Electronic Supplementary Information

Synthesis and Characterization of Two Different Azarubrenes

Gaozhan Xie, Sebastian Hahn, Frank Rominger, Jan Freudenberg, and Uwe H. F. Bunz

Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

Index:

S1. Experimental Section	02
S2. Absorption and emission spectra	08
S3. Electrochemistry	09
S4. Mass spectrometry	10
S5. Infrared spectroscopy	12
S6. NMR-Spectroscopy	14
S7. Crystal structures	19
S8. Cartesian Coordinates of computational studies	52
S9. References	54

S1. Experimental Section

Materials and Methods. Thin-layer chromatography (TLC) was carried out on Polygram SILG/UV254 plates from Macherey, Nagel&Co.KG (Düren, Germany) and examined under ultraviolet irradiation (254 and 365 nm). Column chromatography was performed using silica gel from Macherey, Nagel & Co.KG (particle size: 0.032-0.062 mm) or aluminium oxide from Acros Organics (particle size: 0.05-0.20 mm). NMR spectra (¹H, ¹³C) were recorded at Bruker Avance III 300, Bruker Avance III 500 or Bruker Avance III 600. Chemical shifts (δ) are given in parts per million (ppm) relative to internal solvent signals. The following abbreviations describe the signal multiplicities: s = singlet, bs = broad singlet, d = doublet, bd = broad doublet, dd = doublet doublet m = multiplet. IR spectra were recorded on a JASCO FT/IR-4100. High resolution mass spectra (HR-MS) were obtained from electron impact (EI) or electrospray ionization (ESI) on a Bruker ApexQe hybrid 9.4 TFT-ICR-MS. Crystal structure analysis was accomplished on Bruker Smart CCD or Bruker APEX diffractometers. Computational studies were carried out using DFT calculations on Turbomole 6.3.1 and Gaussian09. Geometry optimizations were performed using the BP86 functional and def2-TZVP basis set. At this geometry, the absolute energy and FMO energies were assigned by a single-point approach at the B3LYP/6-311++G** level. Hirshfeld surfaces and fingerprint plots were generated with the program CrystalExplorer 3.1.^[1]

Syntheses. All reagents and solvents were obtained from Sigma-Aldrich and ABCR without any further purification. $4-((Trimethylsilyl)ethynyl)pyridine (1)^{[2]} and 5,6,11,12-tetrachlorotetracene (3)^{[3]} were synthesized according to reported literatures.$

1,1-Diphenyl-3-pyridyl-2-propyn-1-ol (2)

A solution of 1 (4.92 g, 28.1 mmol, 1.00 eq.) in THF:CH₃OH (28: 28 ml) was treated with K₂CO₃ (8.73 g, 63.2 mmol, 2.25 eq.). After 30 min of stirring at room temperature (r.t.), the mixture was filtered to remove inorganic salts and the solvent was evaporated under reduced pressure. Then the crude product was purified by a flash column chromatography (silica gel, petroleum ether (PE)/ethyl acetate (EE) = 5:1) to give a colorless solid. The fresh prepared 4-ethynylpridine (2.72) g, 26.3 mmol, 1.20 eq.) was dissolved into dry tetrahydrofuran (THF) (32 mL), followed by adding n-butyllithium (n-BuLi) (22.0 mmol, 8.78 mL, 2.50 M in hexane, 1.00 eg.) dropwise at -10 °C. The solution was first stirred at -10 °C for 20 min and then at r.t. for 20 min. After that, benzophenone (4.00 g, 22.0 mmol, 1.00 eq.), dissolved in 32 ml THF, was added dropwise at r.t. and the mixture was stirred for 12 h. The mixture was guenched with water (8 mL) and dealt with a short column chromatography using THF as eluent. After evaporation of the solvent, the mixture was separated by a short column chromatography (silica gel, PE/ EE = 5:1) to attain a white powder 2. Yield: 5.85 g, 20.5 mmol, 93%, Rf = 0.35 (SiO₂, PE/ EE = 1: 1, v/v). Mp: 183 °C. ¹H-NMR (CDCl₃, 500.13 MHz, 25 °C): δ = 8.55 (bs, 2H), 7.65 (d, J= 7.32 Hz, 4H), 7.40-7.34 (m, 6H), 7.33-7.29 (m, 2H), 3.55 (bs, 1H) ppm. ¹³C-NMR (CDCl₃, 125.76 MHz, 25 °C): δ = 149.3, 144.4, 131.1, 128.4, 128.0, 126.0, 125.8, 97.0, 84.2, 74.7 ppm. IR: v = 3068, 2783.5, 1700, 1597,1490, 1445, 1411, 1171, 1046, 996, 829, 753, 692, 643, 605, 552, 418 cm⁻¹. HRMS (ESI⁺) m/z: [M+H]⁺: calcd. for C₂₀H₁₆NO: 286.1226; found 286.1229 correct isotope distribution. Elemental analysis calcd. (%) for C₂₀H₁₆NO: C 84.19, H 5.30, N 4.91; found: C 84.05, H 5.48, N 4.82.

5,11-Di(4-pyridyl)-6,12-diphenyltetraacene (DAR)

Under nitrogen atmosphere, **1** (0.20 g, 0.70 mmol, 1.00 eq.) was dissolved in 6 ml 1,1,2,2-tetrachloroethane and the solution was cooled to 0 °C. Anhydrous triethylamine (0.20 ml) and methanesulfonyl chloride (0.25 g, 98%, 2.10 mmol, 3.00 eq.) were added to this solution and stirred for 1 h at 0 °C. Then it was heated to 146 °C and stirred for 5 h. After removal of the solvent through reduced pressure distillation, the mixture was first purified using a SiO₂ column chromatography (dichloromethane (DCM)/ EE = 10:1), followed by an alumina column chromatography (DCM/ EE = 3:1). Then the crude product was recrystallized by methanol and hexane to obtain **DAR** as a red powder. Yield: 0.26 g, 0.05 mmol, 14%. Rf = 0.20 (SiO₂, DCM/ EE = 1:1, v/v). Mp: 338 °C (decomposition). ¹H-NMR (cyclohexane-d₁₂, 300.51 MHz, 27 °C): δ = 8.28-8.19 (m, 4H), 7.46-7.37 (m, 2H), 7.31-7.25 (m, 2H), 7.16-7.11 (m, 2H), 7.06-6.69 (m, 8H), 6.86-6.76 (m, 4H), 6.67-6.60 (m, 4H) ppm. IR: \tilde{v} = 3060, 3027, 1581, 1396, 1068, 1024, 817, 757, 692, 586, 514, 460 cm⁻¹. HRMS (EI⁺): m/z: [M]⁺: calcd. for C₄₀H₂₆N₂⁺: 534.2096; found 534.2081 correct isotope distribution.

5,12-Dihydro-5,11-di(4-pyridyl)-6,12-diphenyl-5,12-epidioxynaphthacene (DARO2)

DAR (0.03 g, 0.06 mmol) was dissolved in 30 mL DCM and stirred at r.t. for 5 d. The solvent was removed under reduced pressure and the crude product was recrystallized by DCM to attain **DARO2** as a colorless powder. Yield: 0.03 g, 0.05 mmol, 83%. Rf = 0.20 (SiO₂, DCM/ EE = 1:1, v/v). Mp: 207 °C (decomposition). ¹H-NMR (CD₂Cl₂, 600.24 MHz, 22 °C): δ = 8.45 (bs, 1H), 8.27 (bs, 2H), 8.12 (bs, 1H), 7.54-7.38 (m, 3H), 7.36-7.32 (m, 1H), 7.31-7.13 (m, 12H), 7.12-7.08 (bd,

J= 3.85 Hz, 1H), 7.07-6.96 (m, 2H), 6.92-6.87 (m, 1H), 6.74-6.96 (d, J= 7.70 Hz, 1H), 6.61-6.53 (bd, J= 4.13 Hz, 1H) ppm. ¹³C-NMR (CD₂Cl₂, 150.93 MHz, 22 °C): δ = 149.8, 148.7, 148.4, 147.1, 142.7, 140.0, 139.3, 138.2, 137.0, 134.9, 133.9, 133.8, 133.6, 133.2, 132.6, 132.2, 131.9, 128.8, 128.8, 128.5, 128.4, 128.0, 127.7, 127.5, 127.2, 127.1, 127.0, 126.9, 125.3, 124.6 ppm. IR: \tilde{v} = 3041, 2927, 1589, 1463, 1411, 1270, 1184, 1051, 914, 821, 765, 730, 696, 605, 566 cm⁻¹. HRMS (ESI⁺) m/z: [M+H]⁺: calcd. for C₄₀H₂₇N₂O₂⁺: 567.2067; found 567.2061; m/z: [M+Na]⁺: calcd. for C₄₀H₂₇N₂O₂⁺: 567.1067; found 567.2061; m/z: [M+Na]⁺: calcd. for C₄₀H₂₆N₂O₂Na⁺: 589.1886; found 589.1880 correct isotope distribution.

5,6,11,12-Tetra(4-pyridyl)tetracene (TAR)

Under nitrogen atmosphere, **3** (0.20 g, 0.55 mmol, 1.00 eq.), 4-pyridinylboronic acid (0.48 g, 90%, 3.50 mmol, 6.40 eq.), tris(dibenzylideneacetone)dipalladium(0) (Pd₂dba₃) (0.04 g, 0.04 mmol, 0.07 eq.) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) (0.08 g, 0.16 mmol, 0.28 eq.) were added into a 50 mL flask. 16 mL 1,4-dioxane and 4 mL potassium phosphate solution (1.02 g, 4.80 mmol, 8.80 eq., 1.20 M) were degassed for 20 min and added into the flask .The resulting mixture was stirred at 100 °C for 72 h. The crude product was extracted with 50 mL DCM and washed three times with 50 mL water. After evaporation of solvent under reduced pressure, the solid was purified by column chromatography (DCM/ CH₃OH = 40: 1 \rightarrow 10: 1 v/v) to attain **TAR** as a red powder. Yield: 0.14 g, 0.26 mmol, 48%. Rf = 0.30 (SiO₂, DCM/ CH₃OH = 10:1, v/v). Mp: 338 °C. ¹H-NMR (tetrahydrofuran-d₈, 500.13 MHz, 25 °C): δ = 8.38-8.25 (m, 8H), 7.43-7.29 (m, 4H), 7.28-7.16 (m, 4H), 6.94-6.80 (m, 8H) ppm. ¹³C-NMR (THF-d₈, 125.76 MHz, 25 °C): δ = 150.1, 149.5, 135.8, 130.7, 128.4, 127.1, 126.7 ppm. IR: \tilde{v} = 3031, 1936, 1589, 1540, 1467, 1403, 1209, 1064, 981, 817, 746, 582, 518, 460 cm⁻¹. HR-MS (EI⁺): m/z: [M]⁺: calcd. for C₃₈H₂₄N₄: 536.2001; found 536.2002 correct isotope distribution.

