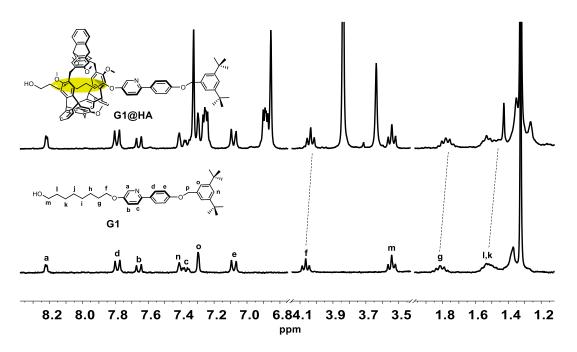
Electronic Supplementary Information

Efficient control of movements in non-photoresponsive molecular machines by photo-induced proton-transfer strategy

Qiang Shi, a,b Zheng Meng, Jun-Feng Xiang and Chuan-Feng Chena,b,*

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Email: cchen@iccas.ac.cn


Contents

1.	Materials and methods	S2
2.	¹ H NMR study of the association of HA with G1	S2
3.	¹ H NMR study of photo-induced motion of HA on G1	S3
4.	Synthesis of new compounds	S3
5.	Characterization of new compounds	S10
6.	Variable-temperature ¹ H NMR experiments	S26
7.	CD spectra of chiral rotaxanes	S28
8.	Acid-base controlled motion	S29
9.	NMR study of photo controlled motion of R2 and R3	S31
10.	Time-dependent ¹ H NMR study of photo-driven motion	S32
11.	Sustainability of acid-base controlled and photo controlled	
	motion patterns	S33

1. Materials and methods

P- and *M*-**HA** was prepared according to literature procedure. Unless otherwise indicated, all reagents were obtained from commercial sources. Melting points were determined using WRR melting point apparatus, and were not corrected. H NMR spectra were recorded on the Bruker DMX300 NMR and Bruker Avance III 500 MHz NMR spectrometer. Electrospray ionization mass spectra (ESI-MS) were recorded on the Thermo Fisher Exactive high-resolution LC-MS spectrometer. All solvents used, except THF and H₂O, were dried through 4A molecular sieve.

2. ¹H NMR study of the association of HA with G1

Fig. S1. Association of **HA** with **G1** (300 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K). Compared with the ¹H NMR spectrum of **G1**, the aromatic protons and H^m of **G1@HA** have no chemical shifts while the proton H^f-H^l slightly upshifted, indicating **HA** inclined to located at the position of H^f to H^l.

3. ¹H NMR study of photo-induced motion of HA on G1

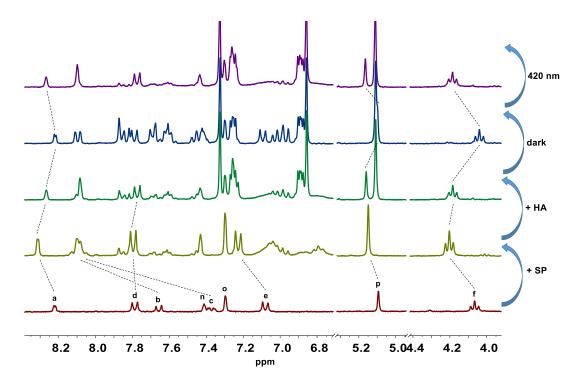


Fig. S2. Photo acid induced association and disassociation of HA with the pyridine part of G1 (300 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K).

4. Synthesis of new compounds

Scheme S1. Synthetic route of [2]rotaxane *P*- or *M*-**R1**.

Synthesis of 1. A mixture of 6-bromopyridin-3-ol (1.0 g, 5.7 mmol), 8-bromo-1-octanol (1.4 g, 6.9 mmol) and anhydrous potassium carbonate (1.5 g) were refluxed in

dried acetonitrile for 8 h. Then the solution was cooled to room temperature and remove the insoluble matter by filtration. After the solvent was removed under reduced pressure, the yellow oily liquid was further purified by silica gel chromatography with petroleum ether/ethyl acetate = 1:1 (v/v) to give a colorless oily liquid product **1** (1.4 g, 83%). 1 H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.03 (d, J = 5 Hz, 1H), 7.42 (d, J = 10 Hz, 1H), 7.23-7.20 (m, 1H), 4.01 (t, J = 5 Hz, 2H), 3.47 (t, J = 5 Hz, 2H), 1.78-1.72 (m, 2H), 1.48-1.30 (m, 10H). 13 C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 156.3, 138.7, 132.1, 129.1, 125.9, 69.8, 62.5, 33.5, 30.0, 29.9, 29.7, 26.5, 26.4. HRMS (ESI): m/z calcd for [M+H]⁺ (C₁₃H₂₁BrO₂N⁺), 301.0672; found m/z 301.0671.

Synthesis of 2. Compound **1** (1.0 g, 3.3 mmol) and 4-hydroxyphenylboronic acid (0.45 g, 3.3 mmol) were dissolved in THF (100 ml) and H₂O (60 ml). Then anhydrous Na₂CO₃ (13 g, 2M) was added. After argon was injected into the solution for 0.5 h, tetrakis (triphenylphosphine) palladium (200 mg, 0.17 mmol) was added. The mixture was heated to 70 °C overnight and then cooled to room temperature. The mixture was washed with DCM. Then the organic layer was collected and dried with anhydrous MgSO₄. After solvent was evaporated in vacuum, the crude product was further purified by chromatography with petroleum ether/ethyl acetate = 1:2 (v/v) to give a yellow solid **2** (0.7 g, 67%). M. p.: 129.3-130.3 °C. ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.27 (d, J = 5 Hz, 1H), 7.84-7.82 (m, 2H), 7.66 (d, J = 10 Hz, 1H), 7.32-7.30 (m, 1H), 7.03 (s, 1H), 6.88-6.86 (m, 2H), 4.06 (t, J = 5 Hz, 2H), 3.50-3.46 (m, 2H), 1.82-1.75 (m, 2H), 1.48-1.33 (m, 10 H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 158.2, 155.0, 150.2, 138.2, 132.0, 128.4, 122.8, 120.7, 116.3, 69.4, 62.5, 33.6,

30.1, 30.0, 29.8, 26.5, 26.5. HRMS (ESI): m/z calcd for $[M+H]^+$ ($C_{19}H_{25}O_3N^+$), 315.1837; found m/z 315.1830.

Synthesis of G1. Compound **2** (0.5 g, 1.6 mmol) and 3, 5-di-tert-butylbenzyl bromide (0.5 g, 1.9 mmol) was dissolved in acetonitrile. After anhydrous K_2CO_3 (1.0 g) was added, the mixture was reflux for 6 h. And then purified by chromatography with DCM to give a yellow-brown powder **G1** (0.73 g, 89%). M. p.: 80.7-82.2 °C. ¹H NMR (500 MHz, DMSO- d_6 , 298 K) δ (ppm): 8.30 (d, J = 5 Hz, 1H), 7.96-7.94 (m, 2H), 7.82-7.80 (m, 1H), 7.43-7.40 (m, 1H), 7.36 (s, 1H), 7.30 (s, 2H), 7.10-7.08 (m, 2H), 5.10 (s, 2H), 4.05 (t, J = 5 Hz, 2H), 3.38 (t, J = 5 Hz, 2H), 1.74-1.72 (m, 2H), 1.43-1.29 (m, 28H). ¹³C NMR (125 MHz, DMSO- d_6 , 298 K) δ (ppm): 158.7, 153.6, 150.4, 148.3, 137.2, 136.0, 131.2, 127.1, 122.1, 122.0, 121.4, 119.8, 114.9, 70.1, 68.0, 60.7, 34.5, 32.5, 31.3, 28.9, 28.8, 28.6, 25.5, 25.4. HRMS (ESI): m/z calcd for [M+H]⁺ (C₃₄H₄₈O₃N⁺), 518.3556; found m/z 518.3551.

