All *N*-glycans were supplied from Glytech (Kyoto, Japan). For the fluorophores used in this study, HiLyte[™] Fluor750 acid SE® was purchased from AnaSpec (Fremont, USA), and 5-(and-6)-Carboxytetramethylrhodamine NHS ester was purchased from Molecular Probes (Oregon, USA).

Ultrapure water used for all synthetic experiments described in this paper was obtained from a Milli-Q Advantage® A10 Water Purification System sold by Merck Millipore (Burlington, USA). In addition, Amicon 10K® centrifugal filters and Durapore PVDF 0.45 µm® filters were also purchased from by Merck Millipore (Burlington, USA). For chemical synthesis, high-resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF-QIII spectrometer® by electron spray ionization (ESI-TOF-MS). For glycan-conjugated albumins, matrix assisted laser desorption ionization (MALDI-TOF) mass spectrometry analysis was obtained on a Bruker autoflex spectrometer® using 2,5-dihydroxybenzoic acid as a matrix.

Reverse phase HPLC analysis/purification was performed on a Shimadzu Prominence® system equipped with a Nacalai tesque column (5C18-AR-300, 4.6 x 250 mm). Two solvent systems, A: H_2O containing 0.1% TFA and B: MeCN containing 0.1% TFA, were applied.

1.2 Preparation of Glycan–Aldehyde probes

Glycan—aldehyde probes were prepared according to the previously reported procedure.¹ Detailed structures and simplified notations are given in Figure S1.

Figure S1. Whole and simplified chemical structures of the glycan—aldehyde probes used in this study

Figure S1 (cont). Whole and simplified chemical structures of the glycan-aldehyde probes used in this study

1.3 Glycoalbumins for Cell- and Animal-based Studies

1.3.1 Preparation of Fluorescently Labeled Albumin

TAMRA $λ_{EX} = 546 \text{ nm}$ $λ_{EM} = 575 \text{ nm}$

For cell-based studies, glycoalbumins **2a-f** were labeled with the fluorescent TAMRA dye. In this document, these are denoted as **TAMRA-2a**, **TAMRA-2b**, **TAMRA-2c**, **TAMRA-2c'**, **TAMRA-2d**, **TAMRA-2e**, and **TAMRA-2f**.

Cell-based studies

Preparation of **TAMRA-HSA**

To a solution of human serum albumin (HSA, purchased from SIGMA, 6.7 mg, 100 nmol) in phosphate saline buffer (pH = 7.4, 1.00 mL) was added TAMRA SE (0.13 mg, 250 nmol) in DMSO (13 μ L) and the mixture was warmed to 37 °C. After 15 min, the solution was centrifuged through Amicon 10K® at 15,000 rpm for 10 min to filter off the small molecules. The residue was further washed with water and centrifuged for four times. The resulting solution was diluted by ultrapure water to 800 μ L to afford the stock solution of **TAMRA-HSA**, which was used for subsequent *N*-glycan modifications. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-HSA** at 67.9 kDa, which contains an average number of 2 TAMRA fluorophores per albumin molecule.

For animal-based studies, glycoalbumins **2a-f** were instead labeled with the near-infrared dye, HiLyte Fluor 750. In this document, these are denoted as **HiLyte-2b**, **HiLyte-2c**, and **HiLyte-2e**.

Preparation of HiLyte-HSA

To a solution of human serum albumin (HSA, purchased from SIGMA, 4.8 mg, 72 nmol) in phosphate saline buffer (pH = 7.4, 720 μ L) was added HiLyte Fluor 750 acid SE® (0.38 mg, 0.29 μ mol, tetraethylammonium salt) in DMSO (10 μ L) and the mixture was warmed to 37 °C. After 10 min, the solution was centrifuged through Amicon 10K® at 15,000 rpm for 10 min to filter off the small molecules. The residue was further washed with phosphate buffer and centrifuged for three times. The resulting solution was diluted by ultrapure water to 1.14 mL to afford the stock solution of **HiLyte-HSA**, which was used for subsequent *N*-glycan modifications. MALDI-TOF-MS (positive mode) detected the molecular weight of **HiLyte-HSA** at 70.3 kDa, which contains an average number of 2.9 HiLyte Fluor 750fluorophores per albumin molecule.

MALDI-TOF-MS of HiLyte-HSA

1.3.2 Preparation of Glycoalbumins 2a-f

In the general synthetic scheme of glycoalbumins **2a-f** (Scheme S1), preparation was carried out in a sequential two-step manner. To begin, fluorophore-labeled HSA (either **TAMRA-HSA** or **HiLyte-HSA**) was treated with various glyco-aldehyde probes to create the intermediary glycoalbumin, which is generally conjugated to about 5 glycan moieties. For **TAMRA-1** and **HiLyte-1**, α(2,3)Sia-terminated glycan—aldehyde was used. For **TAMRA-1**', galactose-terminated glycan—aldehyde was alternatively used. In the next step, treatment with a variety of glyco-aldehyde probes afforded the desired heterogenous glycoalbumins (**TAMRA-2a**, **TAMRA-2b**, **TAMRA-2c**, **TAMRA-2c**', **TAMRA-2d**, **TAMRA-2e**, **TAMRA-2f**, **HiLyte-2b**, **HiLyte-2c**, and **HiLyte-2e**). MALDI-TOF-MS analysis further confirms that the ratios of conjugated glycan—aldehyde probes.

Scheme S1. Synthesis scheme for heterogeneous glycoalbumins **2a-f**. Synthesis of $\alpha(2,3)$ Sia- and Gal-terminated glycoalbumin **2c** is shown as an example.

Synthesis of intermediate TAMRA-1

To **TAMRA-HSA** stock solution (96 μ L, 12 nmol) was added water (307 μ L), DMSO (96 μ L), and then 3.8 mM stock solution of α (2,3)Sia-aldehyde in DMSO (144 nmol, 12 eq, 37 μ L) under air. The mixture was incubated overnight at 37 °C to provide stock solution of **TAMRA-1**. A small amount of the reaction mixture (0.5 μ L) was analyzed by MALDI-TOF-MS (positive mode), detecting the molecular weight of **TAMRA-1** at 82.5 kDa, which contains average number, 4.8 molecules of α (2,3)Sia-terminated disialoglycan per albumin.

