Supporting Information

Highly Enantioselective Transfer Hydrogenation of Racemic α-Substituted β-keto Sulfonamides *via* Dynamic Kinetic Resolution

Zhichao Xionga, Chengfeng Peia, Peng Xue, Hui Lv^{} and Xumu Zhang^{*}*

Table of contents

1 General Information	S2
2 General procedure for the synthesis of α -Substituted β -keto Sulfonamides	S2
3 General procedure for asymmetric hydrogenation of α -Substituted β -keto Sulfonamides	S8
4 NMR spectra	S14
5 HPLC spectra of 2	S50

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. NMR spectra were recorded on Bruker ADVANCE III (400 MHz) spectrometers for ¹H NMR and ¹³C NMR. CDCl₃ was the solvent used for the NMR analysis, with tetramethylsilane as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.3 ppm) for ¹³C NMR. Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC analysis was conducted on an Agilent 1260 Series instrument. Column Chromatography was performed with silica gel Merck 60 (300-400 mesh). All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo LTQ-FT mass spectrometer with an electrospray ionization source.

2. General procedure for the synthesis of α-Substituted β-keto Sulfonamides

$$R-SO_{2}CI + HN \xrightarrow{X} \underbrace{Et_{3}N}_{DCM, -20^{\circ}C} \xrightarrow{O}_{U} \xrightarrow{U}_{N} \xrightarrow{V}_{n}$$

Preparation of III according to the literature^[1]:

To a solution of amine (I, 10 mmol) dissolved in 20 mL of CH_2Cl_2 was added triethyl amine (1.01g, 10 mmol) at -20 °C. Then sulfonyl chloride (II, 15 mmol) was added slowly at -20 °C. After stirring for 6 h from -20 °C to room temperature, aqueous NH₄Cl solution (3 mL) was added to reaction mixture. The solution was extracted with CH_2Cl_2 (3×10 mL) and the combined organic phase was washed with H_2O (3×10 mL) and brine and dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by chromatography on silica gel using hexanes-ethyl acetate (10:1) as eluant to give the sulfonamide (III).

1-(methylsulfonyl) piperidine:

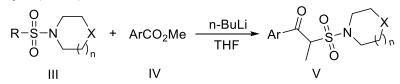
White solid, 2.6g, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.28 – 3.11 (m, 4H), 2.77 (s, 3H), 1.74 – 1.66 (m, 4H), 1.63 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 46.77, 34.31, 25.35, 23.68; ESI-HRMS Calculated for C₆H₁₄NO₂S⁺ ([M+H]⁺): 164.0740, found: 164.0737.

1-(ethylsulfonyl) piperidine:

Colorless oil, 7.6g, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.18 (m, 4H), 2.94 – 2.82 (q, 2H), 1.65 – 1.45 (m, 6H), 1.36 – 1.24 (t, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 46.67, 43.65, 25.73, 23.82, 7.84; ESI-HRMS Calculated for C₇H₁₆NO₂S⁺ ([M+H]⁺): 178.0896, found: 178.0898.

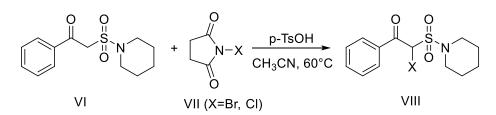
4-(ethylsulfonyl) morpholine

White solid, 1.4g, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.86 – 3.68 (m, 4H), 3.29 (m, 4H), 2.97 (q, J = 7.4 Hz, 2H), 1.40 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 66.67, 45.88, 43.46, 7.73; ESI-HRMS Calculated for C₆H₁₄NO₃S⁺ ([M+H]⁺): 180.0689, found: 180.0692.

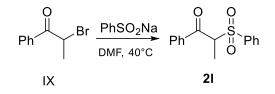

1-(ethylsulfonyl) pyrrolidine:

Colorless oil, 1.8g, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.37 (m, 4H), 3.02 (q, J = 7.4 Hz, 2H), 2.00 – 1.89 (m, 4H), 1.38 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 47.77, 44.04, 25.92, 8.00; ESI-HRMS Calculated for C₆H₁₄NO₂S⁺ ([M+H]⁺): 164.0740, found: 164.0735.

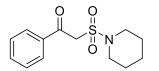
N, N-dimethylethanesulfonamide


Colorless oil, 1.5g, 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 2.95 (q, *J* = 7.4 Hz, 2H), 2.87 (s, 6H), 1.34 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 42.84, 37.57, 7.82.

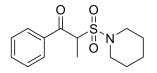
Preparation of V (1a-1o):



A solution of sulfamide (10 mmol) in 20 ml of dry tetrahydrofuran at -78 °C was treated dropwise with 11 mmol n-BuLi (2.5 M) in hexanes. The reaction mixture was stirred in an ice bath for 1 h and then cooled again to -78 °C. Then 12 mmol benzoate was added dropwise and stirred at room temperature for 16h. The mixture was concentrated and the residue was treated with 1N HCl (until pH~3), diluted with 10 ml water, and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by


chromatography on silica gel using hexanes-ethyl acetate (8:1) as eluant to give the target compound.²

Intermediate VI (1 eq.), VII (1.1 eq.) and p-TsOH (0.1 eq.) were dissolved in anhydrate CH₃CN and stirred at 60 °C for 6 h. After the reaction was completed (monitored by TLC), 20 mL H₂O was added. The solution was extracted with ethyl acetate (3×10 mL) and the combined organic phase was washed with H₂O (3×10 mL) and brine and dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by chromatography on silica gel using hexanes-ethyl acetate (5:1) as eluant to give the product.



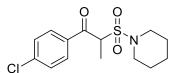
2-bromo-1-phenylpropan-1-one (1 eq.) and PhSO₂Na (1.2 eq.) were dissolved in DMF and heated at 40 °C. When TLC showed the reaction was completed, H₂O and ethyl acetate were added and the reaction mixture was washed with H₂O for three times and brine for one time. The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by chromatography on silica gel using hexanes-ethyl acetate (10:1) as eluant to give the product.³

1-phenyl-2-(piperidin-1-ylsulfonyl) ethan-1-one:

White solid, 3.2g, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.68 – 7.60 (m, 1H), 7.51 (dd, J = 10.6, 4.8 Hz, 2H), 4.55 (s, 2H), 3.39 – 3.22 (m, 4H), 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.50, 135.87, 134.35, 129.49, 128.89, 57.36, 47.10, 25.66, 23.67; ESI-HRMS Calculated for C₁₃H₁₈NO₃S⁺ ([M+H]⁺): 268.1002, found: 268.1006.

1-phenyl-2-(piperidin-1-ylsulfonyl) propan-1-one (1a)

White solid, 2.5g, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.99 (m, 2H), 7.68 – 7.57 (m, 1H), 7.55 – 7.46 (m, 2H), 5.13 (q, J = 6.9 Hz, 1H), 3.26 (m, J = 12.4 Hz, 4H), 1.65 (d, J = 6.9 Hz, 3H), 1.55 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.47, 136.21, 134.03, 129.17, 128.82, 62.82, 47.94, 26.12, 23.77, 13.42; ESI-HRMS Calculated for C₁₄H₂₀NO₃S⁺ ([M+H]⁺): 282.1158, found: 282.1153.


1-(4-methoxyphenyl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1b)

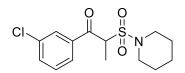
White solid, 0.48g, 72% yield; ¹H NMR (400 MHz, CDCl3) δ 8.30 – 7.88 (m, 2H), 7.17 – 6.77 (m, 2H), 5.07 (q, *J* = 6.9 Hz, 1H), 3.89 (s, 3H), 3.28 (m, 4H), 1.63 (d, *J* = 6.9 Hz, 3H), 1.55 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.60, 164.30, 131.71, 129.20, 114.01, 62.74, 55.63, 47.97, 26.15, 23.81, 13.45. ESI-HRMS Calculated for C₁₅H₂₂NO₄S⁺ ([M+H]⁺): 312.1264, found: 312.1267.

1-(4-fluorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1c)

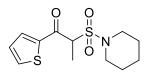
White solid, 0.41g, 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.03 (m, 2H), 7.18 (t, *J* = 8.6 Hz, 2H), 5.08 (q, *J* = 6.9 Hz, 1H), 3.28 (m, 4H), 1.64 (d, *J* = 6.9 Hz, 3H), 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.89, 167.55, 165.00, 132.65, 132.62, 132.11, 132.02, 116.10, 115.89, 63.05, 48.03, 26.14, 23.76, 13.32; ESI-HRMS Calculated for C₁₄H₁₉FNO₃S⁺ ([M+H]⁺): 300.1064, found: 300.1059.


1-(4-chlorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1d)

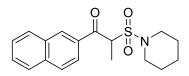
White solid, 0.45g, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 5.06 (q, J = 6.9 Hz, 1H), 3.29 (m, 4H), 1.64 (d, J = 6.9 Hz, 3H), 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 192.35, 140.70, 140.43, 134.51, 130.66, 129.14, 63.13, 48.06, 26.14, 23.76, 13.28; ESI-HRMS Calculated for C₁₄H₁₉ClNO₃S⁺ ([M+H]⁺): 316.0769, found: 316.0766.


1-(4-bromophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1e)

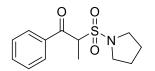
White solid, 0.4g, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 5.06 (q, J = 6.9 Hz, 1H), 3.29 (m, 4H), 1.64 (d, J = 6.9 Hz, 3H), 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 192.57, 134.92, 132.14, 130.71, 129.54, 63.12, 48.06, 26.14, 23.76, 13.27; ESI-HRMS Calculated for C₁₄H₁₉BrNO₃S⁺ ([M+H]⁺): 360.0264, found: 360.0259.


2-(piperidin-1-ylsulfonyl)-1-(4-(trifluoromethyl) phenyl) propan-1-one (1f)

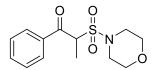
White solid, 0.43g, 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.9, 5.3 Hz, 2H), 7.18 (t, J = 8.6 Hz, 2H), 5.07 (q, J = 6.9 Hz, 1H), 3.27 (m, 4H), 1.64 (d, J = 6.9 Hz, 3H), 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.89, 167.56, 165.00, 132.65, 132.62, 132.11, 132.02, 116.11, 115.89, 77.39, 77.07, 76.75, 63.07, 48.03, 26.14, 23.76, 13.32; ESI-HRMS Calculated for C₁₅H₁₉F₃NO₃S⁺ ([M+H]⁺): 350.1032, found: 350.1026.


1-(3-chlorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1g)

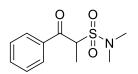
White solid, 0.4g, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 1H), 7.47 – 7.40 (m, 2H), 7.37 (ddd, *J* = 7.6, 6.0, 2.7 Hz, 1H), 5.02 (q, *J* = 6.9 Hz, 1H), 3.33 (m, 4H), 1.68 (d, *J* = 6.9 Hz, 3H), 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.63, 138.82, 132.50, 130.76, 130.39, 130.31, 127.21, 66.49, 47.84, 26.12, 23.77; ESI-HRMS Calculated for C₁₄H₁₉ClNO₃S⁺ ([M+H]⁺): 316.0769, found: 316.0764.


2-(piperidin-1-ylsulfonyl)-1-(thiophen-2-yl) propan-1-one (1h)

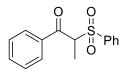
White solid, 0.38g, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 3.9, 1.0 Hz, 1H), 7.76 (dd, J = 4.9, 1.1 Hz, 1H), 7.19 (dd, J = 4.9, 3.9 Hz, 1H), 4.88 (q, J = 7.0 Hz, 1H), 3.30 (m, 4H), 1.66 (d, J = 7.0 Hz, 3H), 1.56 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 185.70, 143.55, 135.93, 134.49, 128.71, 64.86, 47.96, 26.12, 23.76, 13.31; ESI-HRMS Calculated for C₁₂H₁₈NO₃S₂⁺ ([M+H]⁺): 288.0723, found: 288.0717.


1-(naphthalen-2-yl)-2-(piperidin-1-ylsulfonyl) propan-1-one (1i)

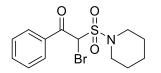
White solid, 0.51g, 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.11 – 7.97 (m, 2H), 7.91 (dd, J = 14.7, 8.4 Hz, 2H), 7.69 – 7.54 (m, 2H), 5.30 (q, J = 6.9 Hz, 1H), 3.29 (m, 4H), 1.71 (d, J = 6.9 Hz, 3H), 1.55 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.40, 193.38, 137.64, 135.94, 134.63, 133.51, 132.41, 131.66, 131.61, 130.01, 129.73, 129.19, 128.88, 128.76, 127.80, 127.07, 127.03, 124.20, 121.53, 63.09, 48.04, 26.16, 23.79, 13.57; ESI-HRMS Calculated for C₁₈H₂₂NO₃S⁺ ([M+H]⁺): 332.1315, found: 332.1308.


1-phenyl-2-(pyrrolidin-1-ylsulfonyl) propan-1-one (1j)

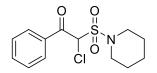
White solid, 0.48g, 74% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 2H), 7.67 – 7.60 (m, 1H), 7.55 – 7.48 (m, 2H), 5.17 (q, *J* = 6.9 Hz, 1H), 3.42 – 3.33 (m, 4H), 1.87 – 1.78 (m, 4H), 1.70 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.61, 136.29, 134.02, 129.07, 128.85, 63.02, 48.90, 47.77, 44.08, 25.93, 25.73, 13.52, 8.01; ESI-HRMS Calculated for C₁₃H₁₈NO₃S⁺ ([M+H]⁺): 268.1002, found: 268.1006.


2-(morpholinosulfonyl)-1-phenylpropan-1-one (1k)

White solid, 0.48g, 744%yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.68 – 7.60 (m, 1H), 7.57 – 7.48 (m, 2H), 5.16 (q, *J* = 6.9 Hz, 1H), 3.73 – 3.61 (m, 4H), 3.44 – 3.27 (m, 4H), 1.67 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.28, 135.97, 134.29, 129.14, 128.95, 66.97, 62.90, 47.14, 13.52; ESI-HRMS Calculated for C₁₃H₁₈NO₄S⁺ ([M+H]⁺): 284.0951, found: 284.0956.

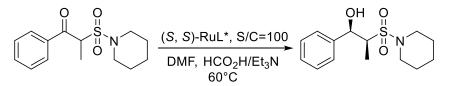

N, N-dimethyl-1-oxo-1-phenylpropane-2-sulfonamide (11)

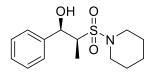
White solid, 0.45g, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 5.17 (q, *J* = 7.0 Hz, 1H), 2.89 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.54, 136.13, 134.12, 129.13, 128.87, 62.92, 38.52, 13.62; ESI-HRMS Calculated for C₁₁H₁₆NO₃S⁺ ([M+H]⁺): 242.0845, found: 242.0847.


1-phenyl-2-(phenylsulfonyl) propan-1-one (1m)

White solid, 0.39g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.84 – 7.76 (m, 2H), 7.63 (dt, *J* = 16.1, 7.4 Hz, 2H), 7.50 (dt, *J* = 17.3, 7.8 Hz, 4H), 5.18 (q, *J* = 6.9 Hz, 1H), 1.58 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.50, 136.16, 135.97, 134.29, 134.16, 129.85, 129.19, 128.93, 128.81, 64.92, 13.23. ¹³C NMR (101 MHz, CDCl₃) δ 192.50, 136.16, 135.97, 134.29, 134.16, 129.85, 129.19, 128.93, 128.81, 64.92, 13.23.

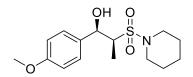
2-bromo-1-phenyl-2-(piperidin-1-ylsulfonyl) ethan-1-one (1n)


White solid, 0.54g, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 5.06 (q, J = 6.9 Hz, 1H), 3.29 (m, 4H), 1.64 (d, J = 6.9 Hz, 3H), 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 187.66, 134.66, 134.23, 129.52, 129.02, 58.22, 48.99, 26.12, 23.66; ESI-HRMS Calculated for C₁₃H₁₇BrNO₃S⁺ ([M+H]⁺): 346.0107, found: 346.0103

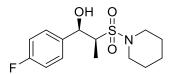

2-chloro-1-phenyl-2-(piperidin-1-ylsulfonyl) ethan-1-one (10)

White solid, 0.3g, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 6.23 (s, 1H), 3.46 (m, 4H), 1.62 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 187.38, 134.72, 134.51, 129.62, 128.96, 70.34, 48.77, 26.07, 23.64; ESI-HRMS Calculated for C₁₃H₁₇ClNO₃S⁺ ([M+H]⁺): 302.0612, found: 302.0609.

General procedure of the asymmetric hydrogen transfer reduction

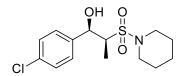


A suspension of β -keto sulfamide (0.16 mmol), (*S*, *S*)-RuL^{*}(0.0016 mmol), 5:2 HCO₂H/Et₃N (0.2 mL) in anhydrous DMF (1 mL) were stirred under N₂ at 60 °C for 12 h until completion according to TLC detection. 5.0 mL water was added to the reaction, the mixture was then extracted with ethyl acetate (3×5mL) threetimes, dried over Na₂SO₄ and concentrated. The desired product was purified by silica gel chromatography (hexanes: ethyl acetate = 1:3). The enantioselectivity of the products was determined by HPLC analysis. The racemic samples of diastereomeric mixtures of 2a-2p for HPLC analysis were prepared following literature procedures.

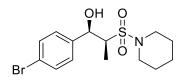

(1R, 2S)-1-phenyl-2-(piperidin-1-ylsulfonyl) propan-1-ol (2a)

White solid, 21.8mg, 96% yield, 99% ee, dr= 20:1; $[\alpha]_D^{20} = 11.6$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 22.26 min (minor), 31.65 min (major), 33.04 min (minor), 37.21 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 4H), 7.28 (m, *J* = 3.0, 2.0 Hz, 1H), 5.46 (s, 1H), 3.38 – 3.33 (m, 4H), 3.31 (d, *J* = 1.8 Hz, 1H), 3.18 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.67 – 1.61 (m, 6H), 1.19 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.22, 128.46, 127.68, 125.65, 70.65, 63.07, 47.06, 46.69, 43.70, 26.08, 25.75, 23.87, 23.85, 7.87, 6.81; ESI-HRMS Calculated for C₁₄H₂₂NO₃S⁺ ([M+H]⁺): 284.1315, found: 284.1311.

