**Supporting Information** 

# Enhancement of SOD Activity in Boehmite Supported Nanoreceptors

Álvaro Martínez-Camarena, Estefanía Delgado-Pinar, Concepción Soriano, Javier Alarcón, José M. Llinares, Roberto Tejero, Enrique García-España

#### Contents

#### I. Experimental section

#### **II. Figures**

Figure S1. <sup>1</sup>H-NMR spectrum of L1 in D<sub>2</sub>O at 298 K.

Figure S2. <sup>13</sup>C-NMR spectrum of L1 in  $D_2O$  at 298 K.

Figure S3. Mass spectrum of L1.

Figure S4. <sup>1</sup>H-NMR spectra of the three BNP-L1 samples in D<sub>2</sub>O at 298 K.

Figure S5. Calibration and interpolation of L1 anchoring to boehmite nanoparticles by NMR determination.

**Figure S6.** Experimental (red, continuous line) and theoretical (discrete red peaks) diffractogram of the boehmite nanoparticles powder.

Figure S7. Size dispersion diagram of the boehmite nanoparticles obtained by DLS.

**Figure S8.** Distribution diagram of L1 as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 271 nm are overlaid (red dots).

**Figure S9**. Comparative of the different protonation ways of pyridinol ring and distances in Å of each bond of the ring.

**Figure S10.** Distribution diagram of the L1: $Cu^{2+}$  1:1 system as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 285 nm (red dots) and at 590 nm (green dots) are overlaid.

**Figure S11.** Cyclic voltammograms at the platinum electrode recorded for L1 solutions in 50 mM TRIS at pH 7.4: (grey) L1, (blue)  $Cu^{2+}:L1$  1:1, (red)  $Cu^{2+}:L1$  2:1, (yellow) Cu:L1-BNP 2:1. Potential scan rate = 50 mV/s.

**Figure S12.** Distribution diagram of the  $L1/Zn^{2+}$  system as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 259 nm (red dots) are overlaid.

Figure S13. Distribution diagram of the  $L1/Cu^{2+}/Zn^{2+}$  system as a function of the pH in aqueous solution.

#### III. Tables.

Table S1. Results for the NMR determination of the L1 anchoring to boehmite nanoparticles.

 Table S2. Interpolation and trend lines for the L1 anchoring determination.

**Table S3.** Stepwise protonation constants for L1 obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at  $298.1 \pm 0.1$  K.

**Table S4.** Logarithms of the stability constants of mononuclear and binuclear  $Cu^{2+}$  complexes with L1 obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

Table S5. Cartesian coordinates of the Cu<sup>2+</sup>:L1 1:1 optimized complex.

 Table S6. Structural data of the Cu<sup>2+</sup>:L1 1:1 optimized complex.

Table S7. Cartesian coordinates of the Cu<sup>2+</sup>:L1 1:2 optimized complex.

**Table S8.** Structural data of the Cu<sup>2+</sup>:L1 1:2 optimized complex.

**Table S9.** Logarithms of the stability constants of mononuclear and binuclear  $Zn^{2+}$  complexes with L1 obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

**Table S10.** Logarithms of the stability constants of binuclear  $Cu^{2+}:Zn^{2+}$  complexes with L1 obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

**Table S11.** Apparent formal potential of  $Cu^{2+}/Cu^+$  couple (E°') from voltammetric data for  $Cu^{2+}:L1$  1:1,  $Cu^{2+}:L1$  1:2 and  $Cu^{2+}:L1$ -BNPs 1:2.

#### **IV. References.**

# I. Experimental section

#### I.I Synthesis

The synthesis of the compounds 1,5,9,12,16,20-hexakis(p-tolylsulfonyl)-1,5,9,12,16,20-hexaazaeicosane and 4-benzyloxy-2,6-bis(bromomethyl)pyridine were carried out following the procedure described previously in the literature.<sup>1–3</sup> All reagents were obtained from commercial sources and used as received. Solvents used for the chemical synthesis were of analytical grade and used without further purification.

# 1<sup>4</sup>-Benzyloxy-3,7,11,14,18,22-hexakis(p-tolylsulfonyl)-3,7,11,14,18,22-hexaaza-1(2,6)-pyridinacyclotricosaphane $(1)^{4-6}$

1,5,9,12,16,20-hexakis(p-tolylsulfonyl)-1,5,9,12,16,20-hexaazaeicosane<sup>1</sup> (3.20 g, 2.6 mmol) and K<sub>2</sub>CO<sub>3</sub> (6.6 g, 26.4 mmol) were suspended in dried CH<sub>3</sub>CN (150 cm<sup>3</sup>). 4-Benzyloxy-2,6-bis(bromomethyl)pyridine<sup>2,3</sup> (0.97 g, 3.4 mmol) in 50 cm<sup>3</sup> dried CH<sub>3</sub>CN was added dropwise to the first mixture, over 3 h. The suspension was refluxed for 24 h and filtered. The solvent of the obtained solution was removed by vacuum evaporation and the resulting oil was purified by column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>:CH<sub>3</sub>COCH<sub>3</sub>, 97:3). (Yield: 73%) NMR (CDCl<sub>3</sub>): δ<sub>H</sub> (ppm): 1.81-1.67 (m, 8H), 2.36 (s, 6H), 2.39 (s, 6H), 2.42 (s, 6H), 2.90-3.08 (m, 12H), 3.21 (t, *J=7.1 Hz*, 4H), 3.27 (s, 4H), 4.27 (s, 4H), 5.01 (s, 2H), 6.91 (s, 2H), 7.21-7.44 (m, 17H), 7.56 (d, *J=8.3 Hz*, 4H), 7.66 (dd, *J=8.3 Hz*, 8H). δ<sub>C</sub> (ppm): 158.64, 158.54, 143.97, 143.79, 143.73, 136.80, 135.98, 135.34, 130.22, 130.09, 129.08, 128.28, 127.83, 127.63, 127.51, 108.94, 70.36, 54.35, 49.12, 48.42, 48.16, 47.70, 29.56, 29.06, 21.93, 21.88, 21.85. MS *m*/*z* (ESI) 1444.2 ([M + Na]<sup>+</sup>).