MALDI-TOF-MS of TAMRA-1

Preparation of homogeneous glycoalbumin TAMRA-2a with $\alpha(2,3)$ Sia

To **TAMRA-1** stock solution (52 μ L, 1.25 nmol) was added 3.8 mM stock solution of α (2,3)Sia-aldehyde in DMSO (17 nmol, 14 eq, 4.4 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of homogeneous glycoalbumin **TAMRA-2a**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2a** at 97.4 kDa, which therefore contained 4.9 molecules of glycan per albumin (total number of glycans introduced to albumin was 9.8).

MALDI-TOF-MS of TAMRA-2a

Preparation of heterogeneous glycoalbumin TAMRA-2b with $\alpha(2,3)$ Sia and $\alpha(2,6)$ Sia

To TAMRA-1 stock solution (52 µL, 1.25 nmol) was added 3.8 mM stock solution of α (2,6)Sia-aldehyde in DMSO (19 nmol, 15 eq, 5.0 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 µm® and diluted with water to give 10 µM solution of heterogeneous glycoalbumin TAMRA-2b. MALDI-TOF-MS (positive mode) detected the molecular weight of TAMRA-2b at 96.5 kDa, which therefore contained 4.6 molecules of glycan per albumin (total number of glycans introduced to albumin was 9.5).

MALDI-TOF-MS of TAMRA-2b

Preparation of heterogeneous glycoalbumin TAMRA-2c with $\alpha(2,3)$ Sia and Gal

To **TAMRA-1** stock solution (52 μ L, 1.25 nmol) was added 3.8 mM stock solution of Gal-aldehyde in DMSO (21 nmol, 17 eq, 5.5 μ L) in two portions under air. The mixture was incubated for 1 day at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **TAMRA-2c**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2c** at 96.4 kDa, which therefore contained 5.7 molecules of glycan per albumin (total number of glycans introduced to albumin was 10.5).

Preparation of heterogeneous glycoalbumin TAMRA-2d with $\alpha(2,3)$ Sia and $\alpha(2,6)$ Sia/Man

To **TAMRA-1** stock solution (52 μ L, 1.25 nmol) was added 3.8 mM stock solution of α (2,6)Sia/Man-aldehyde in DMSO (15 nmol, 12 eq, 3.9 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **TAMRA-2d**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2d** at 96.0 kDa, which therefore contained 5.7 molecules of glycan per albumin (total number of glycans introduced to albumin was 10.6).

Preparation of heterogeneous glycoalbumin TAMRA-2e with $\alpha(2,3)$ Sia and GlcNAc

To **TAMRA-1** stock solution (62 μ L, 1.5 nmol) was added 3.8 mM stock solution of GlcNAc-aldehyde in DMSO (20 nmol, 14 eq, 5.4 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **TAMRA-2e**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2e** at 92.8 kDa, which therefore contained 4.9 molecules of glycan per albumin (total number of glycans introduced to albumin was 9.7).

Preparation of heterogeneous glycoalbumin TAMRA-2f with $\alpha(2,3)$ Sia and Man

To **TAMRA-1** stock solution (52 μ L, 1.25 nmol) was added 3.8 mM stock solution of Man-aldehyde in DMSO (15 nmol, 12 eq, 4.0 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **TAMRA-2f**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2f** at 90.9 kDa, which therefore contained 4.9 molecules of glycan per albumin (total number of glycans introduced to albumin was 9.7).

Synthesis of intermediate TAMRA-1'

To **TAMRA-HSA** stock solution (32 μ L, 4.0 nmol) was added water (102 μ L), DMSO (32 μ L), and then 3.8 mM stock solution of Gal-aldehyde in DMSO (67 nmol, 18 eq, 17 μ L) in three portions under air. The mixture was incubated for 2 d at 37 °C to provide stock solution of **TAMRA-1**'. A small amount of the reaction mixture (0.5 μ L) was analyzed by MALDI-TOF-MS (positive mode), detecting the molecular weight of **TAMRA-1**' at 80.9 kDa, which contains average number, 5.3 molecules of Gal-terminated glycan per albumin.

Preparation of heterogeneous glycoalbumin TAMRA-2c' with Gal and $\alpha(2,3)$ Sia

To **TAMRA-1**' stock solution (52 μ L, 1.25 nmol) was added 3.8 mM stock solution of α (2,3)Sia-aldehyde in DMSO (17 nmol, 14 eq, 4.4 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **TAMRA-2c'**. MALDI-TOF-MS (positive mode) detected the molecular weight of **TAMRA-2c'** at 97.5 kDa, which therefore contained 5.5 molecules of glycan per albumin (total number of glycans introduced to albumin was 10.8).

Synthesis of intermediate HiLyte-1

To **HiLyte-HSA** stock solution (175 μ L, 10 nmol) was added water (175 μ L), DMSO (88 μ L), and then 3.8 mM stock solution of α (2,3)Sia-aldehyde in DMSO (179 nmol, 18 eq, 47 μ L) in three portions under air. The mixture was incubated for 2 days at 37 °C to provide stock solution of **HiLyte-1**. A small amount of the reaction mixture (0.5 μ L) was analyzed by MALDI-TOF-MS (positive mode), detecting the molecular weight of **HiLyte-1** at 83.9 kDa, which contains average number, 4.5 molecules of α (2,3)Sia-terminated disialoglycan per albumin.

MALDI-TOF-MS of HiLyte-1

Preparation of heterogeneous glycoalbumin HiLyte-2b with $\alpha(2,3)$ Sia and $\alpha(2,6)$ Sia

To **HiLyte-1** stock solution (43 μ L, 1 nmol) was added 3.8 mM stock solution of α (2,6)Sia-aldehyde in DMSO (9 nmol, 9 eq, 2.4 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **HiLyte-2b**. MALDI-TOF-MS (positive mode) detected the molecular weight of **HiLyte-2b** at 101.7 kDa, which therefore contained 5.9 molecules of glycan per albumin (total number of glycans introduced to albumin was 10.4).

Preparation of heterogeneous glycoalbumin HiLyte-2c with $\alpha(2,3)$ Sia and Gal

To **HiLyte-1** stock solution (43 μ L, 1 nmol) was added 3.8 mM stock solution of Galaldehyde in DMSO (11 nmol, 11 eq, 2.9 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **HiLyte-2c**. MALDI-TOF-MS (positive mode) detected the molecular weight of **HiLyte-2c** at 98.8 kDa, which therefore contained 6.1 molecules of glycan per albumin (total number of glycans introduced to albumin was 10.6).

