Rh(II)/Phosphine-cocatalyzed Synthesis of Dithioketal Derivatives

from Diazo Compounds through Simultaneous Construction of Two

Different C-S Bonds

Changqing Rao, Shaoyu Mai and Qiuling Song*

Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China

Table of Contents

1. General information	1
2. Optimization of experimental conditions	2
3. Preparation of starting materials	3
4. General procedure for the preparation of compound 3	5
5. Characterization data for products	6
6. NMR spectroscopic data	12

1. General information

All chemicals were purchased from Adamas Reagent, energy chemical company, J&K Scientific Ltd, Bide Pharmatech Ltd and Tansoole. DCE, CH₃CN was dried by CaH prior to use. Unless otherwise stated, all experiments were conducted in a sealed tube under air atmosphere. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ on a Bruker Avance 500 spectrometer (500 MHz ¹H, 125 MHz ¹³C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for ¹H-NMR, δ = 77.00 for ¹³C-NMR) as an internal reference. High resolution mass spectra were recorded using a Thermo Fisher Scientific LTQ FT Ultra or Waters Micromass GCT Premier instrument. Coupling constants (*J*) were reported in Hertz (Hz).

2、 Optimization of experimental conditions

Table S1. Screening of	f Catalyst an	d its dosages
------------------------	---------------	---------------

		O ₂ Et PhSO ₂ SMe	>	0=S ^{≤0} S−	
	الع 1a	+ 2a	Ĺ	CO ₂ Et	
entry	1a:2a	Catalyst [xmol%]	Cocatalyst [10mol%]	T [ºC]/t [h]	Yield ^a /%
1	2:1	CuOTf/5	Cy ₃ P	70/12	0
2	2:1	CuCl ₂ /5	Cy₃P	70/12	16
3	2:1	CuBr ₂ /5	Cy ₃ P	70/12	20
4	2:1	Cu(OAc) ₂ /5	Cy ₃ P	70/12	45
5	2:1	CuF ₂ /5	Cy ₃ P	70/12	15
6	2:1	Cu(acac) ₂ /5	Cy₃P	70/12	20
7	2:1	Pd(OAc) ₂ /5	Cy ₃ P	70/12	30
8	2:1	Pd(PPh3)Cl2/5	Cy₃P	70/12	trace
9	2:1	Pd ₂ (dba) ₃ /5	Cy ₃ P	70/12	trace
10	2:1	Rh ₂ (OAc) ₄ /5	Cy ₃ P	70/12	75
11	2:1	Rh ₂ (OAc) ₄ /10	Cy ₃ P	70/12	65
12	2:1	Rh ₂ (OAc) ₄ /2.5	Cy ₃ P	70/12	79
13	2:1	Rh ₂ (OAc) ₄ /1	Cy ₃ P	70/12	80

Reaction conditions: 2a (0.2 mmol), in DCE (2.0 mL) , $N_{2} \cdot \,^a$ Isolated yields.

Table S2. Screening of Time and Temperatrue.

	N ₂ CO ₂ Et + PhSO ₂ SMe - 1a 2a		$\xrightarrow{O=S=0}^{S=0} S \xrightarrow{CO_2Et}$		
entry	1a:2a	Catalyst [x mol%]	Cocatalyst [10 mol%]	T [ºC]/t [h]	Yield ^a /%
1	2:1	Rh ₂ (OAc) ₄ /1	Cy ₃ P	25/12	94
2	2:1	Rh ₂ (OAc) ₄ /1	Су₃Р	40/12	85
3	2:1	Rh ₂ (OAc) ₄ /1	Cy ₃ P	60/12	78
4	2:1	Rh ₂ (OAc) ₄ /1	Су₃Р	90/12	60
5	2:1	Rh₂(OAc)₄/1	Cy ₃ P	25/24	93
6	2:1	Rh ₂ (OAc) ₄ /1	Су₃Р	25/7	90
7	2:1	Rh ₂ (OAc) ₄ /1	Су₃Р	25/3	89
8	2:1	Rh ₂ (OAc) ₄ /1	Cy ₃ P	25/1	82

Reaction conditions: 2a (0.2 mmol), in DCE (2.0 mL) , N_2. ^a Isolated yields.