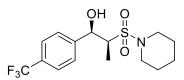
(1R, 2S)-1-(4-methoxyphenyl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2b)


White solid, 23.8 mg, 95% yield, 98% ee, dr= 20:1; $[\alpha]_D^{20} = 6.8$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 21.31 min (minor), 27.08 min (major), 30.95 min (minor), 36.62 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.6 Hz, 2H), 6.93 – 6.72 (m, 2H), 4.76 (d, *J* = 9.1 Hz, 1H), 4.37 (d, *J* = 1.0 Hz, 1H), 3.73 (s, 3H), 3.39 – 3.26 (m, 4H), 3.17 (tt, *J* = 9.0, 5.8 Hz, 1H), 1.69 – 1.46 (m, 6H), 0.85 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.62, 132.13, 128.28, 114.00, 73.67, 63.54, 55.32, 47.24, 26.09, 23.84, 12.82; ESI-HRMS Calculated for C₁₅H₂₄NO₄S⁺ ([M+H]⁺): 314.1421, found: 314.1425.

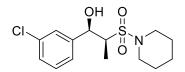
(1R, 2S)-1-(4-fluorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2c)


White solid, 23.1 mg, 95% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 1.2$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 92: 8; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 17.07 min (minor), 20.75 min (major), 23.93 min (minor), 28.36 min (minor). ¹H NMR (400 MHz, CDCl3) δ 7.39 – 7.28 (m, 2H), 7.12 – 6.99 (m, 2H), 5.45 (s, 1H), 3.35 (m, J = 5.9, 4.2 Hz, 4H), 3.27 – 3.19 (m, 1H), 3.13 (qd, J = 7.1, 1.3 Hz, 1H), 1.67 – 1.61 (m, 6H), 1.17 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 162.34, 159.89, 134.85, 134.82, 126.32, 126.24, 114.41, 114.20, 69.14, 61.95, 46.03, 45.65, 42.68, 25.03, 24.71, 24.31,

22.80, 6.82, 5.70; ESI-HRMS Calculated for $C_{14}H_{21}FNO_3S^+$ ([M+H]⁺): 302.1221, found: 302.1216.

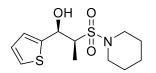

(1R, 2S)-1-(4-chlorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2d)

White solid, 24.2 mg, 95% yield, 98% ee, dr=20:1; $[\alpha]_D^{20} = 8.1$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 15.29 min (minor), 17.93 min (major), 21.69 min (minor), 27.00 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.21 (m, 4H), 5.38 (s, 1H), 3.35 – 3.28 (m, 4H), 3.28 (m, 1H), 3.06 (qd, *J* = 7.1, 1.3 Hz, 1H), 1.65 – 1.56 (m, 6H), 1.11 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.60, 132.38, 127.59, 126.04, 69.15, 61.82, 46.04, 25.03, 22.80, 5.73; ESI-HRMS Calculated for C₁₄H₂₁ClNO₃S⁺ ([M+H]⁺): 318.0925, found: 318.0919.

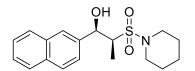


(1R, 2S)-1-(4-bromophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2e)

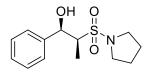
White solid, 27.2 mg, 94% yield, 99% ee, dr = 20:1; $[\alpha]_D^{20} = 9.5$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 16.54 min (minor), 19.40 min (major), 23.41 min (minor), 30.29 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 5.30 (d, *J* = 51.2 Hz, 1H), 3.29 (m, 4H), 3.28 (s, 1H), 3.06 (qd, *J* = 7.1, 1.3 Hz, 1H), 1.59 (dd, *J* = 9.8, 4.6 Hz, 6H), 1.10 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.23, 131.58, 127.44, 121.54, 70.24, 62.83, 47.09, 26.08, 25.37, 23.85, 6.79; ESI-HRMS Calculated for C₁₄H₂₁BrNO₃S⁺ ([M+H]⁺): 362.0420, found: 362.0414.



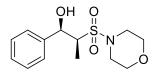
(1*R*, 2*S*)-2-(piperidin-1-ylsulfonyl)-1-(4-(trifluoromethyl) phenyl) propan-1-ol (2f) White solid, 27.2 mg, 96% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 9.7$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 23.43 min (minor), 26.43 min (major), 33.70 min (minor), 46.38 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 5.46 (s, 1H), 3.38 (d, J = 1.7 Hz, 1H), 3.34 – 3.25 (m, 4H), 3.11 (qd, J = 7.1, 1.3 Hz, 1H), 1.64 – 1.55 (m, 6H), 1.10 (d, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 144.24, 130.08, 129.76, 126.11, 125.48, 125.45, 125.41, 125.37, 122.69, 77.38, 77.27, 77.07, 76.75, 70.34, 62.78, 47.12, 46.70, 26.07, 25.75, 25.35, 23.83, 6.84; ESI-HRMS Calculated for $C_{15}H_{21}F_3NO_3S^+$ ([M+H]⁺): 352.1189, found: 352.1183.


(1R, 2S)-1-(3-chlorophenyl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2g)

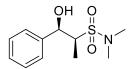
White solid, 24.2 mg, 95% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 11.3$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 97: 3; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 19.20 min (major), 23.29 min (minor), 26.76 min (minor), 32.71 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 4H), 5.38 (s, 1H), 3.33 – 3.28 (m, 4H), 3.28 (s, 1H), 3.06 (qd, J = 7.1, 1.3 Hz, 1H), 1.65 – 1.56 (m, 6H), 1.11 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.29, 134.51, 129.77, 127.88, 125.94, 123.84, 70.18, 62.82, 47.11, 26.08, 23.85, 6.84; ESI-HRMS Calculated for C₁₄H₂₁ClNO₃S⁺ ([M+H]⁺): 318.0925, found: 318.0921.


(1S, 2S)-2-(piperidin-1-ylsulfonyl)-1-(thiophen-2-yl) propan-1-ol (2h)

White solid, 21.5 mg, 93% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 14.3$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 14.82 min (major), 16.15 min (minor), 18.56 min (minor), 19.78 min (minor). ¹H NMR (400 MHz, CDCl₃) δ^1 H NMR (400 MHz, CDCl₃) δ 7.27 (m, *J* = 1.2 Hz, 1H), 7.26 (d, *J* = 1.2 Hz, 1H), 7.05 – 6.93 (m, 2H), 5.71 (s, 1H), 3.38 (m, 4H), 3.35 (s, 1H), 3.28 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.65 (m, 6H), 1.34 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.89, 126.88, 124.69, 123.43, 68.44, 63.17, 47.07, 26.06, 23.85, 7.46; ESI-HRMS Calculated for C₁₂H₂₀NO₃S₂⁺ ([M+H]⁺): 290.0879, found: 290.0873.

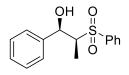

(1R, 2S)-1-(naphthalen-2-yl)-2-(piperidin-1-ylsulfonyl) propan-1-ol (2i)

White solid, 25.1 mg, 94% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 14.3$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 14.20 min (major), 15.11 min (minor), 18.21 min (minor), 23.56 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 4H), 7.53 – 7.45 (m, 2H), 7.39 (dd, *J* = 8.5, 1.6 Hz, 1H), 5.65 (s, 1H), 3.43 (d, J = 1.7 Hz, 1H), 3.42 – 3.36 (m, 4H), 3.30 (tt, J = 7.1, 3.5 Hz, 1H), 1.74 – 1.64 (m, 6H), 1.22 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.50, 133.21, 132.86, 128.25, 128.07, 127.71, 126.39, 126.10, 124.69, 123.51, 70.80, 62.92, 47.13, 46.71, 26.11, 25.76, 23.89, 6.88; ESI-HRMS Calculated for C₁₈H₂₄NO₃S⁺ ([M+H]⁺): 334.1471, found: 334.1466.

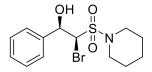

(1R, 2S)-1-phenyl-2-(pyrrolidin-1-ylsulfonyl) propan-1-ol (2j)

White solid, 20.6 mg, 95% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 4.0$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 16.08 min (major), 19.34 min (minor), 20.76 min (minor), 24.66 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 4.4 Hz, 4H), 7.33 – 7.26 (m, 1H), 5.50 (s, 1H), 3.53 – 3.43 (m, 4H), 3.39 (m, *J* = 1.2 Hz, 1H), 3.28 (qd, *J* = 7.1, 1.3 Hz, 1H), 2.01 – 1.96 (m, 4H), 1.24 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.21, 128.46, 127.68, 125.66, 70.63, 64.44, 63.14, 48.25, 26.08, 25.36, 6.72; ESI-HRMS Calculated for C₁₃H₂₀NO₃S⁺ ([M+H]⁺): 270.1158, found: 270.1163.

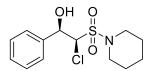
(1*R*, 2*S*)-2-(morpholinosulfonyl)-1-phenylpropan-1-ol (2k)


White solid, 19.9 mg, 96% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 2.8$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 27.81 min (major), 31.88 min (minor), 34.27 min (minor), 39.55 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 5H), 5.43 (s, 1H), 3.70 (t, *J* = 4.7 Hz, 4H), 3.35 (m, 4H), 3.15 (m, *J* = 7.0, 3.5 Hz, 1H), 3.05 (s, 1H), 1.14 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.03, 128.56, 127.88, 125.64, 70.68, 66.98, 63.57, 46.31, 25.37, 6.91; ESI-HRMS Calculated for C₁₃H₂₀NO₄S⁺ ([M+H]⁺): 286.1108, found: 286.1111.

(1R, 2S)-1-hydroxy-N, N-dimethyl-1-phenylpropane-2-sulfonamide (2l)


White solid, 19.0 mg, 97% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 3.3$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IB column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 17.18 min (major), 21.09 min (minor), 23.06 min (minor), 28.65 min (minor). ¹H NMR (400 MHz,

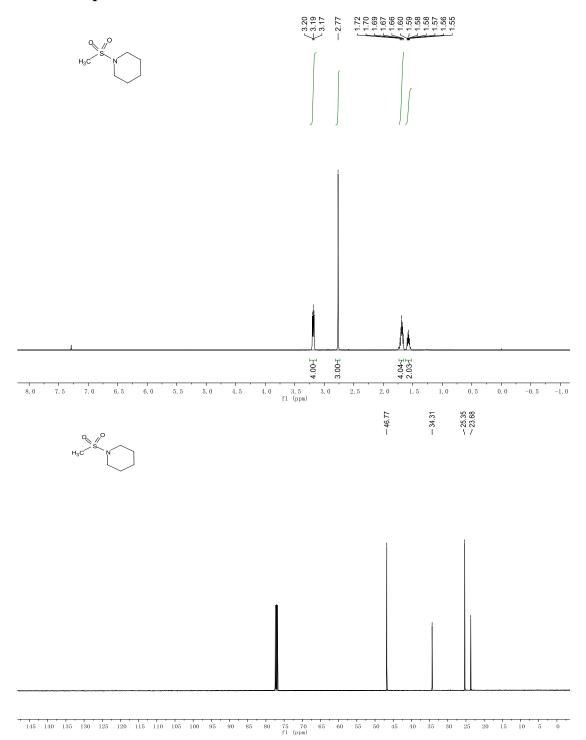
CDCl₃) δ 7.38 (d, J = 4.4 Hz, 4H), 7.30 (dd, J = 8.8, 4.5 Hz, 1H), 5.49 (s, 1H), 3.28 (qd, J = 7.1, 1.1 Hz, 1H), 3.24 (d, J = 1.7 Hz, 1H), 2.99 (d, J = 5.6 Hz, 6H), 1.21 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.06, 128.50, 127.76, 125.68, 70.69, 62.86, 37.82, 6.85; ESI-HRMS Calculated for C₁₁H₁₆NO₃S⁺ ([M+H]⁺): 242.0845, found: 242.0841.

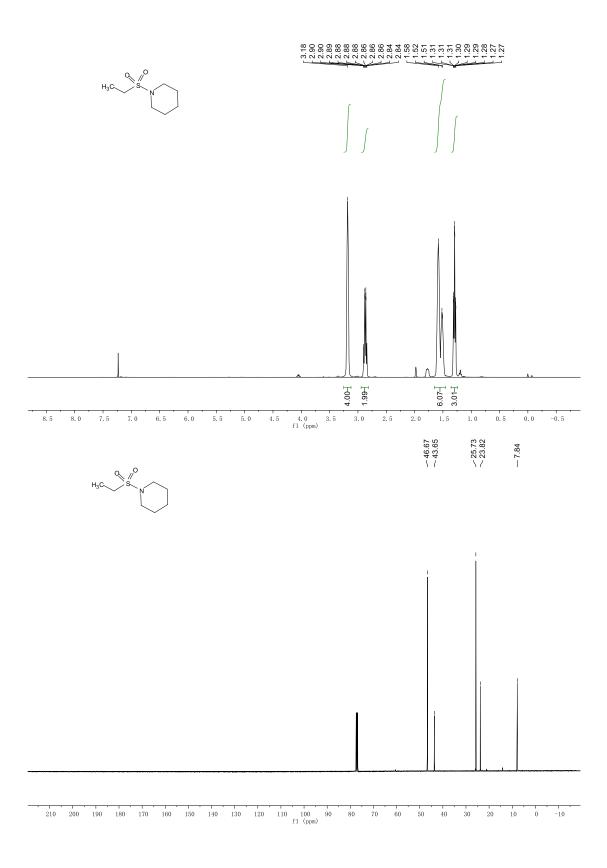

(1R, 2S)-1-phenyl-2-(phenylsulfonyl)propan-1-ol (2m)

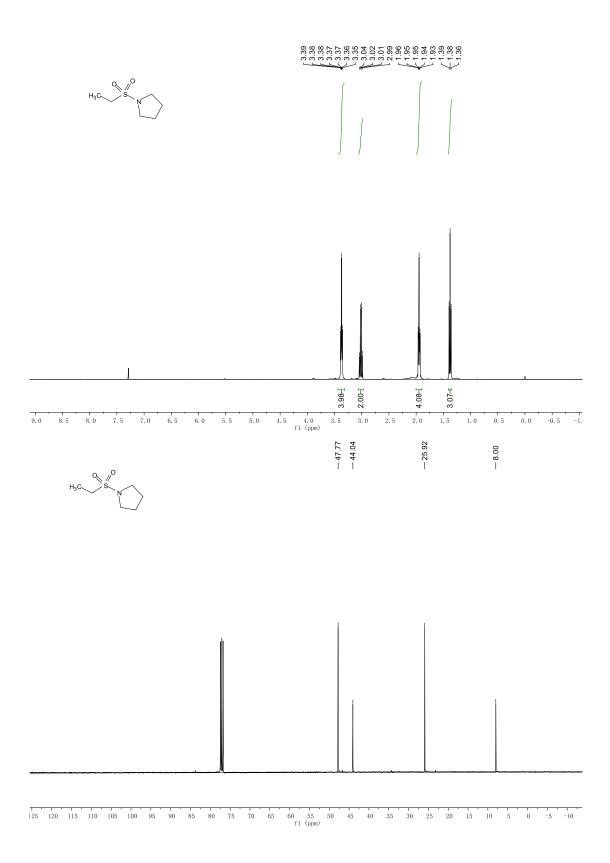
White solid, 21.1 mg, 95% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = -11.5$ (c = 1.00, acetone); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 18.19 min (minor), 25.32 min (major), 31.53 min (minor), 34.37 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.90 (m, 2H), 7.73 (t, *J* = 7.4 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 10.4, 4.4 Hz, 2H), 7.28 (s, 3H), 5.54 (s, 1H), 3.31 (d, *J* = 1.9 Hz, 1H), 3.23 (qd, *J* = 7.1, 1.1 Hz, 1H), 1.22 (d, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 139.81, 137.29, 134.18, 129.45, 128.76, 128.49, 127.80, 125.57, 69.24, 65.66, 64.48, 25.38, 5.80.

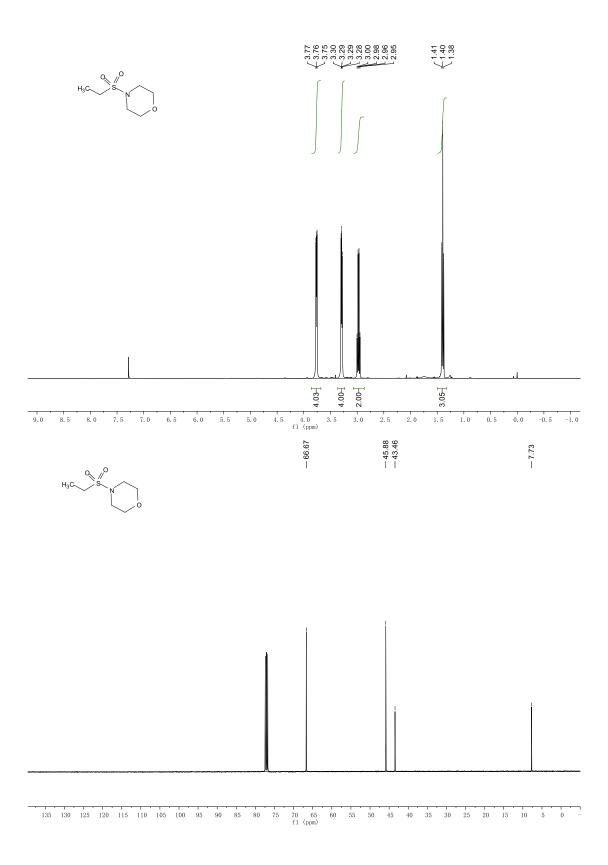
(1R, 2S)-2-bromo-1-phenyl-2-(piperidin-1-ylsulfonyl) ethan-1-ol (2n)

White solid, 25.2 mg, 90% yield, 99% ee, dr=10:1; $[\alpha]_D^{20} = -28.2$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90: 10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 23.11 min (major), 24.45 min (minor), 26.74 min (minor), 28.73 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.32 (m, 5H), 5.31 (m, 1H), 3.69 (s, 1H), 3.26 (m, 4H), 3.12 (dd, *J* = 14.0, 2.0 Hz, 1H), 1.65 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.09, 128.84, 128.46, 128.33, 126.11, 125.68, 68.80, 57.07, 46.63, 25.56, 23.69; ESI-HRMS Calculated for C₁₃H₁₉BrNO₃S⁺ ([M+H]⁺): 348.0264, found: 348.0267.