Preparation of heterogeneous glycoalbumin HiLyte-2e with $\alpha(2,3)$ Sia and GlcNAc

To **HiLyte-1** stock solution (43 μ L, 1 nmol) was added 3.8 mM stock solution of GlcNAcaldehyde in DMSO (11 nmol, 11 eq, 2.9 μ L) under air. The mixture was incubated overnight at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 10 μ M solution of heterogeneous glycoalbumin **HiLyte-2e**. MALDI-TOF-MS (positive mode) detected the molecular weight of **HiLyte-2e** at 94.0 kDa, which therefore contained 4.7 molecules of glycan per albumin (total number of glycans introduced to albumin was 9.2).

MALDI-TOF-MS of HiLyte-2e

1.4 Glycoalbumin Ligation Site Determination

To determine the lysine residues that are favored for conjugation during the formation of the heterogeneous glycoalbumins used in this study, a mass spectrometry-based study was performed using two model glycoalbumins. **5Gal-HSA** is a glycoalbumin conjugated with approximately 5 galactose terminated glycans (to mimic the intermediate after the first coupling step), while **10Gal-HSA** is a glycoalbumin conjugated with approximately 10 galactose terminated glycans (to mimic the product after both coupling steps). Using two separate mass spectrometry techniques (LC-MS/MS and MALDI-TOF/MS), the results were consolidated to reveal 10 lysine residues that are likely ligation sites for glycoalbumins **2a-f**.

1.4.1 Summary

In summary, 10 lysine residues (Lys73, Lys136, Lys195, Lys199, Lys351, Lys402, Lys439, Lys525, Lys536, Lys541) were identified as preferential ligation sites with the glycan—aldehyde probes used in this study. Summarized in Figure S2, these lysine residues are displayed in red.

- 1 DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFA
- 51 KTCVADESAENCDKSLHTLFGD**K**LCTVATLRETYGEMADCCAKQEPERNE
- 101 CFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFL**K**KYLYEIARRHPYFY
- 151 APELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSA<mark>k</mark>QRL<mark>k</mark>C
- 201 ASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDL
- 251 LECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPA
- 301 DLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLA
- 351 **K**TYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGE
- 401 YKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAE
- 451 DYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPK
- 501 EFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDD
- 551 FAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

Figure S2. Summary of specific lysine residues in human serum albumin prone to ligation with glycan—aldehyde probes used in this study. This data was collected via consolidation from LC-MS/MS and MALDI-TOF/MS analyses.

Table 04 0.

By comparing the abundance ratios from the LC-MS/MS experiments and the signal intensities from the MALDI-TOF/MS experiments, it is possible to estimate which of the aforementioned lysines are preferentially labeled in **5Gal-HSA**. In theory, these lysines would represent the amino acids that react the fastest. These results are summarized in Table S1.

Table ST. Sun	imary of lysine	ligation sites
	5Gal-HSA	10Gal-HSA
Lys73		\checkmark
Lys136		\checkmark
Lys195	✓	\checkmark
Lys199	✓	\checkmark
Lys351		\checkmark
Lys402		\checkmark
Lys439		\checkmark
Lys525	\checkmark	~
Lys536	\checkmark	\checkmark
Lys541	✓	✓

Figure S3. Structure of HSA (PDB - 2BXI) with highlighted (in red) lysine residues that are proposed to be conjugated with glycans in the glycoalbumins used for this study. In general, all lysines were found to be sufficiently exposed to the surface.

1.4.2 Preparation of Glycoalbumins 5Gal-HSA, 10Gal-HSA

In the general synthetic scheme of **5Gal-HSA** and **10Gal-HSA** (Scheme S2), the key determining factor was the reaction concentration of the galactose-terminated glycan—aldehyde. Human serum albumin (HSA) was either treated with 17 equivalents or 30 equivalents of the galactose-terminated glycan—aldehyde, which leads to either **5Gal-HSA** or **10Gal-HSA**, respectively. MALDI-TOF-MS analysis can then be performed to confirm the number of conjugated glycan moieties.

Scheme S2. Synthesis scheme for homogenous Gal-terminated glycoalbumins 5Gal-HSA and 10Gal-HSA.

Preparation of homogeneous glycoalbumin 5Gal-HSA with Gal

To **HSA** stock solution (36 μ L, 6.0 nmol) was added water (288 μ L), DMSO (96 μ L), and then 3.8 mM stock solution of Gal-aldehyde in DMSO (102 nmol, 17 eq, 27 μ L) under air. The mixture was incubated for 2 d at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 50 μ M solution of homogeneous glycoalbumin **5Gal-HSA**. MALDI-TOF-MS (positive mode) detected the molecular weight of **5Gal-HSA** at 79.2 kDa, which contains average number, 5.1 molecules of Gal-terminated glycan per albumin.

MALDI-TOF-MS of 5Gal-HSA

Preparation of homogeneous glycoalbumin 10Gal-HSA with Gal

To **HSA** stock solution (64 μ L, 4.0 nmol) was added water (192 μ L), DMSO (64 μ L), and then 3.8 mM stock solution of Gal-aldehyde in DMSO (120 nmol, 30 eq, 32 μ L) under air. The mixture was incubated for 2 d at 37 °C. The resulting solution was diluted with water and centrifuged through Amicon 10K® at 15,000 rpm for 10 min, and further washed with water three times to filter off any small molecules. The insoluble byproducts were removed by filtering with Durapore PVDF 0.45 μ m® and diluted with water to give 50 μ M solution of homogeneous glycoalbumin **10Gal-HSA**. MALDI-TOF-MS (positive mode) detected the molecular weight of **10Gal-HSA** at 91.0 kDa, which contains average number, 9.8 molecules of Gal-terminated asialoglycan per albumin.

MALDI-TOF-MS of 10Gal-HSA

1.4.3 LC-MS/MS Analysis

For the LC-MS/MS study, three different protein samples were digested and analyzed (native HSA, **5Gal-HSA**, and **10Gal-HSA**). Endoproteinase Asp-N was employed for enzymatic digestion, which acts by selectively cleaving peptide bonds on the N-terminal side of aspartic acid (Asp, D) and glutamic acid (Glu, E) residues.