TAR (0.03 g, 0.06 mmol) was dissolved in 30 mL DCM and stirred at r.t. for 5 d. The solvent was removed under reduced pressure and the crude product was recrystallized by DCM to attain a **TARO2** as a colorless powder. Yield: 0.02 g, 0.04 mmol, 67%. Rf = 0.30 (SiO₂, DCM/ CH₃OH = 10:1, v/v). Mp: 220 °C. ¹H-NMR (CD₂Cl₂, 300.51 MHz, 27 °C): δ = 8.56 (d, J=5.0, 2H), 8.34 (s, 4H), 8.15 (d, J=4.9, 2H), 7.40–7.26 (m, 10H), 7.18 (d, J=3.8, 2H), 7.09 (dd, J=6.6, 3.3, 2H), 6.64 (d, J=3.7, 2H) ppm. ¹³C-NMR (CD₂Cl₂, 150.93 MHz, 22 °C): δ = 150.1, 149.2, 148.7, 146.3, 141.8, 138.3, 134.2, 133.4, 132.2, 128.8, 127.7, 127.0, 126.9, 124.7, 83.9 ppm. IR: \tilde{v} = 3423, 3035, 2911, 1712, 1592, 1407, 1197, 973, 914, 821, 757, 727, 605, 566 cm⁻¹. HRMS (ESI⁺) m/z: [M+H]⁺: calcd. for C₃₈H₂₅N₄O₂⁺: 569.1972; found 569.1973; m/z: [M+Na]⁺: calcd. for C₃₈H₂₄N₄O₂Na⁺: 591.1792; found 591.1793 correct isotope distribution.

Figure S1. Top: Normalized absorption and emission spectra of **rubrene** and designed compounds measured in dichloromethane. Bottom: Quantum-chemical calculations of the FMOs (LUMOs Top, HOMOs bottom) for rubrene, DAR, and TAR (Gaussian 09 B3LYP/6-311 $++G^{**}//BP86/$ def2-TZVP).

S3. Electrochemistry

Cyclic Voltammetry (CV). The **CV** experiments were carried out using a platinum working electrode, a platinum/titanium wire auxiliary electrode, a silver wire reference electrode, a $0.1 \text{ M NBu}_4\text{PF}_6$ solution in degassed dichloromethane, and ferrocene/ferrocenium as the reference redox system and internal standard (-4.8 eV). To determine the first reduction

potentials ($E_{red}(0/-)$) and oxidation potentials ($E_{ox}(0/+)$) of **rubrene**, **DAR**, **TAR**, the first oxidation potential of ferrocene, the half-wave potentials were used.^[4]

Rubrene with ferrocene (a)

TAR with ferrocene (c)

S4. Mass spectrometry

5,11-Di(4-pyridyl)-6,12-diphenyltetracene (DAR)

5,12-Dihydro-5,11-di(4-pyridyl)-6,12-diphenyl-5,12-epidioxynaphthacene(DARO2)

5,12-Dihydro-5,11-di(4-pyridyl)-6,12-diphenyl-5,12-epidioxynaphthacene (DARO2)

S5. Infrared spectroscopy

1,1-Diphenyl-3-pyridyl-2- propyn-1-ol (2)

5,11-Di(4-pyridyl)-6,12-diphenyltetracene (DAR)

5,6,11,12-tetra(4-pyridyl)tetracene (TAR)

5,12-Dihydro-5,6,11,12-tetra(4-pyridyl)-5,12-epidioxynaphthacene (TARO2)

S6. NMR-Spectroscopy

1,1-Diphenyl-3-pyridyl-2- propyn-1-ol (2)

¹H-NMR

Acquisition Time (sec) DE Tile Name NSTRUM	3.2768			Multiplets In	ntegrals Sum	14.84 No	imber of Nuclei	15 H's	
DE File Name		Comment	Z810701 003	2 (PA BBI 500S2 H-BB-D-	05 Z)	D	0.1	D1	0.1
ile Name NSTRI IM	6.5	DS	2	Date	20 Jul 2017 1	9:31:06		Date Stamp	20 Jul 2017 19:31:06
NSTRIIM	\\bunz22\Mitar	beiter/Gaozhan XIE/03 ana	lytics/01-NMR/	d170720ubxgz024\1\fid		Frequency (MHz)	500.1300	GB	0
15THOM	<spect></spect>	LB	0.3	NS	2048	Nucleus	1H	Number of Transients	2048
Drigin	spect	Original Points Count	49152	Owner	ns	PC	1		
PROBHD	<z810701_00< td=""><td>32 (PA BBI 500S2 H-BB-D-</td><td>-05 Z)></td><td>PULPROG</td><td><zq30></zq30></td><td>Points Count</td><td>65536</td><td>Pulse Sequence</td><td>zq30</td></z810701_00<>	32 (PA BBI 500S2 H-BB-D-	-05 Z)>	PULPROG	<zq30></zq30>	Points Count	65536	Pulse Sequence	zq30
Receiver Gain	287.00	SF	500.13004892	20708		SF01	500.1325006		
N	65536	SSB	0	SW(cyclical) (Hz)	15000.00	SWH	15000	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2488.2749	Spectrum Type	standard	Sweep Width (Hz)	14999.77	TD	98304	TD0	256
		N (22		RM 0, 200	<u> </u>			2 	
⊳ "		-8.54 	8.7	8.6 8.5 8.4	8.3 8.2	8.1 8.0	7.9 7.8 7.7	7.6 7.5 7.4	7.3 Chemical Shif

Acquisition Time (sec)	1.7302	Comment	Z810701 003	2 (PA BBI 500S2 H-BB-D	0-05 Z)	D	1.5	D1	1.5
DE	20	DS	4	Date	20 Jul 2017 23	3:19:26		Date Stamp	20 Jul 2017 23:19:20
File Name	\\bunz22\Mitar	beiter\Gaozhan XIE\03 an	alytics\01-NMR\d	170720ubxgz024\2\PDA	TA\1\1r	Frequency (MHz)	125.7578	GB	0
INSTRUM	<spect></spect>	LB	0.5	NS	4096	Nucleus	13C	Number of Transients	4096
Oriain	spect	Original Points Count	65536	Owner	ns	PC	1.4		
PROBHD	<z810701 003<="" td=""><td>32 (PA BBI 500S2 H-BB-D</td><td>0-05 Z)></td><td>PULPROG</td><td><zapg30></zapg30></td><td>Points Count</td><td>65536</td><td>Pulse Sequence</td><td>zapa30</td></z810701>	32 (PA BBI 500S2 H-BB-D	0-05 Z)>	PULPROG	<zapg30></zapg30>	Points Count	65536	Pulse Sequence	zapa30
Receiver Gain	2050.00	SF	125 757789	SF01	125 77162235	679		SI	65536
SSB	0	SW(cyclical) (Hz)	37878 79	SWH	37878 787878	7879		Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	13830 6719	Spectrum Type	standard	Sween Width (Hz)	37878 21	TD	131072	TDO	512
TE	298.0268	Temperature (degree)	C) 25.027	UNC1	<13C>	WDW	1		012
128.5 128.0	127.5 12	27.0 126.5 Ch	78 cc-1 emical Shift (ppm 06:68-1	128.01 128.01 128.01		CHLOROFOR	М НО (
				-131.13					TMS

5,11-Di(4-pyridyl)-6,12-diphenyltetracene (DAR)

¹H-NMR

Because **DAR** can be oxidized easily, there is still a little amount of **DARO2** in final product after recrystallization. Fortunately, the solubility of **DAR** is quite better than that of **DARO2** in cyclohexane-d₁₂ so that we can get unambiguous ¹H-NMR spectrum of **DAR** in this deuterated solvent. However, the dissolved amount of DAR is not sufficient enough to reach the requirement of ¹³C-NMR measurement.

5,12-Dihydro-5,11-di(4-pyridyl)-6,12-diphenyl-5,12-epidioxynaphthacene (DARO2)

¹H-NMR

Acquisition Time (sec)	1.0795	Comment	XGZO 055	D	0.03	D1	2	DE	18
DS	4	Date	07 Jul 2017 2	1:01:22		Date Stamp	07 Jul 2017 2	1:01:22	
File Name	C:\Users\bun	z\Application Data\SSH\ten	np\1\PDATA\1\	1r		Frequency (MHz)	150.9314	GB	0
INSTRUM	<spect></spect>	LB	1	NS	4096	Nucleus	13C	Number of Transients	4096
Origin	spect	Original Points Count	49066	Owner	ns	PC	1.4		
PROBHD	<z132808_00< th=""><th>001 (CP QCI 600S3 H/P/C-</th><th>-N-D-05 Z LT)></th><th></th><th></th><th>PULPROG</th><th><zgpg30></zgpg30></th><th>Points Count</th><th>65536</th></z132808_00<>	001 (CP QCI 600S3 H/P/C-	-N-D-05 Z LT)>			PULPROG	<zgpg30></zgpg30>	Points Count	65536
Pulse Sequence	zgpg30	Receiver Gain	2050.00	SF	150.931431	SFO1	150.9480334	5741	
SI	65536	SSB	0	SW(cyclical) (Hz)	45454.55	SWH	45454.54545	45455	
Solvent	DICHLORON	IETHANE-d2		Spectrum Offset (Hz)	16626.6035	Spectrum Type	standard	Sweep Width (Hz)	45453.85
TD	98132	TD0	512	TE	294.9497	Temperature (degree C)	21.950	UNC1	<13C>
WDW	1								

5,6,11,12-tetra(4-pyridyl)tetracene (TAR)

¹H-NMR

OriginalDateForRelative	eTime 2017-12	-06T00:07:28			Multiplets Integrals Sun	24.25		Number of Nuclei	37 H's	
Acquisition Time (sec)	3.2768	Comment	Z810701 003	2 (PA BBI 50	00S2 H-BB-D-05 Z)	D		0.1	D1	0.1
DE	6.5	DS	2	Date	06 Dec 201	7 00:07:28			Date Stamp	06 Dec 2017 00:07:28
File Name	\\bunz22\Mitar	beiter\Gaozhan XIE\03_ana	alytics\01-NMR\	d171205ubx	gzTAR\1\PDATA\1\1r	Frequency	(MHz	500.1299	GB	0
INSTRUM	<spect></spect>	LB	0.3	NS	1024	Nucleus		1H	Number of Transients	1024
Origin	spect	Original Points Count	49152	Owner	ns	PC		1		
PROBHD	<z810701_00< th=""><th>32 (PA BBI 500S2 H-BB-D</th><th>-05 Z)></th><th>PULPROG</th><th>s <zg30></zg30></th><th>Points Col</th><th>unt</th><th>65536</th><th>Pulse Sequence</th><th>zg30</th></z810701_00<>	32 (PA BBI 500S2 H-BB-D	-05 Z)>	PULPROG	s <zg30></zg30>	Points Col	unt	65536	Pulse Sequence	zg30
Receiver Gain	256.00	SF	500.12995336	8799		SFO1		500.1325006	5	
SI	65536	SSB	0	SW(cyclica	al) (Hz) 15000.00	SWH		15000	Solvent	THF
Spectrum Offset (Hz)	3411.5051	Spectrum Type	standard	Sweep Wid	dth (Hz) 14999.77	TD		98304	TD0	128
TE	298.0014	Temperature (degree C)	25.001	UNC1	<1H>	WDW		1		