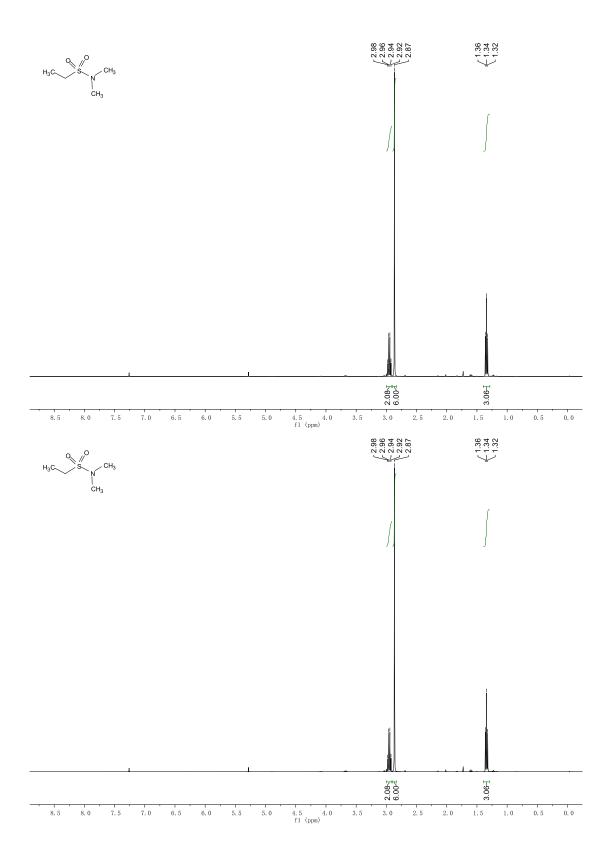


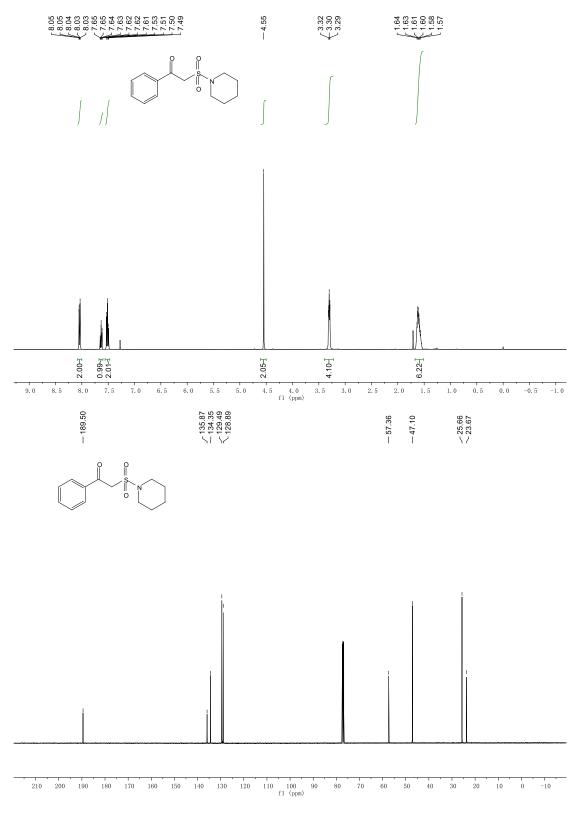

(1R, 2S)-2-chloro-1-phenyl-2-(piperidin-1-ylsulfonyl) ethan-1-ol (2o)

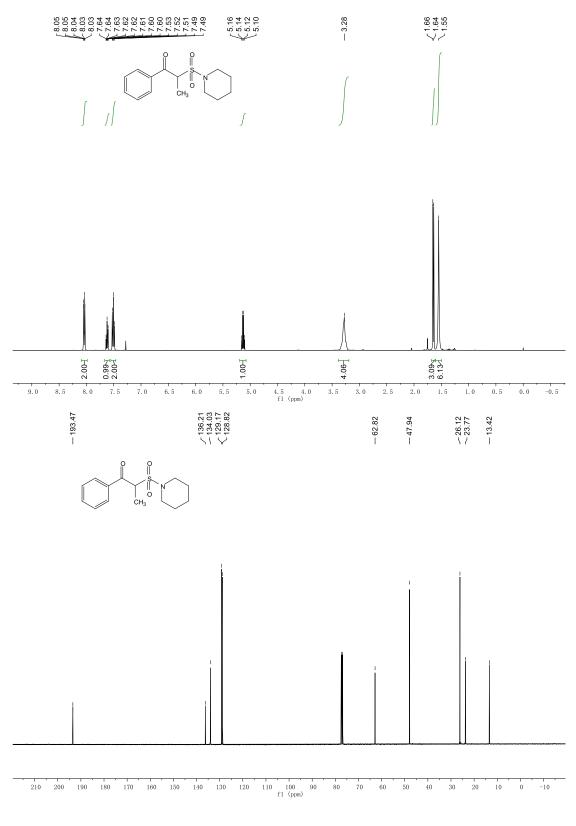

White solid, 22.3 mg, 92% yield, 99% ee, dr=20:1; $[\alpha]_D^{20} = 6.4$ (c = 1.00, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak IA column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 24.88 min (minor), 30.27 min (major), 37.74 min (minor), 46.31 min (minor). ¹H NMR (400 MHz,

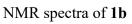

CDCl₃) δ 7.47 – 7.32 (m, 5H), 5.65 (s, 1H), 4.80 (d, J = 1.2 Hz, 1H), 3.56 – 3.41 (m, 4H), 3.39 (s, 1H), 1.71 – 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.29, 128.50, 126.26, 71.16, 47.88, 25.90, 23.67. ESI-HRMS Calculated for C₁₃H₁₉ClNO₃S⁺ ([M+H]⁺): 304.0769, found: 304.0772.