Analysis was primarily performed by measuring and comparing the abundance ratios of found peptide fragments between the native HSA with either **5GaI-HSA** or **10GaI-HSA**. To establish that the concentration of analyzed protein samples were roughly equivalent, the overall abundance ratio of **5GaI-HSA**/HSA was measured to be 0.995, while that of **10GaI-HSA**/HSA was measured to be 0.874.

A summary of suspected lysine residues (shown in orange) that may act as ligation sites are shown in Figure S4. Analyzed peptide fragments which this data was obtained from are discussed and examined in Figures S5-8.

Detailed MS chromatograms, MS/MS spectra, and summary of detected fragment matches can be found in Figures S9-20.

- 1 DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFA
- 51 KTCVADESAENCDKSLHTLFGD**K**LCTVATLRETYGEMADCCA**K**QEPERNE
- 101 CFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFL**KK**YLYEIARRHPYFY
- 151 APELLFFA**k**ry**k**aafteccqaadkaacllpkldelrdeg<mark>k</mark>assa<mark>k</mark>qrl<mark>k</mark>c
- 201 ASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDL
- 251 LECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPA
- 301 DLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLA
- 351 KTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGE
- 401 YKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAE
- 451 DYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPK
- 501 EFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDD
- 551 FAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

Figure S4. Summary of suspected lysine residues in human serum albumin that are prone to ligation with glycan—aldehyde probes obtained via LC-MS/MS methods.

Figure S5 shows albumin residues 1-100, along with the corresponding peptide fragments L1-L7 that have notable abundance ratio changes throughout the LC-MS/MS studies. Lysine residues of interest were identified at positions 4, 73, and 93.

 For Lys4, peptide fragment L1 designates it as a fair/good site of ligation. To deduce whether Lys4 or Lys12 is the ligation site of interest, fragment L2 was then identified for its generally poor abundance ratio, thereby affirming Lys4 as the ligation site.

 \circ For Lys73, peptide fragments L3 and L4 designates it as a fair/good site of ligation.

 $_{\odot}$ For Lys 93, peptide fragments L5-L7 designates it as a good site of ligation.

1 DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFA

DAH <mark>K</mark> SEVAHRFK	L1
EVAHRFK	L2
	L3
	L4
	L5
	L6
	L7

51 KTCVADESAENCDKSLHTLFGD**k**LCTVATLRETYGEMADCCA**k**QEPERNE

	L1
	L2
DKLCTVATLRETYGEMA	LЗ
DKLCTVATLRETYG	L4
ETYGEMADCCA <mark>K</mark> QEPERN-	L5
ETYGEMADCCA <mark>K</mark> Q	L6
DCCA <mark>K</mark> QEP	L7

	Abundance Ratios			
	5Gal-HSA/HSA		10Gal-H	ISA/HSA
		avg		avg
L1	0.528		0.2	256
L2	0.641		7.331	
L3	0.802	0 716	0.686	0 3 4 9
L4	0.63	0./10	0.01	0.540
L5	0.77		0.512	
L6	0.27	0.405	0.737	0.519
L7	0.175		0.307	

great	0 - 0.2
good	0.2 - 0.5
fair	0.5 - 0.8
poor	0.8 - >1

Figure S5. Peptide sequence of albumin residues 1-100, along with matching peptide fragments L1-L7 detected via LC-MS/MS. The inserted table shows the calculated abundance ratios, which are color-coded to assess the degree of the corresponding lysine residues as a potential ligation site.

Figure S6 shows albumin residues 121-220, along with the corresponding peptide fragments L8-L12 that have notable abundance ratio changes throughout the LC-MS/MS studies. Lysine residues of interest were identified at positions 136, 137, 159, 162, 190, 195, 199, and 205.

- For Lys136/137, peptide fragments L8 and L9 designates either one of the lysines as a fair site of ligation.
- $_{\odot}$ For Lys159/162 peptide fragments L10 and L11 designates either one of the lysines as a good site of ligation.
- \circ For Lys190/195/199/205, peptide fragment L12 designates either one of the lysines as a great site of ligation.
- 121 DVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQ

DNEETFLKKYLY	Г8
ETFL KK YLY	L9
EIARRHPYFYAPELLFFA K RY K AAFTECCQ	L10
EIARRHPYFYAPELLFFA <mark>K</mark> RY <mark>K</mark> AAFT	L11
	L12

	Abundance Ratios]			
	5Gal-HSA/HSA		10Gal-I	10Gal-HSA/HSA			
		avg		avg			
L8	0.813	0 727	0.503	0 652		great	0 - 0.2
L9	0.661	0.131	0.802	0.055		good	0.2 - 0.5
L10	0.65	0 191	0.583	0 363		fair	0.5 - 0.8
L11	0.337	0.494	0.142	0.303		poor	0.8 - >1
L12	0.1	L75	0.1	171			

Figure S6. Peptide sequence of albumin residues 121-220, along with matching peptide fragments L8-L12 detected via LC-MS/MS. The inserted table shows the calculated abundance ratios, which are color-coded to assess the degree of the corresponding lysine residues as a potential ligation site.

Figure S7 shows albumin residues 351-450, along with the corresponding peptide fragments L13-L25 that have notable abundance ratio changes throughout the LC-MS/MS studies. Lysine residues of interest were identified at positions 389, 402, 413, 414, 432, 436, 439, and 444.

- For Lys389, peptide fragments L13-L15 designates it as a good/fair site of ligation.
- For Lys402/413/414, peptide fragments L16 and L17 designates either one of the lysines as a good site of ligation.
- For Lys432/436/439, peptide fragment L23 designates either one of the lysines as a good/great site of ligation.
- For Lys444, peptide fragments L24 and L25 designates it as a great site of ligation.
- 401 YKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAE

	L13
	L14
	L15
YKFQNALLVRYTKKVPQVSTPTLV	L16
YKFQNALLVRYTKKVPQVSTPTLV	L17
$\texttt{Y}{\mathbf{K}}\texttt{F}{\mathbf{Q}}\texttt{N}\texttt{A}\texttt{L}\texttt{V}\texttt{R}\texttt{Y}{\mathbf{T}}{\mathbf{K}}{\mathbf{K}}\texttt{V}\texttt{P}{\mathbf{Q}}\texttt{V}\texttt{S}\texttt{T}\texttt{P}\texttt{L}\texttt{V}\texttt{E}\texttt{V}\texttt{S}\texttt{R}\texttt{N}\texttt{G}{\mathbf{S}}{\mathbf{K}}\texttt{C}\mathtt{C}{\mathbf{K}}\texttt{H}\texttt{P}\texttt{E}\mathtt{A}{\mathbf{K}}\texttt{R}\texttt{M}\texttt{P}\texttt{C}\mathtt{A}\mathtt{E}$	L18
EVSRNLGKVGSKCCKHPEAKRMPCAE	L19
EVSRNLGKVGSKCCKHPEAKRMPCAE	L20
EVSRNLGKVGSKCCKHPEAKRMPCA-	L21
EVSRNLGKVGSKCCKHPEAKRMPCA-	L22
EVSRNLGKVGSKCCKHP	L23
EA K RMPCA-	L24
EAKRMPCAE	L25

Figure S7. Peptide sequence of albumin residues 351-450, along with matching peptide fragments L13-25 detected via LC-MS/MS. The inserted table shows the calculated abundance ratios, which are color-coded to assess the degree of the corresponding lysine residues as a potential ligation site.

	Abundance Ratios				
	5Gal-HSA/HSA		10Gal-H	HSA/HSA	
		avg		avg	
L13	0.565		0.653		
L14	0.387	0.482	0.62	0.664	
L15	0.494		0.72		
L16	0.234	0 100	0.215	0 250	
L17	0.581	0.400	0.301	0.256	
L18	0.01 0.		01		
L19	0.777		0.262		
L20	0.449	0 100	0.408	0 270	
L21	0.343	0.498	0.202	0.370	
L22	0.423		0.64		
L23	0.498		0.1	176	
L24	0.158	0 16	0.01	0 072	
L25	0.162	0.10	0.134	0.072	

great	0 - 0.2
good	0.2 - 0.5
fair	0.5 - 0.8
poor	0.8 - >1

Figure S7 (cont). Peptide sequence of albumin residues 351-450, along with matching peptide fragments L13-L25 detected via LC-MS/MS. The inserted table shows the calculated abundance ratios, which are color-coded to assess the degree of the corresponding lysine residues as a potential ligation site.

Figure S8 shows albumin residues 501-550, along with the corresponding peptide fragments L26-L39 that have notable abundance ratio changes throughout the LC-MS/MS studies. Lysine residues of interest were identified at positions 519, 524, 525, 534, 536, 538, and 541.

- Because peptide fragments L26-L35 has overlaps with too many potential lysine sites of conjugation, their analysis is strictly limited to looking at them in bulk. The general low abundance ratios found with these peptide fragments suggest that this portion of the albumin protein is strongly favorable for conjugation with the glycan—aldehyde probes.
- For Lys519, peptide fragments L38 and L39 designates it as a good site of ligation.
- For Lys524/525, peptide fragment L37 designates either one of the lysines as a good/great site of ligation.
- $_{\odot}$ For Lys534/536/538/541, peptide fragment L36 designates either one of the lysines as a great site of ligation.

501	EFNAETFTFHADICTLSE K ERQI KK QTALVELVKHKPKATKEQLKAVMDD	
	DICTLSE <mark>K</mark> ERQIKKQTALVELVKHKPKATKEQLKAVM	L26
	DICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVM	L27
	EKERQIKKQTALVELVKHKPKATKEQLKAVM	L28
	EKERQIKKQTALVELVKHKPKATKEQLKAVM	L29
	KQIKKQTALVELVKHKPKATKEQLKAVM	L30
	EKERQIKKQTALVELVKHKPKATK	L31
	ERQI KK QTALVELV <mark>KHK</mark> PKATK	L32
	DICTLSEKERQIKKQTALVELVKHKPKATK	L33
	EKERQIKKQTALVELV	L34
	DICTLSE <mark>K</mark> ERQI <mark>KK</mark> QTALV	L35
	ELVKHKPKATK	L36
	ERQI <mark>KK</mark> QTALVELV	L37
	EFNAETFTFHADICTLSE <mark>K</mark>	L38
	DICTLSE <mark>K</mark>	L39

	Abundance Ratios										
	5Gal-H	SA /HSA	10Gal-H	HSA/HSA							
		avg		avg							
L26	0.114		0.01								
L27	0.514		0.213								
L28	0.21		0.01								
L29	0.017		0.01								
L30	0.01	0 162	0.01	0 0 4 5							
L31	0.078	0.162	0.02	0.045							
L32	0.103		0.01								
L33	0.124		0.022								
L34	0.251		0.039								
L35	0.2		0.101								
L36	0.1	97	0.1	129							
L37	0.2	214	0.1	188							
L38	0.067	0 122	0.104	0 196							
L39	0.799	0.435	0.868	0.400							

great	0 - 0.2
good	0.2 - 0.5
fair	0.5 - 0.8
poor	0.8 - >1

Figure S8. Peptide sequence of albumin residues 501-550, along with matching peptide fragments L26-L39 detected via LC-MS/MS. The inserted table shows the calculated abundance ratios, which are color-coded to assess the degree of the corresponding lysine residues as a potential ligation site.

Figure S9. Magnified MS chromatogram (retention time: 19.18 to 23.23 min) on the peptide fragment [DKLCTVATLRETYGEMA] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

	DKLC	TVAT	-RETYG	EMA (72-88)	
ť	₽ţ	$\mathbf{b}^{^{2+}}$	Seq.	Å ‡	\mathbf{y}^{2^+}	#2
-	116.0342	58.5208	۵			17
2	244.1292	122.5682	¥	1843.8929	922.4501	16
ę	357.2133	179.1103	_	1715.7979	858.4026	15
4	518.2279	259.6176	C-Carboxymethyl	1602.7138	801.8606	14
വ	619.2756	310.1414	T	1441.6992	721.3532	13
9	718.3440	359.6756	>	1340.6515	670.8294	12
7	789.3811	395.1942	۷	1241.5831	621.2952	Ξ
∞	890.4288	445.7180	μ	1170.5460	585.7766	10
ი	1003.5129	502.2601	_	1069.4983	535.2528	6
10	1159.6140	580.3106	٣	956.4142	478.7107	∞
7	1288.6566	644.8319	ш	800.3131	400.6602	~
12	1389.7042	695.3558	T	671.2705	336.1389	9
13	1552.7676	776.8874	≻	570.2228	285.6151	പ
14	1609.7890	805.3982	თ	407.1595	204.0834	4
15	1738.8316	869.9195	ш	350.1380	175.5727	ო
16	1869.8721	935.4397	Σ	221.0954	111.0514	2
17			٨	90.0550	45.5311	-
	.					