#### 14-Hydroxy-3,7,11,14,18,22-hexaaza-1(2,6)-pyridinacyclotricosaphane (L1·6HCl)7

**1** (2.74 g, 1.9 mmol) and phenol (16.09 g, 0.17 mol) were suspended in HBr-AcOH 33% (170 cm<sup>3</sup>). The mixture was stirred at 90 °C for further 48 h and cooled. The resulting suspension was filtered and washed several times with EtOH anhydrous to give the product **L1** in a salt form. (Yield: 68%) NMR (D<sub>2</sub>O):  $\delta_{\rm H}$  (ppm): 2.17-2.39 (m, 8H), 3.27-3.41 (m, 16H), 3.60 (s, 4H), 4.39 (s, 4H), 6.92 (s, 2H).  $\delta_{\rm C}$  (ppm): 165.81, 152.45, 110.77, 51.24, 45.28, 45.00, 44.43, 44.06, 43.96, 22.84, 22.72. MS m/z (ESI) 408.3 ([M + H]<sup>+</sup>). Anal. Calc. for C<sub>22</sub>H<sub>43</sub>ON<sub>7</sub>(HCl)<sub>6</sub>(H<sub>2</sub>O)<sub>0.5</sub>: C, 37.5; H, 7.4; N, 14.6: Found: C, 37.7; H, 7.6; N, 14.3.

#### Functionalized nanoparticles with L1

L1·6HCl (134.1 mg, 0.15 mmol) and Na<sub>2</sub>CO<sub>3</sub> (143.1 mg, 1.35 mmol) were suspended in EtOH (20 cm<sup>3</sup>). Boehmite nanoparticles (498.7 mg) were added to the mixture and the resulting suspension was refluxed under Ar atmosphere for 72 h. The resulting mixture were centrifuged and washed several times with a mixture of EtOH (15 cm<sup>3</sup>), CH<sub>2</sub>Cl<sub>2</sub> (5 cm<sup>3</sup>) and H<sub>2</sub>O (2.5 cm<sup>3</sup>). [L1] =  $(3.5 \pm 0.4) \cdot 10^{-5}$  mol/g<sub>np-boeh</sub>.

## I.II - NMR measurements

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Advance DRX 300 spectrometer operating at 300 MHz for <sup>1</sup>H and at 100.6 MHz for <sup>13</sup>C. For the <sup>13</sup>C NMR spectra, dioxane was used as a reference standard ( $\delta$  67.4 ppm), and for the <sup>1</sup>H spectra, the solvent signal was used.

## I.III - Density Functional Theory (DFT) calculations

DFT calculations of the Cu<sup>2+</sup> complexes were performed with DFT as a computational method using UB3LYP/6-311+G\* and UB3LYP/LANDL2DZ combinations. Specifically, the 6-311+G\* basis set was used for the nonmetallic atoms, while the LANDL2DZ was used for the transition metals, in which it has been generated ab initio effective core potentials to replace the Coulomb, core orthogonality, and exchange effects of the chemically inert core electrons in Cu<sup>2+</sup>. The Gaussian 09<sup>8</sup> package was used for these DFT calculations and the Molden<sup>9</sup> and Pymol<sup>10</sup> package for the modelling analysis. The aqueous environment was implicitly considered by using the Self-Consistent Reaction Field (SCRF) method with a model of continuous polarization model with water as a solvent (Polarizable Continuum Model o PCM).<sup>11–13</sup>

## I.IV - In vitro McCord-Fridovich SOD activity assays

SOD-like activity was determined by using the nitro blue tetrazolium (NBT) method.<sup>14–17</sup> The assays were carried out in a pH = 7.4 50 mM HEPES buffer at 298 K. The concentration of NBT was 50 mM and the superoxide was generated with the xanthine oxidase-xanthine system.

### I.V- UV-Vis measurements

The solvents used were of spectroscopic or equivalent grade. Water was twice distilled and passed through a Millipore apparatus. The pH values were measured with a Metrohm 713 pH meter and adjustments of the hydrogen ion concentration of the solutions were made with diluted HCl and NaOH solutions. UV-Vis absorption spectra were recorded on an Agilent 8453 spectroscopy system.