5,12-Dihydro-5,6,11,12-tetra(4-pyridyl)-5,12-epidioxynaphthacene (TARO2)

¹H-NMR

OriginalDateForRelative	Time 2017-07-	21T21:43:52		1	Multiplets Integ	rals Sum	0.00	Number of	Nuclei	0 C's	
Acquisition Time (sec)	1.0795	Comment	XG 084	D		0.03	D1		2	DE	18
DS	4	Date	21 Jul 2017 21	:43:52			Date Stamp		21 Jul 2017 21	:43:52	
File Name	\\bunz22\Mitart	peiter\Gaozhan XIE\03_ana	lytics\01-NMR\e	170721ub	xg.084-oxidizatior	h\1\PDATA\1\1r				Frequency (MHz)	150.9314
GB	0	INSTRUM	<spect></spect>	LB		1	NS		4096	Nucleus	13C
Number of Transients	4096	Origin	spect	Original	Points Count	49066	Owner		ns	PC	1.4
PROBHD	<z132808_000< th=""><th>1 (CP QCI 600S3 H/P/C-N</th><th>I-D-05 Z LT)></th><th>PULPRO</th><th>G</th><th><zgpg30></zgpg30></th><th>Points Cour</th><th>nt</th><th>65536</th><th>Pulse Sequence</th><th>zgpg30</th></z132808_000<>	1 (CP QCI 600S3 H/P/C-N	I-D-05 Z LT)>	PULPRO	G	<zgpg30></zgpg30>	Points Cour	nt	65536	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SF	150.931431	SFO1		150.94803345	741			SI	65536
SSB	0	SW(cyclical) (Hz)	45454.55	SWH		45454.545454	5455				
Solvent	DICHLOROME	ETHANE-d2		Spectrun	n Offset (Hz)	16642.1660	Spectrum T	ype	standard	Sweep Width (Hz)	45453.85
TD	98132	TD0	512	TE		294.9489	Temperatur	e (degree C)	21.949	UNC1	<13C>

Figure S2. Illustration of the lattice parameters within ab layer of **DAR** crystal. The π - π stacking distances along a and b direction are estimated to be around 3.6 Å and 5.6 Å respectively; The long-axis displacements of adjacent molecules along a and b direction are estimated to be around 6.1 Å and 4.4 Å respectively.

Figure S3. Examples for the visualization of packing of DARO2 (a) and TARO2 (b).

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	gxi2 $C_{40}H_{26}N_2$ 534.63 100(2) K 1.54178 Å triclinic P $\overline{1}$ 1 $a = 7.0727(7)$ Å $\alpha = 90.402(7)$ deg. $b = 8.2696(8)$ Å $\beta = 106.039(7)$ deg.
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Crystal colour Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections Absorption correction Max. and min. transmission Refinement method	b = $8.2696(8)$ Å β =106.039(7) deg. c = 11.8550(10) Å γ = 97.605(8) deg. 659.84(11) Å ³ 1.35 g/cm ³ 0.60 mm ⁻¹ irregular 0.070 x 0.064 x 0.045 mm ³ red 3.9 to 61.8 deg. -7≤h≤7, -9≤k≤9, -13≤l≤13 7917 1985 (R(int) = 0.0387) 998 (I > 2 σ (I)) Semi-empirical from equivalents 1.72 and 0.61 Eull-matrix least-squares on E ²
Data/restraints/parameters Goodness-of-fit on F ² Final R indices (I>2sigma(I)) Largest diff. peak and hole	7917 / 0 / 191 0.79 R1 = 0.041, wR2 = 0.086 0.31 and -0.37 $e^{A^{-3}}$

Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **DAR**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
C1	0.9026(4)	0.6628(3)	0.5726(2)	0.0180(6)
C2	1.0279(4)	0.5496(3)	0.5550(2)	0.0164(6)
C3	1.2079(4)	0.5277(3)	0.6420(2)	0.0181(6)
C11	0.9641(4)	0.7940(3)	0.6694(2)	0.0187(7)
C12	1.0724(4)	0.9410(3)	0.6549(2)	0.0232(7)
H12	1.1173	0.9552	0.5866	0.028
C13	1.1153(4)	1.0668(3)	0.7392(2)	0.0275(7)
H13	1.1909	1.1657	0.7273	0.033
N14	1.0550(4)	1.0559(3)	0.8378(2)	0.0331(7)
C15	0.9500(4)	0.9121(4)	0.8515(2)	0.0274(7)
H15	0.9080	0.8999	0.9208	0.033
C16	0.9007(4)	0.7825(3)	0.7707(2)	0.0223(7)
H16	0.8235	0.6853	0.7839	0.027
C21	1.2633(4)	0.5997(3)	0.7657(2)	0.0205(7)
C22	1.3972(4)	0.7409(3)	0.8007(2)	0.0236(7)
H22	1.4499	0.7982	0.7445	0.028
C23	1.4552(4)	0.7996(4)	0.9167(2)	0.0291(8)
H23	1.5459	0.8975	0.9391	0.035
C24	1.3821(4)	0.7168(4)	0.9995(2)	0.0264(7)
H24	1.4208	0.7577	1.0788	0.032
C25	1.2535(4)	0.5754(4)	0.9665(2)	0.0283(8)
H25	1.2037	0.5179	1.0237	0.034
C26	1.1938(4)	0.5136(3)	0.8505(2)	0.0237(7)
H26	1.1065	0.4138	0.8292	0.028
C31	1.3360(4)	0.4256(3)	0.6183(2)	0.0177(6)
C32	1.2814(4)	0.3305(3)	0.5092(2)	0.0182(6)
C33	1.4172(4)	0.2243(3)	0.4915(2)	0.0215(7)
H33	1.3841	0.1605	0.4200	0.026
C34	1.5910(4)	0.2125(3)	0.5737(2)	0.0246(7)
H34	1.6792	0.1434	0.5585	0.029
C35	1.6405(4)	0.3025(3)	0.6816(2)	0.0250(7)
H35	1.7604	0.2915	0.7399	0.030
C36	1.5189(4)	0.4042(3)	0.7026(2)	0.0206(7)
H36	1.5558	0.4638	0.7760	0.025

Hydrogen coordinates and isotropic displacement parameters (Å²) for **DAR**.

Atom	x	У	z	U _{eq}
H12	1.1173	0.9552	0.5866	0.028
H13	1.1909	1.1657	0.7273	0.033
H15	0.9080	0.8999	0.9208	0.033
H16	0.8235	0.6853	0.7839	0.027
H22	1.4499	0.7982	0.7445	0.028
H23	1.5459	0.8975	0.9391	0.035
H24	1.4208	0.7577	1.0788	0.032
H25	1.2037	0.5179	1.0237	0.034
H26	1.1065	0.4138	0.8292	0.028
H33	1.3841	0.1605	0.4200	0.026
H34	1.6792	0.1434	0.5585	0.029
H35	1.7604	0.2915	0.7399	0.030
H36	1.5558	0.4638	0.7760	0.025

Anisotropic displacement parameters (Å²) for **DAR**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0205(17)	0.0195(16)	0.0153(13)	0.0003(11)	0.0061(11)	0.0051(13)
C2	0.0190(16)	0.0162(15)	0.0142(12)	-0.0009(10)	0.0054(11)	0.0013(12)
C3	0.0188(17)	0.0161(15)	0.0192(13)	0.0006(11)	0.0056(11)	0.0012(13)
C11	0.0185(17)	0.0193(16)	0.0176(13)	-0.0010(11)	0.0026(11)	0.0060(13)
C12	0.0264(18)	0.0232(17)	0.0194(13)	0.0021(12)	0.0053(12)	0.0031(14)
C13	0.033(2)	0.0208(17)	0.0268(15)	0.0007(12)	0.0065(13)	-0.0002(14)
N14	0.0358(18)	0.0320(17)	0.0303(13)	-0.0068(11)	0.0080(11)	0.0034(13)
C15	0.0268(19)	0.0288(18)	0.0258(15)	-0.0089(13)	0.0084(12)	-0.0011(14)
C16	0.0211(18)	0.0246(17)	0.0205(14)	-0.0028(12)	0.0054(12)	0.0016(13)
C21	0.0195(17)	0.0232(16)	0.0185(13)	-0.0007(12)	0.0024(12)	0.0085(13)
C22	0.0202(18)	0.0277(18)	0.0241(14)	-0.0033(12)	0.0072(12)	0.0052(14)
C23	0.0240(18)	0.0339(19)	0.0260(15)	-0.0138(13)	0.0015(13)	0.0046(15)
C24	0.0288(19)	0.0355(19)	0.0131(13)	-0.0074(12)	0.0000(12)	0.0108(15)
C25	0.0329(19)	0.038(2)	0.0178(14)	0.0046(13)	0.0083(12)	0.0132(16)
C26	0.0241(18)	0.0237(17)	0.0215(14)	-0.0007(12)	0.0031(12)	0.0042(13)
C31	0.0185(16)	0.0167(15)	0.0166(12)	0.0006(10)	0.0044(11)	-0.0010(13)
C32	0.0225(17)	0.0163(15)	0.0176(13)	0.0016(11)	0.0089(12)	0.0018(13)
C33	0.0265(18)	0.0198(16)	0.0203(13)	-0.0039(11)	0.0094(12)	0.0045(13)
C34	0.0228(18)	0.0222(17)	0.0283(15)	-0.0003(12)	0.0051(13)	0.0063(13)
C35	0.0219(18)	0.0235(17)	0.0266(15)	0.0016(12)	0.0011(12)	0.0053(14)
C36	0.0205(17)	0.0217(17)	0.0181(13)	-0.0008(11)	0.0031(11)	0.0026(13)

Bond lengths (Å) and angles (deg) for DAR.