Synthesis of G1-H. Excess HCl (0.16 mL) was added to compound **G1** (0.1 g, 0.19 mmol) in water (2 mL). After stirred at room temperature for 30 min, a solution of NaBArF (0.17 g, 0.2 mmol) in DCM (2 ml) was added. Then, the mixture was stirred overnight and the organic layer was separated, washed with water three times and dried with anhydrous MgSO₄. The DCM was removed in vacuum to afford **G1-H** as a yellow solid (0.25 g, 95%). M. p.: 51.2-52.5 °C. ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.21 (d, J = 5 Hz, 1H), 8.12-8.14 (m, 2H), 7.79-7.77 (m, 2H), 7.72-7.70 (m, 8H), 7.68 (s, 4H), 7.48 (t, J = 5 Hz, 1H), 7.36 (s, 2H), 7.28-7.26 (m, 2H), 5.19 (s, 2H), 4.21 (t, J = 5 Hz, 2H), 3.50 (t, J = 5 Hz, 2H), 1.86-1.82 (m, 2H), 1.51-1.46 (m, 4H), 1.42-1.31

(m, 24H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 162.9, 162.6 (q, ¹ J_{CB} = 50 Hz), 157.2, 152.2, 146.1, 136.6, 135.6, 135.0, 130.2, 130.0 (m), 127.9, 127.2, 125.4 (q, ¹ J_{CF} = 275 Hz), 123.5, 123.4, 123.4, 117.1, 71.8, 71.5, 62.5, 35.5, 33.5, 31.6, 30.0, 29.8, 29.3, 26.5, 26.3. HRMS (ESI): m/z calcd for [M-BArF]⁺ (C₃₄H₄₈O₃N⁺), 518.3629; found m/z 518.3631.

Synthesis of *P***- or** *M***-R1.** Compound **G1-H** (0.35 g, 0.26 mmol) and *P*- or *M***-HA** (50 mg, 0.05 mmol) was dissolved in DCM (0.5 ml) and the solution was stirred for 2 h. After S (0.12 g, 0.33 mmol) and 2 drops of DBTDL (Dibutyltin dilaurate) was added, the mixture was stirred for another 2 h. And then purified through chromatography with DCM to afford *P*- or *M*-**HA** as a white solid (66 mg, 70%). M. p.: 156.9-157.1 °C. ¹H NMR (500 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) δ (ppm): 8.03 (s, 1H), 8.03-8.02 (m, 2H), 7.92 (d, J = 10 Hz, 1H), 7.53 (d, J = 5 Hz, 2H), 7.45 (t, J = 5 Hz, 1H), 7.41 (s, 3H), 7.36-7.35 (m, 6H), 7.28-7.17 (m, 25H), 6.89-6.84 (m, 9H), 6.70 (s, 3H), 5.17 (s, 2H), 5.12-5.11 (m, 6H), 3.94-3.88 (m, 2H), 3.82 (s, 8H), 3.68-3.67 (m, 16H), 2.77-2.67 (br, 2H), 1.44-0.88 (m, 18H), 0.90-0.88 (br, 2H), -0.07 (s, 4H), -1.00 (s, 2H), -1.14 (s, 2H), -1.16 (s, 2H). ¹³C NMR (125 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) δ (ppm): 160.5, 155.4, 155.0, 154.9, 152.0, 150.5, 148.0, 147.6, 147.6, 145.6, 145.5, 142.6, 138.3, 138.2, 138.0, 137.9, 137.2, 132.9, 132.6, 131.9, 128.7, 128.3, 127.5, 127.5, 126.8, 126.3, 126.2, 125.4, 125.4, 123.7, 123.0, 122.9, 122.0, 118.8, 116.1, 108.2, 108.0, 71.8, 69.1, 65.5, 56.4, 56.3, 35.5, 31.8, 29.0, 28.1, 27.7, 27.5, 25.2, 24.3. HRMS (ESI): m/z calcd for $[M+H]^+$ ($C_{129}H_{124}O_{10}N_2^+$), 1860.9211; found m/z1860.9209.

Scheme S2. Synthetic route of *P*- or *M*-**R2** and *P*- or *M*-**R3**.

Synthesis of 3. The method to synthesize compound **3** is the same with **1**. Compound 3 was given as a colorless liquid (1.43 g, 91%). ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.06 (d, J = 5 Hz, 1H), 7.45 (d, J = 10 Hz, 1H), 7.26-7.23 (m, 1H), 4.04 (t, J = 5 Hz, 2H), 3.51 (q, J = 5 Hz, 2H), 1.83-1.76 (m, 2H), 1.58-1.35 (m, 6H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 156.2, 138.7, 132.2, 129.1, 125.9, 69.7, 62.4, 33.4, 29.7, 26.3, 26.3. HRMS (ESI): m/z calcd for [M+H]⁺ (C₁₁H₁₇BrNO₂⁺), 273.0364; found m/z 273.0360.

Synthesis of 4. The method to synthesize compound **4** is the same with **2**. Compound **4** was given as a yellow solid (0.68 g, 65%). M. p.: 148.8-150.1 °C. ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.30 (s, 1H), 7.87-7.85 (m, 2H), 7.70 (d, J = 10Hz, 1H), 7.35-7.33 (m, 1H), 7.06 (s, 1H), 6.91-6.89 (m, 2H), 4.09 (t, J = 5 Hz, 2H), 3.52 (q, J = 5 Hz, 2H), 1.83-1.79 (m, 2H), 1.56-1.41 (m, 6H). ¹³C NMR (125 MHz, CD₃CN,

298 K) δ (ppm): 158.2, 155.0, 150.2, 138.2, 132.0, 128.4, 122.8, 120.6, 116.3, 69.3, 62.5, 33.5, 29.9, 26.4, 26.3. HRMS (ESI): *m/z* calcd for [M+H]⁺ (C₁₇H₂₂NO₃⁺), 288.1522; found *m/z* 288.1520.

Synthesis of G2. The method to synthesize **G2** is the same with **G1**. **G2** was given as colorless liquid (0.72 g, 85%). ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.28 (s, 1H), 7.93-7.91 (m, 2H), 7.69 (d, J = 10 Hz, 1H), 7.46 (s, 1H), 7.34 (s, 2H), 7.32-7.28 (m, 1H), 7.08-7.06 (m, 2H), 5.10 (s, 2H), 4.06 (t, J = 5 Hz, 2H), 3.50 (t, J = 5 Hz, 2H), 1.81-1.77 (m, 2H), 1.53-1.43 (m, 6H), 1.32 (s, 18H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 160.1, 155.1, 152.0, 149.9, 138.3, 137.4, 132.8, 128.3, 123.4, 123.0, 122.7, 120.8, 115.9. HRMS (ESI): m/z calcd for [M+H]⁺ (C₃₂H₄₄NO₃⁺), 490.3243; found m/z 490.3240.

Synthesis of G2-H. The method to synthesize **G2-H** is the same with **G2-H. G2-H** was given as a yellow solid (0.2 g, 93%). M. p.: 53.3-55.6 °C. ¹H NMR (500 MHz, CD₃CN, 298 K) δ (ppm): 8.23 (s, 1H), 8.16-8.12 (m, 2H), 7.80-7.78 (m, 2H), 7.74-7.70 (m, 8H), 7.69 (s, 4H), 7.50 (s, 1H), 7.38 (s, 2H), 7.29-7.28 (m, 2H), 5.21 (s, 2H), 4.24 (t, J = 5 Hz, 2H), 3.54 (t, J = 5 Hz, 2H), 1.91-1.85 (m, 2H), 1.57-1.43 (m, 6H), 1.35 (s, 18H). ¹³C NMR (125 MHz, CD₃CN, 298 K) δ (ppm): 162.9, 162.6 (q, $^1J_{CB} = 200$ Hz), 157.2, 152.2, 146.1, 136.6, 135.6, 135.0, 130.3, 130.2, 129.9 (m), 128.7, 127.9, 127.2, 126.5, 124.8, 124.3, 124.2, 123.5, 123.4, 123.4, 122.2, 117.1, 71.8, 71.5, 62.4, 35.5, 33.4, 31.6, 31.6, 29.4, 26.2, 26.2. HRMS (ESI): m/z calcd for [M-BArF]⁺ (C₃₂H₄₄NO₃⁺), 490.3312; found m/z 490.3324.