Table S3. Screening of and Cocatalyst

	$ \begin{array}{c} $					
entry	1a:2a	Catalyst [x mol%]	Cocatalyst [10 mol%]	T [°C]/t [h]	Yield ^a /%	
1	1.5:1	Rh₂(OAc)₄/1	Cy ₃ P	25/3	89	
2	1:1	Rh ₂ (OAc) ₄ /1	Cy ₃ P	25/3	71	
3	1.5:1	Rh ₂ (OAc) ₄ /1	dppp	25/3	94	
4	1.5:1	Rh ₂ (OAc) ₄ /1	dppb	25/3	82	
5	1.5:1	Rh ₂ (OAc) ₄ /1	PPh ₃	25/3	25	
6	1.5:1	Rh ₂ (OAc) ₄ /1	-	25/3	N.D	
7	1.5:1	-	dppp	25/3	trace	

Reaction conditions: 2a (0.2 mmol), in DCE (2.0 mL), N2. ^a Isolated yields.

3. Preparation of starting materials.

3.1 Typical procedure for the preparation of α-diazo arylacetates¹

At room temperature, a solution of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) (2.28 g, 15mmol, 1.5 equiv) in anhydrous CH₃CN (10 mL) was added dropwise to a solution of ethylphenyl acetate (1.64 g, 10 mmol, 1.0 equiv) and *p*-toluenesulfonyl azide (TsN3) (2.37 g, 12mmol, 1.2 equiv) in anhydrous CH₃CN (50 mL). Then the reaction mixture was stirred at room temperature for 15 hours. After water (40 mL) was added, the resulting mixture was extracted with diethyl ether (3×40 mL). The combined organic layer was washed with brine (40 mL) and dried over anhydrous MgSO4. After the removal of the solvent under reduced pressure, the residual was purified by a silica gel column chromatography with petroleum ether (PE)/ethyl acetate (EA) (30:1) as the eluent.

3.2 Typical procedure for the preparation of S-alkyl benzenesulfonothioate.²

$$R^{1}SO_{2}Na + S \xrightarrow{n-BuNH_{2}} R^{1}SO_{2}SNa \xrightarrow{R_{2}I} R^{1}SO_{2}SR^{2}$$

A mixture of PhSO₂Na (6.56 g, 40 mmol) and S (1.28 g, 40 mmol) in n-BuNH₂ (40 mL) was stirred at room temperature for 0.5 h. After removal of the solvent under reduced pressure, the residue was washed by Et_2O to obtain a white solid PhSO₂SNa.Then PhSO₂SNa was dissolved in EtOH (40 mL), then R-X (11.36 g,

80 mmol) was added to the solution. The reaction mixture was stirred at 40-45 $^{\circ}$ C

for 24 h. After removal of the solvent under reduced pressure, the reaction mixture was poured on a solution of $Na_2S_2O_3$ and CH_2Cl_2 (30 mL). The precipitate was filtered and dried by anhydrous Na_2SO_4 , the residue was purified through column chromatography (petroleum ether: EtOAc = 20:1) afforded the desired product S-alkyl benzenesulfonothioate as a yellow oil.

3.3 Typical procedure for the preparation of S-Ar benzenesulfonothioate³

ArSO₂Na + ArSSAr $\xrightarrow{rt, NBS}$ ArSO₂SR

A mixture of sulfinate 1 (8 mmol), disulfide 2 (2 mmol) and NBS (4 mmol) in CH_3CN (30 mL) was stirred at room temperature for respective time. After the completion of the reaction, as monitored by TLC and GC-MS analysis, the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was separated and dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated and the resulting residue was purified by column chromatography on silica gel (300—400 mesh) with petroleum ether-EtOAc as eluent to provide the desired S-Ar benzenesulfonothioate.