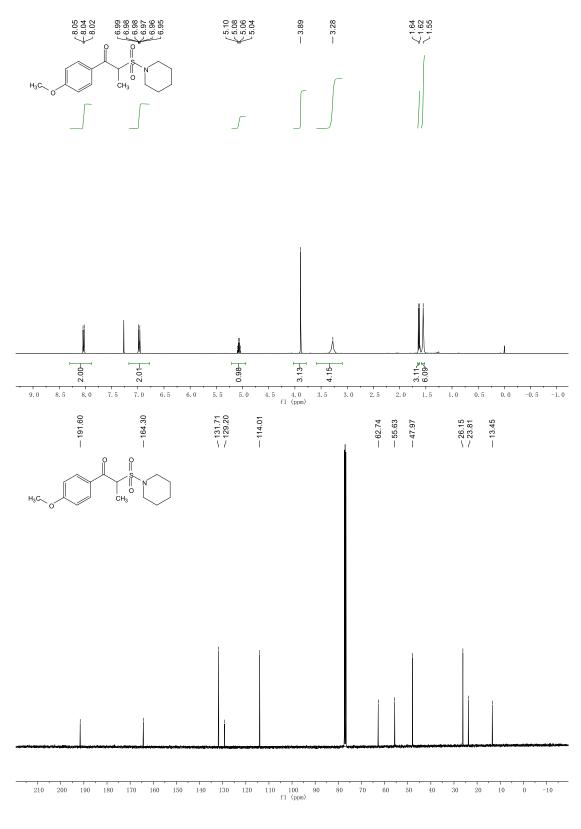
3. NMR spectra

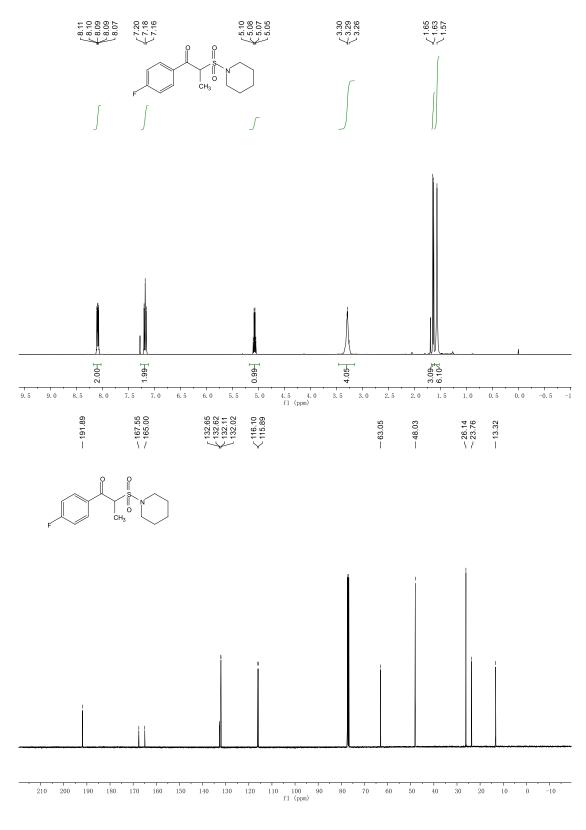


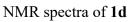


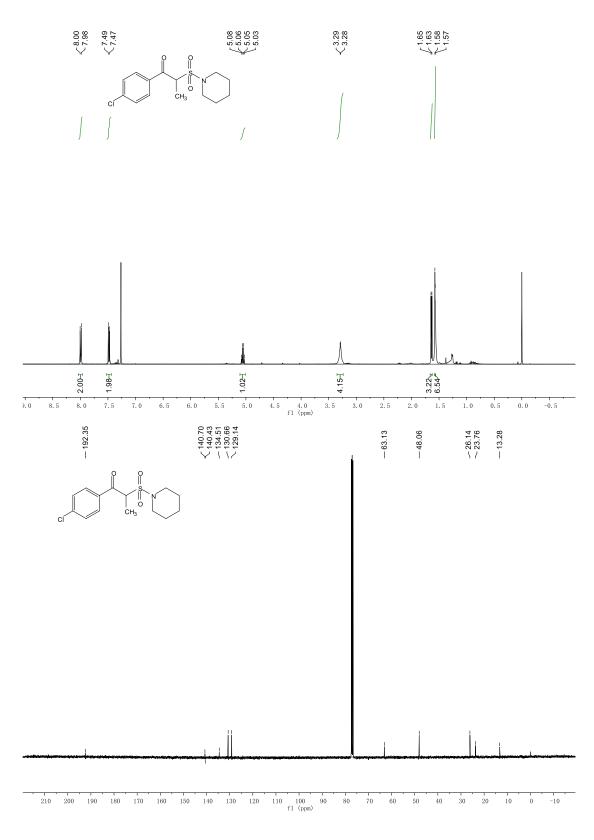

S17

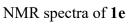


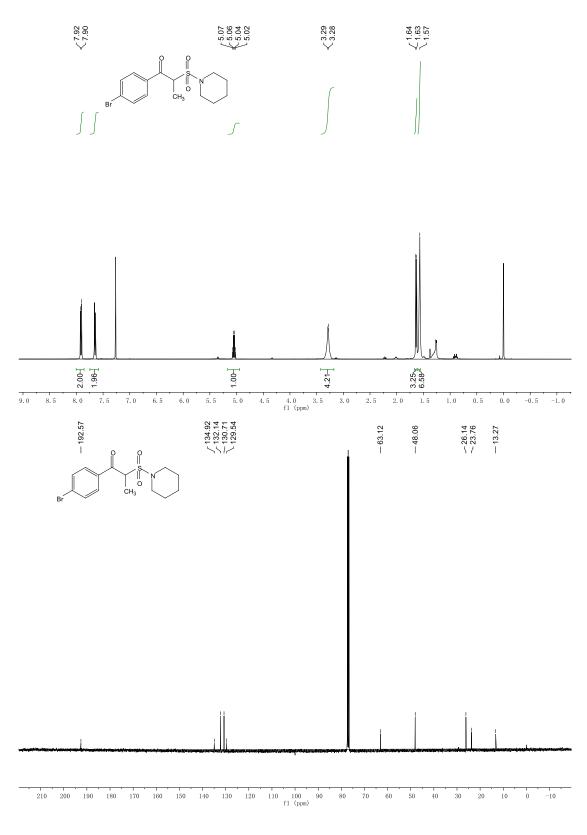

S18

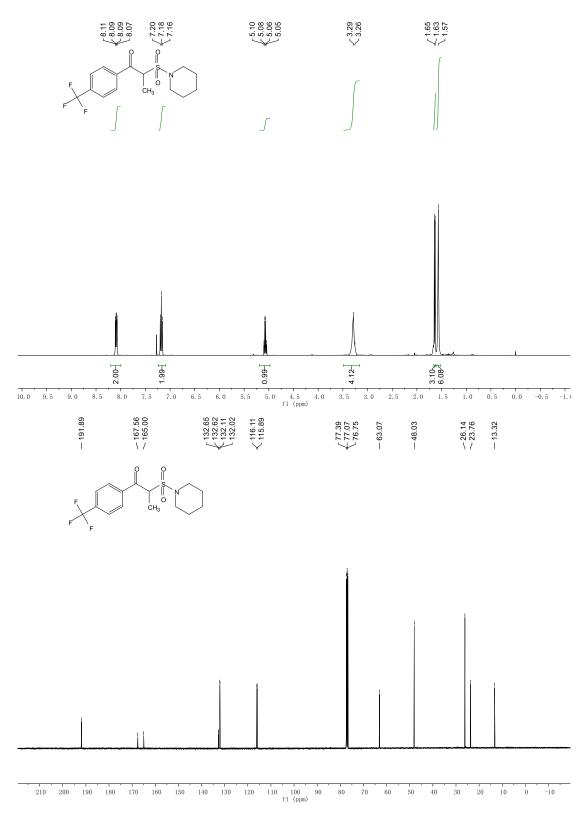

NMR spectra of 1a

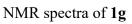


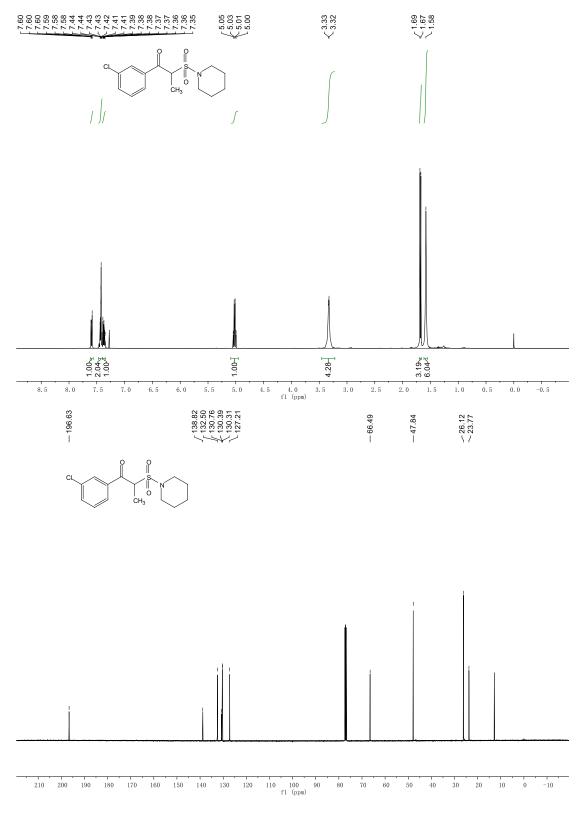


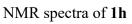


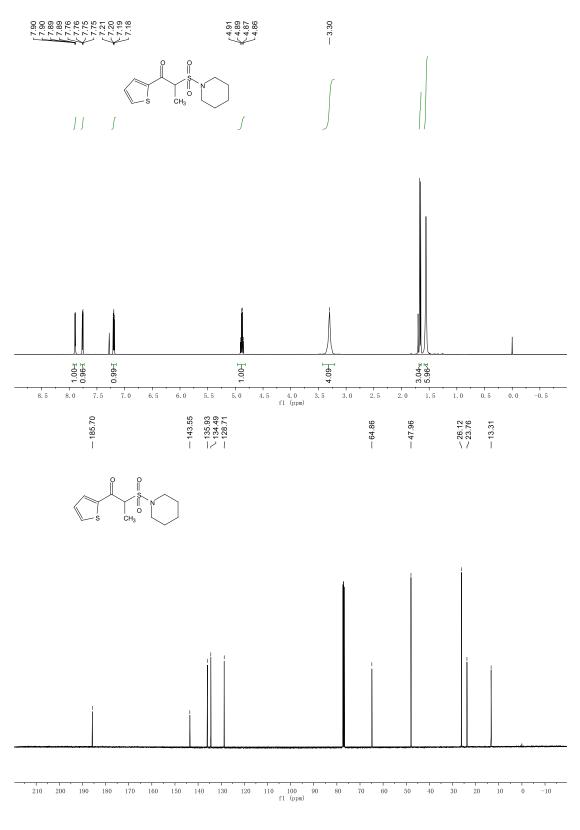

NMR spectra of 1c

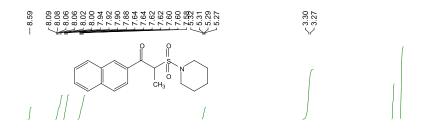


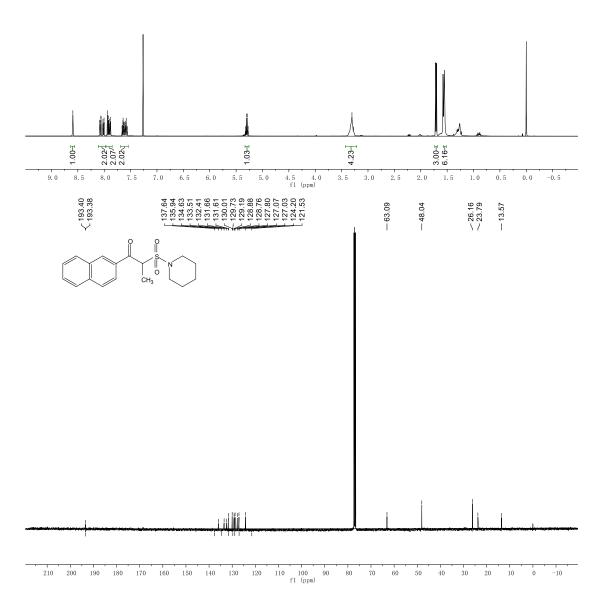


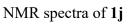


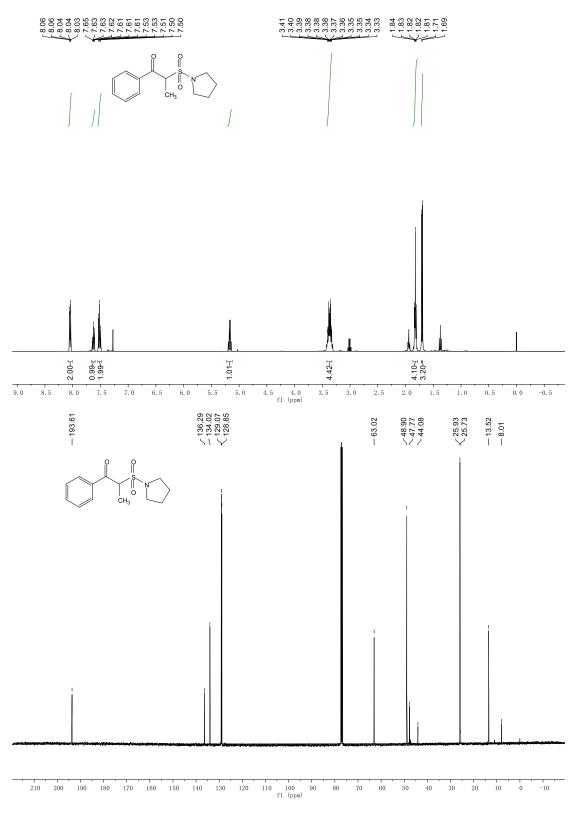



NMR spectra of 1f

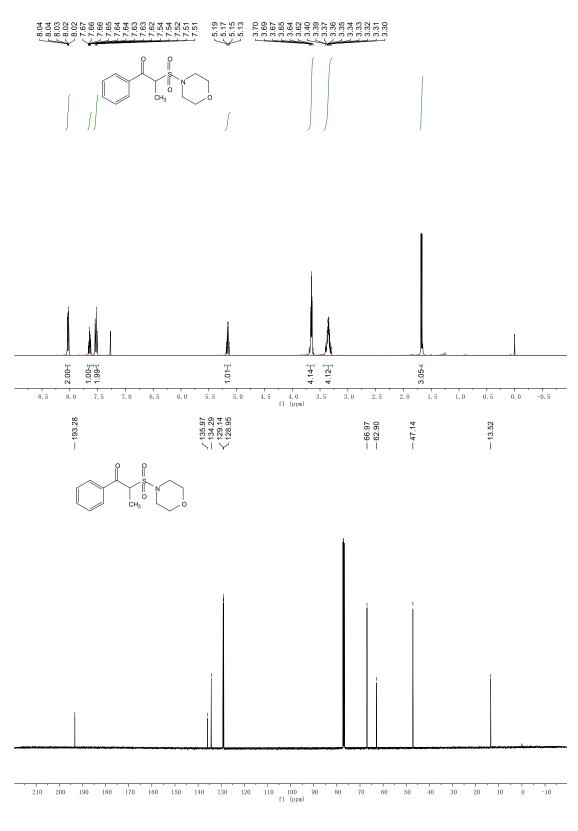


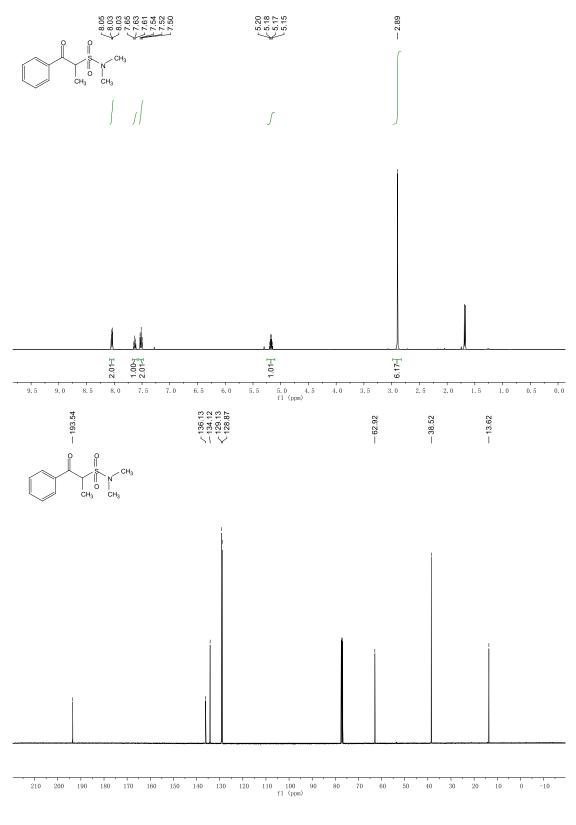


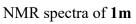


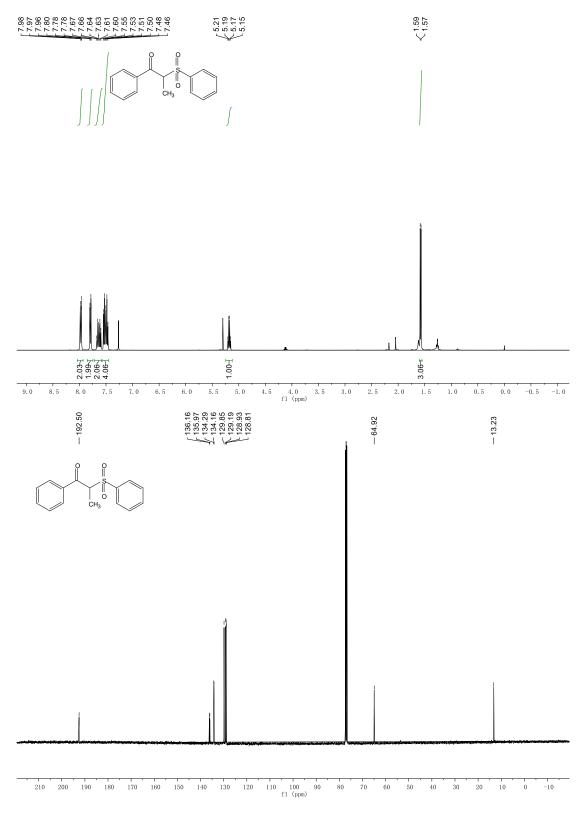


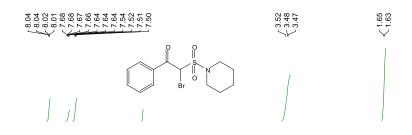
NMR spectra of 1i

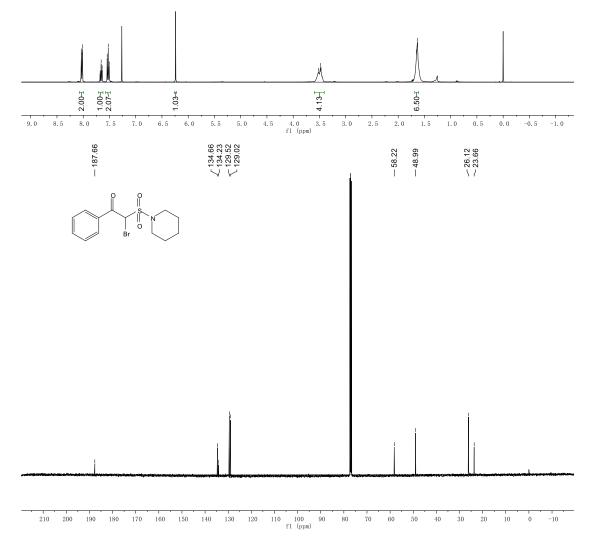


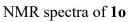


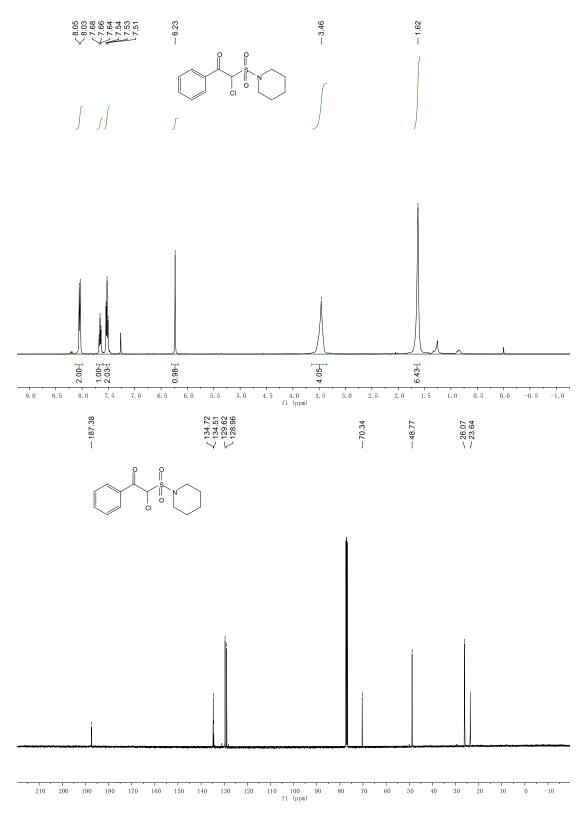


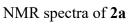

NMR spectra of 1k

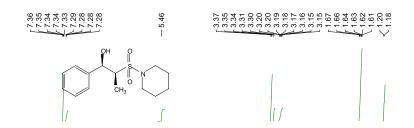

NMR spectra of 11

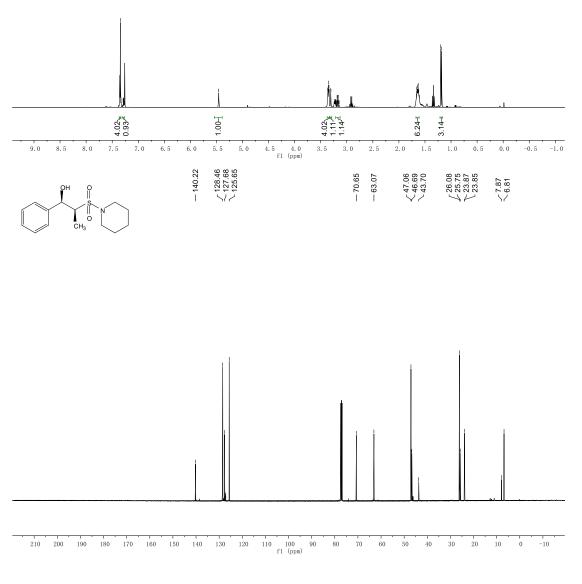


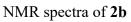


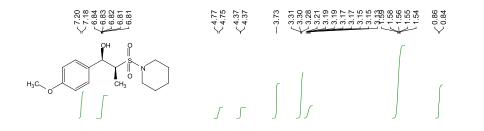


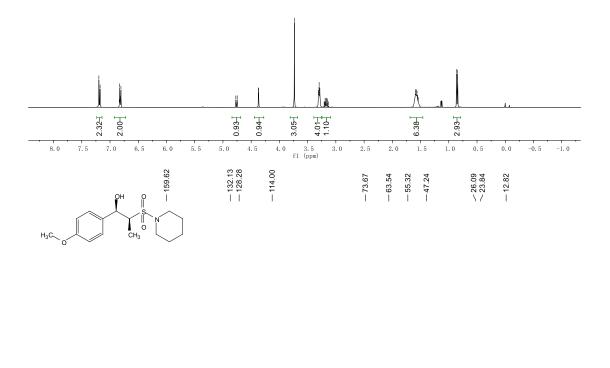

NMR spectra of 1n

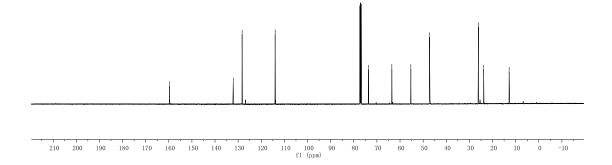


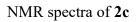


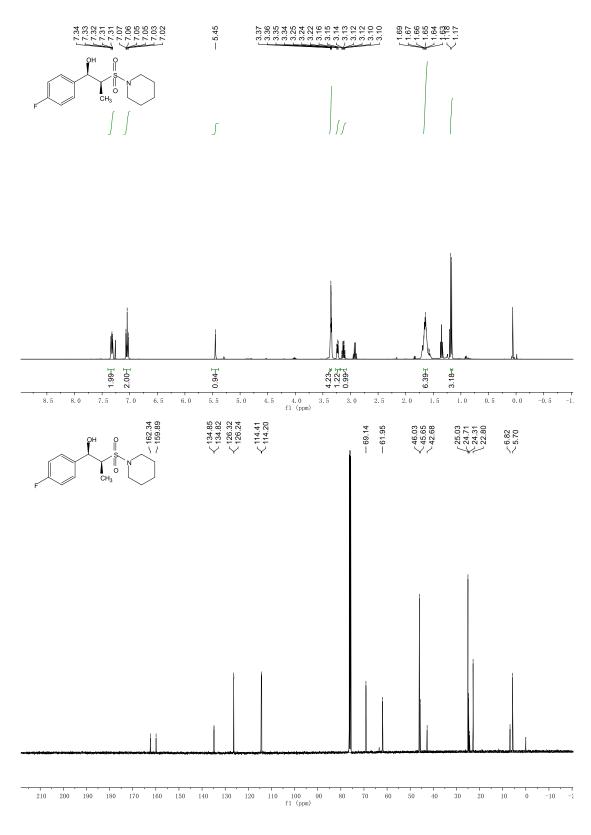


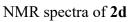


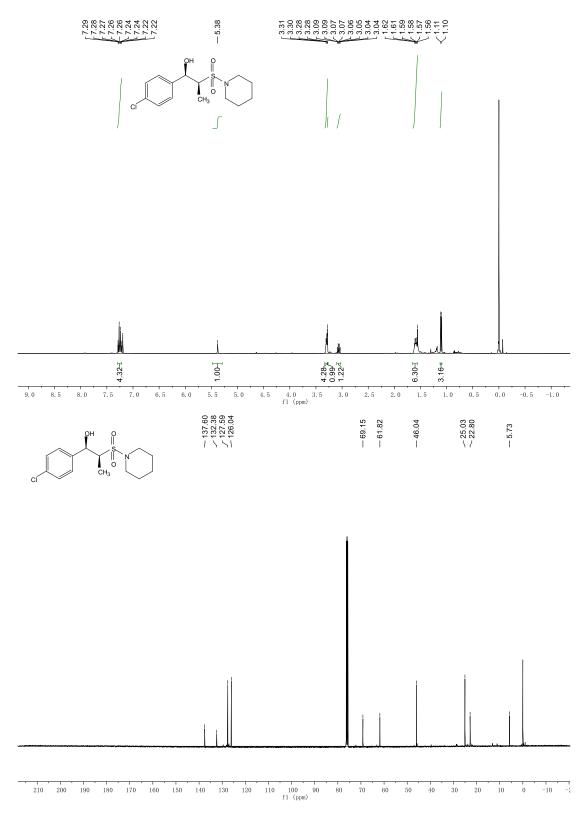


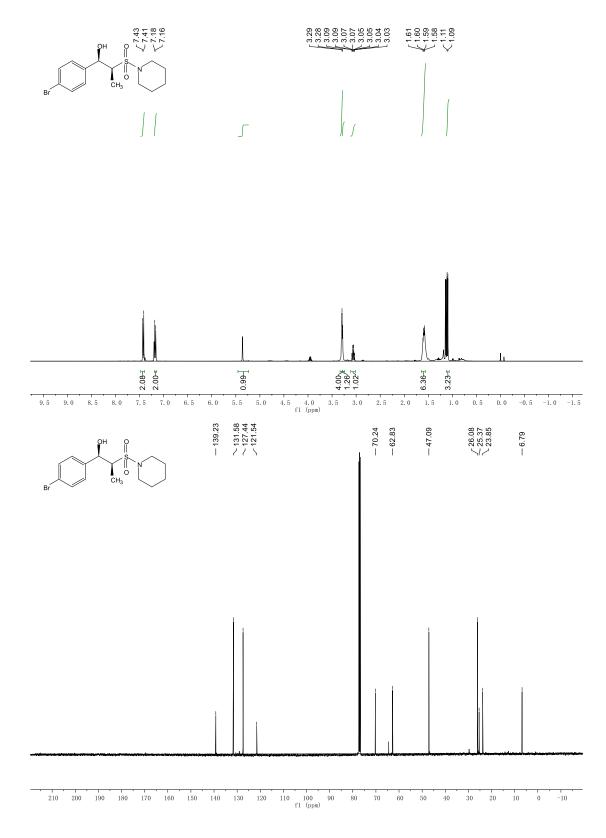


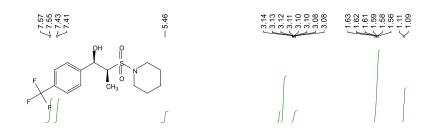


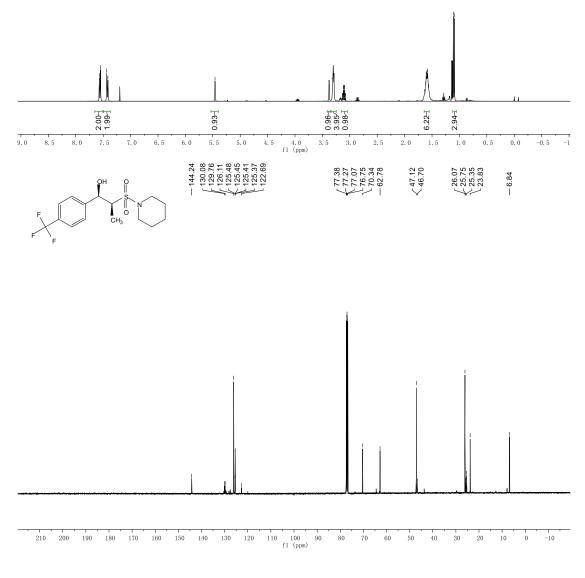




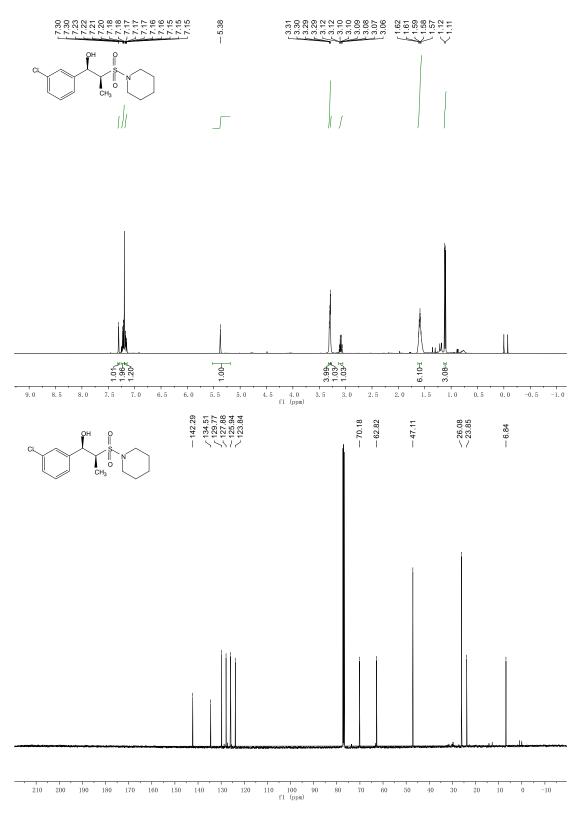




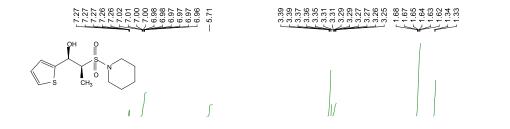


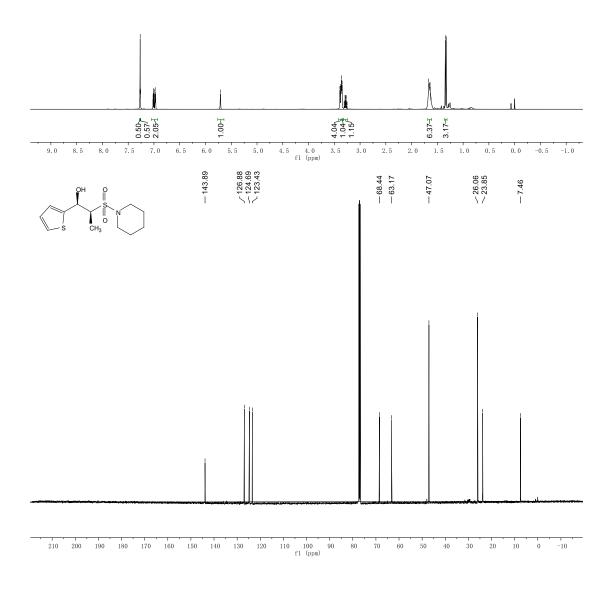


NMR spectra of 2e

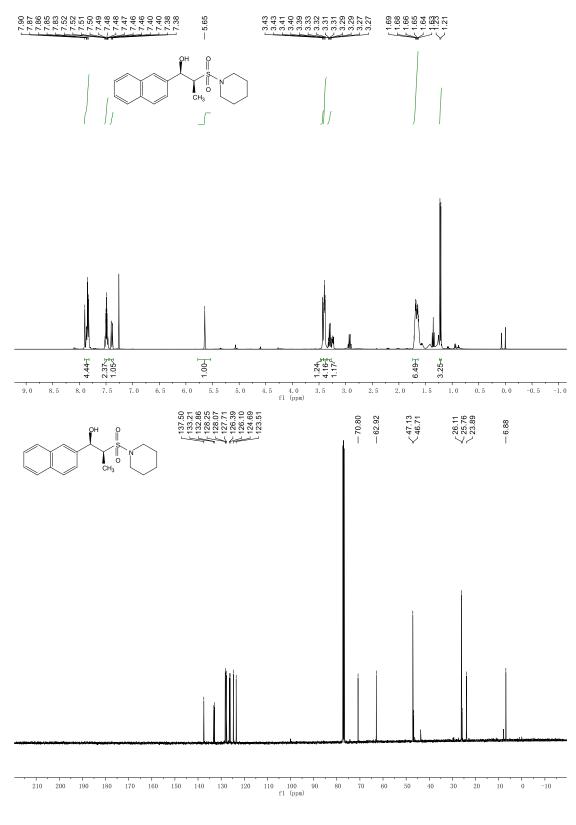


NMR spectra of **2f**

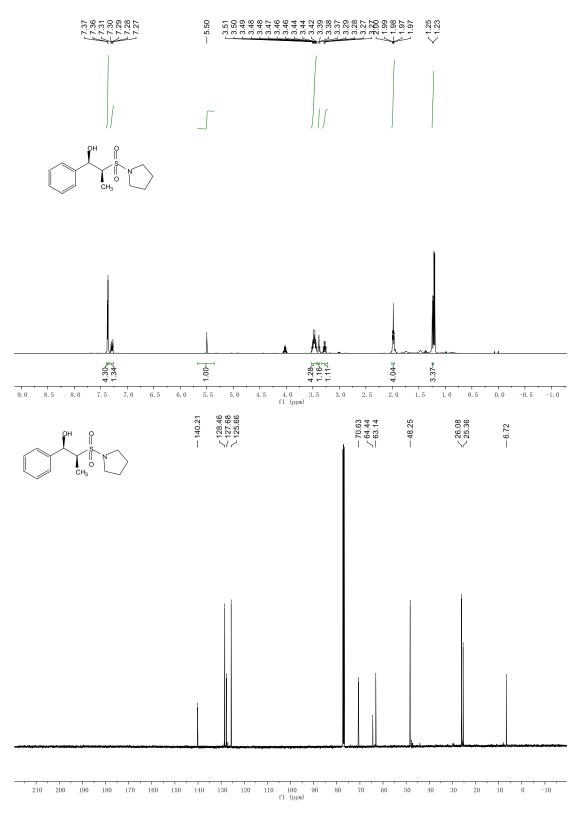


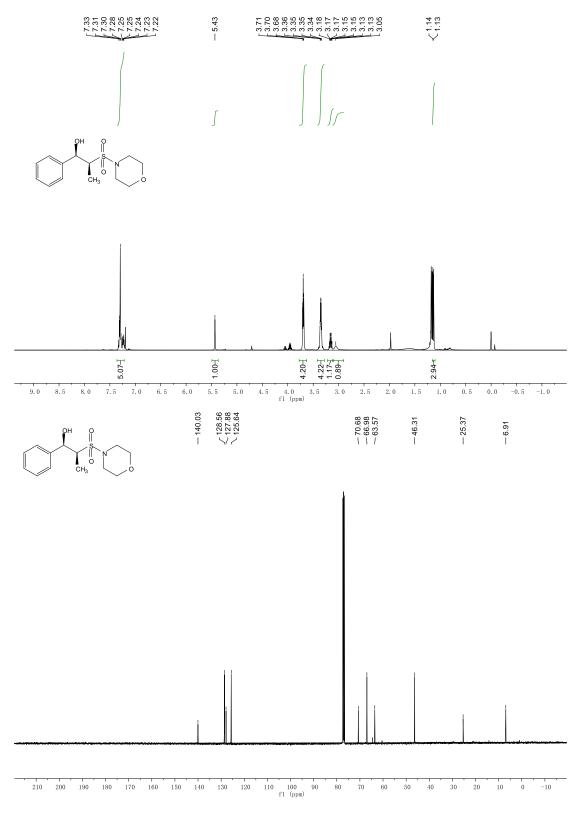


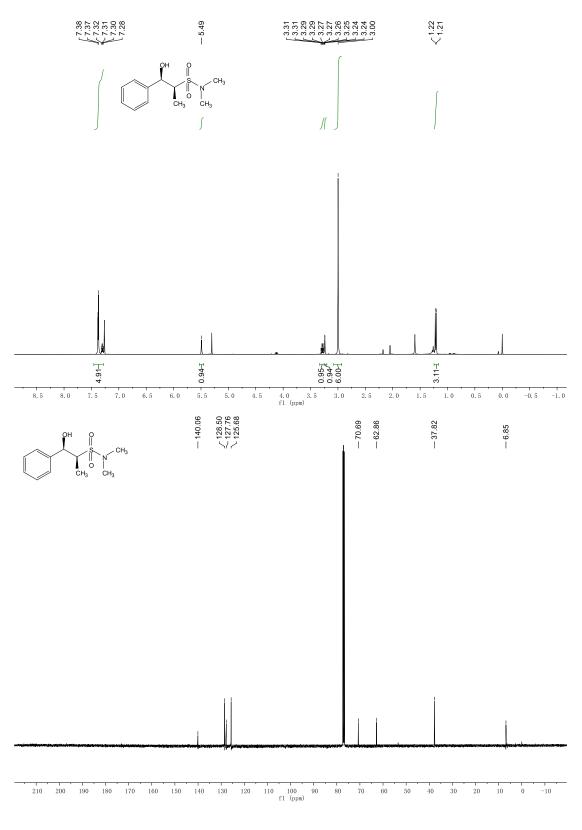