Synthesis of P- or M-R2 and P- or M-R3. P- or M-HA (50 mg, 0.05 mmol) and G2-H (70 mg, 0.05 mmol) were dissolved in dried CH₂Cl₂ (0.5 ml). After stirred 2 h, 1, 4phenylene diisocyanate (10 mg, 0.07 mmol) and 2 drops of DBTDL was added and continued to stir for two hours. Then the mixture was purified by silica gel chromatography with DCM as eluent to afford P- or M-R2 (22 mg, 20%, M. p.: 134.2-135.1 °C) and P- or M-R3 (40 mg, 25%, M. p.: 197.0-203.1 °C) simultaneously as white solid. ¹H NMR (500 MHz, $CD_3OD/CD_2Cl_2 = 11.5 \text{ v/v}$, 298 K) for **R2** δ (ppm): 8.19 (d, J = 5 Hz, 2H), 7.94 (d, J = 10 Hz, 4H), 7.78 (d, J = 5 Hz, 2H), 7.58 (s, 4H),7.45 (s, 2H), 7.42 (s, 6H), 7.34 (s, 4H), 7.26-7.26 (m, 6H), 7.24-7.21 (m, 2H), 7.17 (d, J = 10 Hz, 4H, 6.91-6.89 (m, 6H), 6.79 (s, 6H), 5.17 (s, 4H), 5.14 (s, 4H), 3.74 (m, 24H), 2.29 (m, 6H), 2.04 (m, 6H), 1.61 (m, 12H), 1.35-1.29 (m, 36H). ¹³C NMR (125 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) for **R2** δ (ppm): 159.4, 153.9, 151.0, 146.5, 142.9, 142.0, 140.1, 138.2, 137.3, 136.8, 134.5, 133.6, 129.6, 129.5, 127.6, 126.4, 125.2, 124.4, 122.7, 121.9, 121.8, 120.9, 115.0, 107.0, 70.7, 67.9, 55.2, 34.5, 31.7, 29.5, 29.4, 29.4, 29.3, 29.1, 29.0, 28.0, 26.9, 24.9, 22.4, 13.3. MS (MALDI-TOF): *m/z* calcd for $[M+H]^+$ ($C_{141}H_{147}N_4O_{14}^+$), 2121.09; found m/z 2121.07.

¹H NMR (300 MHz, CD₂Cl₂, 298 K) for **R3** δ (ppm): 8.27 (d, J = 3 Hz, 2H), 8.18 (d, J = 9 Hz, 4H), 7.93-7.90 (m, 6H), 7.50 (s, 6H), 7.45 (s, 6H), 7.43 (s, 2H), 7.40 (s, 4H), 7.32-7.18 (m, 18H), 6.95-6.92 (m, 18H), 6.72 (s, 6H), 5.21 (s, 6H), 5.18 (s, 4H), 5.12 (s, 6H), 3.94 (s, 18H), 3.75 (s, 12H), 3.68 (s, 18H), 3.11 (m, 4H), 2.53 (m, 4H), 1.41-1.31 (m, 36H), -0.21 (s, 4H), -0.44 (s, 4H), -1.55 (s, 8H). ¹³C NMR (125 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) for **R3** δ (ppm): 154.9, 154.8, 152.0, 147.5, 147.4,

145.6, 145.5, 138.2, 138.0, 135.5, 128.6, 127.5, 127.4, 126.2, 126.1, 125.4, 123.7, 122.9, 122.9, 121.7, 116.0, 108.2, 107.9, 107.9, 71.7, 68.5, 56.4, 56.2, 35.5, 31.8, 29.0, 27.3, 23.2, 23.0. MS (MALDI-TOF): m/z calcd for $[M+H]^+$ ($C_{211}H_{209}N_4O_{20}^+$), 3120.54; found m/z 3120.59.

5. Characterization of new compounds

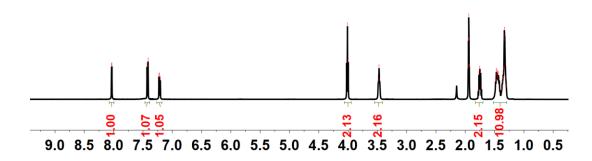


Fig. S3. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound 1.

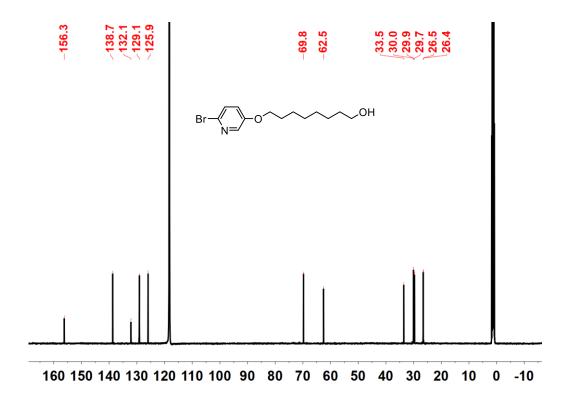


Fig. S4. 13 C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound 1.

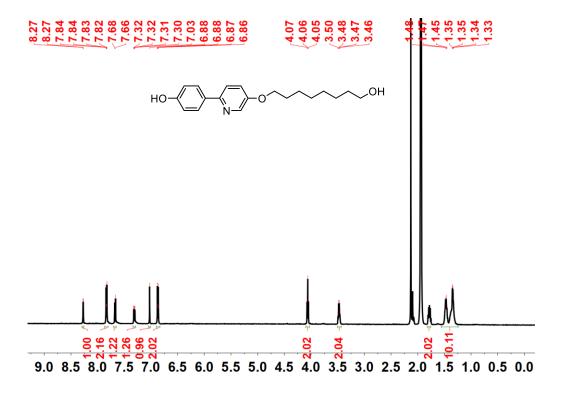


Fig. S5. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound 2.

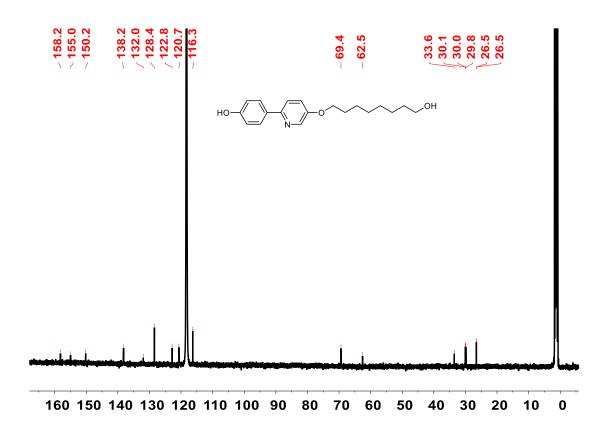


Fig. S6. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound 2.

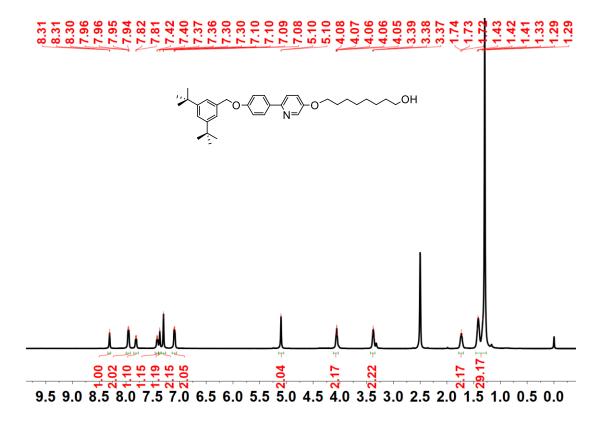


Fig. S7. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound G1.

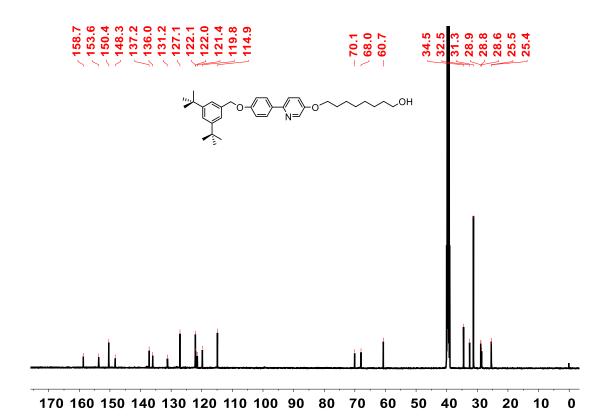


Fig. S8. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound G1.