4. General procedure for preparation of compound 3

To a mixture of $Rh_2(OAc)_4$ (1 mol%), dppp (0.1 equiv) and **2a** (0.2 mmol) in DCE (2 mL) under N₂ atmosphere, **1a** (0.3 mmol, 1.5 equiv) were added. The system was stirred at 25 °C for 3 h. The reaction mixture was filtered and evaporated under reduced pressure and purified by column chromatography (petroleum ether: EtOAc = 5:1) to give the products.

5. General procedure for preparation of compound 4 and 5

Procedure of 4: To a mixture 3t (0.5 mmol) in MeOH (3 mL) under air, m-CPBA (2 equiv) was added slowly. The system was stirred at room temperature for 3 h. The reaction mixture was evaporated under reduced pressure and purified by column chromatography (petroleum ether: EtOAc = 2:1) to give 4.

Procedure of 5: To a mixture 3t (0.5 mmol) in THF (3 mL) under air, $LiAlH_4$ (5 equiv) was added slowly. The system was stirred at room temperature for 30 min. The reaction mixture was evaporated under reduced pressure and purified by column chromatography (petroleum ether: EtOAc = 5:1) to give 5.

5. Characterization data for products

methyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3a

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (56 mg, 84%).¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.48 (m, 1H), 7.47 – 7.43 (m, 2H), 7.34 (dd, J = 9.6, 4.3 Hz, 1H), 7.29 (t, J = 7.9 Hz, 2H), 7.26 – 7.19 (m, 1H), 3.90 (s, 3H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 135.6, 133.7, 131.6, 131.4, 129.7, 129.4, 128.0, 127.7, 83.4, 53.5, 15.6. HRMS (DART Positive) calcd for C₁₆H₁₆O₄S₂(M+NH₄)⁺: 354.0828; Found: 354.0826.

methyl 2-(4-chlorophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3b

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (61 mg, 82%).¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.49 (m, 3H), 7.37 – 7.32 (m, 2H), 7.24 – 7.20 (m, 2H), 7.19 – 7.15 (m, 2H), 3.89 (s, 3H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 136.0,

135.4, 134.0, 131.4, 130.9, 130.1, 128.2, 127.9, 82.6, 53.7, 15.6. HRMS (DART Positive) calcd for $C_{16}H_{15}O_4ClS_2(M+NH_4)^+$: 388.0439; Found: 388.0435.

methyl 2-(4-(tert-butyl)phenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3c

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (71 mg, 90%).¹H NMR (500 MHz, CDCl₃) δ 7.50 (t, *J* = 7.4 Hz, 1H), 7.42 (d, *J* = 7.5 Hz, 2H), 7.30 – 7.20 (m, 4H), 7.11 (d, *J* = 8.6 Hz, 2H), 3.90 (s, 3H), 2.43 (s, 3H), 1.29 (t, 9H). ¹³C NMR (126

MHz, CDCl₃) δ 166.6, 153.1, 135.8, 133.6, 131.3, 129.1, 128.3, 127.6, 125.0, 83.3, 53.5, 34.7, 31.2, 15.6. HRMS (DART Positive) calcd for C₂₀H₂₄O₄S₂(M+NH₄)⁺: 410.1454; Found: 410.1451.

benzyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3d

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (70 mg, 85%).¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.41

^{3d} (dd, J = 8.4, 1.1 Hz, 2H), 7.39 – 7.29 (m, 6H), 7.24 (d, 2H), 7.21 – 7.14 (m, 4H), 5.33 (dd, J = 49.0, 12.0 Hz, 2H), (s, 2.30, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 135.6, 134.6, 133.7, 131.6, 131.4, 129.6, 129.5, 128.9, 128.8, 128.6, 127.9, 127.7, 83.1, 68.4, 15.4. HRMS (ESI) calcd for C₂₂H₂₀O₄S₂ (M+Na) +: 435.0695; Found: 435.0695

ethyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3e

3e

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (66 mg, 94%).¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.47 (m, 1H), 7.44 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.30 – 7.25 (m, 2H), 7.25 – 7.19 (m,