C1-C32#1	1.400(4)	C31-C32	1.438(3)
C1-C2	1.423(3)	C32-C33	1.439(4)
C1-C11	1.504(3)	C33-C34	1.358(4)
C2-C3	1.433(3)	C33-H33	0.9500
C2-C2#1	1.465(4)	C34-C35	1.408(3)
C3-C31	1.397(3)	C34-H34	0.9500
C3-C21	1.506(3)	C35-C36	1.347(4)
C11-C12	1.387(4)	C35-H35	0.9500
C11-C16	1.393(3)	C36-H36	0.9500
C12-C13	1.382(4)	C32#1-C1-C2	120.6(2)
C12-H12	0.9500	C32#1-C1-C11	115.3(2)
C13-N14	1.351(3)	C2-C1-C11	123.7(2)
C13-H13	0.9500	C1-C2-C3	122.3(2)
N14-C15	1.351(4)	C1-C2-C2#1	119.4(3)
C15-C16	1.375(4)	C3-C2-C2#1	118.3(3)
C15-H15	0.9500	C31-C3-C2	120.8(2)
C16-H16	0.9500	C31-C3-C21	115.7(2)
C21-C22	1.384(4)	C2-C3-C21	123.2(2)
C21-C26	1.395(4)	C12-C11-C16	116.7(2)
C22-C23	1.386(3)	C12-C11-C1	120.0(2)
C22-H22	0.9500	C16-C11-C1	122.9(2)
C23-C24	1.378(4)	C13-C12-C11	120.3(3)
C23-H23	0.9500	C13-C12-H12	119.8
C24-C25	1.365(4)	C11-C12-H12	119.8
C24-H24	0.9500	N14-C13-C12	123.1(3)
C25-C26	1.394(3)	N14-C13-H13	118.4
C25-H25	0.9500	C12-C13-H13	118.4
C26-H26	0.9500	C13-N14-C15	116.2(2)
C31-C36	1.433(4)	N14-C15-C16	123.7(3)

N14-C15-H15	118.2
C16-C15-H15	118.2
C15-C16-C11	119.9(3)
C15-C16-H16	120.0
C11-C16-H16	120.0
C22-C21-C26	118.7(2)
C22-C21-C3	121.8(2)
C26-C21-C3	119.2(2)
C21-C22-C23	120.8(3)
C21-C22-H22	119.6 ໌
C23-C22-H22	119.6
C24-C23-C22	120.3(3)
C24-C23-H23	119.8 ໌
C22-C23-H23	119.8
C25-C24-C23	119.4(2)
C25-C24-H24	120.3
C23-C24-H24	120.3
C24-C25-C26	121.3(3)
C24-C25-H25	119.3
C26-C25-H25	119.3
C25-C26-C21	119.5(3)
C25-C26-H26	120.3
C21-C26-H26	120.3
C3-C31-C36	122.1(2)
C3-C31-C32	120.3(2)
C36-C31-C32	117.6(2)
C1#1-C32-C31	120.0(2)
C1#1-C32-C33	122.3(2)
C31-C32-C33	117.6(2)
C34-C33-C32	122.0(2)
C34-C33-H33	119.0
C32-C33-H33	119.0
C33-C34-C35	120.0(3)
C33-C34-H34	120.0
C35-C34-H34	120.0
C36-C35-C34	120.4(3)
C36-C35-H35	119.8
C34-C35-H35	119.8
C35-C36-C31	122.4(2)
C35-C36-H36	118.8
C31-C36-H36	118.8

Identification code	gxi1	
Empirical formula	$C_{40}H_{26}N_2O_2$	
	500.03 200(0) K	
I emperature	200(2) K	
	0.71073 A	
Space group	PZ ₁ /n	
	4 - 10.0000(7) Å	
Unit cell dimensions	$a = 13.9299(7) A$ $\alpha = 90 deg.$	
	b = 11.2010(5) A β = 96.8662(14) de	g.
N/ 1	$c = 18.2839(9) A$ $\gamma = 90 deg.$	
Volume	2832.4(2) A ³	
Density (calculated)	1.33 g/cm ³	
Absorption coefficient	0.08 mm ⁻¹	
Crystal shape	irregular	
Crystal size	0.146 x 0.105 x 0.067 mm ³	
Crystal colour	yellow	
I heta range for data collection	1.7 to 25.1 deg.	
Index ranges	-16≤h≤16, -13≤k≤13, -21≤l≤21	
Reflections collected	26610	
Independent reflections	5024 (R(int) = 0.0392)	
Observed reflections	3757 (I > 2σ(I))	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.96 and 0.92	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	5024 / 0 / 397	
Goodness-of-fit on F ²	1.06	
Final R indices (I>2sigma(I))	R1 = 0.042, wR2 = 0.101	
Largest diff. peak and hole	0.17 and -0.21 eA ⁻³	

(DARO2)

Atom	x	у	Z	U _{eq}
01	0.6538(1)	0.5477(1)	0.3150(1)	0.0268(3)
02	0.5517(1)	0.5334(1)	0.3261(1)	0.0278(3)
C1	0.6793(1)	0.6743(2)	0.3062(1)	0.0211(4)
C2	0.6609(1)	0.7328(2)	0.3796(1)	0.0217(4)
C3	0.7273(1)	0.7885(2)	0.4300(1)	0.0226(4)
C4	0.5335(1)	0.7496(2)	0.4610(1)	0.0242(4)
05	0.5623(1)	0.7151(2)	0.3944(1)	0.0219(4)
	0.5022(1)	0.6488(2)	0.3311(1)	0.0228(4)
	0.7818(1)	0.0007(2)	0.2859(1)	0.0210(4)
U12 U12	0.0201(1)	0.7057(2) 0.8414	0.2000(1)	0.0202(4)
C13	0.7909	0.0414 0.7535(2)	0.2377	0.031
U13	0.9195(1)	0.7333(2)	0.2030(1)	0.0333(3)
N14	0.9676(1)	0.0220 0.6500(2)	0.2200	0.0396(4)
C15	0.9225(1)	0.5560(2)	0.2650(1)	0.0000(1) 0.0383(5)
H15	0.9547	0.4812	0.2663	0.046
C16	0.8317(1)	0.5598(2)	0.2883(1)	0.0295(4)
H16	0.8038	0.4896	0.3058	0.035
C21	0.8307(1)	0.8144(2)	0.4197(1)	0.0255(4)
C22	0.8568(2)	0.9283(2)	0.3989(1)	0.0353(5)
H22	0.8086	0.9881	0.3890	0.042
C23	0.9522(2)	0.9553(2)	0.3924(1)	0.0458(6)
H23	0.9691	1.0331	0.3778	0.055
C24	1.0228(2)	0.8699(2)	0.4071(1)	0.0460(6)
H24	1.0883	0.8888	0.4027	0.055
C25	0.9984(1)	0.7572(2)	0.4283(1)	0.0400(6)
H25	1.0471	0.6981	0.4380	0.048
C26	0.9026(1)	0.7294(2)	0.4353(1)	0.0309(5)
H26	0.8864	0.6518	0.4509	0.037
C31	0.6981(1)	0.8274(2)	0.4990(1)	0.0256(4)
C32	0.6025(1)	0.8001(2)	0.5149(1)	0.0200(4)
L33	0.5760(1)	0.0390(2) 0.8244	0.5655(1)	0.0341(3)
C34	0.6436(2)	0.0244	0.5970	0.041
H34	0.6256	0.0002(2)	0.6831	0.0370(3)
C35	0.7372(2)	0.9165(2)	0.6201(1)	0.0352(5)
H35	0.7823	0.9552	0.6554	0.042
C36	0.7639(1)	0.8837(2)	0.5533(1)	0.0314(5)
H36	0.8281`´	0.8991`́	0.5431 ໌	0.038 `´
C41	0.4343(1)	0.7342(2)	0.4836(1)	0.0258(4)
C42	0.3727(1)	0.8311(2)	0.4861(1)	0.0337(5)
H42	0.3917	0.9081	0.4716	0.040
C43	0.2836(2)	0.8143(2)	0.5099(1)	0.0428(6)
H43	0.2426	0.8819	0.5108	0.051
N44	0.2509(1)	0.7102(2)	0.5318(1)	0.0468(5)
C45	0.3113(2)	0.6187(2)	0.5311(1)	0.0448(6)
H45	0.2908	0.5433	0.54/2	0.054
	0.4022(1)	0.6262(2)	0.5085(1)	0.0356(5)
	0.4425	0.55/0	0.0100	U.U43
C51	0.3907(1)	0.0115(2) 0.6078(2)	0.3360(1)	0.0200(4) 0.0202(5)
H52	0.3239(1)	0.0910(2) N 7708	0.0041(1)	0.0290(0)
C53	0.2302(1)	0.6645(2)	0.3357(1)	0.0387(5)
H53	0.1810	0.7237	0.3325	0.046
C54	0.2064(2)	0.5461(2)	0.3420(1)	0.0450(6)

Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **DARO2**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

H54	0.1409	0.5236	0.3431	0.054
C55	0.2776(2)	0.4604(2)	0.3466(1)	0.0460(6)
H55	0.2611	0.3787	0.3515	0.055
C56	0.3735(1)	0.4924(2)	0.3441(1)	0.0357(5)
H56	0.4221	0.4325	0.3466	0.043
C61	0.5119(1)	0.7110(2)	0.2579(1)	0.0219(4)
C62	0.6079(1)	0.7212(2)	0.2438(1)	0.0214(4)
C63	0.6283(1)	0.7584(2)	0.1750(1)	0.0257(4)
H63	0.6932	0.7604	0.1642	0.031
C64	0.5539(1)	0.7926(2)	0.1222(1)	0.0298(4)
H64	0.5682	0.8210	0.0757	0.036
C65	0.4592(1)	0.7856(2)	0.1367(1)	0.0305(5)
H65	0.4085	0.8104	0.1005	0.037
C66	0.4376(1)	0.7425(2)	0.2042(1)	0.0272(4)
H66	0.3722	0.7348	0.2134	0.033

Hydrogen coordinates and isotropic displacement parameters (Å²) for **DARO2**.