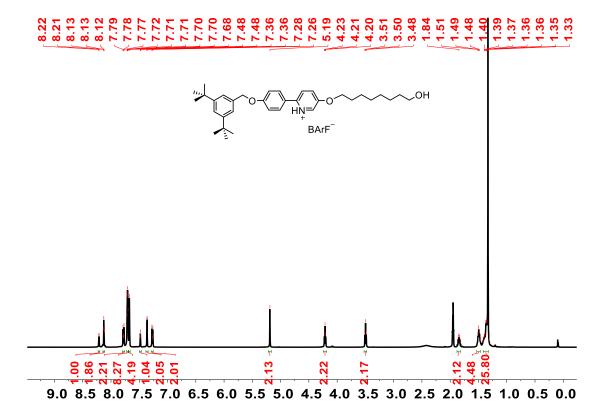


Fig. S9. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound G1-H.

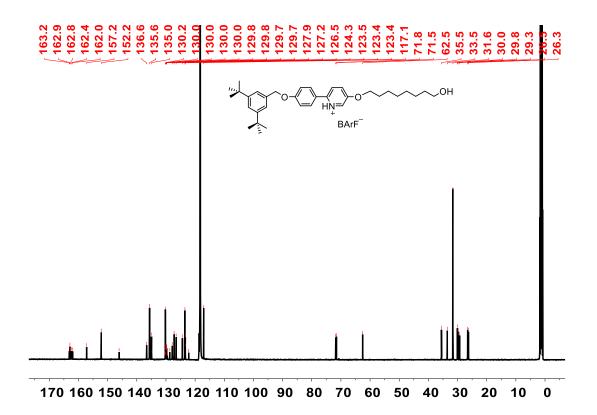


Fig. S10. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound G1-H.

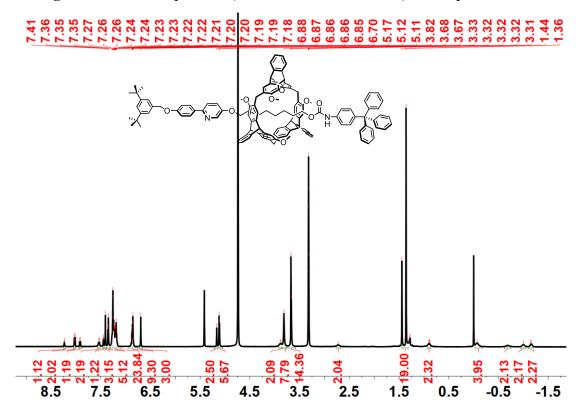


Fig. S11. 1 H NMR spectrum (500 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) of compound R1.

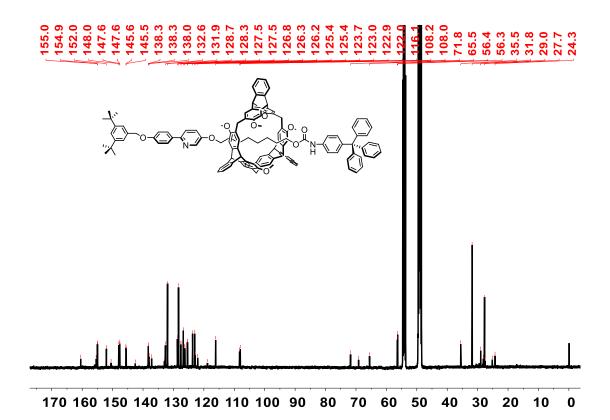


Fig. S12. 13 C NMR spectrum (125 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) of compound R1.

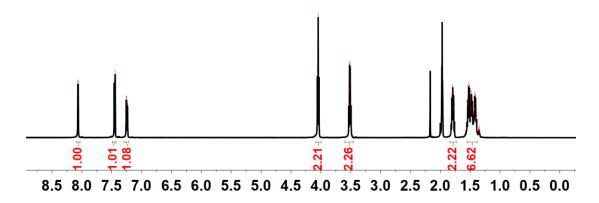


Fig. S13. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound 3.

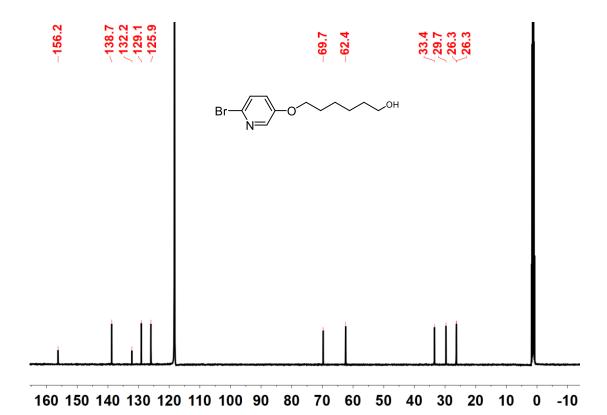


Fig. S14. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound 3.

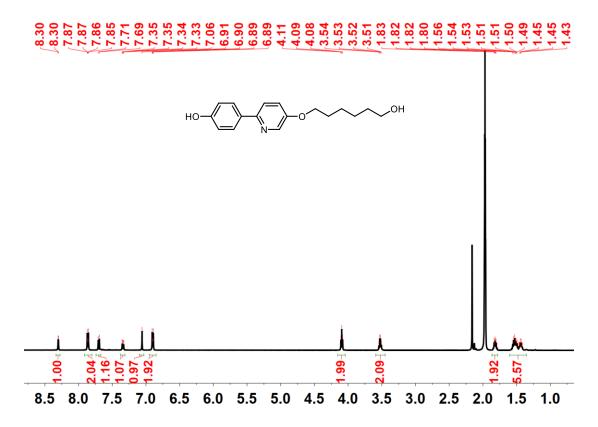


Fig. S15. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound 4.

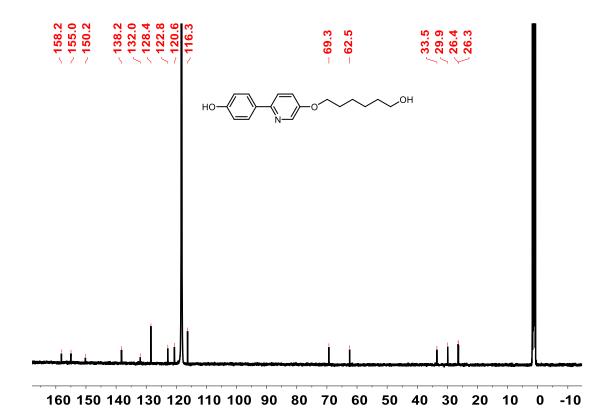


Fig. S16. 13 C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound 4.

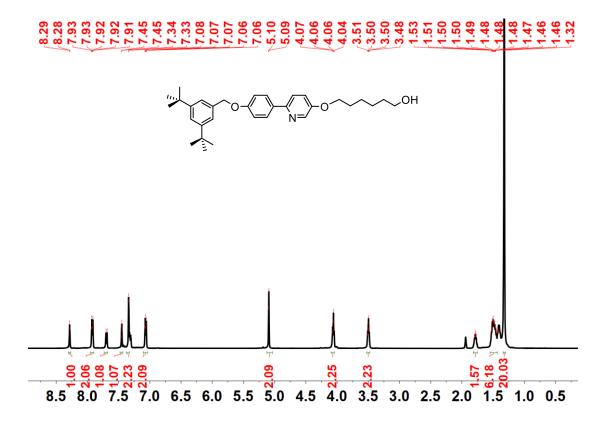


Fig. S17. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound G2.