4H), 4.45 - 4.31 (m, 2H), 2.46 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 165.9, 135.7, 133.7, 131.7, 131.4, 129.6, 129.4, 128.0, 127.7, 83.3, 63.0, 15.6, 14.1. HRMS (EI) calcd for C₁₇H₁₈O₄S₂(M)⁺: 350.0647; Found: 350.0645.

ethyl 2-(4-bromophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3f

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow solid (66 mg, 77%).¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, *J* = 17.8, 7.5 Hz, 3H), 7.40 – 7.31 (m, 4H), 7.13 (t, *J* = 5.7 Hz, 2H), 4.42 – 4.31 (m, 2H), 2.41 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 165.8, 135.8, 134.2, 131.7, 131.4, 131.4, 131.0, 128.1, 124.4, 82.9, 63.5, 15.8, 14.4. HRMS (DART Positive) calcd for C₁₇H₁₇O₄BrS₂(M+NH₄)⁺: 446.0090; Found: 446.0085.

ethyl 2-(3-bromophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3g

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow solid (80 mg, 93%).¹H NMR (500 MHz, CDCl₃) δ 7.56 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.34 (dd, *J* = 8.4, 7.5 Hz, 2H), 7.27 (t, *J* = 1.9 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 4.39 (t, *J* = 7.1 Hz, 2H), 2.43 (s,

3H), 1.36 - 1.30 (t, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 135.2, 134.0, 133.8, 132.6, 132.5, 131.4, 129.3, 128.3, 127.8, 121.8, 82.5, 63.2, 15.5, 14.1. HRMS (DART Positive) calcd for C₁₇H₁₇O₄BrS₂(M+NH₄)⁺: 446.0090; Found: 446.0086.

ethyl 2-(3,4-dimethoxyphenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3h⁴

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (78 mg, 95%).¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.45 (m, 3H), 7.30 (dd, *J* = 8.4, 7.4 Hz, 2H), 6.77 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.73 – 6.67 (m, 2H), 4.44 – 4.31 (m, 2H), 3.86 (s, 3H), 3.66 (s, 3H),

2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 150.0, 148.0, 135.9, 133.5, 131.3, 127.6, 123.6, 122.5, 112.3, 110.1, 83.0, 62.9, 55.9, 55.8, 15.6, 14.1.

ethyl 2-(methylthio)-2-(4-nitrophenyl)-2-(phenylsulfonyl)acetate 3i⁴

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow solid (35 mg, 44%).¹H NMR (500 MHz, CDCl₃) δ 8.15 – 8.07 (m, 2H), 7.62 – 7.55 (m, 3H), 7.53 – 7.47 (m, 2H), 7.36 (dd, *J* = 8.4, 7.4

Hz, 2H), 4.42 – 4.35 (m, 2H), 2.38 (s, 3H), 1.32 (t, 3H).¹³C NMR (126 MHz, CDCl₃) δ 165.1, 148.1, 138.5, 135.2, 134.3, 131.4, 130.9, 128.1, 122.8, 824, 63.5, 15.5, 14.0.

ethyl 2-(4-methoxyphenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3j⁴

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (67 mg, 88%).¹H NMR (500 MHz, CDCl₃) δ 7.56 (m, *J* = 7.6, 1.2 Hz, 2H), 7.52 - 7.45 (m, 2H), 7.34 (dd, *J* = 8.4, 7.5 Hz, 1H), 7.27

(t, J = 1.9 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.14 (t, J = 7.9 Hz, 1H), 4.39 (t, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.36 – 1.30 (t, 3H).¹³C NMR (126 MHz, CDCl₃) δ 165.8, 158.9, 135.7, 133.6, 132.9, 131.4, 128.8, 127.6, 121.8, 115.6, 114.8, 83.3, 63.0, 55.3, 15.6, 14.1.