Atom	х	у	z	U _{eq}
H12	0.7969	0.8414	0.2577	0.031
H13	0.9501	0.8228	0.2233	0.040
H15	0.9547	0.4812	0.2663	0.046
H16	0.8038	0.4896	0.3058	0.035
H22	0.8086	0.9881	0.3890	0.042
H23	0.9691	1.0331	0.3778	0.055
H24	1.0883	0.8888	0.4027	0.055
H25	1.0471	0.6981	0.4380	0.048
H26	0.8864	0.6518	0.4509	0.037
H33	0.5145	0.8244	0.5970	0.041
H34	0.6256	0.9146	0.6831	0.045
H35	0.7823	0.9552	0.6554	0.042
H36	0.8281	0.8991	0.5431	0.038
H42	0.3917	0.9081	0.4716	0.040
H43	0.2426	0.8819	0.5108	0.051
H45	0.2908	0.5433	0.5472	0.054
H46	0.4425	0.5576	0.5100	0.043
H52	0.3420	0.7798	0.3303	0.036
H53	0.1810	0.7237	0.3325	0.046
H54	0.1409	0.5236	0.3431	0.054
H55	0.2611	0.3787	0.3515	0.055
H56	0.4221	0.4325	0.3466	0.043
H63	0.6932	0.7604	0.1642	0.031
H64	0.5682	0.8210	0.0757	0.036
H65	0.4085	0.8104	0.1005	0.037
H66	0.3722	0.7348	0.2134	0.033

Anisotropic displacement parameters (Å²) for **DARO2**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U_{23}	U_{13}	U ₁₂
01	0.0192(6)	0.0223(7)	0.0406(8)	0.0032(6)	0.0112(6)	0.0003(5)
02	0.0194(7)	0.0232(7)	0.0430(8)	0.0020(6)	0.0125(6)	0.0000(5)
C1	0.0213(9)	0.0197(10)	0.0231(9)	0.0012(7)	0.0057(7)	-0.0006(7)
C2	0.0213(9)	0.0227(10)	0.0222(9)	0.0043(7)	0.0067(7)	0.0048(8)

C3	0.0201(9)	0.0265(10)	0.0214(9) 0.0031(8)	0.0035(7) 0.0028(8)
C4	0.0209(9)	0.0287(11)	0.0237(9) 0.0033(8)	0.0050(7) 0.0049(8)
C5	0.0211(9)	0.0239(10)	0.0211(9) 0.0034(8)	0.0046(7) 0.0033(8)
C6	0.0213(9)	0.0233(10)	0.0244(9) 0.0016(8)	0.0058(7) 0.0027(8)
C11	0.0212(9)	0.0267(10)	0.0174(9) -0.0013(7)	0.0038(7) -0.0002(8)
C12	0.0249(10)	0.0299(11)	0.0239(9) 0.0032(8)	0.0035(8) 0.0027(8)
C13	0.0290(11)	0.0390(13)	0.0333(11) 0.0075(9)	0.0098(9) -0.0036(9)
N14	0.0285(9)	0.0457(12)	0.0476(11) 0.0000(9)	0.0168(8) 0.0023(9)
C15	0.0279(11)	0.0343(12)	0.0549(14) -0.0058(10)	0.0134(10) 0.0054(10)
C16	0.0260(10)	0.0245(11)	0.0393(11) -0.0012(9)	0.0087(9) 0.0007(8)
C21	0.0217(10)	0.0350(11)	0.0203(9) -0.0042(8)	0.0039(7) -0.0005(8)
C22	0.0318(11)	0.0339(12)	0.0419(12) -0.0076(10)	0.0117(9) -0.0014(9)
C23	0.0421(13)	0.0413(14)	0.0567(15) -0.0135(11)	0.0173(11) -0.0147(11)
C24	0.0234(11)	0.0679(17)	0.0477(14) -0.0121(12)	0.0081(10) -0.0114(12)
C25	0.0243(11)	0.0672(17)	0.0281(11) -0.0009(11)	0.0021(8) 0.0112(11)
C26	0.0265(11)	0.0438(13)	0.0226(10) 0.0024(9)	0.0034(8) 0.0052(9)
C31	0.0232(10)	0.0302(11)	0.0233(9) 0.0007(8)	0.0031(8) 0.0038(8)
C32	0.0252(10)	0.0334(11)	0.0217(9) 0.0015(8)	0.0056(8) 0.0057(8)
C33	0.0283(11)	0.0494(13)	0.0257(10) 0.0005(9)	0.0079(8) 0.0048(10)
C34	0.0371(12)	0.0544(14)	0.0215(10) -0.0049(10)	0.0050(9) 0.0064(10)
C35	0.0333(11)	0.0454(13)	0.0260(10) -0.0069(9)	-0.0006(9) 0.0053(10)
C36	0.0258(10)	0.0396(12)	0.0286(10) -0.0039(9)	0.0026(8) 0.0032(9)
C41	0.0243(10)	0.0347(11)	0.0191(9) 0.0007(8)	0.0057(7) 0.0036(8)
C42	0.0300(11)	0.0368(12)	0.0350(11) -0.0033(9)	0.0072(9) 0.0042(9)
C43	0.0298(12)	0.0573(16)	0.0428(13) -0.0132(11)	0.0101(10) 0.0108(11)
N44	0.0318(10)	0.0711(15)	0.0403(11) 0.0020(10)	0.0154(8) 0.0033(10)
C45	0.0378(13)	0.0581(16)	0.0408(13) 0.0182(11)	0.0145(10) -0.0021(12)
C46	0.0310(11)	0.0417(13)	0.0357(11) 0.0131(10)	0.0108(9) 0.0077(10)
C51	0.0215(10)	0.0336(11)	0.0224(9) -0.0014(8)	0.0057(8) -0.0013(8)
C52	0.0250(10)	0.0384(12)	0.0269(10) -0.0003(9)	0.0060(8) 0.0003(9)
C53	0.0228(11)	0.0602(16)	0.0340(12) 0.0003(10)	0.0064(9) 0.0053(10)
C54	0.0228(11)	0.0615(17)	0.0518(14) -0.0037(12)	0.0089(10) -0.0115(11)
C55	0.0359(13)	0.0444(14)	0.0605(15) -0.0070(11)	0.0173(11) -0.0139(11)
C56	0.0295(11)	0.0362(12)	0.0431(12) -0.0026(10)	0.0116(9) -0.0050(9)
C61	0.0229(9)	0.0218(10)	0.0220(9) -0.0029(7)	0.0062(7) 0.0002(8)
C62	0.0217(9)	0.0198(10)	0.0232(9) -0.0019(7)	0.0047(7) 0.0002(7)
C63	0.0240(10)	0.0306(11)	0.0234(9) -0.0017(8)	0.0065(8) -0.0031(8)
C64	0.0327(11)	0.0356(12)	0.0212(10) 0.0022(8)	0.0034(8) -0.0017(9)
C65	0.0289(11)	0.0371(12)	0.0242(10) 0.0011(8)	-0.0019(8) 0.0023(9)
C66	0.0209(10)	0.0328(11)	0.0278(10) -0.0038(8)	0.0034(8) 0.0002(8)

Bond lengths (Å) and angles (deg) for DARO2.

01-02	1.4694(16)	C11-C12	1.390(3)
O1-C1	1.475(2)	C12-C13	1.380(3)
O2-C6	1.473(2)	C12-H12	0.9500
C1-C62	1.516(2)	C13-N14	1.338(3)
C1-C11	1.521(2)	C13-H13	0.9500
C1-C2	1.541(2)	N14-C15	1.328(3)
C2-C3	1.375(3)	C15-C16	1.383(3)
C2-C5	1.445(2)	C15-H15	0.9500
C3-C31	1.440(2)	C16-H16	0.9500
C3-C21	1.502(2)	C21-C26	1.386(3)
C4-C5	1.381(2)	C21-C22	1.393(3)
C4-C32	1.439(3)	C22-C23	1.381(3)
C4-C41	1.499(2)	C22-H22	0.9500
C5-C6	1.538(2)	C23-C24	1.374(3)
C6-C51	1.521(2)	C23-H23	0.9500
C6-C61	1.529(2)	C24-C25	1.375(3)
C11-C16	1.382(3)	C24-H24	0.9500

C25-C26	1.391(3)	C4-C5-C6	127.54(16)
C25-H25	0.9500	C2-C5-C6	111.65(14)
C26-H26	0.9500	O2-C6-C51	102.71(14)
C31-C32	1.416(3)	O2-C6-C61	104.73(13)
C31-C36	1.416(3)	C51-C6-C61	112.45(14)
C32-C33	1.420(3)	02-C6-C5	104.67(13)
C33-C34	1.366(3)	C51-C6-C5	120.47(14)
C33-H33	0.9500	C61-C6-C5	109.99(14)
034-035	1.395(3)	C16-C11-C12	116.78(16)
C35 C36	0.9500		121.04(10)
C35 H35	0.9500		121.51(10)
C36-H36	0.9500	C13-C12-U17	120.2
C41-C46	1.385(3)	C11-C12-H12	120.2
C41-C42	1.388(3)	N14-C13-C12	123.89(19)
C42-C43	1.375(3)	N14-C13-H13	118.1
C42-H42	0.9500	C12-C13-H13	118.1
C43-N44	1.332(3)	C15-N14-C13	115.94(17)
C43-H43	0.9500	N14-C15-C16	124.35(19)
N44-C45	1.327(3)	N14-C15-H15	117.8
C45-C46	1.380(3)	C16-C15-H15	117.8
C45-H45	0.9500	C11-C16-C15	119.46(18)
C46-H46	0.9500	C11-C16-H16	120.3
C51-C56	1.387(3)	C15-C16-H16	120.3
C51-C52	1.396(3)	C26-C21-C22	118.62(18)
	1.388(3)	$C_{20} C_{21} C_{3}$	121.45(17)
	0.9500	C_{22} C_{21} C_{23} C_{21}	119.70(17)
C53-C54 C53-H53	0.9500	C23-C22-C21	120.0(2)
C54-C55	1 376(3)	C21-C22-H22	119.7
C54-H54	0.9500	C24-C23-C22	120 3(2)
C55-C56	1.389(3)	C24-C23-H23	119.9
C55-H55	0.9500	C22-C23-H23	119.9
C56-H56	0.9500	C23-C24-C25	119.9(2)
C61-C66	1.385(2)	C23-C24-H24	120.0
C61-C62	1.396(2)	C25-C24-H24	120.0
C62-C63	1.386(2)	C24-C25-C26	120.3(2)
C63-C64	1.383(3)	C24-C25-H25	119.9
C63-H63	0.9500	C26-C25-H25	119.9
C64-C65	1.380(3)	C21-C26-C25	120.3(2)
	0.9500		119.8
	0.0500		119.0
C66-H66	0.9500	C32-C31-C30	120 01(16)
02-01-01	111 62(11)	C36-C31-C3	120.01(10)
01-02-C6	112.43(11)	C31-C32-C33	118.36(17)
O1-C1-C62	105.71(14)	C31-C32-C4	120.08(16)
01-C1-C11	102.53(13)	C33-C32-C4	121.55(17)
C62-C1-C11	112.74(14)	C34-C33-C32	121.45(19)
O1-C1-C2	104.30(13)	C34-C33-H33	119.3 `´
C62-C1-C2	110.26(14)	C32-C33-H33	119.3
C11-C1-C2	119.64(14)	C33-C34-C35	120.18(18)
C3-C2-C5	120.95(16)	C33-C34-H34	119.9
C3-C2-C1	127.43(15)	C35-C34-H34	119.9
C5-C2-C1	111.46(15)	C36-C35-C34	120.01(19)
C2-C3-C31	119.12(16)	C36-C35-H35	120.0
02-03-021	125.00(16)		120.0
C5 C4 C22	110.29(15)		121.44(18)
C5-C4-C32	19.09(10) 125.82(17)	C31 C36 U36	119.0 110 2
C32 - C4 - C41	115 10(15)	C46_C41_C42	116 49(17)
C4-C5-C2	120.69(16)	C46-C41-C4	122 40(17)
J. UU UL	· _ · · · · · · /		