NMR spectra of 2g

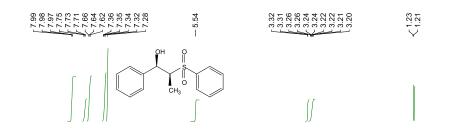


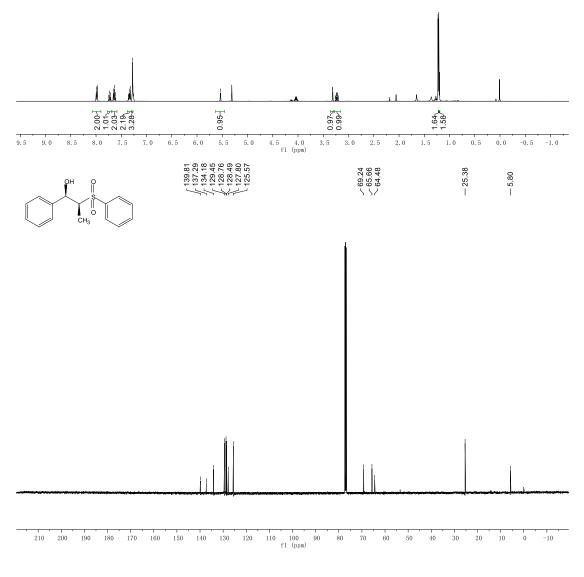
NMR spectra of **2h**



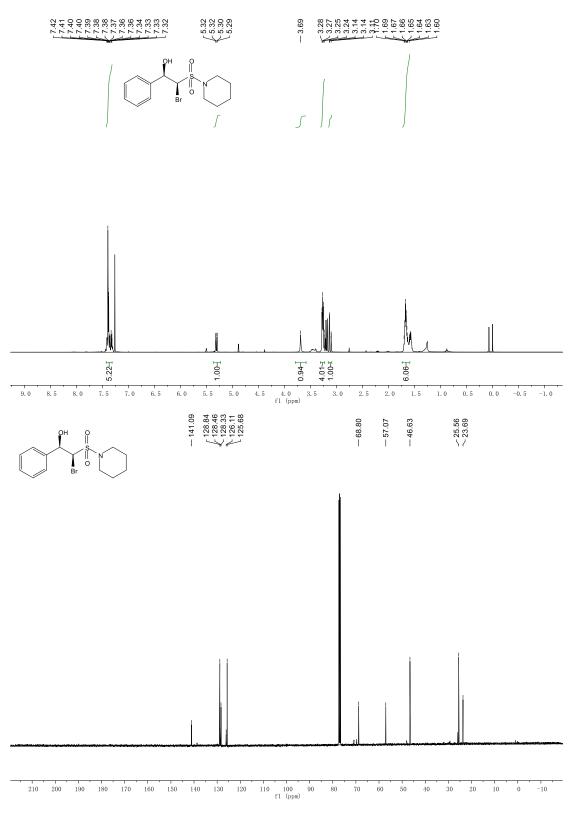

NMR spectra of 2i

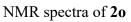


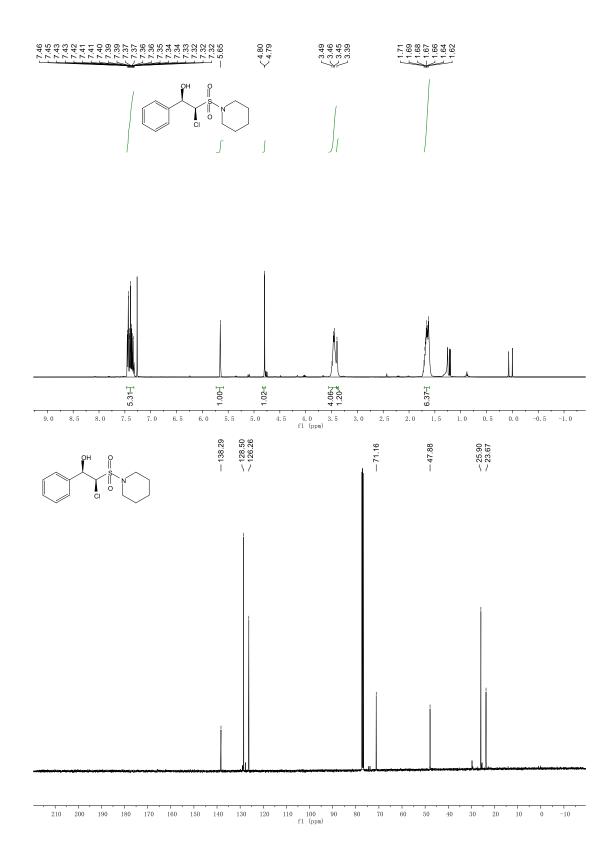

NMR spectra of **2k**



NMR spectra of **2**l

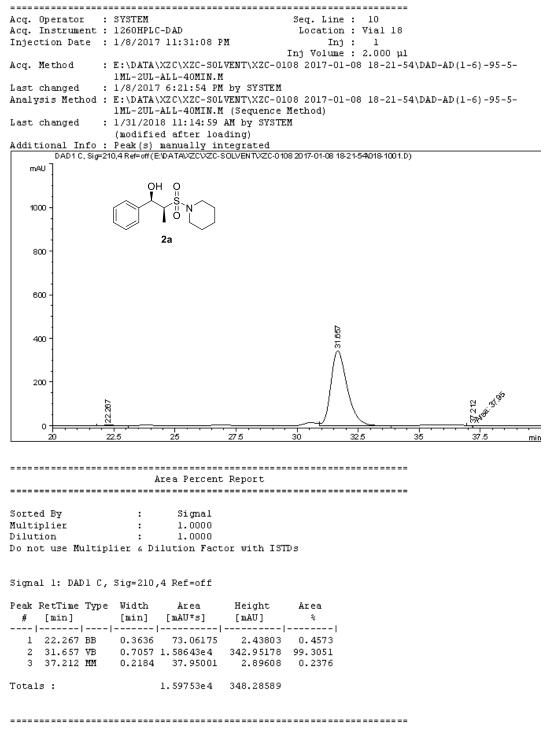



NMR spectra of **2m**



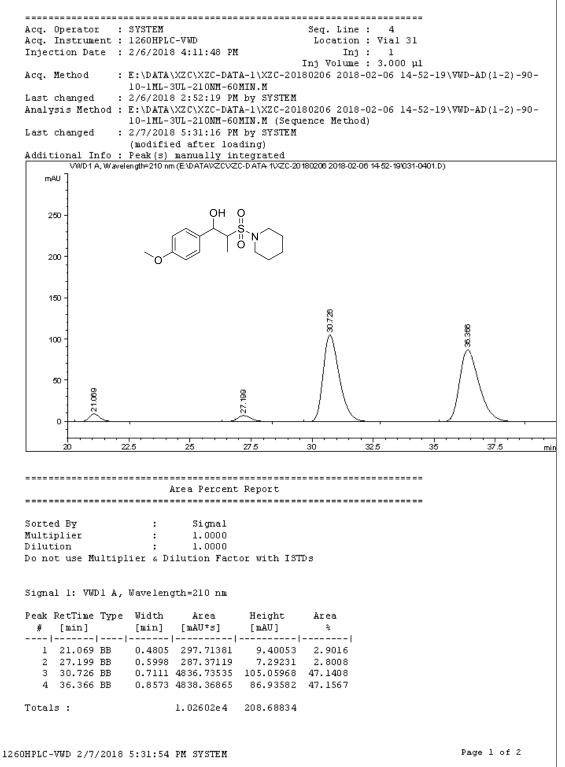
NMR spectra of **2n**

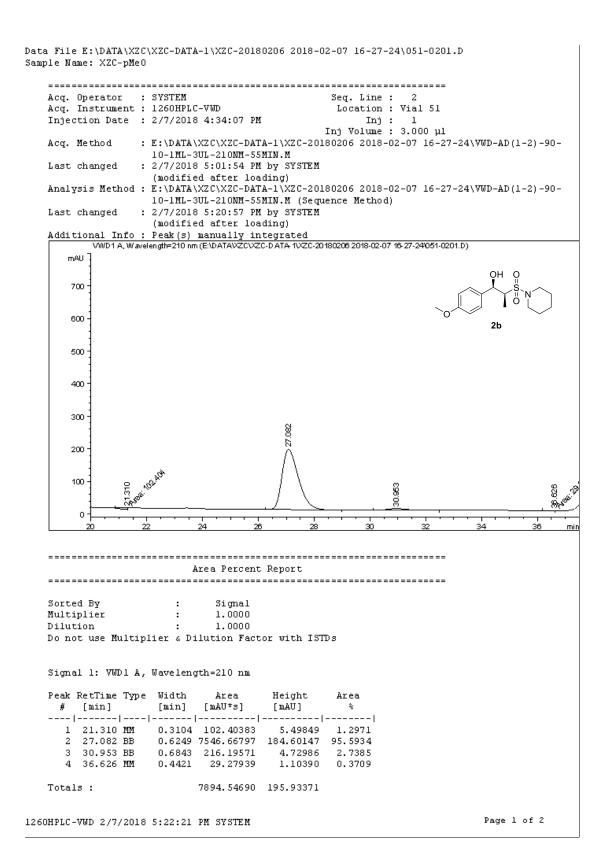
4. HPLC spectra of 2

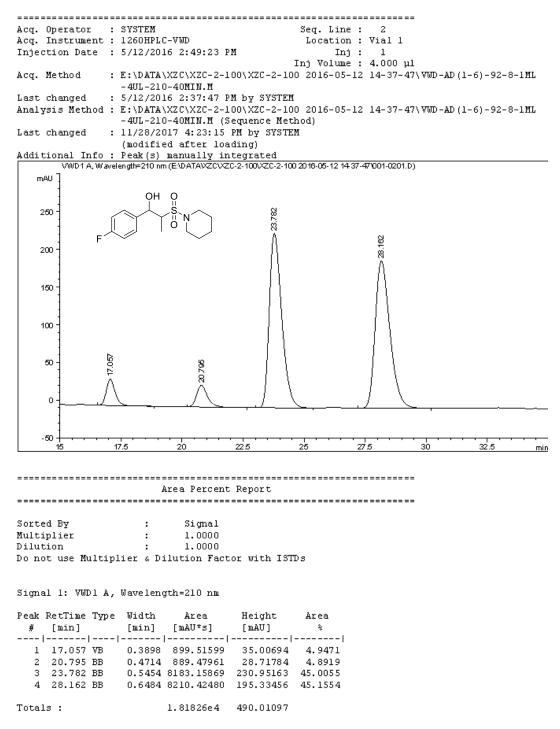

Data File E:\DATA\XZC\XZC-2-67\XZC-2-67 2016-03-24 15-18-52\061-0201.D Sample Name: XZC-2-67-RAC

Acq. Operator :	= == = = = = = = = = = = = = = = = = =		Seq. Line	: 2
Acq. Instrument :				: Vial 61
Injection Date :	3/24/2016 3:32:09 PM		Inj	
-	E:\DATA\XZC\XZC-2-6' 2UL-210NM-40MIN.M		Inj Volume 2016-03-24	: 2.000 µI 15-18-52\VWD-AD(1-6)-95-5-1ML-
	3/24/2016 3:18:53 PI	4 by SYSTEM		
Analysis Method :	E:\DATA\XZC\XZC-2-6'	7\XZC-2-67	2016-03-24	15-18-52\VWD-AD(1-6)-95-5-1ML-
	2UL-210NM-40MIN.M (\$ 1/31/2018 10:45:18 # (modified after load	AM by SYSTE		
	Peak(s) manually int	tegrated		
-	ength=210 nm (E:\DATAVZCVZC	:-2-67VZC-2-67 2	016-03-24 15-18-6	52'061-0201.D)
mAU :				
175 -	OH O			
	S S N O			
150				
125 -	× ×			
100 -			æ	
75 -			31.440	æ
,5			Â	37.486
50-			$\langle \rangle$	Â
] ∳			\uparrow	
25 8			$ \rangle$	8 / /
$ \wedge$			/	× / \
0-		.	<u> </u>	,,,,,,,,,_
22 24	26 28		32	
	Area Percent	-		
Sorted By	: Signal : 1.0000			
Multiplier Dilution	: 1.0000 : 1.0000			
	ier & Dilution Facto	or with IST	Ds	
-				
Signal 1: VWD1 A,	Wavelength=210 nm			
Doolt DotTime Tyme	Width Area	Voight	Area	
Peak RetTime Type # [min]	Width Area [min] [mAU*s]	Height [mAU]	*	
	-		1	
1 23.157 BB	0.4983 421.81094	12.97389	6.1793	
2 31.449 BV	0.6489 2989.59863	70.61687	43.7959	
	0.6679 422.25525 0.7661 2992.54688			
4 37.400 DD	0.7661 2992.54688	59.97440	43.8391	
Totals :	6826.21170	153.04116		
	*** End of P			
				Dava 1 46 1
HPLC-VWD 1/31/2018	10:45:34 AM SYSTEM			Page 1 of 1