ethyl 2-(2-fluorophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3k

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (53 mg, 72%).¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.48 (m, 3H), 7.32 (dd, *J* = 8.3, 7.5 Hz, 2H), 7.25 – 7.19 (m, 1H), 7.09 – 7.01 (m, 2H), 6.98 (dt, *J* = 10.2,

2.2 Hz, 1H), 4.45 – 4.30 (m, 2H), 2.43 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.2,161.6 (d, J = 247.1 Hz), 135.2, 133.6, 131.0 129.09 (d, J = 8.1 Hz), 127.51 (s), 125.07 (d, J = 3.1 Hz), 116.60 (d, J = 24.3 Hz), 116.3(d, J = 20.9 Hz), 82.4 630 29.4, 15.2, 13.8. RMS (DART Positive) calcd for C₁₇H₁₇O₄FS₂ (M+NH₄) ⁺: 386.0891; Found: 386.0886.

methyl 2-(benzo[b]thiophen-2-yl)-2-(methylthio)-2-(phenylsulfonyl)acetate 31

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (50 mg, 64%).¹H NMR (500 MHz, CDCl₃) δ 7.51 (td, *J* = 7.5, 1.0 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.32 (m, 1H), 7.28 (t, *J* =

11.8, 4.0 Hz, 2H), 7.25 – 7.18 (m, 4H), 3.89 (s, 3H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 135.5, 133.7, 131.5, 131.3, 129.6, 129.4, 128.0, 127.6, 83.3, 53.5, 15.6. HRMS (DART Positive) calcd for C₁₈H₁₆O₄S₃ (M+NH₄) ⁺: 410.0549; Found: 410.0547.

ethyl 2-(ethylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3m

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (56 mg, 77%).¹H NMR (500 MHz, CDCl₃) δ 7.50 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.44 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.30 – 7.25 (m,

2H), 7.22 (d, J = 4.3 Hz, 4H), 4.36 (q, 2H), 3.25 – 3.13 (m, 1H), 2.81 – 2.70 (m, 1H), 1.30 (q, J = 14.2, 7.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 166.2, 135.7, 133.5, 131.8, 131.4, 129.5, 129.4, 127.8, 127.6, 83.6, 62.9, 26.6, 14.0, 13.3. HRMS (DART Positive) calcd for C₁₈H₂₀O₄S₂ (M+NH₄) +: 382.1141; Found: 382.1141.

ethyl 2-(allylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3n

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (38 mg, 50%).¹H NMR (500 MHz, CDCl₃) δ 7.50 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.44 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.31 – 7.26 (m,

2H), 7.23 (d, J = 4.3 Hz, 4H), 5.98 – 5.80 (m, 1H), 5.31 (dt, J = 17.0, 2.7, 1.3 Hz, 1H), 5.23 – 5.16 (m, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.89 – 3.77 (m, 1H), 3.56 – 3.47 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 135.7, 133.6, 131.7, 131.7, 131.4, 129.59, 129.4, 127.9, 127.6, 119.6, 83.2, 63.0, 35.6, 14.0. HRMS (DART Positive) calcd for C₁₉H₂₀O₄S₂ (M+NH₄)⁺: 394.1141; Found: 394.1139.

ethyl 2-phenyl-2-(phenylthio)-2-tosylacetate 30

Ts, SPh CO₂Et
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow solid (53 mg, 62%).¹H NMR (500 MHz, CDCl₃) δ 7.77 (dt, J = 8.4, 1.8 Hz, 2H), 7.41 - 7.36 (m, 3H), 7.37 - 7.29 (m, 4H), 7.29 - 7.22 (m, 3H), 7.09 (dd, J = 8.5, 0.5 Hz, 2H), 3.94 - 3.85 (m, 1H), 3.83 - 3.75 (m, 1H), 2.37 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 144.7, 137.1, 133.1, 132.8, 131.6, 130.2, 130.1, 130.0, 129.4, 129.3, 129.1, 128.6, 128.5, 128.4, 127.7, 86.7, 62.6, 21.6, 13.5. HRMS (DART Positive) calcd for C₂₃H₂₂O₄S₂ (M+NH₄) ⁺: 444.1298; Found:

ethyl 2-((4-fluorophenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3p

444.1291.