C42-C41-C4	120.92(17)
C43-C42-C41	119.3(2)
C43-C42-H42	120.4
C41-C42-H42	120.4
N44-C43-C42	124.7(2)
N44-C43-H43	117.7
C42-C43-H43	117.7
C45-N44-C43	115.62(18)
N44-C45-C46	124.2(2)
N44-C45-H45	117.9
C46-C45-H45	117.9
C45-C46-C41	119 7(2)
C45-C46-H46	120.2
C41-C46-H46	120.2
C56-C51-C52	118 76(17)
C56-C51-C6	121 47(17)
C52-C51-C6	110 60(17)
C53 C52 C51	120 4(2)
C53 C52 H52	120.4(2)
C51 C52 H52	110.8
C54 C53 C52	120 2(2)
C54 C53 H53	120.2(2)
C52_C53_H53	110.0
C53 C54 C55	110.06(10)
C53 C54 U54	120.0
C55 C54 H54	120.0
C54 C55 C56	120.0
C54-C55-C50	120.4(2)
C56 C55 H55	110.8
C51 C56 C55	120 3(2)
C51 C56 H56	120.3(2)
	119.9
	119.9
C66 C61 C6	126.94(16)
	120.04(10) 112.76(15)
C62 C62 C61	112.70(15)
	119.00(10)
	120.91(10)
	112.04(13)
	119.96(17)
	120.0
	120.0
	120.22(18)
C65-C64-H64	119.9
C63-C64-H64	119.9
	120.28(18)
	119.9
	119.9
	119.65(17)
	120.2
C65-C66-H66	120.2

Identification code	gxi5	
Empirical formula	$C_{42}H_{32}N_4O$	
Formula weight	608.71	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	triclinic	
Space group	P 1	
Z	4	
Unit cell dimensions	a = 7.7635(16) Å	α = 97.536(17) deg.
	b = 18.657(4) Å	$\beta = 90.005(17) \text{ deg.}$
	c = 21.765(5) Å	$\gamma = 100.929(17)$ deg.
Volume	3067.7(12) Å ³	1 ·····
Density (calculated)	1.32 g/cm^{3}	
Absorption coefficient	0.62 mm ⁻¹	
Crystal shape	plate	
Crystal size	0.184 x 0.142 x 0.02	22 mm ³
Crystal colour	red	
Theta range for data collection	3.4 to 63.2 deg.	
Index ranges	-8≤h≤4, -20≤k≤21, -	24≤l≤24
Reflections collected	31146	
Independent reflections	9492 (R(int) = 0.102	20)
Observed reflections	5709 ($l > 2\sigma(l)$)	
Absorption correction	Semi-empirical from	i equivalents
Max. and min. transmission	1.97 and 0.58	
Refinement method	Full-matrix least-squ	lares on F ²
Data/restraints/parameters	9492 / 1664 / 892	
Goodness-of-fit on F ²	1.08	
Final R indices (I>2sigma(I))	R1 = 0.111, wR2 = 0	0.263
Largest diff. peak and hole	0.44 and -0.37 eÅ ⁻³	

Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **TAR**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	z	U_{eq}
O1	1.1609(7)	0.9677(5)	0.2299(3)	0.113(3)
C2	1.2313(9)	0.9789(5)	0.2898(4)	0.072(2)
H2A	1.2365	0.9311	0.3040	0.087
H2B	1.1573	1.0049	0.3185	0.087
C3	1.4108(10)	1.0241(6)	0.2892(4)	0.075(2)
H3A	1.4971	1.0024	0.3105	0.090
H3B	1.4144	1.0752	0.3090	0.090
C4	1.4453(10)	1.0212(6)	0.2200(4)	0.078(3)
H4A	1.4526	1.0706	0.2070	0.094
H4B	1.5570	1.0045	0.2103	0.094
C5	1.2982(9)	0.9693(5)	0.1881(4)	0.066(2)
H5A	1.2659	0.9861	0.1492	0.079
H5B	1.3279	0.9198	0.1782	0.079
06	0.0206(14)	0.5012(5)	0.5743(4)	0.064(3)
	0.040(3)	0.0000(0)	0.5459(7)	0.053(4)
	0.1419	0.0022	0.5044	0.003
	-0.0000	0.5670 0.5430(14)	0.0010	0.003
	0.000(0)	0.5459(14)	0.4700(0)	0.001(9)
H8B	0.1324	0.5741	0.4030	0.097
C9	-0.031(4)	0.3741 0.4638(11)	0.4696(8)	0.079(7)
H9A	-0 1363	0.4580	0.4000(0)	0.095
H9B	0.0465	0 4311	0 4503	0.095
C10	-0.081(4)	0.4454(11)	0.5326(8)	0.057(5)
H10A	-0.2075	0.4444	0.5388	0.068
H10B	-0.0551	0.3967	0.5383	0.068
O11	0.4717(16)	0.5029(6)	0.0733(4)	0.071(3)
C12	0.532(3)	0.5684(8)	0.0471(6)	0.054(4)
H12A	0.6607	0.5845	0.0539	0.065
H12B	0.4735	0.6083	0.0658	0.065
C13	0.487(7)	0.5497(13)	-0.0207(7)	0.079(9)
H13A	0.5713	0.5800	-0.0457	0.094
H13B	0.3668	0.5560	-0.0300	0.094
C14	0.504(3)	0.4687(10)	-0.0316(7)	0.071(6)
H14A	0.4011	0.4387	-0.0558	0.085
H14B	0.6115	0.4629	-0.0547	0.085
	0.513(5)	0.4452(11)	0.0311(0)	0.050(0)
H15R	0.4277	0.3990	0.0333	0.070
C11	0.0521	0.4570	0.0402	0.070
C21	0.3776(8)	0.0000(3)	0.6498(2)	0.0374(14)
C31	0.3826(7)	0.7240(3)	0.7163(2)	0.0374(14)
C41	0.1799(8)	0.8138(3)	0.6459(2)	0.0379(14)
C51	0.2854(8)	0.7666(3)	0.6133(2)	0.0389(14)
C61	0.3087(8)	0.7585(4)	0.5475(2)	0.0406(14)
C111	0.5114(8)	0.6071(3)	0.6499(3)	0.0426(14)
C121	0.6822(8)	0.5994(4)	0.6579(3)	0.0456(15)
H121	0.7763	0.6360	0.6475	0.055
C131	0.7156(9)	0.5374(4)	0.6815(3)	0.0519(17)
H131	0.8344	0.5334	0.6876	0.062
N141	0.5912(8)	0.4837(3)	0.6959(2)	0.0537(14)
C151	0.4262(9)	0.4904(4)	0.6875(3)	0.0533(17)
H151	0.3352	0.4524	0.6977	0.064
C161	0.3797(9)	0.5508(4)	0.6644(3)	0.0475(16)
H161	0.2597	0.5532	0.6586	U.U57

C211	0.5046(7)	0.7115(3)	0.7553(2)	0.0389(14)
C221	0.6810(7)	0.7415(4)	0.7580(3)	0.0413(15)
H221	0.7252	0.7804	0.7347	0.050
C231	0.7937(9)	0.7153(4)	0.7944(3)	0.0510(17)
H231	0.9143	0.7379	0.7965	0.061
N241	0.7407(7)	0.6588(3)	0.8274(2)	0.0499(14)
C251	0.5700(8)	0.6312(4)	0.8249(3)	0.0480(16)
H251	0.5292	0.5923	0.8485	0.058
C261	0.4467(8)	0.6548(4)	0.7906(3)	0.0434(15)
H261	0.3259	0.6329	0.7910	0.052
C311	0.2871(8)	0.7908(3)	0.7463(2)	0.0390(14)
C321	0.1800(7)	0.8259(4)	0.7114(2)	0.0388(14)
C331	0.0771(8)	0.8743(4)	0.7437(3)	0.0412(15)
H331	0.0037	0.8970	0.7205	0.049
C341	0.0822(8)	0.8887(4)	0.8067(3)	0.0431(15)
H341	0.0121	0.9208	0.8270	0.052
C351	0.1920(8)	0.8559(4)	0.8423(3)	0.0441(15)
H351	0.1959	0.8663	0.8862	0.053
C361	0.2921(8)	0.8094(4)	0.8131(3)	0.0425(15)
H361	0.3669	0.7887	0.8373	0.051
C411	0.0562(7)	0.8491(3)	0.6127(3)	0.0400(14)
C421	0.1028(8)	0.9200(4)	0.5973(3)	0.0449(15)
H421	0.2182	0.9475	0.6061	0.054
C431	-0.0209(8)	0.9501(4)	0.5689(3)	0.0508(17)
H431	0.0147	0.9979	0.5573	0.061
N441	-0.1877(8)	0.9160(3)	0.5569(3)	0.0552(15)
C451	-0.2322(9)	0.8485(4)	0.5737(3)	0.0590(19)
H451	-0.3495	0.8228	0.5657	0.071
C461	-0.1162(8)	0.8140(4)	0.6021(3)	0.0495(17)
H461	-0.1555	0.7666	0.6142	0.059
C511	0.2389(8)	0.8043(4)	0.5055(3)	0.0457(15)
C521	0.3406(9)	0.8697(4)	0.4915(3)	0.0535(17)
H521	0.4527	0.8882	0.5109	0.064
C531	0.2754(10)	0.9076(4)	0.4486(3)	0.0600(19)
H531	0.3460	0.9519	0.4389	0.072
N541	0.1180(9)	0.8846(4)	0.4204(2)	0.0605(16)
C551	0.0217(11)	0.8214(4)	0.4331(3)	0.0610(19)
H551	-0.0898	0.8043	0.4129	0.073
C561	0.0774(9)	0.7792(4)	0.4747(3)	0.0520(17)
H561	0.0061	0.7340	0.4819	0.062
C611	0.4117(8)	0.7102(4)	0.5188(2)	0.0412(15)
C621	0.4820(8)	0.6620(3)	0.5542(2)	0.0399(14)
C631	0.5725(9)	0.6087(4)	0.5209(3)	0.0489(17)
H631	0.6102	0.5731	0.5425	0.059
C641	0.6054(9)	0.6082(4)	0.4592(3)	0.0519(18)
H641	0.6681	0.5734	0.4386	0.062
C651	0.5462(9)	0.6592(4)	0.4260(3)	0.0511(17)
H651	0.5740	0.6599	0.3835	0.061
C661	0.4508(9)	0.7069(4)	0.4535(3)	0.0491(17)
H661	0.4080	0.7392	0.4296	0.059
C12	0.4264(7)	0.7630(3)	0.0458(2)	0.0379(14)
C22	0.4554(7)	0.7716(3)	0.1120(2)	0.0367(14)
C32	0.6016(7)	0.8196(3)	0.1438(2)	0.0384(14)
C42	0.3325(7)	0.7473(3)	0.2142(2)	0.0372(14)
C52	0.3253(7)	0.7290(3)	0.1481(2)	0.0369(14)
C62	0.1950(7)	0.6708(3)	0.1171(2)	0.0404(14)
C112	0.5320(7)	0.8115(3)	0.0042(2)	0.0382(14)
C122	0.4850(8)	0.8767(4)	-0.0069(3)	0.0424(15)
H122	0.3914	0.8941	0.0146	0.051
C132	0.5776(8)	0.9159(4)	-0.0501(3)	0.0492(17)
H132	0.5431	0.9603	-0.0577	0.059
N142	0.7106(7)	0.8962(3)	-0.0817(3)	0.0548(15)