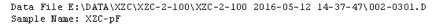
S50

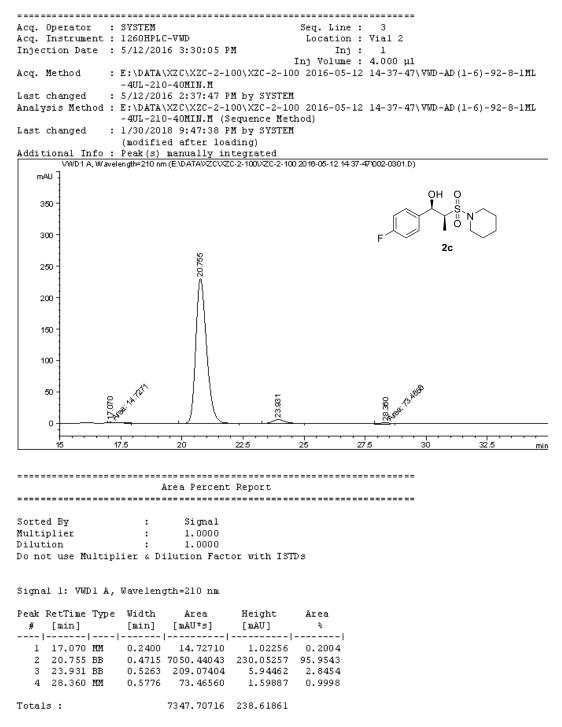

1260HPLC-VWD 1/31/2018 10:45:34 AM SYSTEM


Data File E:\DATA\XZC\XZC-SOLVENT\XZC-0108 2017-01-08 18-21-54\018-1001.D Sample Name: XZC-8


1260HPLC-VWD 1/31/2018 11:15:04 AM SYSTEM

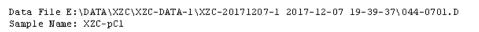
Data File E:\DATA\XZC\XZC-DATA-1\XZC-20180206 2018-02-06 14-52-19\031-0401.D Sample Name: XZC-pMe0-RAC





Data File E:\DATA\XZC\XZC-2-100\XZC-2-100 2016-05-12 14-37-47\001-0201.D Sample Name: XZC-pF-RAC

1260HPLC-VWD 11/28/2017 4:23:24 PM SYSTEM



1260HPLC-VWD 1/30/2018 9:47:47 PM SYSTEM

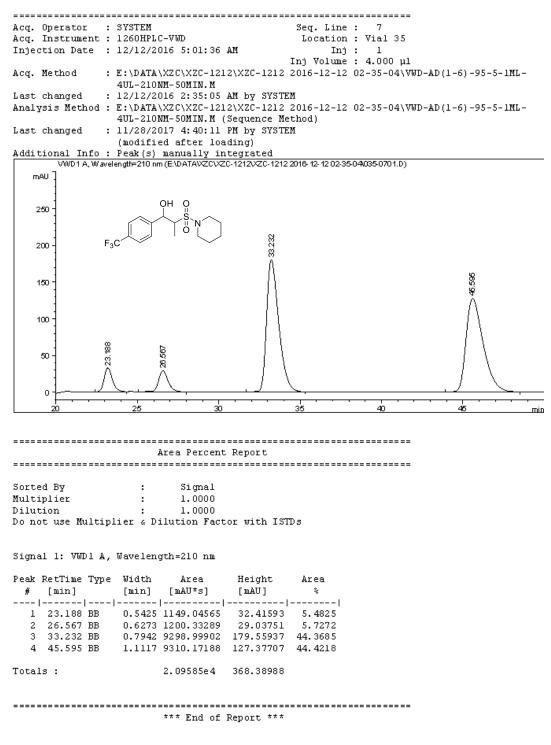
Data File E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 15-33-56\012-0401.D Sample Name: XZC-pC1-RAC -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seg. Line : 4 Location : Vial 12 Injection Date : 12/5/2017 4:57:02 PM Inj: 1 Inj Volume : 3.000 µl Aca. Method : E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 15-33-56\VWD-AD(1-2)-90-10-1ML-3UL-210NM-60MIN.M Last changed : 12/5/2017 3:33:56 PM by SYSTEM Analysis Method : E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 15-33-56\VWD-AD(1-2)-90-10-1ML-3UL-210NM-60MIN.M (Sequence Method) Last changed : 12/5/2017 7:31:54 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=210 nm (E:\DATAVZC\/ZC-1212\/ZC-171205-12017-12-05 15-33-66\/012-0401.D) mAU OH 202 2 250 26.995 200 -150 · 100 15.383 18.216 50 ο 15 20 25 ဆ် 35 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] 0.3529 664.29095 0.4116 643.54938 3.5790 1 15.383 BB 28.50526 23.86432 3.4672 2 18.216 BB 0.5257 8609.07129 248.15921 46.3830 0.6656 8643.92383 197.49571 46.5708 3 21.752 BB 4 26.995 BB Totals : 1.85608e4 498.02450

1260HPLC-VWD 12/5/2017 7:32:04 PM SYSTEM

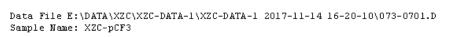
Acq. Instrument Injection Date	: SYSTEM : 1260HPLC-VWD : 12/7/2017 11		Seq. Line : Location : Inj : Inj Volume :	Vial 44 l			
Acq. Method Last changed	-10-1ML-3UL-	<pre>KZC-DATA-1\XZC-2 210NM-35MIN.M 21:36 PM by SYST:</pre>	0171207-1 2017		-39-37\VWD	-AD (1-2)	-90
-	: E:\DATA\XZC\X	<pre>ZZC-DATA-1\XZC-2 Z10NM-35MIN.M (S</pre>	0171207-1 2017		-39-37\VWD	-AD (1-2)	-90
Last changed	: 12/8/2017 3:- (modified af:	43:40 PM by SYST ter loading)	-				
		ally integrated TAVZCVZC-DATA 1VZC-	20 17 1207- 1 20 17- 12-0	7 193937\044	0701.D)		
mAU]		8			ОН		
800 -		4		CI	2 I	d N]
600 -							
400 -							
200 -			Ø				
	X		21.683		. 27 002		
	1528		-				
0 +	14 16	 	÷÷÷÷÷÷	24	26	28	min
12	14 16	Percent Report			28	28	<u>min</u>
12 Sorted By Multiplier Dilution	14 16 Area 1 : S: : 1 : 1	Percent Report ignal .0000 .0000			28	28	<u> </u>
12 Sorted By Multiplier Dilution	14 16 Area 1 : S: : 1 : 1	Percent Report ignal .0000			28	28	<u> </u>
12 Sorted By Multiplier Dilution	14 18 Area 1 : S: : 1 : 1 iplier & Dilutio	Percent Report ignal .0000 .0000 on Factor with I			28	28	<u> </u>
12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min]	14 16 Area 1 : S: : 1 iplier & Dilution A, Wavelength=2. pe Width A: [min] [mA]	Percent Report igmal .0000 .0000 on Factor with I 10 nm rea Height J*s] [mAU]	STDs Area		28	28	<u> min</u>
12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min] 1 15.293 BB	14 16 Area 1 : S: : 1 : 1 iplier & Dilution A, Wavelength=2. pe Width A: [min] [mA] 	Percent Report ignal .0000 .0000 on Factor with I 10 nm rea Height J*s] [mAU] .02040 7.3950	STDs Area * - 8 1.0296		28	28	min
12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min]	14 16 Area 1 : S: : 1 : 1 iplier & Dilutio A, Wavelength=2. pe Width A: [min] [mA] -	Percent Report ignal .0000 .0000 on Factor with I 10 nm rea Height J*s] [mAU] .02040 7.3950 397e4 740.3481	STDs Area % - 8 1.0296 4 96.0304 2 2.5500		28	28	min

1260HPLC-VWD 12/8/2017 3:43:58 PM SYSTEM

Data File E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 15-33-56\013-0301.D Sample Name: XZC-pBr-RAC

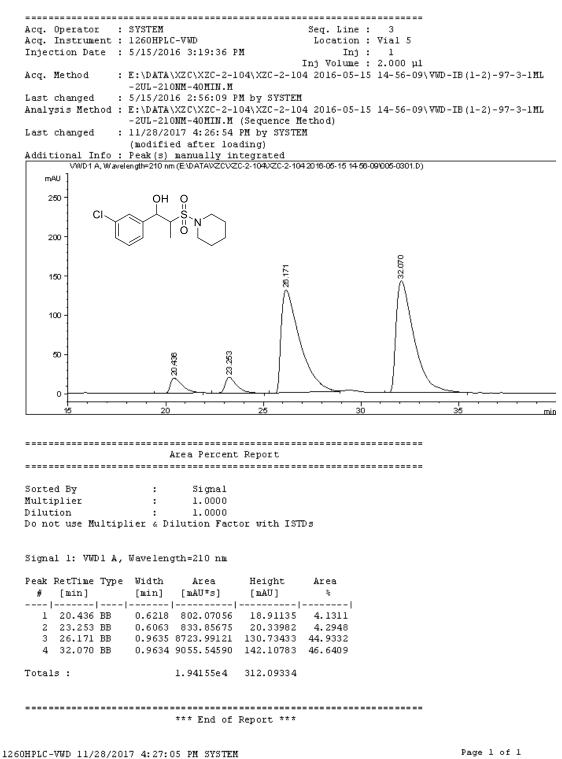

1260HPLC-VWD 12/5/2017 7:34:04 PM SYSTEM

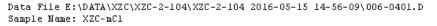
Data File E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 18-34-24\085-0701.D Sample Name: XZC-pBr

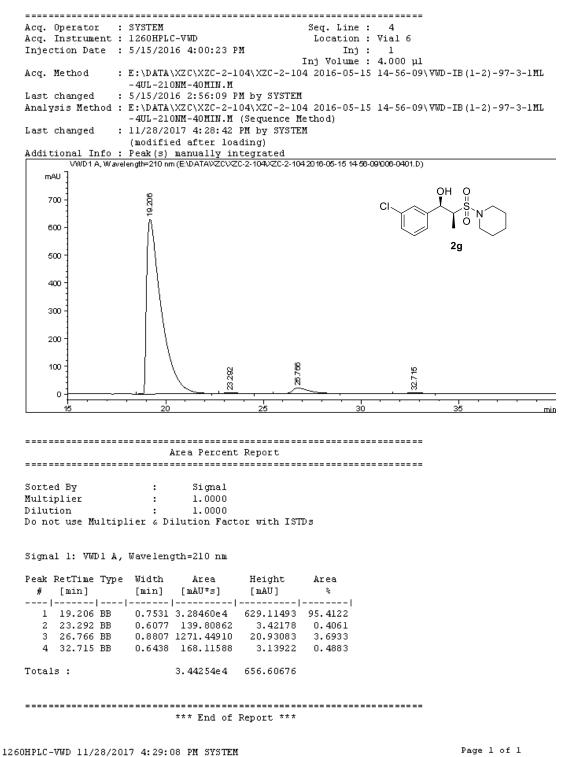

-----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seg. Line : 7 Location : Vial 85 Injection Date : 12/5/2017 9:49:50 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 18-34-24\VWD-AD(1-2)-90-10-Aca. Method 1ML-3UL-210NM-35MIN.M Last changed : 12/5/2017 7:44:47 PM by SYSTEM Analysis Method : E:\DATA\XZC\XZC-1212\XZC-171205-1 2017-12-05 18-34-24\VWD-AD(1-2)-90-10-1ML-3UL-210NM-35MIN.M (Sequence Method) Last changed : 12/6/2017 9:45:16 AM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=210 nm (E:\DATAVZCVZC-1212VZC-171205-12017-12-05 18-34-24085-0701.D) mAU 19.403 800 600 400 200 23.417 16.545 30.291 0 15 <u>20</u> зο min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] 1 16.545 VB 0.4059 166.05728 6.05576 0.6628 2 19.403 VV 0.4950 2.41477e4 737.42615 96.3779 0.5564 647.40631 17.58978 2.5839 0.6023 94.07124 1.92788 0.3755 3 23.417 BB 4 30.291 BB Totals : 2.50553e4 762.99957

1260HPLC-VWD 12/6/2017 9:45:26 AM SYSTEM

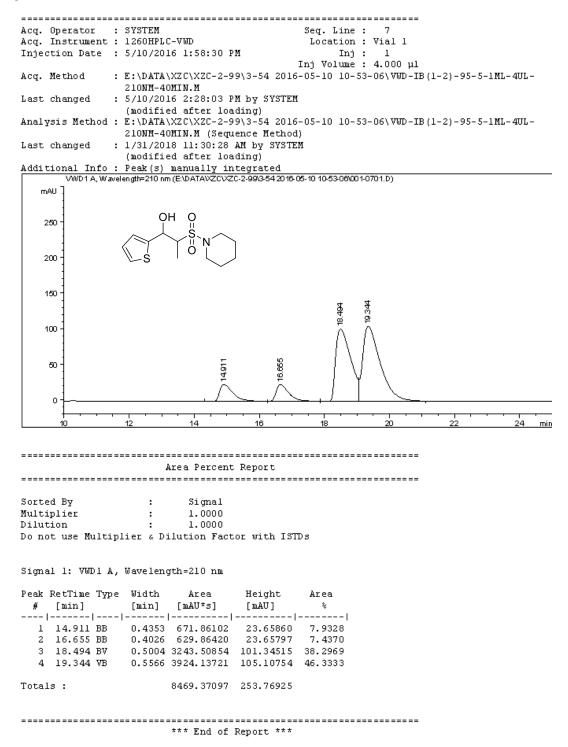
Data File E:\DATA\XZC\XZC-1212\XZC-1212 2016-12-12 02-35-04\035-0701.D Sample Name: xzc-CF3-rac

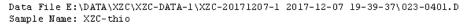

1260HPLC-VWD 11/28/2017 4:40:17 PM SYSTEM

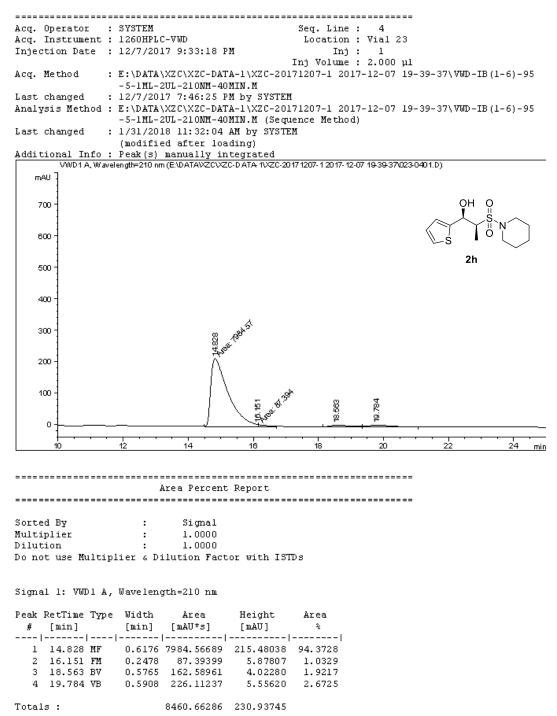

Acg. Operator	: SYSTEM	Seg. Line :	7
Acq. Instrument		Location : Vi	
-	: 11/14/2017 6:35:30 P		1
-		Inj Volume : 3.	000 µl
Acq. Method	: E:\DATA\XZC\XZC-DATA	-1\XZC-DATA-1 2017-11-14	16-20-10\VWD-AD(1-6)-95-5-
	1ML-3UL-210NM-50MIN.		
Last changed	: 11/14/2017 4:27:08 PI	-	
Analysis Method			16-20-10\VWD-AD(1-6)-95-5-
Logt showed	1ML-3UL-210NM-50MIN. 11/28/2017 4:37:32 Pl		
Last changed	(modified after load:		
Additional Info	: Peak(s) manually into		
		DATA 1VZC-DATA-1 2017-11-14 16-20-	10'073-0701.D)
mAU]			
700-			OH Ö
	8		
	26.438		Ι Ι Ι ΒΝ
600 -	Å		F ₃ C
	n. In the second s		2f
500-			
1	J		
400 -	{		
300-	/ \		
1	}		
]]		
200 -			
1			
100 -]	\	Ŧ	
	£ /	3.704	38
	23.483	33.704	8
	· - · · · · · · ·	·····	,,,,,,, _
			40 45 min
	25 30	35	40 46 min
	25 30	35	40 46 min
	25 30 Area Percent J	35 Report	40 46 min
	25 30	35	40 46 min
	25 30 Area Percent 1	35 Report	40 46 min
	25 30 Area Percent 1	35 Report	40 46 min
sorted By	25 30 Area Percent 1 : Signal	35 Report	40 46 min
Sorted By Multiplier Dilution	25 30 Area Percent 1 : Signal : 1.0000	35 Report	40 46 min
Sorted By Multiplier Dilution	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000	35 Report	40 46 min
Sorted By Multiplier Dilution Do not use Mult	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Facto:	35 Report	40 46 min
Sorted By Multiplier Dilution Do not use Mult	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000	35 Report	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor	35 Report	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor A, Wavelength=210 nm pe Width Area	Report r with ISTDs Height Area	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 . Peak RetTime Ty # [min]	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Facto: A, Wavelength=210 nm pe Width Area [min] [mAU*s]	Report r with ISTDs Height Area [mAU] %	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min]	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor A, Wavelength=210 nm pe Width Area [min] [mAU*s] 	Report r with ISTDs Height Area [mAU] %	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	25 30 Area Percent 1 : Signal : 1.0000 iplier & Dilution Facto: A, Wavelength=210 nm pe Width Area [min] [mAU*s] 0.6091 188.38914		40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min]	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor A, Wavelength=210 nm pe Width Area [min] [mAU*s] 	Report r with ISTDs Height Area [mAU] %	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor A, Wavelength=210 nm pe Width Area [min] [mAU*s] - 0.6091 188.38914 0.7038 2.73050e4 30 0.7839 894.46082	35 Report r with ISTDs [mAU] % 4.53110 0.6593 592.32495 95.5608	40 46 min
Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	25 30 Area Percent 1 : Signal : 1.0000 : 1.0000 iplier & Dilution Factor A, Wavelength=210 nm pe Width Area [min] [mAU*s] 	35 Report r with ISTDs [mAU] % 4.53110 0.6593 592.32495 95.5608 17.36694 3.1304	40 46 min