### I.VI -Electromotive force (EMF) measurements

The potentiometric titrations were carried out at 298.1 ± 0.1 K using 0.15 M NaClO4 as the supporting electrolyte. The experimental procedure (buret, potentiometer, cell, stirrer, microcomputer, etc.) has been fully described elsewhere.<sup>18</sup> The acquisition of the EMF data was performed with the computer program PASAT.<sup>19</sup> The reference electrode was an Ag/AgCl electrode in a saturated KCl solution. The glass electrode was calibrated as a hydrogen-ion-concentration probe by the titration of previously standardized amounts of HCl with CO<sub>2</sub> free NaOH solutions and the equivalent point determined by the Gran's method,<sup>20,21</sup> which gives the standard potential, E°', and the ionic product of water [pK<sub>w</sub> = 13.73(1)].

The computer program HYPERQUAD was used to calculate the protonation and stability constants.<sup>22</sup> The pH range investigated was 2.0–11.0, and the concentrations of Cu<sup>2+</sup>, Zn<sup>2+</sup> and the ligand ranged from  $1 \times 10^{-3}$  to  $5 \times 10^{-3}$  mol/dm<sup>3</sup>,

with Cu<sup>2+</sup>/L molar ratios varying from 1:1 to 2:1. The different titration curves for each system (at least two) were treated either as a single set or as separated curves without significant variations in the values of the stability constants. Finally, the sets of data were merged together and treated simultaneously to give the final stability constants.

## **I.VII - Electrochemical Measurements**

Cyclic voltammetry experiments were performed with  $10^{-3}$  M aqueous solutions of L1, Cu:L1 (in relation 1:1 and 1:2) and Cu:L1-BNP (in relation 1:2) at pH = 7.4 (50 mM TRIS was used as the buffer). For the study of the electrochemistry of the metal complexes, equimolar amounts of Cu(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O and the ligand were dissolved in 50 mM TRIS, previously degassed, with nitrogen for 10 min, and then the voltammograms were recorded.

Electrochemical experiments were performed with BAS CV 50W and Metrohm PGSTAT 101 Autolab in a conventional three-compartment cell with a glassy-carbon working electrode. Prior to the series of experiments, the working electrode was cleaned and activated. Before each run, the electrode was polished with an aqueous suspension of alumina on a soft surface, dried, and cleaned. AgCl (3 M NaCl)/Ag and a platinum-wire auxiliary electrode completed the three-electrode configuration. The cyclic voltammograms were recorded at scan rates of 10–100 mV/s. The pH was adjusted to the required value by adding appropriate amounts of aqueous HCl and/or NaOH 0.1 M solutions.

### I.VIII - Inductively coupled plasma mass spectrometry

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS, 7900, Agilent Technologies) was used for the quantification of the amount of  $Cu^{2+}$  complexed to the L1-BNP system.

In a typical experiment an excess of a Cu(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O aqueous solution at pH 7 was added to a known amount of BNPs that contained  $(0.35\pm0.04)\times10^{-4}$  mol/g<sub>BNP</sub> as determined by NMR and elemental microanalysis. According to the distribution diagram (Figure 2), all the grafted ligands might coordinate two Cu<sup>2+</sup> ions. The pH was increased to 10 to make the BNPs precipitate. Then, the BNPs were washed with water and centrifuged to eliminate the copper excess. Finally, the BNPs were taken to acidic pH to re-disperse them and free the complexed copper. The BNPs were then centrifuged again and the amount of copper in the acidic solution was analysed by ICP-MS. The analysis provided the amount of copper coordinated to the ligand grafted on BNPs. Measurements were made in triplicate. The amount of complexed copper determined was  $(0.69\pm0.01)\times10^{-4}$  mol/g<sub>BNP</sub> supporting that two Cu<sup>2+</sup> ions were coordinated to each ligand.

# II. Figures



Figure S1. <sup>1</sup>H-NMR spectrum of L1 in D<sub>2</sub>O at 298 K.







Figure S4. <sup>1</sup>H-NMR spectra of the three BNP-L1 samples in  $D_2O$  at 298 K.



Figure S5. Calibration and interpolation of L1 anchoring to boehmite nanoparticles by NMR determination.



Figure S6. Experimental (red, continuous line) and theoretical (discrete red peaks) diffractogram of the boehmite nanoparticles powder.



Figure S7. Size dispersion diagram of the boehmite nanoparticles obtained by DLS.



Figure S8. Distribution diagram of L1 as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 271 nm are overlaid (red dots).



Figure S9. Comparative of the different protonation ways of pyridinol ring and distances in Å of each bond of the ring.



**Figure S10**. Distribution diagram of the L1:Cu<sup>2+</sup> 1:1 system as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 285 nm (red dots) and at 590 nm (green dots) are overlaid.



**Figure S11**. Cyclic voltammograms at the platinum electrode recorded for L1 solutions in 50 mM TRIS at pH 7.4: (grey) L1, (blue)  $Cu^{2+}:L1$  1:1, (red)  $Cu^{2+}:L1$  2:1, (yellow) Cu:L1-BNP 2:1. Potential scan rate = 50 mV/s.



Figure S12. Distribution diagram of the  $L1/Zn^{2+}$  system as a function of the pH in aqueous solution. The UV-vis spectroscopic parameters at 259 nm (red dots) are overlaid.



Figure S13. Distribution diagram of the  $L1/Cu^{2+}/Zn^{2+}$  system as a function of the pH in aqueous solution.