C152	0.7534(9)	0.8328(4)	-0.0718(3)	0.0530(17)
H152	0.8476	0.8171	-0.0943	0.064
C162	0.6676(8)	0.7882(4)	-0.0303(3)	0.0491(16)
H162	0.7007	0.7427	-0.0256	0.059
C212	0 7585(7)	0.8539(3)	0 1110(3)	0.0405(14)
C222	0.7875(8)	0.00000(0)	0.0975(3)	0.0100(11) 0.0412(14)
H222	0.7050	0.0200(0)	0.0070(0)	0.0412(14)
C222	0.7050	0.3504	0.103 + 0.0671(3)	0.0465(16)
U202	0.9550(0)	1 0019	0.0071(3)	0.0403(10)
	0.9509	1.0010	0.0000	0.050
NZ4Z	1.0599(7)	0.9145(3)	0.0494(3)	0.0521(14)
0252	1.0345(9)	0.8464(4)	0.0653(4)	0.0582(19)
H252	1.1222	0.8179	0.0548	0.070
C262	0.8905(8)	0.8149(4)	0.0954(3)	0.04/2(16)
H262	0.8814	0.7664	0.1057	0.057
C312	0.6118(7)	0.8327(4)	0.2092(2)	0.0385(14)
C322	0.4706(7)	0.7991(4)	0.2442(2)	0.0398(15)
C332	0.4793(8)	0.8192(4)	0.3110(3)	0.0462(17)
H332	0.3836	0.8001	0.3350	0.055
C342	0.6212(8)	0.8646(4)	0.3395(3)	0.0457(16)
H342	0.6241	0.8763	0.3833	0.055
C352	0.7653(8)	0.8952(4)	0.3053(3)	0.0456(16)
H352	0.8657	0.9257	0.3262	0.055
C362	0.7599(8)	0.8808(4)	0.2422(3)	0.0421(15)
H362	0.8555	0.9029	0 2195	0.051
C412	0 1821(7)	0.7192(4)	0.2532(2)	0.0383(14)
C422	0.0338(7)	0.7492(4)	0.2561(3)	0.0000(11) 0.0422(15)
H422	0.0263	0 7892	0.2330	0.051
C/132	-0 1042(8)	0.7002 0.7213(4)	0.2000	0.001
H432	-0.2065	0.7213(4)	0.2010(0)	0.0473(10)
N///2	-0.2000	0.7423	0.2014	0.0517(14)
C152	-0.1020(7)	0.0001(0)	0.02+0(2) 0.3231(3)	0.0317(14)
H452	0.0435	0.0401(4)	0.3231(3)	0.0400(10)
C/62	0.0400	0.6629(4)	0.0471	0.000
U402	0.1900(0)	0.6029(4)	0.2002(0)	0.0420(13)
C512	0.2925	0.0419 0.6107(2)	0.2923	0.031
CE00	0.0097(0)	0.0107(3)	0.1403(2)	0.0395(14)
0022	-0.0000(0)	0.0037(4)	0.1373(3)	0.0452(15)
0522	-0.1407	0.0402	0.1409	0.002
6532	-0.1766(9)	0.5433(4)	0.1822(3)	0.0495(16)
H532	-0.2985	0.5401	0.1891	0.059
N542	-0.1018(8)	0.4889(3)	0.1969(2)	0.0516(14)
C552	0.0696(9)	0.4956(4)	0.1882(3)	0.0482(16)
H552	0.1258	0.4576	0.1985	0.058
C562	0.1716(9)	0.5554(3)	0.1647(3)	0.0460(15)
H562	0.2942	0.5584	0.1600	0.055
C612	0.1732(8)	0.6631(4)	0.0520(2)	0.0406(15)
C622	0.2835(7)	0.7122(3)	0.0172(2)	0.0365(14)
C632	0.2439(8)	0.7071(4)	-0.0483(3)	0.0441(16)
H632	0.3144	0.7398	-0.0723	0.053
C642	0.1093(8)	0.6570(4)	-0.0760(3)	0.0470(17)
H642	0.0833	0.6559	-0.1188	0.056
C652	0.0062(9)	0.6059(4)	-0.0417(3)	0.0511(18)
H652	-0.0869	0.5701	-0.0619	0.061
C662	0.0392(8)	0.6075(4)	0.0195(3)	0.0488(17)
H662	-0.0276	0.5713	0.0413 ໌	0.059

Atom	x	у	Z	U _{eq}
H2A	1.2365	0.9311	0.3040	0.087
H2B	1.1573	1.0049	0.3185	0.087
H3A	1.4971	1.0024	0.3105	0.090
H3B	1.4144	1.0752	0.3090	0.090
H4A	1.4526	1.0706	0.2070	0.094
H4B	1.5570	1.0045	0.2103	0.094
H5A	1.2659	0.9861	0.1492	0.079
H5B	1.3279	0.9198	0.1782	0.079
H7A	0.1419	0.6022	0.5644	0.063
H7B	-0.0666	0.5876	0.5516	0.063
H8A	0.1924	0.5477	0.4696	0.097
H8B	0.0136	0.5741	0.4527	0.097
H9A	-0.1363	0.4580	0.4426	0.095
H9B	0.0465	0.4311	0.4503	0.095
HIUA	-0.2075	0.4444	0.5388	0.068
	-0.0551	0.3907	0.5383	0.065
	0.0007	0.0040	0.0539	0.005
	0.4733	0.0003	0.0056	0.005
	0.3713	0.5560	-0.0457	0.094
H14A	0.3008	0.3300	-0.0500	0.094
H14R	0.4011	0.4629	-0.0500	0.000
	0.0113	0.4029	0.0335	0.000
H15B	0.6321	0.4370	0.0000	0.070
H121	0 7763	0.6360	0.6475	0.055
H131	0 8344	0.5334	0.6876	0.062
H151	0.3352	0.4524	0.6977	0.064
H161	0.2597	0.5532	0.6586	0.057
H221	0.7252	0.7804	0.7347	0.050
H231	0.9143	0.7379	0.7965	0.061
H251	0.5292	0.5923	0.8485	0.058
H261	0.3259	0.6329	0.7910	0.052
H331	0.0037	0.8970	0.7205	0.049
H341	0.0121	0.9208	0.8270	0.052
H351	0.1959	0.8663	0.8862	0.053
H361	0.3669	0.7887	0.8373	0.051
H421	0.2182	0.9475	0.6061	0.054
H431	0.0147	0.9979	0.5573	0.061
H451	-0.3495	0.8228	0.5657	0.071
H461	-0.1555	0.7666	0.6142	0.059
H521	0.4527	0.8882	0.5109	0.064
H531	0.3460	0.9519	0.4389	0.072
H551	-0.0898	0.8043	0.4129	0.073
H561	0.0061	0.7340	0.4819	0.062
H631	0.6102	0.5731	0.5425	0.059
	0.0081	0.5734	0.4380	0.062
	0.5740	0.0099	0.3035	0.061
H122	0.4000	0.7392	0.4290	0.009
H132	0.5314	0.0341	-0.0577	0.051
H152	0.8476	0.8000	-0.0943	0.053
H162	0 7007	0 7427	-0 0256	0.059
H222	0.7050	0.9564	0.1094	0.049
H232	0.9509	1.0018	0.0580	0.056
H252	1.1222	0.8179	0.0548	0.070
H262	0.8814	0.7664	0.1057	0.057
H332	0.3836	0.8001	0.3350	0.055

Hydrogen coordinates and isotropic displacement parameters (Å²) for TAR.

H342	0.6241	0.8763	0.3833	0.055
H352	0.8657	0.9257	0.3262	0.055
H362	0.8555	0.9029	0.2195	0.051
H422	0.0263	0.7892	0.2339	0.051
H432	-0.2065	0.7423	0.2914	0.057
H452	0.0485	0.6015	0.3471	0.056
H462	0.2925	0.6419	0.2923	0.051
H522	-0.1487	0.6402	0.1469	0.052
H532	-0.2985	0.5401	0.1891	0.059
H552	0.1258	0.4576	0.1985	0.058
H562	0.2942	0.5584	0.1600	0.055
H632	0.3144	0.7398	-0.0723	0.053
H642	0.0833	0.6559	-0.1188	0.056
H652	-0.0869	0.5701	-0.0619	0.061
H662	-0.0276	0.5713	0.0413	0.059