Figure S11. Summary of detected fragment matches for the peptide [DKLCTVATLRETYGEMA].

\sim
187-207
\sim
КFG
\overline{a}
U.
ഗ
À
0
$\mathbf{\Sigma}$
$\overline{\mathbf{x}}$
ц Ц
Q
V
\rightarrow
4
S
S
Ä
\mathbf{S}
<u>×</u>
C
Ш

 			_		_			_		_							_	_		_	_
#2	21	20	19	18	17	16	15	14	13	12	7	10	თ	∞	7	9	വ	4	e	2	
\mathbf{y}^{3+}		732.3916	689.3774	670.3702	627.6719	603.9928	574.9822	545.9715	522.2925	479.5941	436.9079	384.8742	347.1796	304.4812	250.8097	227.1306	198.1200	160.4253	117.7391	75.0408	26.0180
\mathbf{y}^{2+}		1098.0837	1033.5624	1005.0517	941.0042	905.4856	861.9696	818.4536	782.9350	718.8876	654.8583	576.8077	520.2657	456.2182	375.7109	340.1923	296.6763	240.1343	176.1050	112.0575	38.5233
y ⁺		2195.1601	2066.1175	2009.0961	1881.0011	1809.9640	1722.9320	1635.8999	1564.8628	1436.7678	1308.7093	1152.6082	1039.5241	911.4291	750.4145	679.3774	592.3453	479.2613	351.2027	223.1077	76.0393
Seq.	۵	ш	U	×	∢	S	S	∢	×	Ø	٣	_	×	C-Carboxymethyl	۷	თ	_	Ø	×	L	IJ
b ³⁺	39.3496	82.3638	101.3709	144.0693	167.7483	196.7590	225.7697	249.4487	292.1470	334.8332	386.8669	424.5616	467.2599	520.9315	544.6105	573.6212	611.3159	654.0021	696.7004	745.7232	
$\mathbf{b}^{^{2+}}$	58.5208	123.0420	151.5528	215.6003	251.1188	294.6348	338.1508	373.6694	437.7169	501.7462	579.7967	636.3388	700.3862	780.8936	816.4121	859.9281	916.4702	980.4995	1044.5469	1118.0812	
¢+	116.0342	245.0768	302.0983	430.1932	501.2304	588.2624	675.2944	746.3315	874.4265	1002.4851	1158.5862	1271.6702	1399.7652	1560.7799	1631.8170	1718.8490	1831.9331	1959.9917	2088.0866	2235.1550	
Ľ	-	2	ო	4	വ	9	7	∞	ი	9	7	12	13	14	15	16	17	18	19	20	21

Figure S14. Summary of detected fragment matches for the peptide [DEGKASSAKQRLKCASLQKFG].

[EVSRNLGKVGSKCCKHPEAKRMPCA] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

	# 7	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	ഹ	4	ę	2	-
	\mathbf{y}^{4+}		694.0896	669.3225	647.5645	608.5392	580.0285	551.7574	537.5021	505.4783	480.7112	466.4559	444.6979	412.6741	372.4204	332.1668	300.1430	265.8783	241.6151	209.3545	191.5952	159.5715	120.5462	87.7861	63.5229	23.2692
0++-0	y ³⁺		925.1170	892.0942	863.0835	811.0498	773.0355	735.3408	716.3337	673.6354	640.6125	621.6054	592.5947	549.8964	496.2248	442.5533	399.8550	354.1687	321.8177	278.8035	255.1245	212.4262	160.3925	116.7123	84.3614	30.6898
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\mathbf{y}^{2+}		1387.1719	1337.6377	1294.1216	1216.0711	1159.0496	1102.5076	1073.9969	1009.9494	960.4152	931.9044	888.3884	824.3409	743.8336	663.3263	599.2788	530.7493	482.2230	417.7017	382.1831	318.1356	240.0851	174.5648	126.0385	45.5311
	Å		2773.3365	2674.2680	2587.2360	2431.1349	2317.0920	2204.0079	2146.9864	2018.8915	1919.8231	1862.8016	1775.7696	1647.6746	1486.6600	1325.6453	1197.5503	1060.4914	963.4387	834.3961	763.3589	635.2640	479.1629	348.1224	251.0696	90.0550
	Seq.	ш	>	თ	£	z	_	U	¥	>	U	S	×	C-Carboxymethyl	C-Carboxymethyl	×	т	٩	ш	٨	×	£	Σ	٩	C-Carboxymethyl	A
ノンとつの	b4+	33.2679	58.0350	79.7930	118.8183	147.3291	175.6001	189.8554	221.8792	246.6463	260.9016	282.6596	314.6834	354.9371	395.1907	427.2145	461.4792	485.7424	518.0030	535.7623	567.7860	606.8113	639.5714	663.8346	704.0883	
ノトとワー	\mathbf{b}^{3+}	44.0215	77.0443	106.0550	158.0887	196.1030	233.7977	252.8048	295.5031	328.5259	347.5331	376.5438	419.2421	472.9136	526.5852	569.2835	614.9698	647.3207	690.3349	714.0140	756.7123	808.7460	852.4262	884.7771	938.4486	
	b ²⁺	65.5286	115.0628	158.5788	236.6294	293.6508	350.1929	378.7036	442.7511	492.2853	520.7960	564.3120	628.3595	708.8668	789.3742	853.4216	921.9511	970.4775	1034.9988	1070.5173	1134.5648	1212.6154	1278.1356	1326.6620	1407.1693	
J	ţ	130.0499	229.1183	316.1503	472.2514	586.2944	699.3784	756.3999	884.4948	983.5633	1040.5847	1127.6168	1255.7117	1416.7264	1577.7410	1705.8360	1842.8949	1939.9477	2068.9903	2140.0274	2268.1223	2424.2235	2555.2639	2652.3167	2813.3314	
	1	-	2	ю	4	വ	9	7	∞	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	25

EVSRNI GKVGSKCCKHPFAKRMPCA (425-449)

Figure S17. Summary of detected fragment matches for the peptide [EVSRNLGKVGSKCCKHPEAKRMPCA].