# III. Tables

*Table S1. Results for the NMR determination of the L1 anchoring to boehmite nanoparticles.* 

| Solution   | [L] (mol/L)  | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 |
|------------|--------------|--------|--------|--------|--------|--------|
| Standard 1 | 4 752.10-3   | 12 214 | 22.667 | 5 798  | 5 830  | 2.606  |
|            | 2 5 ( 4 10 2 | 0.077  | 17.044 | 4 400  | 4 421  | 1.072  |
| Standard 2 | 3.364.10-3   | 9.277  | 17.044 | 4.423  | 4.431  | 1.9/3  |
| Standard 3 | 2.376.10-3   | 6.545  | 11.550 | 2.992  | 3.020  | 1.353  |
| Standard 4 | 1.188.10-3   | 3.592  | 5.989  | 1.580  | 1.616  | 0.709  |
| Standard 5 | 0.475.10-3   | 1.701  | 2.601  | 0.748  | 0.720  | 0.330  |
| Sample 1   | -            | 1.742  | 3.154  | 0.605  | 0.755  | 0.378  |
| Sample 2   | -            | 1.387  | 2.506  | 0.515  | 0.610  | 0.296  |
| Sample 3   | -            | 1.735  | 2.862  | 0.592  | 0.699  | 0.346  |

 Table S2. Interpolation and trend lines for the L1

 anchoring determination.

| Signal | Equation                        | R <sup>2</sup> |
|--------|---------------------------------|----------------|
| Area 1 | Int. = 2440.7 · [L] +<br>0.6353 | 0.99961        |
| Area 2 | Int. = 4683.0·[L] +<br>0.3996   | 0.99998        |
| Area 3 | Int. = 1184.5·[L] +<br>0.1816   | 0.99996        |
| Area 4 | Int. = 1191.8·[L] +<br>0.1786   | 0.99992        |
| Area 5 | Int. = 532.1·[L] + 0.0795       | 0.99997        |

| Entry | Reaction                                                             | L1                    |
|-------|----------------------------------------------------------------------|-----------------------|
| 1     | $H_{-1}L^- + H^+ \rightleftharpoons H(H_{-1}L)$                      | 10.68(2) <sup>a</sup> |
| 2     | $H(H_{-1}L) + H^+ \rightleftharpoons H_2(H_{-1}L)^+$                 | 10.11(2)              |
| 3     | $H_2(H_{-1}L)^+ + H^+ \rightleftharpoons H_3(H_{-1}L)^{2+1}$         | 9.36(1)               |
| 4     | $H_{3}(H_{-1}L)^{2+} + H^{+} \rightleftharpoons H_{4}(H_{-1}L)^{3+}$ | 7.97(1)               |
| 5     | $H_4(H_{-1}L)^{3+} + H^+ \rightleftharpoons H_5(H_{-1}L)^{4+}$       | 6.13(1)               |
| 6     | $H_5(H_{-1}L)^{4+} + H^+ \rightleftharpoons H_5L^{4+}$               | 5.81(1)               |
| 7     | $H_5L^{4+} + H^+ \rightleftharpoons H_6L^{5+}$                       | 4.14(2)               |
| 8     | Log β <sup>b</sup>                                                   | 54.20                 |

**Table S3.** Stepwise protonation constants for L1 obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1  $\pm$  0.1 K.

**Table S4.** Logarithms of the stability constants of mononuclear and binuclear  $Cu^{2+}$  complexes with **L1** obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

| Entry | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L1                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1     | $[CuH_4(H_{-1}L)]^{5+} + H^+ \rightleftharpoons [CuH_5(H_{-1}L)]^{6+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.79(6) <sup>a</sup> |
| 2     | $[CuH_{3}(H_{-1}L)]^{4+} + H^{+} \rightleftharpoons [CuH_{4}(H_{-1}L)]^{5+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.04(7)              |
| 3     | $[CuH_{2}(H_{-1}L)]^{3+} + H^{+} \rightleftharpoons [CuH_{3}(H_{-1}L)]^{4+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.35(7)              |
| 4     | $[CuH(H_{-1}L)]^{2+} + H^{+} \rightleftharpoons [CuH_{2}(H_{-1}L)]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.16(4)              |
| 5     | $\left[Cu(H_{-1}L)\right]^{+} + H^{+} \rightleftharpoons \left[CuH(H_{-1}L)\right]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.24(4)              |
| 6     | $H_{-1}L^{-} + Cu(II) \rightleftharpoons \left[Cu(H_{-1}L)\right]^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.56(4)             |
| 7     | $\left[Cu(H_{-1}L)\right]^{+} + H_2 O \rightleftharpoons \left[Cu(H_{-1}L)(OH)\right] + H^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.11(5)            |
| 8     | $\left[\operatorname{Cu}(H_{-1}L)\right]^{+} + \operatorname{Cu}(\operatorname{II}) \rightleftharpoons \left[\operatorname{Cu}_{2}(H_{-1}L)\right]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.80(4)              |
| 9     | $[Cu_{2}(H_{-1}L)]^{3+} + H_{2}O \rightleftharpoons [Cu_{2}(H_{-1}L)(OH)]^{2+} + H^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7.26(6)             |
| 10    | $[Cu_{2}(H_{-1}L)(OH)]^{2+} + H_{2}O \rightleftharpoons [Cu_{2}(H_{-1}L)(OH)_{2}]^{+} + H_{2}O \rightleftharpoons [Cu_{2}(H_{-1}L)(OH)_{2}]^{+} + H_{2}O \oiint [Cu_{2}(H_{-1}L)(OH)_{2}]^{+} + H_{2}O \amalg [Cu_{2}(H_{-1}L)(OH)_{2}]^{+} + H_{2}O$ | -8.20(6)             |
| 11    | $Cu(II) + H(H_{-1}L) \rightleftharpoons [CuH(H_{-1}L)]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.11(4)             |
| 12    | $2Cu(II) + H(H_{-1}L) \rightleftharpoons [Cu_2H(H_{-1}L)]^{4+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.44(4)             |
| 13    | $\left[CuH(H_{-1}L)\right]^{2+} + Cu(II) \rightleftharpoons \left[Cu_2H(H_{-1}L)\right]^{4+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.33(4)              |

<sup>a</sup> Values in parentheses are standard deviations in the last significant figure.