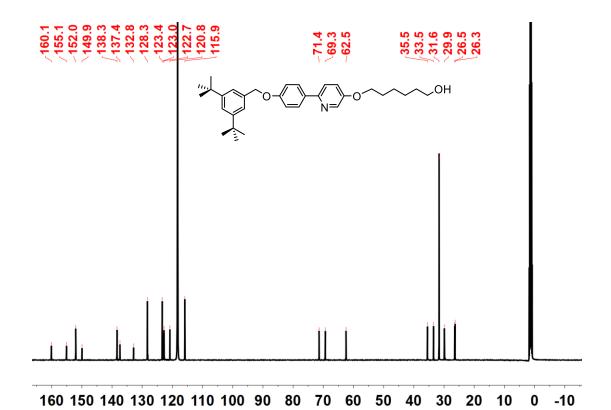


Fig. S18. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound G2.

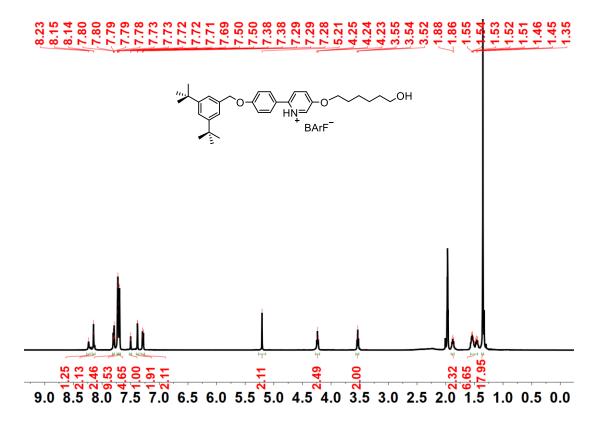


Fig. S19. ¹H NMR spectrum (500 MHz, CD₃CN, 298 K) of compound G2-H.

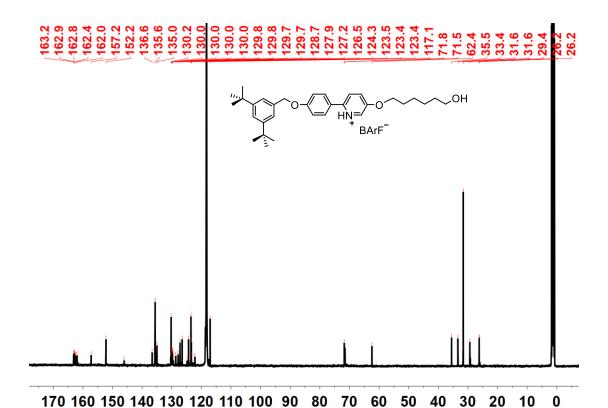


Fig. S20. ¹³C NMR spectrum (125 MHz, CD₃CN, 298 K) of compound G2-H.

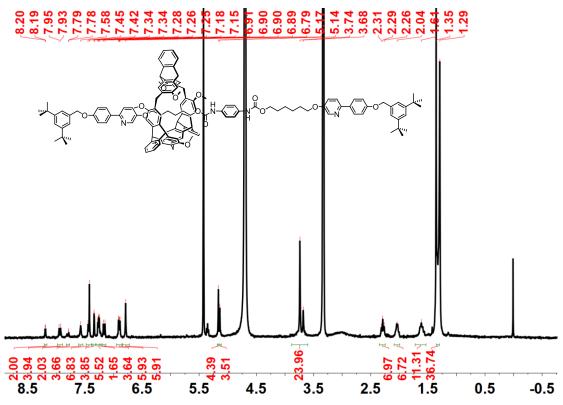


Fig. S21. 1 H NMR spectrum (500 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) of compound **R2**.

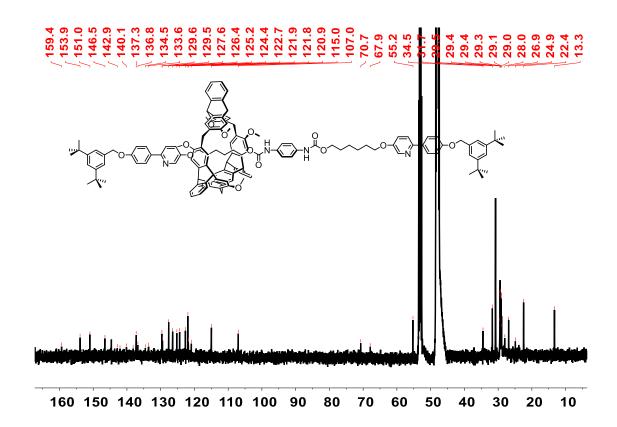


Fig. S22. 13 C NMR spectrum (125 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) of compound R2.

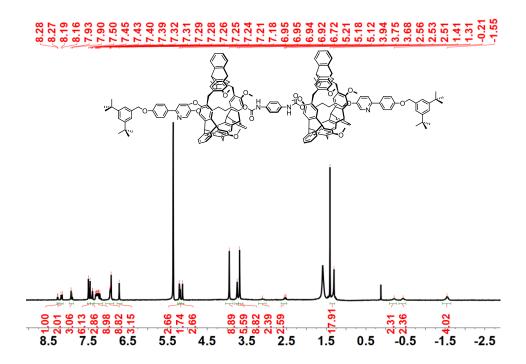


Fig. S23. ¹H NMR spectrum (300 MHz, CD₂Cl₂, 298 K) of compound R3.

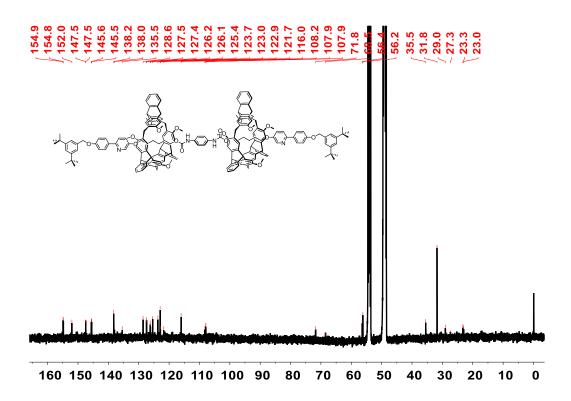


Fig. S24. 13 C NMR spectrum (125 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K) of compound R3.

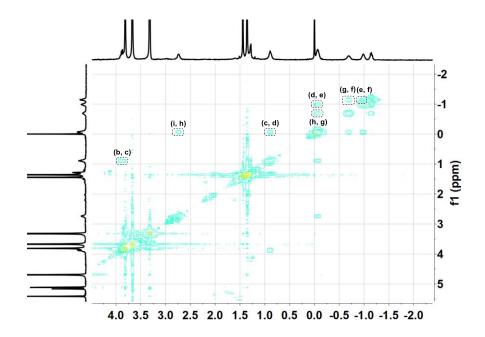


Fig. S25. 2D COSY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of R1.

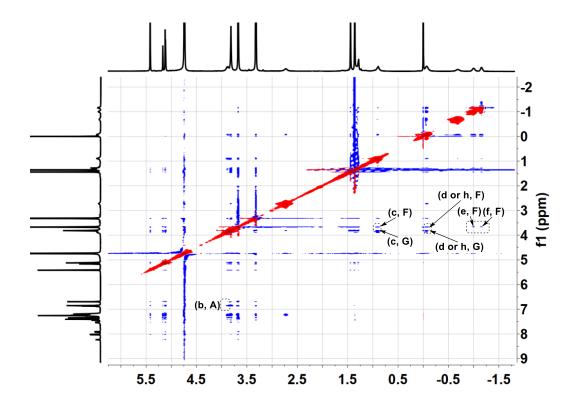
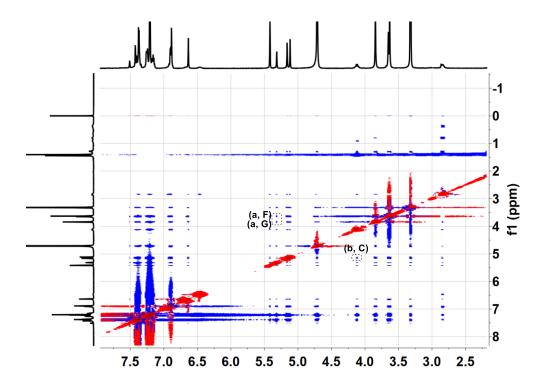



Fig. S26. 2D ROESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of R1.