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 5:1, v/v) to give the product as a yellow liquid (59 mg, 80%).¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.38 – 7.32 (m, 1H), 7.28 – 7.18 (m, 4H), 6.94 (dd, J = 9.0, 8.4 Hz, 2H), 4.45 – 4.30 (m,

2H), 2.47 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8(t,

J=128.4), 134.2, 134.1, 131.6, 129.7, 129.3, 128.0, 115.0, 114.8, 83.3, 63.0, 15.5, 14.1. HRMS (DART Positive) calcd for $C_{17}H_{17}O_4FS_2$ (M+NH₄) +: 386.0891; Found: 386.0887.

ethyl 2-((4-chlorophenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3q

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 5:1, v/v) to give the product as a yellow liquid (68 mg, 88%).¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 3H), 7.29 – 7.19 (m, 6H), 4.47 - 4.32 (m, 2H), 2.48 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 140.5, 134.3, 132.7, 131.5, 129.8, 129.3, 128.1, 127.9, 83.5, 63.1, 15.6, 14.1. HRMS (ESI) calcd for C₂₁H₂₆ClO₄S₂ (M+Na) +: 407.0149;

Found: 407.0141

ethyl 2-((4-(tert-butyl)phenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3r

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 5:1, v/v) to give the product as a yellow liquid (78 mg, 97%).¹H NMR (500 MHz, CDCl₃) δ 7.36 (p, J = 2.1 Hz, 2H), 7.34 – 7.31 (m, 1H), 7.28 (d, J = 8.8 Hz, 2H), 7.25 – 7.19 (m, 4H), 4.46 – 4.29 (m,

2H), 2.43 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 157.7, 132.7, 131.8, 131.1, 129.5, 129.4, 127.8, 124.6, 83.2, 62.9, 35.1, 31.0, 15.5, 14.1. HRMS (ESI) calcd for C₂₁H₂₆O₄S₂ (M+Na) +: 429.1165; Found: 429.1165

ethyl 2-(methylthio)-2-(naphthalen-2-ylsulfonyl)-2-phenylacetate 3s

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 5:1, v/v) to give the product as a yellow solid (69 mg, 86%).¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.7 Hz, 1H), 7.62 (td,

J = 8.2, 6.9, 1.2 Hz, 1H), 7.54 (td, J = 8.1, 7.0, 1.1 Hz, 1H), 7.41 (dd, J = 8.7, 1.7 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.25 – 7.15 (m, 4H), 4.46 – 4.27 (m, 2H), 2.51 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 135.2, 133.6, 132.8, 131.8, 131.3, 129.6, 129.5, 129.5, 129.2, 127.9, 127.7, 127.2, 127.1, 125.9, 83.5, 77.3, 77.0, 76.8, 63.0, 15.6, 14.1. HRMS (DART Positive) calcd for $C_{21}H_{20}O_4S_2(M+NH_4)^+$: 418.1141; Found: 418.1137.

ethyl 2-(methylthio)-2-phenyl-2-tosylacetate 3t

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 5:1, v/v) to give the product as a yellow solid (66 mg, 88%).¹H NMR (500 MHz, CDCl₃) δ 7.33 - 7.28 (m, 3H), 7.22 (d, J = 4.5 Hz, 4H), 7.06 (d, J = 8.1 Hz, 2H), 4.42 - 4.29 (m, 2H), 2.43 (s, 3H), 2.34 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 144.6, 132.6, 131.6, 131.2, 129.4, 129.3, 128.2, 127.8, 83.0, 62.8, 21.5, 15.4, 14.0. HRMS (ESI) calcd for C₁₈H₂₀O₄S₂ (M+Na) ⁺: 387.0695; Found: 387.0698.

ethyl 2-(methylsulfonyl)-2-phenyl-2-tosylacetate 4

127.1, 96.8, 77.3, 77.0, 76.8, 64.1, 42.5, 21.7, 13.6.