<sup>&</sup>lt;sup>a</sup> Values in parentheses are standard deviations in the last significant figure. <sub>b</sub> Log  $\beta = \sum \log K$ 

| Atom | X      | Y      | Z      |
|------|--------|--------|--------|
| С    | -0.244 | -0.418 | 0.217  |
| С    | -0.148 | -0.320 | 1.596  |
| С    | 2.203  | -0.303 | 0.106  |
| С    | 2.220  | -0.187 | 1.486  |
| N    | 1.064  | -0.196 | 2.241  |
| 0    | 0.894  | -0.509 | -1.918 |
| С    | -1.315 | -0.416 | 2.551  |
| N    | -0.999 | 0.315  | 3.829  |
| С    | 3.472  | -0.022 | 2.319  |
| N    | 3.179  | -0.493 | 3.711  |
| С    | -1.447 | 1.754  | 3.845  |
| С    | -0.717 | 2.706  | 2.880  |
| С    | 0.806  | 2.918  | 3.107  |
| N    | 1.239  | 2.573  | 4.507  |
| С    | 4.257  | -0.220 | 4.718  |
| С    | 3.687  | -0.055 | 6.143  |
| С    | 2.593  | -1.072 | 6.523  |
| N    | 1.202  | -0.568 | 6.190  |
| С    | 0.660  | 3.538  | 5.525  |
| С    | 1.696  | 4.423  | 6.253  |
| С    | 2.229  | 3.787  | 7.560  |
| N    | 1.111  | 3.498  | 8.473  |
| С    | 0.163  | -1.633 | 6.530  |
| С    | -1.143 | -1.060 | 7.117  |
| С    | -0.998 | -0.363 | 8.485  |
| N    | -0.152 | 0.857  | 8.379  |
| С    | 1.297  | 2.504  | 9.547  |

**Table S5.** Cartesian coordinates of the  $L1:Cu^{2+}$  1:1 optimized complex.

| С | 0.066  | 1.587  | 9.660  |
|---|--------|--------|--------|
| Н | -1.222 | -0.518 | -0.262 |
| Н | 3.141  | -0.320 | -0.458 |
| Н | -1.491 | -1.475 | 2.815  |
| Н | -2.246 | -0.027 | 2.098  |
| Н | -1.469 | -0.166 | 4.609  |
| Н | 3.765  | 1.042  | 2.387  |
| Н | 4.326  | -0.572 | 1.880  |
| Н | 2.970  | -1.503 | 3.684  |
| Н | -1.330 | 2.101  | 4.883  |
| Н | -2.530 | 1.782  | 3.604  |
| Н | -1.245 | 3.674  | 2.975  |
| Н | -0.876 | 2.382  | 1.834  |
| Н | 1.058  | 3.972  | 2.857  |
| Н | 1.379  | 2.272  | 2.424  |
| Н | 2.268  | 2.633  | 4.549  |
| Н | 4.777  | 0.704  | 4.416  |
| Н | 4.996  | -1.044 | 4.693  |
| Н | 4.527  | -0.139 | 6.856  |
| Н | 3.279  | 0.967  | 6.262  |
| Н | 2.627  | -1.275 | 7.611  |
| Н | 2.740  | -2.041 | 6.012  |
| Н | 1.003  | 0.223  | 6.857  |
| Н | 0.105  | 2.981  | 6.300  |
| Н | -0.065 | 4.184  | 4.998  |
| Н | 2.541  | 4.674  | 5.581  |
| Н | 1.216  | 5.387  | 6.513  |
| Н | 3.007  | 4.457  | 7.996  |
| Н | 2.733  | 2.827  | 7.339  |
| Н | 0.633  | 4.348  | 8.792  |

| Н  | -1.624                                                   | -0.349                                                                                | 6.417                                                                                                                                                         |
|----|----------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н  | -1.854                                                   | -1.900                                                                                | 7.225                                                                                                                                                         |
| Н  | -0.507                                                   | -1.049                                                                                | 9.201                                                                                                                                                         |
| Н  | -2.013                                                   | -0.144                                                                                | 8.89                                                                                                                                                          |
| Н  | -0.544                                                   | 1.523                                                                                 | 7.697                                                                                                                                                         |
| CU | 1.119                                                    | 0.110                                                                                 | 4.203                                                                                                                                                         |
| С  | 0.946                                                    | -0.413                                                                                | -0.628                                                                                                                                                        |
| Н  | 0.21                                                     | 0.855                                                                                 | 10.47                                                                                                                                                         |
| Н  | -0.827                                                   | 2.191                                                                                 | 9.939                                                                                                                                                         |
| Н  | 2.171                                                    | 1.878                                                                                 | 9.291                                                                                                                                                         |
| Н  | 1.503                                                    | 2.967                                                                                 | 10.54                                                                                                                                                         |
| Н  | 0.606                                                    | -2.321                                                                                | 7.278                                                                                                                                                         |
| Н  | -0.041                                                   | -2.228                                                                                | 5.623                                                                                                                                                         |
|    | Н<br>Н<br>Н<br>С<br>С<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н | H-1.624H-1.854H-0.507H-2.013H-0.544CU1.119C0.946H0.21H-0.827H2.171H1.503H0.606H-0.041 | H-1.624-0.349H-1.854-1.900H-0.507-1.049H-2.013-0.144H-0.5441.523CU1.1190.110C0.946-0.413H0.210.855H-0.8272.191H2.1711.878H1.5032.967H0.606-2.321H-0.041-2.228 |