Fig. S27. 2D NOESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of **R1-**

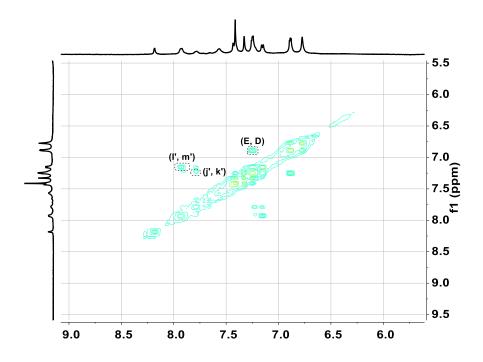
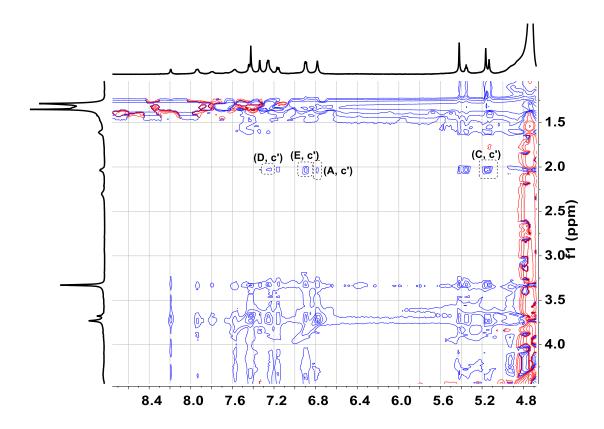



Fig. S28. 2D COSY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of R2.

Fig. S29. 2D ROESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of **R2**.

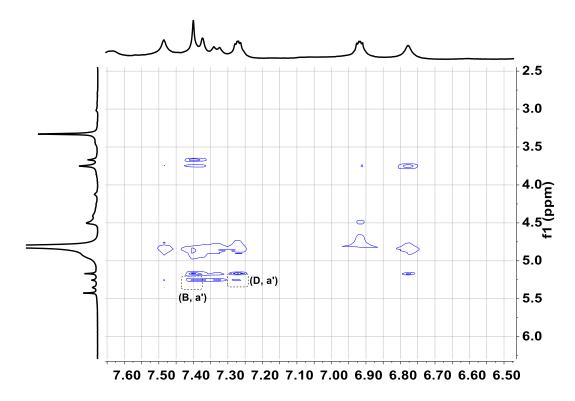
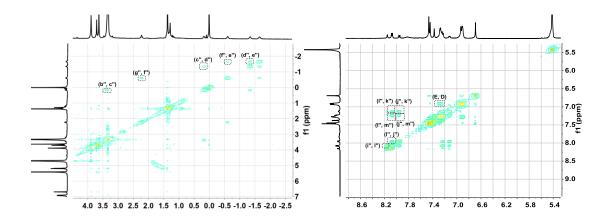
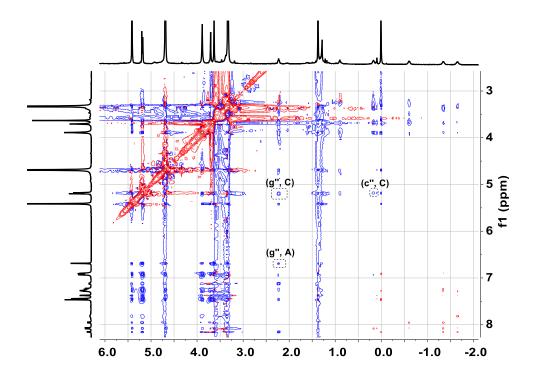




Fig. S30. 2D NOESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of R2-H.

Fig. S31. 2D COSY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of **R3**.

Fig. S32. 2D ROESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of **R3**.

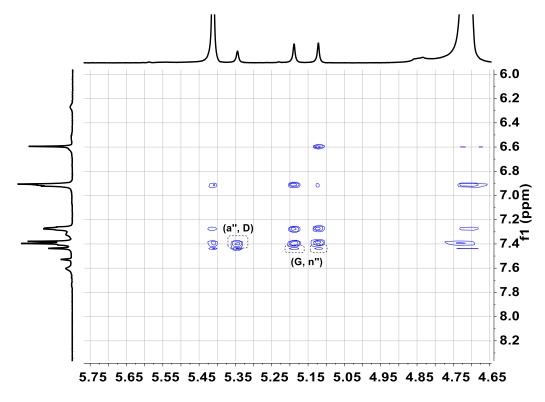


Fig. S33. 2D ROESY spectrum (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K) of R3-H.

6. Variable-temperature ¹H NMR experiments

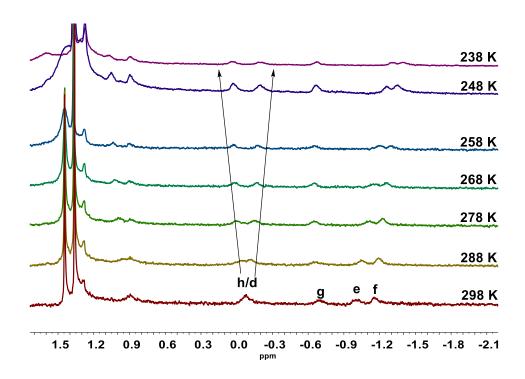


Fig. S34. Variable-temperature 1 H NMR experiments of R1 (500 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v).

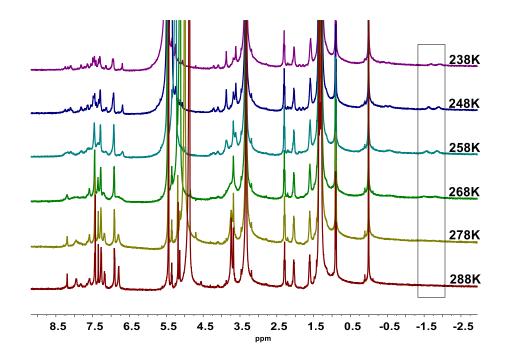
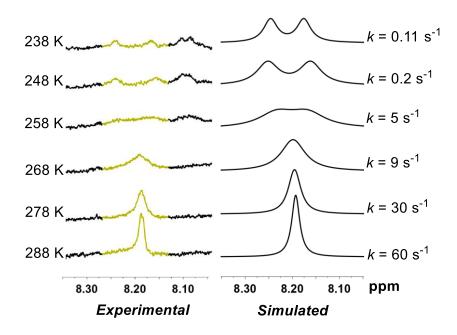



Fig. S35. Variable-temperature ${}^{1}H$ NMR experiments of R2 (500 MHz, $CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$).

Fig. S36. Experimentally measured (left) and simulated (right) variable-temperature ${}^{1}H$ NMR (500 MHz, CD₃OD/CD₂Cl₂ = 11:5 v/v) spectra of H i of **R2**.

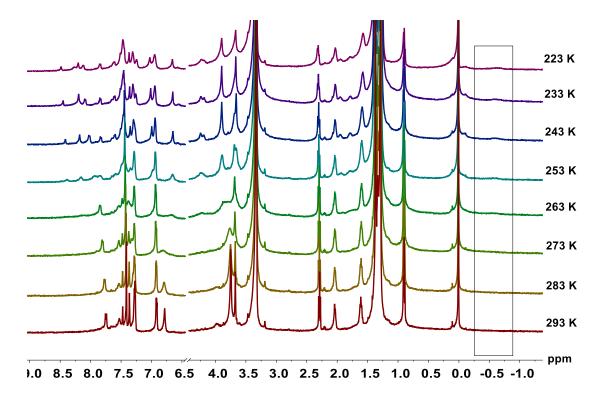


Fig. S37. Variable-temperature ^{1}H NMR experiments of R2-H (500 MHz, $CD_{3}OD/CD_{2}Cl_{2} = 11:5 \text{ v/v}$).

7. CD spectra of chiral rotaxanes

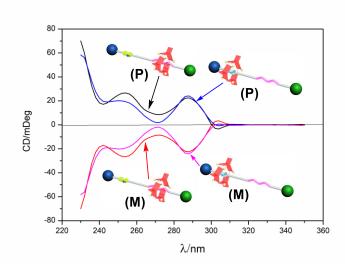


Fig. S38. Comparison of CD spectra of *P*- or *M*-R1 and *P*- or *M*-R1-H.