[EKERQIKKQTALVELVKHKPKATK] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

EKERQIKKQTALVELVKHKPKATK (518-541)

5 #	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ი	∞	2	9	ъ	4	ო	2	-
\mathbf{y}^{6+}		451.1155	429.7663	408.2592	382.2423	360.8992	342.0519	320.7027	299.3536	278.0105	261.1692	249.3297	230.4823	213.9709	192.4638	173.6165	157.1051	135.7559	112.9128	91.5636	75.3882	54.0390	42.1995	25.3582
\mathbf{y}^{5+}		541.1371	515.5181	489.7096	458.4894	432.8776	410.2608	384.6418	359.0228	333.4111	313.2016	298.9942	276.3774	256.5637	230.7552	208.1383	188.3247	162.7057	135.2939	109.6749	90.2643	64.6453	50.4379	30.2284
\mathbf{y}^{4+}		676.1695	644.1458	611.8852	572.8599	540.8452	512.5742	480.5505	448.5267	416.5121	391.2502	373.4909	345.2199	320.4528	288.1921	259.9211	235.1540	203.1303	168.8655	136.8418	112.5786	80.5549	62.7956	37.5337
\mathbf{y}^{3+}		901.2236	858.5253	815.5111	763.4774	720.7912	683.0965	640.3982	597.6999	555.0137	521.3311	497.6521	459.9574	426.9346	383.9204	346.2257	313.2029	270.5046	224.8183	182.1200	149.7690	107.0707	83.3917	49.7091
\mathbf{y}^{2+}		1351.3318	1287.2843	1222.7630	1144.7125	1080.6832	1024.1411	960.0937	896.0462	832.0169	781.4931	745.9745	689.4325	639.8983	575.3770	518.8349	469.3007	405.2532	336.7238	272.6763	224.1499	160.1024	124.5839	74.0600
y [‡]		2701.6563	2573.5614	2444.5188	2288.4177	2160.3591	2047.2750	1919.1800	1791.0851	1663.0265	1561.9788	1490.9417	1377.8577	1278.7892	1149.7466	1036.6626	937.5942	809.4992	672.4403	544.3453	447.2926	319.1976	248.1605	147.1128
Seq.	ш	¥	ш	٣	σ	-	¥	¥	σ	⊢	×	_	>	ш	_	>	¥	т	¥	٩	¥	A	⊢	¥
₽ ⁶⁴	22.5144	43.8635	65.3706	91.3875	112.7306	131.5779	152.9271	174.2763	195.6193	212.4606	224.3001	243.1475	259.6589	281.1660	300.0133	316.5247	337.8739	360.7171	382.0662	398.2417	419.5908	431.4304	448.2716	
Ъ ⁵⁺	26.8158	52.4348	78.2433	109.4635	135.0752	157.6921	183.3111	208.9300	234.5418	254.7513	268.9587	291.5755	311.3892	337.1977	359.8145	379.6282	405.2472	432.6590	458.2780	477.6886	503.3075	517.5150	537.7245	
\mathbf{b}^{4+}	33.2679	65.2917	97.5523	136.5776	168.5922	196.8633	228.8870	260.9107	292.9254	318.1873	335.9466	364.2176	388.9847	421.2453	449.5164	474.2835	506.3072	540.5719	572.5957	596.8589	628.8826	646.6419	671.9038	
b ³⁺	44.0215	86.7198	129.7340	181.7677	224.4539	262.1486	304.8469	347.5452	390.2314	423.9140	447.5930	485.2877	518.3105	561.3247	599.0194	632.0422	674.7405	720.4268	763.1251	795.4761	838.1744	861.8534	895.5360	
\mathbf{b}^{2+}	65.5286	129.5761	194.0974	272.1479	336.1772	392.7192	456.7667	520.8142	584.8435	635.3673	670.8859	727.4279	776.9621	841.4834	898.0254	947.5597	1011.6071	1080.1366	1144.1841	1192.7105	1256.7579	1292.2765	1342.8003	
₽+	130.0499	258.1448	387.1874	543.2885	671.3471	784.4312	912.5261	1040.6211	1168.6797	1269.7274	1340.7645	1453.8485	1552.9170	1681.9595	1795.0436	1894.1120	2022.2070	2159.2659	2287.3609	2384.4136	2512.5086	2583.5457	2684.5934	
L #	-	2	e	4	S	9	7	∞	ი	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

Figure S20. Summary of detected fragment matches for the peptide [EKERQIKKQTALVELVKHKPKATK].

1.4.4 MALDI-TOF/MS mass spectrometry

For the MALDI-TOF/MS study, three different protein samples were digested and analyzed (native HSA, **5GaI-HSA**, and **10GaI-HSA**). Trypsin was employed for enzymatic digestion, which acts by selectively cleaving peptide bonds on the C-terminal side of lysine (Lys, K) and arginine (Arg, R) residues.

Data analysis identified peptide fragments M1-M10 to be bound with the galactoseterminated glycan, which was found with varying intensity levels in both **5Gal-HSA** and **10Gal-HSA** samples. In addition, these fragments were absent from the native HSAdigested control spectrum. A summary of peptide fragments M1-M10 and the proposed lysine residues (shown in orange) that act as ligation sites are shown in Figure S21. Detailed MALDI-TOF spectrum for these peptides can be found in Figures S22-32.

 $1 \ \mathsf{DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAE$

61 NCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEV SLHTLFGDKLCTVATLR LVRPEV

peptide M1

121 DVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLP DVMCTAFHDNEETFLKK

peptide M2

181 KLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTK ASSAKQRLKCASLQK

peptide M3 | peptide M4

241 VHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPA

301 DLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLA**k**TYETTLEKC

peptide M5

361 CAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEY**K**FQNALLVRYTKKVPQVST QNCELFEQLGEY**K**FQNALLVR

peptide M6

421 PTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTES VGSKCCKHPEAK

peptide M7

481 LVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIK<mark>K</mark>QTALVELVKH<mark>K</mark>PK

<mark>K</mark>QTALVELVK<mark>HK</mark>PK

peptide M8 | peptide M9

539 ATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

AT<mark>k</mark>eql

peptide M10

Figure S21. Summary of probable lysine residues in human serum albumin that are prone to ligation with glycan—aldehyde probes obtained via MALDI-TOF/MS methods.