**Table S6.** Structural data of the L1:  $Cu^{2+}$  1:1 optimized complex.

| Atoms | Distance (Å) | Atoms    | Angle (°) |
|-------|--------------|----------|-----------|
| Cu-N1 | 1.986        | N1-Cu-N2 | 79.4      |
| Cu-N2 | 2.161        | N1-Cu-N3 | 106.0     |
| Cu-N3 | 2.485        | N1-Cu-N4 | 152.3     |
| Cu-N4 | 2.101        | N1-Cu-N5 | 76.3      |
| Cu-N5 | 2.202        | N2-Cu-N3 | 88.5      |
|       |              | N2-Cu-N4 | 103.5     |
|       |              | N2-Cu-N5 | 154.7     |
|       |              | N3-Cu-N4 | 101.7     |
|       |              | N3-Cu-N5 | 104.7     |
|       |              | N4-Cu-N5 | 94.9      |

| Atom | X      | Y      | Z      |
|------|--------|--------|--------|
| С    | -5.305 | 0.165  | -1.018 |
| С    | -3.951 | -0.041 | -1.151 |
| С    | -4.861 | 1.217  | 1.126  |
| С    | -3.529 | 0.968  | 0.918  |
| Ν    | -3.082 | 0.319  | -0.185 |
| 0    | -7.091 | 0.984  | 0.326  |
| С    | -3.318 | -0.643 | -2.399 |
| Ν    | -1.841 | -0.765 | -2.274 |
| С    | -2.399 | 1.416  | 1.824  |
| N    | -1.241 | 1.706  | 0.944  |
| С    | -1.273 | -2.106 | -2.566 |
| С    | -1.855 | -3.259 | -1.732 |
| С    | -2.278 | -2.969 | -0.285 |
| N    | -1.320 | -2.180 | 0.513  |
| С    | 0.004  | 2.150  | 1.599  |
| С    | 0.790  | 3.040  | 0.625  |
| С    | 2.311  | 3.057  | 0.785  |
| N    | 3.02   | 2.014  | -0.023 |
| С    | -0.03  | -2.862 | 0.706  |
| С    | 0.715  | -2.258 | 1.893  |
| С    | 2.189  | -2.630 | 1.990  |
| Ν    | 3.080  | -1.921 | 1.014  |
| С    | 4.470  | 2.382  | -0.126 |
| С    | 5.395  | 1.268  | -0.626 |
| С    | 4.831  | 0.453  | -1.789 |
| Ν    | 3.834  | -0.541 | -1.302 |
| С    | 3.433  | -2.695 | -0.205 |

 Table S7. Cartesian coordinates of the Cu<sup>2+</sup>: L1 1:2 optimized complex.

| С | 4.418  | -1.876 | -1.020 |
|---|--------|--------|--------|
| Н | -5.984 | -0.128 | -1.813 |
| Н | -5.191 | 1.755  | 2.010  |
| Н | -3.565 | -0.016 | -3.260 |
| Н | -3.758 | -1.621 | -2.604 |
| Н | -1.414 | -0.116 | -2.927 |
| Н | -2.125 | 0.618  | 2.521  |
| Н | -2.688 | 2.294  | 2.413  |
| Н | -1.546 | 2.442  | 0.302  |
| Н | -0.201 | -2.013 | -2.381 |
| Н | -1.394 | -2.350 | -3.629 |
| Н | -1.112 | -4.062 | -1.749 |
| Н | -2.734 | -3.677 | -2.233 |
| Н | -2.473 | -3.935 | 0.202  |
| Н | -3.223 | -2.425 | -0.271 |
| Н | -1.755 | -2.051 | 1.428  |
| Н | 0.576  | 1.270  | 1.890  |
| Н | -0.220 | 2.707  | 2.517  |
| Н | 0.431  | 4.068  | 0.728  |
| Н | 0.548  | 2.745  | -0.399 |
| Н | 2.609  | 2.929  | 1.826  |
| Н | 2.689  | 4.030  | 0.457  |
| Н | 2.632  | 2.061  | -0.968 |
| Н | 0.548  | -2.750 | -0.210 |
| Н | -0.175 | -3.940 | 0.874  |
| Н | 0.232  | -2.580 | 2.822  |
| Н | 0.618  | -1.170 | 1.859  |
| Н | 2.33   | -3.709 | 1.875  |
| Н | 2.553  | -2.371 | 2.985  |
| Н | 3.955  | -1.768 | 1.512  |