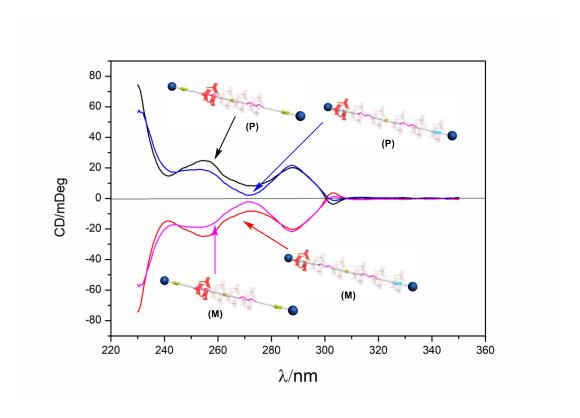


Fig. S39. Comparison of CD spectra of *P*- or *M*-R2 and *P*- or *M*-R2-H.

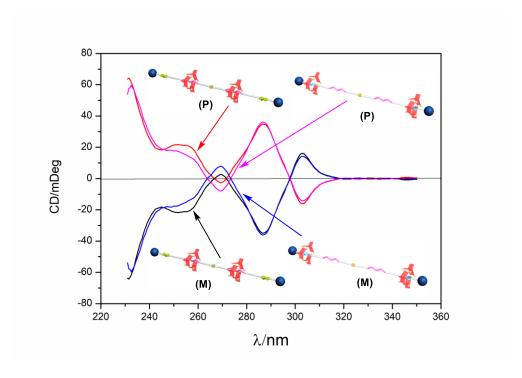
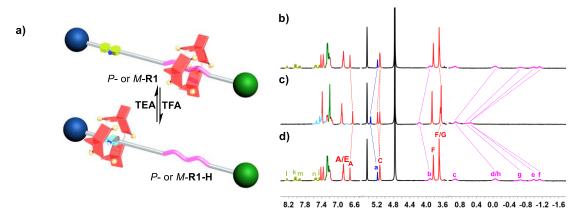
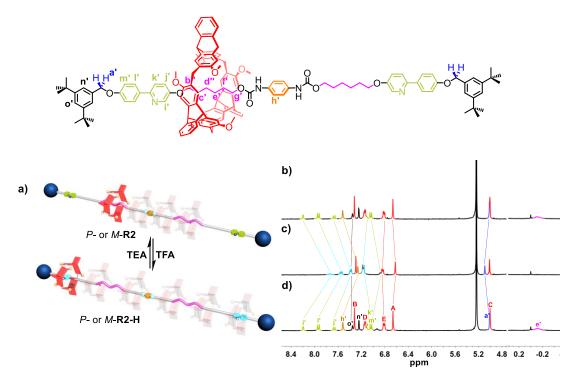




Fig. S40. Comparison of CD spectra of P- or M-R3 and P- or M-R3-H.

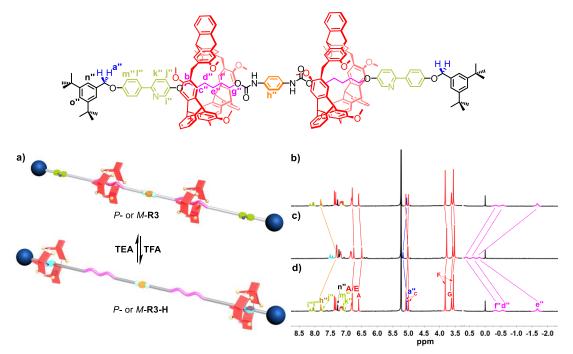

8. Acid-base controlled motion

Fig. S41 Acid-base driven motion of (a) P- or M-**R1** and partial 1H NMR spectra (CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K, 300 MHz) of d) P- or M-**R1**, c) P- or M-**R1** + 1.2 equiv TFA, b) P- or M-**R1** + 1.2 equiv TFA + 1.5 equiv TEA.

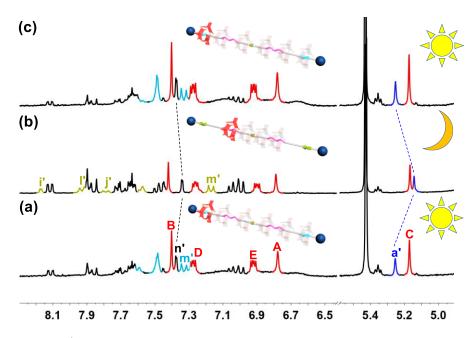


Fig. S42 Acid-base driven motion of (a) P- or M-**R2** and partial 1H NMR spectra (CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K, 300 MHz) of d) P- or M-**R2**, c) P- or M-**R2** + 5.0 equiv TFA, b) P- or M-**R2** + 5.0 equiv TFA + 5.5 equiv TEA.

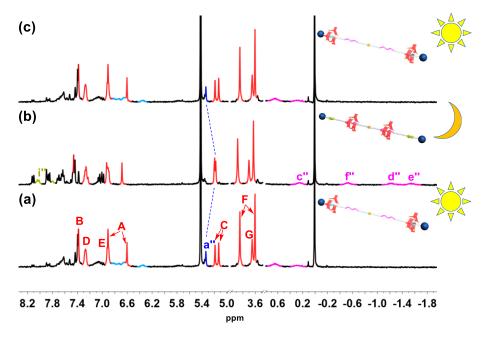


Fig. S43 Acid-base driven motion of (a) P- or M-**R3** and partial 1H NMR spectra (CD₃OD/CD₂Cl₂ = 11:5 v/v, 298 K, 300 MHz) of d) P- or M-**R3**, c) P- or M-**R3** + 5.0 equiv TFA, b) P- or M-**R3** + 5.0 equiv TFA + 5.5 equiv TEA.

9. NMR study of photo controlled motion of R2 and R3

Fig. S44 Partial ¹H NMR spectra ($CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K, 300 MHz) of (a) **R2** + 2.3 equiv **1-SP**, (b) **R2** + 2.3 equiv **1-SP** in the dark for 3.5 h, (c) b was irradiated by 420 nm or sunlight for 5 min.

Fig. S45 Partial ¹H NMR spectra ($CD_3OD/CD_2Cl_2 = 11:5 \text{ v/v}$, 298 K, 300 MHz) of (a) **R3** + 2.3 equiv **1-SP**, (b) **R3** + 2.3 equiv **1-SP** in the dark for 3.5 h, (c) b was irradiated by 420 nm or sunlight for 5 min.

10. Time-dependent ¹H NMR study of photo-driven motion

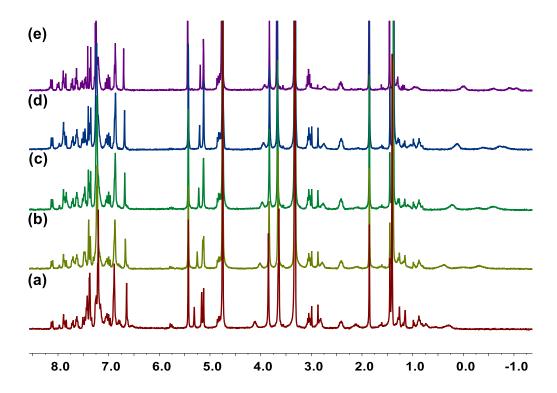


Fig. S46. 1 H NMR spectra (300 MHz, 298 K, CD₃OD/CD₂Cl₂ = 11/5 v/v) of R1-H and 1-SP treated in the dark for (a) 20 min, (b) 40 min, (c) 60 min, (d) 80 min and (e) 150 min.