1260HPLC-VWD 11/28/2017 4:37:43 PM SYSTEM

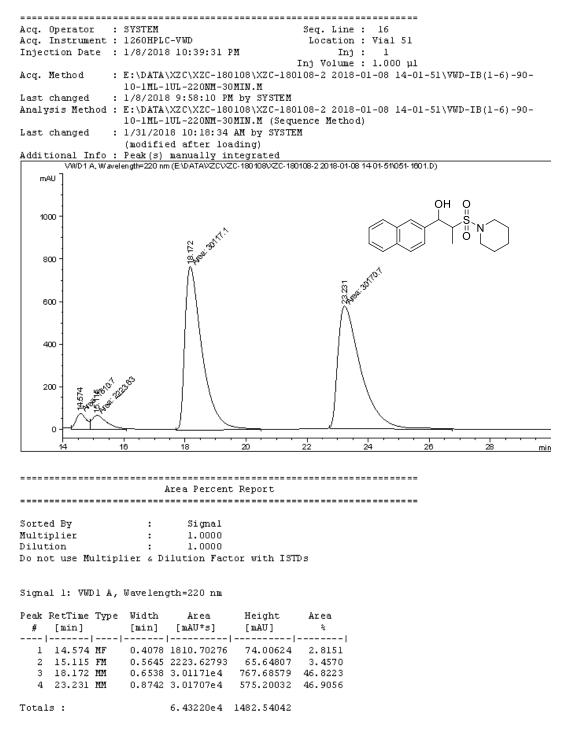
Data File E:\DATA\XZC\XZC-2-104\XZC-2-104 2016-05-15 14-56-09\005-0301.D Sample Name: XZC-mCl-RAC


S62



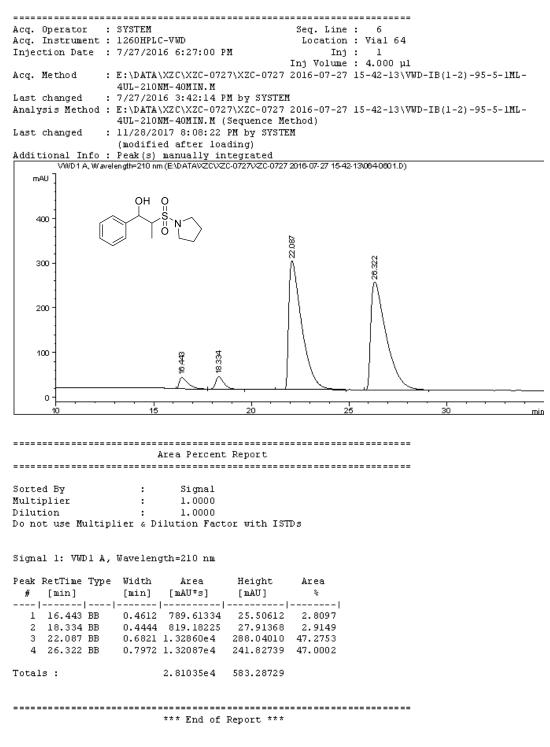

S63

Data File E:\DATA\XZC\XZC-2-99\3-54 2016-05-10 10-53-06\001-0701.D Sample Name: XZC-thio-RAC


1260HPLC-VWD 1/31/2018 11:30:33 AM SYSTEM

1260HPLC-VWD 1/31/2018 11:33:07 AM SYSTEM

Data File E:\DATA\XZC\XZC-180108\XZC-180108-2 2018-01-08 14-01-51\051-1601.D Sample Name: XZC-naph-RAC

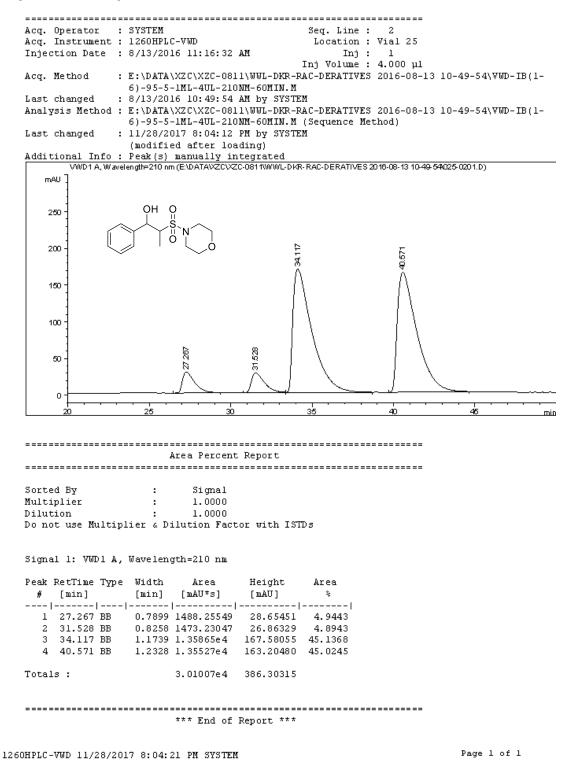

1260HPLC-VWD 1/31/2018 10:18:38 AM SYSTEM

Data File E:\DATA\XZC\XZC-180108\XZC-180108-2 2018-01-08 14-01-51\053-1701.D Sample Name: XZC-naph

-----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 17 Location : Vial 53 Injection Date : 1/8/2018 11:10:16 PM Inj: 1 Inj Volume : 1.000 µl : E:\DATA\XZC\XZC-180108\XZC-180108-2 2018-01-08 14-01-51\VWD-IB(1-6)-90-Acg. Method 10-1ML-1UL-220NM-30MIN.M Last changed : 1/8/2018 9:58:10 PM by SYSTEM Analysis Method : E:\DATA\XZC\XZC-180108\XZC-180108-2 2018-01-08 14-01-51\VWD-IB(1-6)-90-10-1ML-1UL-220NM-30MIN.M (Sequence Method) Last changed : 1/31/2018 10:23:16 AM by SYSTEM (modified after loading) Additional Info : Peak (s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAVZCVZC-180108VZC-180108-22018-01-08 14-01-51\053-1701.D) mAU 3500 3000 2500 8 2000 1500 1000 500 18211 8 83 ٥· 16 18 20 26 28 14 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] ÷ # [min] ----|-----|-----|------| 1 14.206 VB 0.6353 9.13525e4 2 18.211 BB 0.5664 3484.41943 3 23.562 BB 0.7990 621.86285 0.6353 9.13525e4 2156.09497 95.6984 0.5664 3484.41943 91.67145 3.6502 11.26504 0.6514 Totals : 9.54588e4 2259.03146

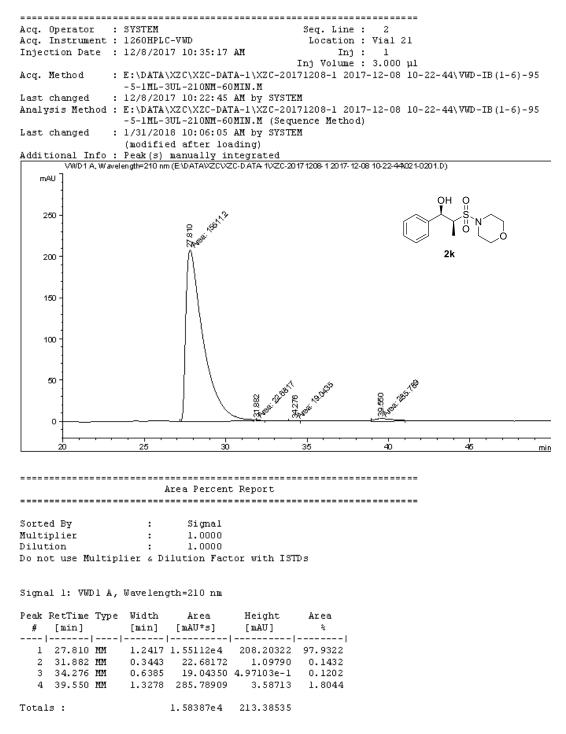
1260HPLC-VWD 1/31/2018 10:24:43 AM SYSTEM

Data File E:\DATA\XZC\XZC-0727\XZC-0727 2016-07-27 15-42-13\064-0601.D Sample Name: XZC-5RING-RAC


1260HPLC-VWD 11/28/2017 8:08:29 PM SYSTEM

Data File E:\DATA\XZC\XZC-DATA-1\XZC-20171208-2 2017-12-08 15-51-50\022-0201.D Sample Name: XZC-pyrrole

Acq. Operator	: SYSTEM		Seq. Line : 2			
Acq. Instrument	: 1260HPLC-VWD		Location : Via.	1 22		
Injection Date	: 12/8/2017 4:15:04	PM	Inj : 1			
		I	nj Volume : 2.0)	00 µl		
Acq. Method	: E:\DATA\XZC\XZC-D -5-1ML-2UL-210NM-		1208-2 2017-12-0	08 15-51-50	\WWD-IB(1-6)	-95
Last changed	: 12/8/2017 3:51:50	PM by SYSTEM				
Analysis Method	I : E:\DATA\XZC\XZC-D -5-1ML-2UL-210NM-			08 15-51-50	\VWD-IB(1-6)	-95
Last changed	: 1/30/2018 9:00:12 (modified after 1	-				
	: Peak(s) manually					
	'avelength=210 nm (E:\DATA\XZC	XZC-D ATA 1VZC-201	7 1208-2 20 17- 12-08 15-51	-50\022-0201.D)		
700-					0	
				OH I	0	
600 - 50					S N O	
1 1 7				■		
500 -				2j		
400 -	{					
	{					
300-						
	{					
200 -						
100-						
1 1 1	e e e e e e e e e e e e e e e e e e e	Q1	24. 00			
	10.2	20.767	X.			
				- <u> </u>		
16	18	20 22	24	26	28	min
	Area Perce	•				
Courted Dec						
Sorted By Multiplier	: Signal : 1.0000					
Dilution	: 1.0000					
	iplier & Dilution Fa		19			
Do noc use hure	ipiici « piiucion ic	CCOL WICH ISID	5			
Signal 1: VWD1	A, Wavelength=210 nm					
Peak RetTime Ty		Height	Area			
# [min]	[min] [mAU*s]	[mAU]	* .			
1 16.085 VE			96.7846			
2 19.349 BE			0.1662			
3 20.767 BE 4 24.666 BE			0.2416 2.8076			
4 24.666 BE	0./403 /0/.4345	0 15.10091	2.0070			
Totals :						
	2.73350e4	583.59101				


1260HPLC-VWD 1/30/2018 9:00:58 PM SYSTEM

Data File E:\DATA\XZC\XZC-0811\WWL-DKR-RAC-DERATIVES 2016-08-13 10-49-54\025-0201.D Sample Name: XZC-morphine-RAC

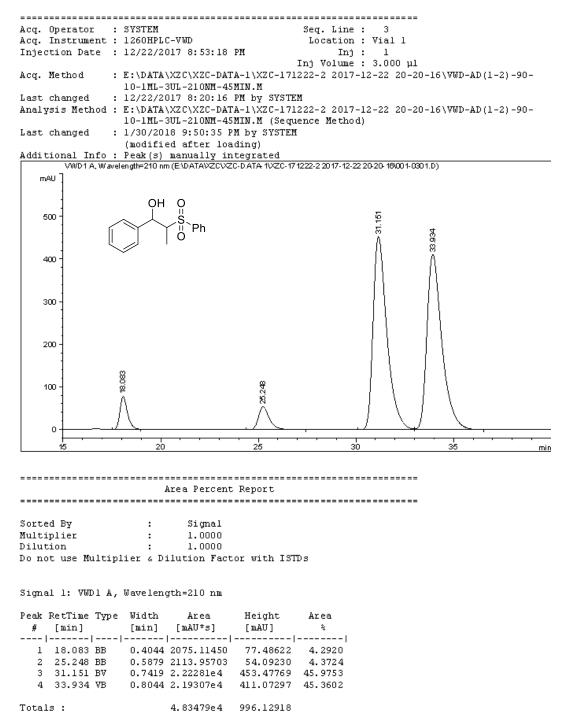
S70

Data File E:\DATA\XZC\XZC-DATA-1\XZC-20171208-1 2017-12-08 10-22-44\021-0201.D Sample Name: XZC-morph

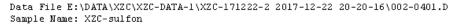
1260HPLC-VWD 1/31/2018 10:06:12 AM SYSTEM

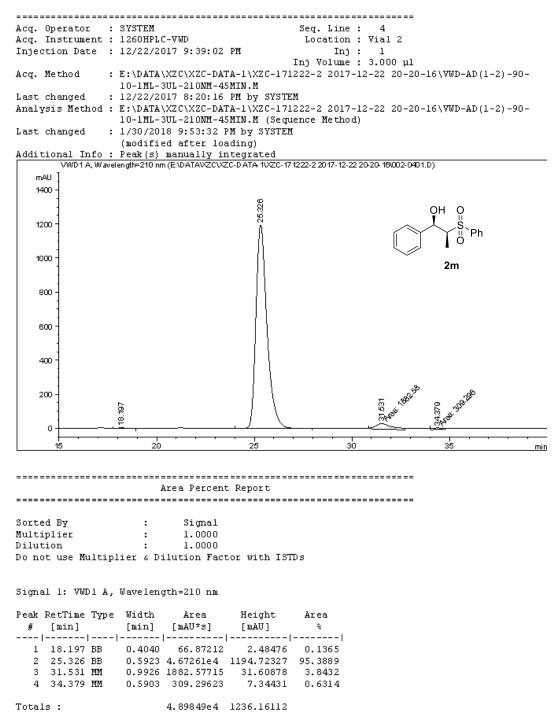
Data File E:\DATA\XZC\XZC-DATA-1\XZC-171222-2 2017-12-22 20-20-16\003-0701.D Sample Name: XZC-dm-RAC

Acq. Operator	: SYSTEM Seq. Line : 7
Acq. Instrument	
Injection Date	: 12/22/2017 10:57:03 PM Inj : 1
Acq. Method	Inj Volume : 2.000 µl : E:\DATA\XZC\XZC-DATA-1\XZC-171222-2 2017-12-22 20-20-16\VWD-IB(1-6)-95-5
Last changed	-1ML-2UL-210NM-40MIN.M : 12/22/2017 8:20:17 PM by SYSTEM
	: E:\DATA\XZC\XZC-DATA-1\XZC-171222-2 2017-12-22 20-20-16\VWD-IB(1-6)-95-5
Last changed	-1ML-2UL-210NM-40MIN.M (Sequence Method) : 1/31/2018 11:16:57 AM by SYSTEM
Additional Info	(modified after loading) : Peak(s) manually integrated
	avelen gth=210 nm (E:\DATAVZCVZC-DATA-1\VZC-171222-22017-12-2220-20-16\003-0701.D)
mAU] -	
400 -	ОН О
	S N O I
300 -	
-	
200 -	₿ a
1	
100 -	
]	£i 8€ / /
° 	······································
15	17.5 20 22.5 25 27.5 30 32.5 min
	Area Percent Report
Sorted By	: Signal
Multiplier Dilution	: 1.0000 : 1.0000
	iplier & Dilution Factor with ISTDs
oo noo abe naro.	
Signal 1: VWD1 #	A, Wavelength=210 nm
Peak RetTime Typ	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 18.127 BB	
2 21.582 BV	0.4938 647.35608 20.36981 3.4161
3 22.468 VB	
4 28.050 BB	0.9245 8727.15527 139.38730 46.0533
Totals :	1.89501e4 339.59417

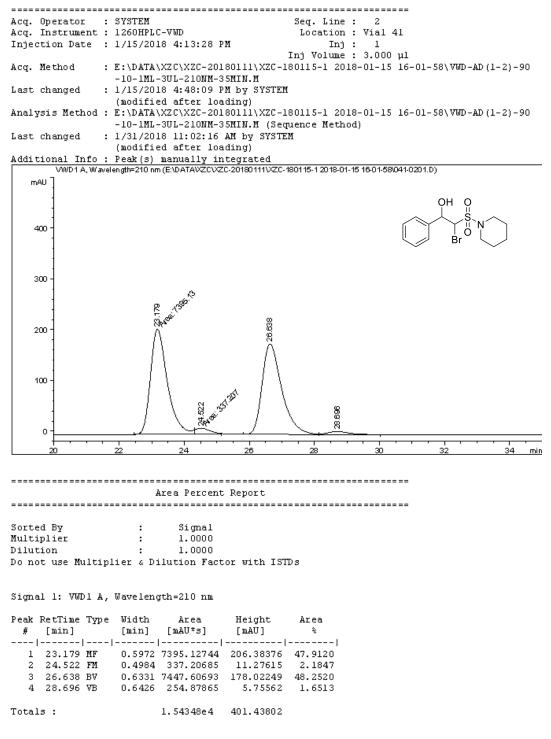

1260HPLC-VWD 1/31/2018 11:17:08 AM SYSTEM

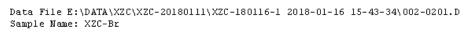
Data File E:\DATA\XZC\XZC-DATA-1\XZC-171222-2 2017-12-22 20-20-16\004-0801.D Sample Name: XZC-dm