|   | Н  | 4.798  | 2.708  | 0.861  |
|---|----|--------|--------|--------|
|   | Н  | 4.542  | 3.250  | -0.790 |
|   | Н  | 6.333  | 1.736  | -0.935 |
|   | Н  | 5.655  | 0.592  | 0.194  |
|   | Н  | 5.634  | -0.068 | -2.318 |
|   | Н  | 4.343  | 1.102  | -2.517 |
|   | Н  | 3.108  | -0.663 | -2.003 |
|   | CU | -1.147 | -0.015 | -0.320 |
|   | CU | 2.707  | 0.036  | 0.427  |
|   | 0  | -2.782 | -1.833 | 3.176  |
|   | Н  | -3.736 | -1.688 | 3.149  |
|   | 0  | 1.587  | 1.756  | -2.771 |
|   | Н  | 1.886  | 1.440  | -3.633 |
|   | Н  | 0.968  | 2.474  | -2.957 |
|   | 0  | 0.799  | -0.070 | -0.543 |
|   | Н  | 0.962  | 0.439  | -1.352 |
|   | Н  | -2.624 | -2.450 | 3.901  |
|   | С  | -5.851 | 0.792  | 0.161  |
|   | 0  | -2.372 | 3.813  | -0.870 |
|   | Н  | -2.075 | 4.731  | -0.868 |
|   | Н  | -3.336 | 3.840  | -0.907 |
|   | 0  | 2.97   | 0.536  | 2.571  |
|   | Н  | 2.398  | 0.350  | 3.326  |
|   | Н  | 3.856  | 0.689  | 2.922  |
|   | Н  | 5.344  | -1.730 | -0.458 |
|   | Н  | 4.676  | -2.392 | -1.949 |
|   | Н  | 2.525  | -2.886 | -0.776 |
| _ | Н  | 3.871  | -3.661 | 0.064  |

| Atoms  | Distance ( <sup>Å</sup> ) | Atoms     | Angle (°) |
|--------|---------------------------|-----------|-----------|
| Cu1-N1 | 2.137                     | N1-Cu1-N2 | 77.3      |
| Cu1-N2 | 1.968                     | N1-Cu1-N3 | 141.6     |
| Cu1-N3 | 2.205                     | N1-Cu1-N4 | 122.3     |
| Cu1-N4 | 2.326                     | N1-Cu1-O1 | 97.7      |
| Cu1-O1 | 1.960                     | N2-Cu1-N3 | 79.0      |
| Cu2-N5 | 2.077                     | N2-Cu1-N4 | 93.5      |
| Cu2-N6 | 2.143                     | N2-Cu1-O1 | 171.5     |
| Cu2-N7 | 2.053                     | N3-Cu1-N4 | 88.7      |
| Cu2-O1 | 2.143                     | N3-Cu1-O1 | 101.7     |
| Cu2-O2 | 2.217                     | N4-Cu1-O1 | 95.1      |
|        |                           | N5-Cu2-N6 | 83.1      |
|        |                           | N5-Cu2-N7 | 160.5     |
|        |                           | N5-Cu2-O1 | 104.0     |
|        |                           | N5-Cu2-O2 | 85.3      |
|        |                           | N6-Cu2-N7 | 90.1      |
|        |                           | N6-Cu2-O1 | 95.1      |
|        |                           | N6-Cu2-O2 | 141.1     |
|        |                           | N7-Cu2-O1 | 94.8      |
|        |                           | N7-Cu2-O2 | 88.7      |
|        |                           | O1-Cu2-O2 | 123.7     |

**Table S8.** Structural data of the  $Cu^{2+}$ : L1 1:2 optimized complex.

**Table S9.** Logarithms of the stability constants of mononuclear and binuclear  $Zn^{2+}$  complexes with **L1** obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

| Entry | Reaction                                                                                         | L1                   |
|-------|--------------------------------------------------------------------------------------------------|----------------------|
| 1     | $[ZnH_{2}(H_{-1}L)]^{3+} + H^{+} \rightleftharpoons [ZnH_{3}(H_{-1}L)]^{5+}$                     | 6.32(3) <sup>a</sup> |
| 2     | $[Zn(H_{-1}L)]^{2+} + 2H^{+} \rightleftharpoons [ZnH_{2}(H_{-1}L)]^{4+}$                         | 12.78(2)             |
| 3     | $H(H_{-1}L) + Zn(II) \rightleftharpoons [ZnH(H_{-1}L)]^{2+}$                                     | 11.80(1)             |
| 4     | $H_{-1}L^{-} + Zn(II) \rightleftharpoons \left[Zn(H_{-1}L)\right]^{+}$                           | 14.65(2)             |
| 5     | $\left[Zn(H_{-1}L)\right]^{+} + H_2 0 \rightleftharpoons \left[Zn(H_{-1}L)(OH)\right] + H^{+}$   | -9.96(3)             |
| 6     | $\left[Zn(H_{-1}L)(OH)\right] + H_2 O \rightleftharpoons \left[Zn(H_{-1}L)(OH)_2\right]^- + H^+$ | -10.92(3)            |
| 7     | $2Zn(II) + H_{-1}L^{-} + H_20 \rightleftharpoons [Zn_2(H_{-1}L)(OH)]^{2+} + H^{+}$               | 11.14(3)             |
| 8     | $[Zn_{2}(H_{-1}L)(OH)]^{2+} + H_{2}O \rightleftharpoons [Zn_{2}(H_{-1}L)(OH)_{2}]^{+} + H^{+}$   | -8.81(3)             |
| 9     | $[Zn_{2}(H_{-1}L)(OH)_{2}]^{+} + H_{2}O \rightleftharpoons [Zn_{2}(H_{-1}L)(OH)_{3}] + H^{+}$    | -10.26(4)            |

<sup>a</sup> Values in parentheses are standard deviations in the last significant figure.