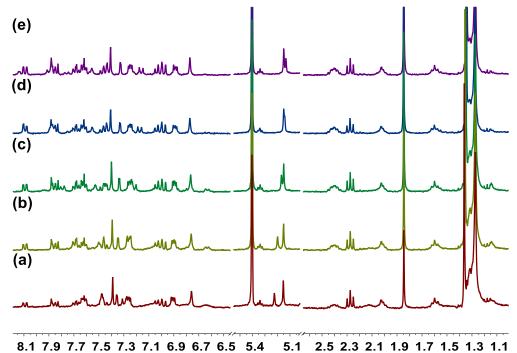
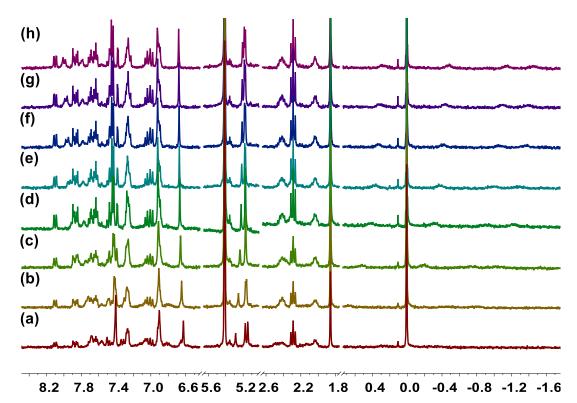



Fig. S47. 1 H NMR spectra (300 MHz, 298 K, CD₃OD/CD₂Cl₂ = 11/5 v/v) of **R2-H** and **1-SP** treated in the dark for (a) 10 min, (b) 20 min, (c) 30 min, (d) 55 min and (e) 85 min.

Fig. S48. 1 H NMR spectra (300 MHz, 298 K, CD₃OD/CD₂Cl₂ = 11/5 v/v) of **R3-H** and **1-SP** treated in the dark for (a) 10 min, (b) 20 min, (c) 30 min, (d) 40 min (e) 50 min, (f) 60 min, (g) 70 min, (h) 130 min.

11. Sustainability of acid-base controlled and photo controlled motion patterns

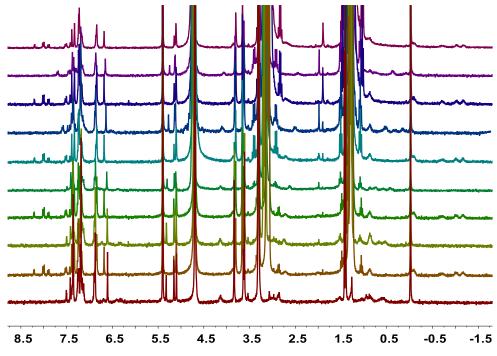


Fig. S49. Five motion cycles of R1 induced through alternating TEA and TFA.

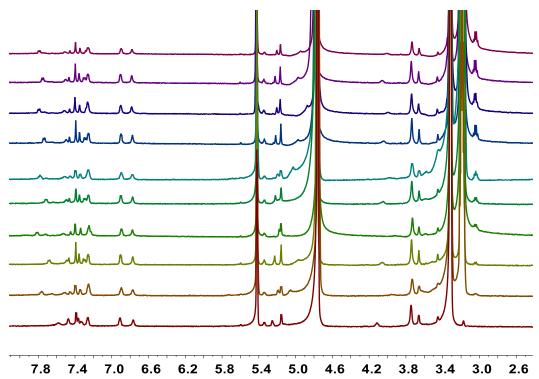
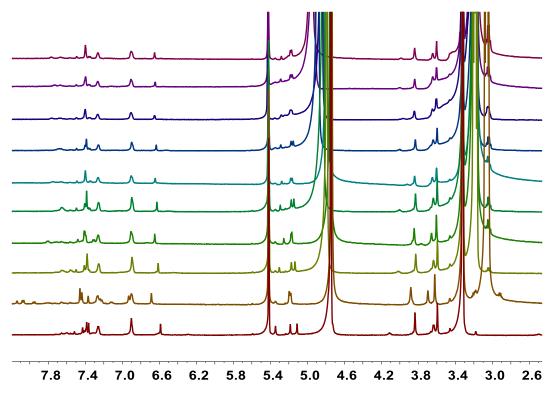
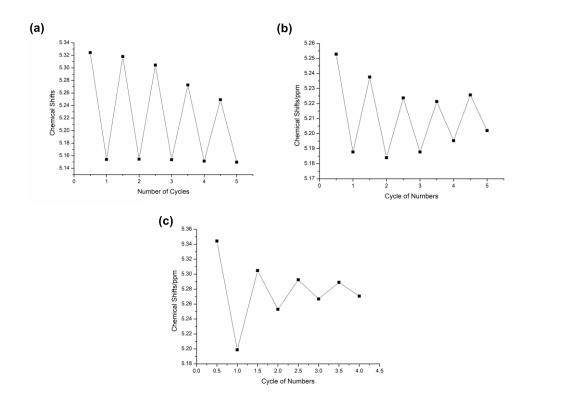
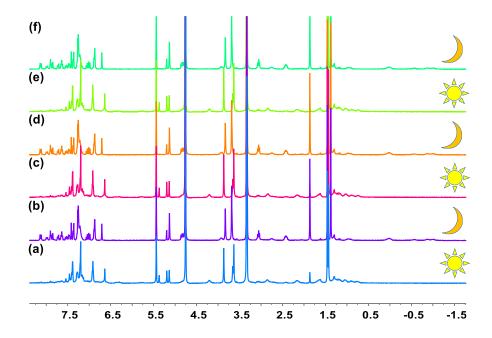
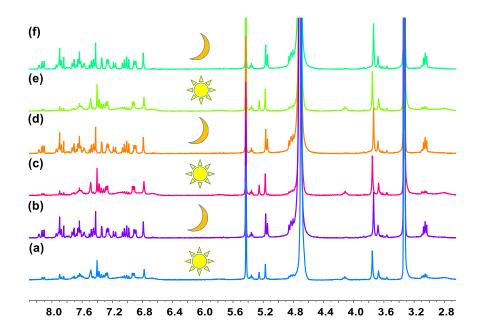
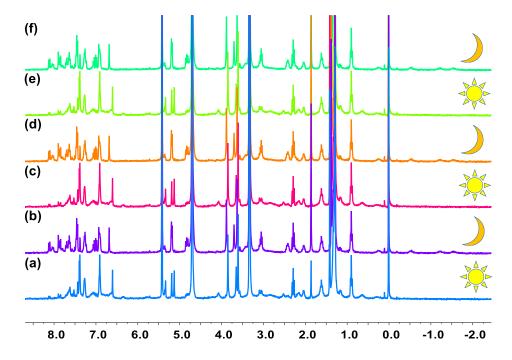


Fig. S50. Five motion cycles of R2 induced through alternating TEA and TFA.


Fig. S51. Five motion cycles of R3 induced through alternating TEA and TFA.


Fig. S52. Sustainability of acid-base controlled motion of (a) **R1**, (b) **R2** and (c) **R3**. Recorded H^a for **R1**, H^{a'} for **R2** and H^{a''} for **R3**.

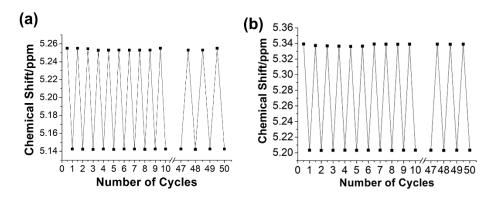

Fig. S53. Motion cycles of **R1** induced by photo in the present of photoacid (300 MHz, 298 K, $CD_3OD/CD_2Cl_2 = 11/5 \text{ v/v}$). (a) and (b) is the first cycle, (c) and (d) is the cycle 2, and (e) and (f) is the cycle 50.

Fig. S54. Motion cycles of **R2** induced by photo in the present of photoacid (300 MHz, 298 K, $CD_3OD/CD_2Cl_2 = 11/5 \text{ v/v}$). (a) and (b) is the first cycle, (c) and (d) is the cycle 2, and (e) and (f) is the cycle 50.

Fig. S55. Motion cycles of **R3** induced by photo in the present of photoacid (300 MHz, 298 K, $CD_3OD/CD_2Cl_2 = 11/5 \text{ v/v}$). (a) and (b) is the first cycle, (c) and (d) is the cycle 2, and (e) and (f) is the cycle 50.

Fig. S56. Sustainability of photo controlled motion of (a) **R2** and (b) **R3**. Recorded H^{a'} for **R2** and H^{a''} for **R3**.

Reference

S1. G. W. Zhang, P.-F. Li, Z. Meng, H.-X. Wang, Y. Han and C.-F. Chen, *Angew. Chem.*, *Int. Ed.*, 2016, **55**, 5304-5394.