<pre>cd. Operator : SYSTEM Seq. Line : 8 injection Date : 12/22/2017 11:37:45 PM Inj : 1 Inj Volume : 2,000 µl injection Date : 12/22/2017 81:37:45 PM Inj : 1 Inj Volume : 2,000 µl injection Date : 12/22/2017 81:20 HTM by SYSTEM aast changed : 12/22/2017 81:20:17 PM by SYSTEM inalysis Method : E:VDATA\Z2C/XZC-DATA-1/XZC-171222-2 2017-12-22 20-20-16\WWD-IB(1-6)-95-5 -HH2012-201M-40HILM [Sequence Hethod] aast changed : 1/31/2018 11:21:07 AM by SYSTEM (modified after loading) dditional Info : Peak(s) manually integrated WUPLAWawdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-1712222 2017-12-22 2020 H00040001D) WUPLAWawdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-1712222 2017-12-22 2020 H00040001D) WUPLAWawdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-171222 2017-12-22 2020 H00040001D) MUPLAWawdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-171222 2017-12-22 2020 H00040001D) MUPLAWawdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-171222 2017-12-22 2020 H00040001D) MUPLAWAwdwendm2010 mcEUDATAVZC/VZC-DATA-1/XZC-171222 2017-12-22 2020 H00040001D) MUPLAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW</pre>			
injection Date : $12/22/2017 \ 11:37:45 \ PM Inj : 1 Inj Volume : 2.000 \ µl$ inj Volume : $2.000 \ µl$ individe after i doading) volume : $2.000 \ µl$ individe after i doading individe after i doading	Acq. Operator		
Inj Volmë : 2.000 µl icq. Nethod : E:IDATA\XZC\XZC-DATA-\XZC\ZZC 2 2017-12-22 20-20-16\VWD-IB(1-6)-95-5 .IML-20L-210WH-40HIN.M asst changed : 1/2/2/2017 8:20:17 PH by SYSTEM inalysis Hethod : E:VDATA\XZC\XZC-DATA-\XZC-171222-2 2017-12-22 20-20-16\VWD-IB(1-6)-95-5 .IML-20L-210WH-40HIN.M (Sequence Hethod) ast changed : 1/31/2016 11:21:07 AM by SYSTEM (modified after loading) (dditional Tho: Peak(s) manually integrated VWD1A.Wawdength=210 nm (E:DATAVZC\ZC-DATA-tVZC-171222-2017-12-22 2020-160040801D) mu ast changed : 1/31/2016 11:21:2017-12-22 2020-160040801D) mu ast changed : 1/31/2017 12:22 2020-160040801D) mu ast changed : 1/31/2017 12:22 2017-12-22 2020-160040801D) mu ast changed : 1/31/2017 12:22 2020-1617 12:22 2020-160040801D) mu ast changed : 1/31/2017 12:22 2020-160040801D) mu ast changed : 1/31/2017 12	•		
icq. Method : E:DATA\/ZC/WZC-DATA-1/XZC-171222-2 2017-12-22 20-20-16\WWD-IB(1-6)-95-5 -INL-ZU-210M-AOHIN.H ast changed : $12/22/2017 8:20:17 PH by SYSTEM$ inalysis Method : E:VATA\/ZC.VZC-DATA-1/XZC-171222-2 2017-12-22 20-20-16\WWD-IB(1-6)-95-5 -INL-2012-210M-AOHIN.H (Sequence Hethod) (modified after loading) (dditional Info : Peak(s) manually integrated WOOLA.Wawdengh=210 m(E:DATAV2CVZC-DATA 1/VZC-171222-2 2017-12-22 20-20-16\WWD-IB(1-6)-95-5 -21 	Injection Date	: 12/22/2017 11:37:45 PM	
$-1HL-2UI-210MR-40MILN.H$ $-ast changed : 12/22/2017 8120:17 PM by SYSTEM inalysis Method : F:\DATA\X2C\X2C-DATA-1\X2C-171222-2 2017-12-22 20-20-16\VWD-IB(1-6)-95-5 -1HL-2UI-210MR-40MILN.H (Sequence Method) (modified after loading) (dditional Info : Pesk (s) manually integrated VM014, Wavelength=210 nm (E\DATA\Z2C\ZC-DATA \X2C-171222 2017-12-22 2020 90004 6801.D) meu = \frac{1}{1/5} \frac{1}{1/5} \frac{1}{20} \frac{1}{225} \frac{1}{25} \frac{1}{25} \frac{1}{25} \frac{1}{275} \frac{1}{30} \frac{1}{32.5} \frac{1}{min} Area Percent Report Area Percent Report area Fercent Report = 1.0000 to not use Multiplier 4 Dilution Factor with ISTDs ignal 1: VWD1 A, Wavelength=210 nm (Hapt Area fight Are$	Acq. Method	: E:\DATA\XZC\XZC-DATA-1\XZC-17	
nalysis Hethod : F:\DATA\X2C\X2C-DATA-1\X2C-2 2017-12-22 20-20-16\WD-IB(1-6)-95-5 INL-72U-210M [Sequence Method] ast changed : 1/31/2018 11:21:07 AM by SYSTEM (additional Info : Peak(s) annually integrated WD1A,Wardength=210 nm (EXDATA\X2C\X2C-DATA\X2C\X2C\X2C-DATA\X2C\X2C\X2C-DATA\X2C\X2C\X2C-DATA\X2C\X2C\X2C-DATA\X2C\X2C\X2C-DATA\X2C\X2C\X2C\X2C-DATA\X2C\X2C\X2C\X2C\X2C\X2C\X2C\X2C\X2C\X2C	-		
-INE-210NH-40HTN.H (Sequence Method) hast changed : 1/31/2018 11:21:07 AM by SYSTEM (additional Info : Peak(s) manually integrated WOLA.Wavelength=210 nm (E:DATAVZCVZC:DATA TVZC:17:12:22:20:07:12:22:00:07:07:12:22:20:07:12:22:00:07:07:12:22:00:07:07:07:12:22:00:07:07:07:07:07:07:07:07:07:07:07:07:	Last changed	-	
As the change $: 1/31/2018$ 11:21:07 AM by SYSTEM (additional Info : Peak (s) manually integrated WW01A, Wavelength=210 nm (E:DATAV2C:V2C:DATA:V2C:17.12:22.2017:12:22.2020:160004.0001.D) mail f(f) = f(f) =	Analysis Method		
$\frac{\operatorname{iditional Info : Peak (s) manually integrated}{\operatorname{VWD1A, Wavelength=210 nm(E:DATAV2CV2C-DATA fV2C-17 f22:2 20 20 f8004 0801.D)}}{\operatorname{if} \qquad \qquad$	Last changed	: 1/31/2018 11:21:07 AM by SYST	
$\frac{1}{1000} + \frac{1}{1000} + 1$	Additional Info		
$\int_{1}^{20} \int_{1}^{20} \int_{1}^{20$	VWD1 A, W.	avelength=210 nm (E:\DATAVZCV/ZC-DATA 1V/ZC-1	7 1222-2 2017-12-22 20-20-16/004-0801.D)
and a set of the set o	mAU -		он о
600 600 600 600 600 600 600 600	800 -		
400 400 400 400 400 400 400 400			21
200 200 200 200 200 200 200 200	600 -		
200 200 200 200 200 200 200 200		8 () 2 ()	
200 200 200 200 47.5 20 22.5 25 27.5 27		Ň.	
Area Percent Report Gorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] *	400 -	$\{ \}$	
Area Percent Report Gorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] *		11	
Area Percent Report Gorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] *			
Area Percent Report Gorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] *	200		
Area Percent Report Area Percent Report Sorted By : Signal fultiplier : 1.0000 Pilution : 1.0000 Po not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %			6
Area Percent Report Area Percent Report Sorted By : Signal fultiplier : 1.0000 Pilution : 1.0000 Po not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %		9,8197 8	8
Area Percent Report Area Percent Report Sorted By : Signal fultiplier : 1.0000 Pilution : 1.0000 Po not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %			a contraction of the second
Area Percent Report Gorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Gignal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	0+		
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	15	17.5 20 22.5	25 27.5 30 32.5 min
Area Percent Report Forted By : Signal Tultiplier : 1.0000 vilution : 1.0000 to not use Multiplier « Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %			
Gorted By : Signal Fultiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Gignal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %			
Tultiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %			
pilution : 1.0000 no not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	Sorted By	: Signal	
oo not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	Multiplier	: 1.0000	
Signal 1: VWD1 A, Wavelength=210 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	Dilution		
'eak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	Do not use Mult	iplier & Dilution Factor with IS	TDs
# [min] [min] [mAU*s] [mAU] %	Signal 1: VWD1 .	A, Wavelength=210 nm	
	# [min]	[min] [mAU*s] [mAU]	*
 1 17.180 MM 0.7514 2.15541e4 478.10046 97.6305			
2 21.029 MM 0.1445 1.81525 1.48409e-1 8.222e-3			
3 23.063 BB 0.6628 504.38492 11.23520 2.2846			
4 28.656 MM 0.1596 16.90961 1.76546 0.0766			
		0.1596 16.90961 1.76546	0.0766
otals: 2.20772e4 491.24953	Totals :		


1260HPLC-VWD 1/31/2018 11:21:11 AM SYSTEM

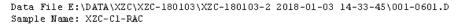
Data File E:\DATA\XZC\XZC-DATA-1\XZC-171222-2 2017-12-22 20-20-16\001-0301.D Sample Name: XZC-sulfon-RAC

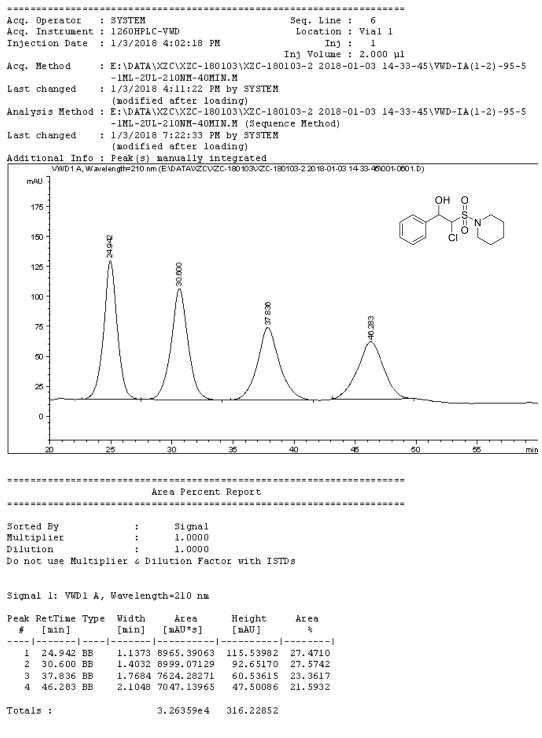

1260HPLC-VWD 1/30/2018 9:50:39 PM SYSTEM



1260HPLC-VWD 1/30/2018 9:53:39 PM SYSTEM

Data File E:\DATA\XZC\XZC-20180111\XZC-180115-1 2018-01-15 16-01-58\041-0201.D Sample Name: XZC-Br-RAC




1260HPLC-VWD 1/31/2018 11:02:22 AM SYSTEM

						=	
Acq. Operator	: SYSTEM			Seq. L:			
Acq. Instrument		C-VWD		-	ion : Vial 2		
Injection Date	: 1/16/20.	18 3:56:01 P	м	:	Inj: l		
				Inj Volu	ume : 3.000 p	ıl	
Acq. Method	: E:\DATA	\XZC\XZC-201	80111\XZC-1	80116-1	2018-01-16 1	.5-43-34\VWD-AD	(1-2)-90
		-3UL-210NM-3					
Last changed		18 3:43:34 P	-				
Analysis Method		\XZC\XZC-201 -3UL-210NM-3				.5-43-34\ VWD-AD	(1-2)-90
Last changed		18 11:05:36		-	,		
		ed after loa					
Additional Info				40.04.48.4.00	0.04 48 45 40 0 400	0.0004.03	
-	weiength=210 hr	n(E:WATAW2UW2	0-201801111720-1	180110-1 201	8-01-16 15-43-3400	2-0201.0)	
mAU .							
1400 -						OH O	
-						OH O	\sim
1200 -							Ň
1200						Br ⁰	
1						\sim	\sim
1000 -						2n	
1000							
1							
800 -							
1							
1							
600 -	g	2					
j	23 118 23	: i					
]	× c	i 1					
400 -		}					
1	[}					
	{	\ 8					
200 -		1 89			~ ~ ~ ~		
-	[242		N N N		
o 		$- \vee $ \searrow	- , 8		8 151 951 8 151 951		
20	22	24	26		30	32	
20		24	20	28		32	34 mir
			============			:=	
		Area Percent	Report				
		Area Percent ======	-			:=	
			-			:=	
			-			=	
Sorted By			-			=	
Sorted By Multiplier	, :	Signal	-			-	
Sorted By Multiplier Dilution		Signal 1.0000 1.0000				=	
Sorted By Multiplier Dilution		Signal 1.0000 1.0000				=	
Sorted By Multiplier Dilution Do not use Multi	: : iplier & D:	Signal 1.0000 1.0000 ilution Fact				=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 <i>i</i>	: : iplier & D:	Signal 1.0000 1.0000 ilution Fact				=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A	; iplier & D: A, Wavelend	Signal 1.0000 1.0000 ilution Fact gth=210 nm	or with IST	Ds		=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 <i>i</i> Peak RetTime Typ	; iplier & D: A, Wavelen pe Width	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area	or with IST Height	Ds Area		=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min]	iplier « D: A, Wavelen (min]	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s]	or with IST Height [mAU]	Ds Area %		=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min]	iplier « D: A, Wavelen De Width [min]	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s]	or with IST Height [mAU]	Ds Area %	-1	=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min] 1 23.118 BV	; iplier & D: A, Wavelen pe Width [min] 0.5486	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s] 1.63155e4	or with IST Height [mAU] 	Ds Area * 	-1	=	
Sorted By Multiplier Dilution Signal 1: VWD1 # Peak RetTime Typ # [min] 1 23.118 BV 2 24.450 VB	; iplier & D: A, Wavelend pe Width [min] 0.5486 0.5889	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s] 	or with IST Height [mAU] 	Ds Area * 79.317 19.508	-1 5 5	=	
Sorted By Multiplier Dilution Signal 1: VWD1 # Peak RetTime Typ # [min] 1 23.118 BV 2 24.450 VB 3 26.742 BB	; iplier & D: A, Wavelen (min) 0.5486 0.5889 0.6031	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s] 1.63155e4 4012.88306 83.49436	Height [mAU] 451.45810 102.25356 2.05018	Ds Area 	- 5 5	=	
Sorted By Multiplier Dilution Signal 1: VWD1 # Peak RetTime Typ # [min] 1 23.118 BV 2 24.450 VB	; iplier & D: A, Wavelen (min) 0.5486 0.5889 0.6031	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s] 	or with IST Height [mAU] 	Ds Area * 79.317 19.508	- 5 5	=	
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min] 1 23.118 BV 2 24.450 VB 3 26.742 BB	; iplier & D: A, Wavelen (min) 0.5486 0.5889 0.6031	Signal 1.0000 1.0000 ilution Fact gth=210 nm Area [mAU*s] 1.63155e4 4012.88306 83.49436	Height [mAU] 451.45810 102.25356 2.05018	Ds Area 	- 5 5	:=	

1260HPLC-VWD 1/31/2018 11:05:43 AM SYSTEM

1260HPLC-VWD 1/3/2018 7:22:39 PM SYSTEM

Data File E:\DATA\XZC\XZC-180103\XZC-180103-2 2018-01-03 14-33-45\002-0701.D Sample Name: XZC-C1

Acq. Operator	: SYSTEM		Seq. Line				
Acq. Instrument				: Vial 2			
injection Date	: 1/3/2018 5:03:02	PM		: 1	1		
Acq. Method	: E:\DATA\XZC\XZC-] -1ML-2UL-210NM-40		Inj Volume)103-2 2018			D-IA(1-2)-9	5-5
last changed	: 1/3/2018 4:11:22						
-	: E:\DATA\XZC\XZC-1 -1ML-2UL-210NM-40	L80103\XZC-180		-01-03 14	-33-45\VW	D-IA(1-2)-9	5-5
Last changed	: 1/3/2018 7:24:37 (modified after)	PM by SYSTEM					
Additional Info	: Peak(s) manually						
VWD1 A, WA	avelength≓210 nm (E:\DATAVZC	VZC-180103VZC-18	0103-2 2018-01-0	6 14 33 45 002	-0701.D)		
mAU]							
350 -					~	OH O	
1					\int		
300 -	30.271					ČI 🖌 🧹	
···· 1	Ŕ					2o	
1	Δ						
250 -							
1							
200 -	()						
200	(\						
1							
150 -							
100 -	[]						
	{ }						
	1 1						
50 -	α / \	8		315			
	ä / \	37.748		6 			
	4 / /	17		<u> </u>			
0	<u><u>x</u></u>						
1	 _ <u>+~</u>			, • • • • •	· _ · · ·	· · <u>·</u> · · ·	
0	25 30	35			50	₋ 55	, , mii
1	 _ <u>+~</u>	35	40	 - 45	50		ni mi
1 20	25 30						, , mi
1 20	25 30	ent Report			==	55	, , miı
1 20	25 30 Area Perce	ent Report			==	55	mir
20 20 Sorted By	25 30 Area Perce	ent Report			==	55	, , mir
20 20 Sorted By Multiplier	25 30 Area Perce : Signal	ent Report			==		, , mir
20 Sorted By Multiplier Dilution	25 30 Area Perce : Signal : 1.0000	ent Report			==		, . miı
20 20 Sorted By Multiplier Dilution	25 30 Area Perce : Sigmal : 1.0000 : 1.0000	ent Report			==		, , mir
20 Sorted By Multiplier Dilution Do not use Mult:	25 30 Area Perce : Sigmal : 1.0000 : 1.0000	ent Report L) actor with IS7			==	56	miı
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J	25 30 Area Perce : Sigmal : 1.0000 : 1.0000 iplier & Dilution Fe	ent Report L D actor with IST			==	56	mi
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Typ	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier « Dilution Fe A, Wavelength=210 nr	ent Report L D actor with IST Height	Ds Area		==	56	mii
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min]	25 30 Area Perce : Sigmal : 1.0000 : 1.0000 iplier & Dilution Fe	ent Report actor with IS7 Height [mAU]	Ds Area		==	56	mir
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min]	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier & Dilution Fe A, Wavelength=210 nn be Width Area [min] [mAU*s] 	ent Report ent Report b actor with IS7 M Height [mAU] 	Ds Area		==	55	, , mii
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min]	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier & Dilution Fe A, Wavelength=210 nn be Width Area [min] [mAU*s] 	ent Report ent Report b actor with IS7 M Height [mAU] 	Ds Area % 1 0.5374		==	55	, , , , , , , , , , , , , , , , , , ,
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 2 Peak RetTime Typ # [min] 	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier & Dilution Fa A, Wavelength=210 nn be Width Area [min] [mAU*s] 0.8341 153.9411 1.4302 2.69259e4	ent Report ent Report L b actor with IS7 M Height [mAU] 	Ds Area % 0.5374 93.9914		==	<u>56</u>	, , , , , , , , , , , , , , , , , , ,
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Typ # [min] 	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier & Dilution Fe A, Wavelength=210 nr be Width Area [min] [mAU*s] 	ent Report ent Report L b actor with IS7 M Height [mAU] 	Ds Area % 0.5374 93.9914		==	<u>56</u>	mir
20 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min] 	25 30 Area Perce : Signal : 1.0000 : 1.0000 iplier & Dilution Fe A, Wavelength=210 nr be Width Area [min] [mAU*s] 	Height [mAU]	Ds Area ≷ 0.5374 93.9914 3.2760		==	<u>55</u>	<u>mir</u>

1260HPLC-VWD 1/3/2018 7:24:48 PM SYSTEM

Page 1 of 2

Reference:

1. John J. Piwinski *et al*, Org. Lett., 2008, **10**, 2517–2520;

2. W. K. C. Park et al. Bioorg. Med. Chem. Lett., 2008, 18, 1151-1156;

3. M.-Y. Chang et al., Tetrahedron, 2015, 71, 782-791.