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 2:1, v/v) to give the product as a white solid (188 mg, 95%).¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.57 (m, 4H), 7.50 - 7.42 (m, 1H), 7.37 (t, J = 7.8 Hz, 2H), 7.18 (d, J = 8.1Hz, 2H), 4.48 - 4.30 (m, 2H), 3.26 (s, 3H), 2.39 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 146.0, 133.8, 131.8, 131.2, 130.4, 128.6, 128.2,

ethyl (R)-2-phenyl-2-tosylacetate 5

.The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, CO₂Et petroleum ether: AcOEt = 4:1, v/v) to give the product as a white solid (143 mg, 90%). ¹H NMR (500 MHz, CDCl₃) & 7.48 (dd, J = 11.6, 8.4 Hz, 2H), 7.42 - 7.32 (m, 3H), 7.33 - 7.27 (m, 2H), 7.22 (t, J = 8.5 Hz, 2H), 5.07 (s, 1H), 4.32 - 4.11 (m, 2H), 2.41 (s, 3H), 1.28 – 1.18 (t, 3H).¹³C NMR (126 MHz, CDCl₃) δ 163.3, 1456.0, 133.8, 131.8, 131.2, 130.4, 128.6, 128.2, 127.1, 96.8, 77.3, 77.0, 76.7, 64.1, 42.5, 21.7, 13.6.

References

- Bélanger, D.; Tong, X.; Soumaré, S.; Dory, Y. L.; Zhao, Y. Chem. Eur. J. 2009, 1. 15, 4428.
- 2. W. Wang, X. Peng, F. Wei, C. Tung, and Z. Xu. Angew. Chem. Int. Ed. 2016, 55, 649-653.
- 3. G. Liang, M. Liu, W. Gao, J. Ding, J. Chen, H. Wu. Chin. J. Chem. 2012, 30, 1611-1616.
- L. Marzorati, N. Ferreira, C. Junior, C. D. Vitta, B. Wladislaw. Synthesis. 1997, 4, 4. 420-422.

NMR spectroscopic data methyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3a

methyl 2-(4-chlorophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3b

methyl 2-(4-(tert-butyl)phenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3c

benzyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3d

ethyl 2-(methylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3e

ethyl 2-(4-bromophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3f

ethyl 2-(3-bromophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3g

ethyl 2-(3,4-dimethoxyphenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3h

ethyl 2-(methylthio)-2-(4-nitrophenyl)-2-(phenylsulfonyl)acetate 3i

ethyl 2-(4-methoxyphenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3j

ethyl 2-(2-fluorophenyl)-2-(methylthio)-2-(phenylsulfonyl)acetate 3k

methyl 2-(benzo[b]thiophen-2-yl)-2-(methylthio)-2-(phenylsulfonyl)acetate 31

ethyl 2-(ethylthio)-2-phenyl-2-(phenylsulfonyl)acetate 3m

ethyl 2-phenyl-2-(phenylthio)-2-tosylacetate 3o

ethyl 2-((4-fluorophenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3p

ethyl 2-((4-chlorophenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3q

ethyl 2-((4-(tert-butyl)phenyl)sulfonyl)-2-(methylthio)-2-phenylacetate 3r

ethyl 2-(methylthio)-2-(naphthalen-2-ylsulfonyl)-2-phenylacetate 3s

ethyl 2-(methylthio)-2-phenyl-2-tosylacetate 3t

ethyl 2-(methylsulfonyl)-2-phenyl-2-tosylacetate 4