**Table S10.** Logarithms of the stability constants of binuclear  $Cu^{2+}:Zn^{2+}$  complexes with **L1** obtained by potentiometric measurements. The logarithms constants were determined in 0.15 M NaClO<sub>4</sub> at 298.1 ± 0.1 K.

| Reaction                                                                                   | L1                    |
|--------------------------------------------------------------------------------------------|-----------------------|
| $Cu(II) + Zn(II) + H_{-1}L^{-} + H_{2}O \neq [CuZn(H_{-1}L)(OH)]^{2+} + H^{+}$             | 19.93(5) <sup>a</sup> |
| $Cu(II) + Zn(II) + H_{-1}L^{-} + 2H_2O \rightleftharpoons [CuZn(H_{-1}L)(OH)_2]^+ + H^{-}$ | 12.19(3)              |
| $Cu(II) + Zn(II) + H_{-1}L^{-} + 3H_2O \ge [CuZn(H_{-1}L)(OH)_3] + H^{+}$                  | 1.20(7)               |

<sup>a</sup> Values in parentheses are standard deviations in the last significant figure.

**Table S11.** Apparent formal potential of  $Cu^{2+}/Cu^{+}$  couple ( $E^{\circ}$ ) from voltammetric data for  $Cu^{2+}:L1$  1:1,  $Cu^{2+}:L1$  1:2 and  $Cu^{2+}:L1$ -BNPs 1:2.

|                                     | $IC_{50}\left(\mu M\right)$ | E°' (mV vs SCE) | Reference |
|-------------------------------------|-----------------------------|-----------------|-----------|
| Cu <sub>2</sub> L1                  | 0.8(1)                      | $-158 \pm 5$    | This work |
| CuL1                                | 1.4(5)                      | -54 ± 5         | This work |
| Cu <sub>2</sub> L1-BNPs             | 0.10(3)                     | $-223 \pm 5$    | This work |
| $Cu_2L2$                            | 1.2(2)b                     | $-150 \pm 5$    | Ref. 1    |
| Cu <sub>2</sub> Zn <sub>2</sub> SOD | 0.010(2)b                   | +76             | Ref. 23   |

# **IV. References**

- 1 R. Belda, S. Blasco, B. Verdejo, H. R. Jiménez, A. Doménech-Carbó, C. Soriano, J. Latorre, C. Terencio and E. García-España, *Dalton Trans.*, 2013, **42**, 11194–204.
- 2 E. Busto, A. González-Álvarez, V. Gotor-Fernández, I. Alfonso and V. Gotor, *Tetrahedron*, 2010, **66**, 6070–6077.
- 3 P. Froidevaux, J. M. Harrowfield and A. N. Sobolev, *Inorg. Chem.*, 2000, **39**, 4678–4687.
- 4 J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 1974, 96, 2268–2270.
- 5 J. E. Richman, T. J. Atkins and W. T. Oetle, *Organic Synthesis, volumen VI*, John Wiley & Sons, Inc, 1988.
- 6 B. L. Shaw, J. Am. Chem. Soc., 1975, 97, 3856–3857.
- 7 B. E. Haskell and S. B. Bowlus, J. Org. Chem., 1976, **41**, 159–160.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
  Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Makatsuji,
  M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
  Sonnenberg and M. Hada, 2009.
- 9 G. Schaftenaar and J. H. Noordik, J. Comput. Mol. Des., 2000, 14, 123–134.
- 10 Schrodinger LLC, 2015.
- 11 S. Miertuš, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, **55**, 117–129.
- 12 J. L. Pascual-ahuir, E. Silla and I. Tuñon, J. Comput. Chem., 1994, 15, 1127–1138.
- 13 M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43–54.
- 14 L. W. Oberley and D. R. Spitz, *Oxygen Radicals in Biological Systems*, Elsevier, 1984, vol. 105.
- 15 L. W. Oberley and D. R. Spitz, *Handbook of methods of oxygen radicals research*, CRC Press, Boca Raton, USA, 1986.
- 16 C. Beauchamp and I. Fridovich, Anal. Biochem., 1971, 44, 276–287.
- 17 J. Y. Zhou and P. Prognon, J. Pharm. Biomed. Anal., 2006, 40, 1143–8.
- 18 E. Garcia-Espana, M. J. Ballester, F. Lloret, J. M. Moratal, J. Faus and A. Bianchi, *J. Chem. Soc. Dalt. Trans. Inorg. Chem.*, 1988, **2**, 101–104.
- 19 M. Fontanelli and M. Micheloni, 1990.
- 20 G. Gran, Analyst, 1952, 77, 661–671.
- 21 F. J. C. Rossotti and H. Rossotti, J. Chem. Educ., 1965, 42, 375.
- 22 P. Gans, A. Sabatini and A. Vacca, *Talanta*, 1996, **43**, 1739–1753.
- 23 H. Ohtsu, Y. Shimazaki, A. Odani, O. Yamauchi, W. Mori, S. Itoh and S. Fukuzumi, *J. Am. Chem. Soc.*, 2000, **122**, 5733–5741.