Figure S22. Full MALDI-TOF spectrum profile for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA following trypsin digestion.

Figure S23. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M1 [SLHTLFGDKLCTVATLR] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

Figure S24. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M2 [LVRPEVDVMCTAFHDNEETFLKK] in protein samples for A) HSA, B) 5GaI-HSA, and C) 10GaI-HSA.

Figure S25. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M3 [ASSAKQR] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

Figure S27. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M5 [LAKTYETTLEK] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

Figure S28. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M6 [QNCELFEQLGEYKFQNALLVR] in protein samples for A) HSA, B) 5GaI-HSA, and C) 10GaI-HSA.

Figure S32. Magnified MALDI-TOF spectrum profile focusing on peptide fragment M10 [ATKEQLK] in protein samples for A) HSA, B) 5Gal-HSA, and C) 10Gal-HSA.

2) Cell-based Experiments

2.1 General Cell Culture Protocol

The eleven cell lines used in this study were obtained from either American Type Culture Collection (Virginia, USA), RIKEN Cell Bank, or JCRB Cell Bank. Specific growth media used for each individual cell lines are indicated as follows.

Name	Туре	Medium	FBS	Penicillin- Streptomycin	Supplement
A549	human adenocarcinomic alveolar basal epithelial cells	DMEM	10%	1%	
HuH-7	human liver carcinoma cells	DMEM	10%	1%	
AR42J	rat pancreatic cancer cells	DMEM	10%	1%	
HeLa229	human cervical cancer cells	DMEM	10%	1%	
Hep-2	human epithelial type 2 cells	MEM	10%	1%	
U87MG	human neuronal glioblastoma cells	MEM	10%	1%	
DLD-1	human colon adenocarcinoma cells	RPMI1640	10%	1%	
OVCAR-3	human ovary adenocarcinoma cells	RPMI1640	10%	1%	
RL95-2	non-polar human uterine epithelial cells	DMEM:F12 (1:1)	10%	1%	0.005 mg/ml insulin
SW620	human colon cancer cells	L-15	10%	1%	
SK-OV-3	human ovarian carcinoma cells	Macoy's 5a	10%	1%	

2.2 Imaging Studies

Cells under study were plated onto 8-well chamber slides at a density of 3×10³ cells per 300 µl of media. Cells were then grown for approximately 2 days at 37°C. Stock solutions of glycoalbumins 2a-f were prepared at a concentration of 10 µM. To initiate incubation, media in each well was removed by suction, followed by the addition of 3 µl of each respective glycoalbumin in 300 µl of media (Final concentration of 100 nm per well). As a negative control, solution containing only TAMRA-HSA was also incubated at similar concentrations. Cells were then incubated overnight at 37°C. To initiate imaging, cells were washed 3x with PBS buffer (400 µl, 4°C). Cells were then fixated by addition of paraformaldehyde (500 µl, 4°C) and incubated for 5 min at room temperature. Remaining media was then removed by suction, followed by the addition of 500 µl of the nuclear staining agent DAPI (500× diluted solution, 4°C). Following another incubation period of 5 min at room temperature, cells were washed 1x with PBS buffer (400 µl), and prepared for microscopy imaging using a Fluorescent Microscope BX51 (Olympus Corp. Tokyo, Japan). For TAMRA-dye observation, fluorescence was measured at λ_{EX} =530-550nm/ λ_{EM} =575nm, while for DAPI-dye observation, fluorescence was measured at λ_{EX} =330-385nm/ λ_{EM} =420nm. Images were obtained at 200× magnification. Recorded fluorescence values were then averaged and subtracted from the TAMRA-HSA negative control.

3) Animal-based Experiments

3.1 Excretion and Biodistribution Studies

Glycoalbumins **2b**, **2c**, and **2e**, labeled with the near-infrared fluorescent probe (HiLyte Fluor 750®), were prepared at concentrations of 0.25nmol/50µl (low dosage) and 1.5nmol/30µl (high dosage). Samples were then diluted in 50µL and 70µL saline, respectively, in order to reach a total volume of 100 µL. Solutions were injected into 8 to 10 week-old BALB/cAJcl-nu/nu mice via the tail vein (n=4). Mice were then anesthetized with pentobarbital or isoflurane and placed in a fluorescence imager, IVIS kinetics fluorescence imager® (Caliper Life Sciences, Massachusetts, USA). Dorsal side images were collected at 30 min intervals. Given that tumor tissues were implanted on mouse backs, only dorsal data allowed for the proper monitoring of tumor adhesion.

All procedures involving experiment animals were approved by the Ethics Committee of RIKEN (MAH21-19-17). The experiments were performed in accordance with the institutional and national guidelines.

Figure S33. Replicate data (n=4) for noninvasive fluorescence imaging of BALB/c nude mice (dorsal view) at 90 minutes following the intravenous injection of B) $\alpha(2,3)$ Sia/GlcNAc terminated glycoalbumin **2e**, B) $\alpha(2,3)$ Sia/Gal terminated glycoalbumin **2c**, and C) $\alpha(2,3)$ Sia/ $\alpha(2,6)$ Sia terminated glycoalbumin **2b**. Tumor locations are as listed; HeLa229 at right shoulder, U87MG at right groin, and DLD-1 at left groin.

Figure S34. Noninvasive fluorescence imaging of BALB/c nude mice (dorsal view) to compare the differing levels of tumor tissue accumulation between low and high dosages of A) $\alpha(2,3)$ Sia/GlcNAc terminated glycoalbumin **2e**, B) $\alpha(2,3)$ Sia/Gal terminated glycoalbumin **2c**, and C) $\alpha(2,3)$ Sia/ $\alpha(2,6)$ Sia terminated glycoalbumin **2b**. The intensity range at which fluorescence was detected at are as indicated. Tumor locations are as listed; HeLa229 at right shoulder, U87MG at right groin, and DLD-1 at left groin.

4) References

1. A. Ogura, T. Tahara, S. Nozaki, K. Morimoto, Y. Kizuka, S. Kitazume, M. Hara, S. Kojima, H. Onoe, A. Kurbangalieva, N. Taniguchi, Y. Watanabe, K. Tanaka, *Sci. Rep.* **2016**, *6*, 21797