Anisotropic displacement parameters (Å²) for **TAR**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.057(4)	0.196(8)	0.072(4)	0.036(5)	0.002(3)	-0.023(4)
C2	0.057(5)	0.103(7)	0.059(4)	0.024(5)	0.018(4)	0.010(4)
C3	0.057(5)	0.103(7)	0.060(4)	0.014(5)	0.007(4)	0.006(4)
C4	0.060(5)	0.104(7)	0.062(5)	0.018(5)	0.016(4)	-0.009(4)
C5	0.057(5)	0.078(6)	0.064(5)	0.024(4)	0.008(3)	0.005(4)
O6	0.083(7)	0.065(6)	0.036(5)	0.016(4)	-0.003(5)	-0.008(5)
C7	0.048(10)	0.070(9)	0.038(9)	0.016(7)	-0.002(8)	0.000(8)
C8	0.086(18)	0.111(15)	0.038(9)	0.021(9)	0.015(10)	-0.007(12)
C9	0.078(14)	0.109(15)	0.040(8)	0.001(10)	0.005(9)	-0.001(13)
C10	0.057(13)	0.065(9)	0.047(9)	0.005(7)	0.005(8)	0.010(8)
O11	0.116(9)	0.075(7)	0.034(5)	0.018(5)	0.015(5)	0.037(6)
C12	0.063(10)	0.076(8)	0.026(8)	0.011(7)	0.003(7)	0.020(9)
C13	0.12(3)	0.102(13)	0.026(9)	0.010(8)	0.002(11)	0.050(16)
C14	0.091(15)	0.101(12)	0.025(7)	-0.010(9)	0.000(8)	0.039(13)
C15	0.064(17)	0.076(9)	0.035(8)	0.005(7)	0.005(9)	0.018(10)
C11	0.042(3)	0.047(4)	0.025(3)	0.012(3)	0.005(2)	0.007(3)
C21	0.043(4)	0.050(4)	0.023(3)	0.008(3)	0.000(2)	0.007(3)
C31	0.042(3)	0.050(4)	0.021(3)	0.009(3)	0.005(2)	0.006(3)
C41	0.045(3)	0.044(4)	0.027(3)	0.011(3)	0.003(2)	0.010(3)
C51	0.048(4)	0.045(4)	0.027(3)	0.014(3)	0.005(2)	0.009(3)
C61	0.048(4)	0.055(4)	0.022(3)	0.011(3)	-0.001(2)	0.010(3)
C111	0.056(4)	0.053(4)	0.019(3)	0.000(3)	0.001(3)	0.012(3)
C121	0.059(4)	0.055(4)	0.025(3)	0.008(3)	0.006(3)	0.012(3)
C131	0.069(4)	0.067(5)	0.025(3)	0.012(3)	-0.001(3)	0.019(3)
N141	0.080(4)	0.054(4)	0.026(3)	0.005(3)	-0.003(3)	0.013(3)
C151	0.073(4)	0.057(4)	0.028(3)	0.006(3)	0.000(3)	0.006(3)
C161	0.061(4)	0.054(4)	0.026(3)	0.004(3)	0.000(3)	0.009(3)
C211	0.046(3)	0.053(4)	0.016(3)	0.002(3)	0.000(2)	0.007(3)
C221	0.048(3)	0.049(4)	0.029(3)	0.010(3)	0.003(3)	0.009(3)
C231	0.049(4)	0.057(4)	0.047(4)	0.008(3)	-0.003(3)	0.007(3)
N241	0.063(3)	0.055(4)	0.033(3)	0.008(3)	-0.007(2)	0.012(3)
C251	0.064(4)	0.057(5)	0.024(3)	0.013(3)	-0.002(3)	0.007(3)
C261	0.048(4)	0.056(4)	0.021(3)	0.003(3)	0.003(2)	0.000(3)
C311	0.042(3)	0.051(4)	0.025(3)	0.008(3)	0.003(2)	0.008(3)
C321	0.039(3)	0.054(4)	0.025(3)	0.010(3)	0.005(2)	0.008(3)
C331	0.043(4)	0.052(4)	0.030(3)	0.010(3)	0.002(3)	0.011(3)
C341	0.047(4)	0.052(4)	0.030(3)	0.005(3)	0.008(3)	0.008(3)
C351	0.050(4)	0.057(4)	0.024(3)	0.006(3)	0.003(3)	0.006(3)
C361	0.049(4)	0.052(4)	0.026(3)	0.008(3)	0.000(3)	0.007(3)

C411	0.043(3)	0.055(4)	0.024(3)	0.010(3)	0.005(2)	0.013(3)
C421	0.052(4)	0.054(4)	0.030(3)	0.011(3)	0.003(3)	0.010(3)
C431	0.059(4)	0.062(5)	0.036(4)	0.014(3)	0.006(3)	0.017(3)
N441	0.062(3)	0.065(4)	0.043(3)	0.014(̀3)́	-0.003(3)	0.018(3)
C451	0.051(4)	0.073(5)	0.052(4)	0.012(4)	-0.005(3)	0.007(3)
C461	0.043(3)	0.061(5)	0.046(4)	0.015(3)	0.000(3)	0.006(3)
C511	0.058(4)	0.059(4)	0.022(3)	0.007(3)	0.004(3)	0.018(3)
C521	0.062(4)	0.060(4)	0.043(4)	0.007(3)	0.012(3)	0.014(3)
C531	0.002(4)	0.000(4)	0.040(4)	0.018(4)	0.012(0)	0.014(0)
N541	0.07 + (0)	0.070(3)	0.033(7)	0.010(7)	0.010(3)	0.029(+)
C551	0.003(+)	0.077(4)	0.020(0)	0.007(3)	0.004(3)	0.030(0)
C561	0.007(3)	0.070(3)	0.032(4)	0.003(3)	-0.009(3)	0.032(4)
C501	0.009(4)	0.050(5)	0.020(3)	0.003(3)	-0.000(3)	0.014(3)
C611	0.047(4)	0.030(4)	0.023(3)	0.010(3)	0.003(2)	0.011(3)
C621	0.040(4)	0.047(4)	0.020(3)	0.009(3)	0.005(2)	0.010(3)
0044	0.065(4)	0.058(5)	0.025(3)	0.000(3)	0.002(3)	0.019(3)
C641	0.069(5)	0.066(5)	0.024(3)	0.003(3)	0.004(3)	0.024(4)
C651	0.063(4)	0.067(5)	0.025(3)	0.009(3)	0.005(3)	0.015(3)
C661	0.062(4)	0.064(5)	0.024(3)	0.011(3)	0.004(3)	0.017(3)
C12	0.042(3)	0.049(4)	0.023(3)	0.009(3)	0.003(2)	0.005(3)
C22	0.036(3)	0.048(4)	0.027(3)	0.009(3)	0.005(2)	0.007(3)
C32	0.039(3)	0.048(4)	0.028(3)	0.007(3)	0.004(2)	0.007(3)
C42	0.036(3)	0.051(4)	0.028(3)	0.012(3)	0.001(2)	0.010(3)
C52	0.039(3)	0.050(4)	0.023(3)	0.011(3)	0.005(2)	0.008(3)
C62	0.041(3)	0.052(4)	0.027(3)	0.008(3)	0.002(2)	0.006(3)
C112	0.042(3)	0.048(4)	0.023(3)	0.008(3)	0.001(2)	0.002(3)
C122	0.040(4)	0.055(4)	0.032(3)	0.011(3)	0.004(3)	0.006(3)
C132	0.052(4)	0.065(5)	0.030(3)	0.019(3)	-0.002(3)	0.003(3)
N142	0.058(4)	0.067(4)	0.036(3)	0.013(3)	0.009(2)	-0.003(3)
C152	0.052(4)	0.066(5)	0.034(4)	0.002(3)	0.014(3)	-0.002(3)
C162	0.051(4)	0.056(4)	0.038(4)	0.009(3)	0.009(3)	0.003(3)
C212	0.044(3)	0.052(4)	0.024(3)	0.008(3)	0.005(2)	0.004(3)
C222	0.048(4)	0.050(4)	0.024(3)	0.004(3)	0.007(2)	0.008(3)
C232	0.045(4)	0.056(4)	0.034(3)	0.003(3)	0.007(3)	0.001(3)
N242	0.048(3)	0.065(4)	0.044(3)	0.016(3)	0.009(2)	0.008(3)
C252	0.046(4)	0.065(5)	0.067(5)	0.015(4)	0.018(3)	0.013(3)
C262	0.042(4)	0.061(4)	0.045(4)	0.025(3)	0.009(3)	0.013(3)
C312	0.040(3)	0.048(4)	0.027(3)	0.007(3)	0.003(2)	0.007(3)
C322	0.039(3)	0.056(4)	0.025(3)	0.006(3)	0.003(2)	0.010(3)
C332	0.049(4)	0.066(5)	0.023(3)	0.006(3)	0.005(2)	0.008(3)
C342	0.010(1)	0.063(5)	0.023(3)	0.000(0)	0.000(2)	0.006(3)
C352	0.045(4)	0.003(3)	0.023(3)	0.00+(3)	-0.000(2)	0.000(3)
C362	0.043(4)	0.007(+)	0.000(0)	0.005(3)	-0.00+(3)	0.000(3)
C412	0.077(7)	0.0+3(+)	0.020(3)	0.005(3)	0.001(2)	0.00+(3)
C422	0.030(3)	0.030(4)	0.010(3)	0.000(3)	0.004(2)	0.003(3)
C422	0.042(3)	0.040(4)	0.034(3)	0.003(3)	0.000(3)	0.003(3)
0432	0.040(4)	0.059(4)	0.030(4)	0.002(3)	0.009(3)	0.009(3)
N442	0.057(3)	0.060(4)	0.038(3)	0.008(3)	0.015(3)	0.009(3)
0452	0.058(4)	0.057(4)	0.025(3)	0.005(3)	0.003(3)	0.009(3)
0462	0.045(4)	0.054(4)	0.030(3)	0.008(3)	0.003(3)	0.009(3)
C512	0.053(3)	0.049(4)	0.015(3)	0.011(3)	0.005(2)	0.001(3)
C522	0.049(3)	0.054(4)	0.023(3)	0.009(3)	-0.001(3)	-0.004(3)
C532	0.058(4)	0.060(4)	0.026(3)	0.010(3)	0.002(3)	-0.002(3)
N542	0.071(4)	0.053(4)	0.028(3)	0.007(3)	0.009(3)	0.002(3)
C552	0.073(4)	0.044(4)	0.026(3)	0.006(3)	0.005(3)	0.006(3)
C562	0.063(4)	0.047(4)	0.026(3)	0.009(3)	0.003(3)	0.004(3)
C612	0.042(3)	0.055(4)	0.024(3)	0.011(3)	0.003(2)	0.002(3)
C622	0.044(3)	0.045(4)	0.021(3)	0.008(3)	0.007(2)	0.007(3)
C632	0.053(4)	0.050(4)	0.028(3)	0.009(3)	0.001(3)	0.005(3)
C642	0.051(4)	0.069(5)	0.020(3)	0.010(3)	0.001(2)	0.007(3)
C652	0.053(4)	0.067(5)	0.026(3)	0.002(3)	0.001(3)	-0.005(3)
C662	0.054(4)	0.061(5)	0.028(3)	0.007(3)	0.003(3)	0.000(3)

Bond lengths (Å) and angles (deg) for TAR.

01 02	1 200(0)	C151 C161	1 200/0)
01-02	1.309(9)		1.399(0)
	1.400(0)		0.9500
02-03	1.486(9)	C161-H161	0.9500
C2-H2A	0.9900	C211-C221	1.376(7)
C2-H2B	0.9900	C211-C261	1.394(8)
C3-C4	1.525(10)	C221-C231	1.378(8)
C3-H3A	0.9900	C221-H221	0.9500
C3-H3B	0.9900	C231-N241	1.352(8)
C4-C5	1 459(10)	C231-H231	0.9500
	0.9900	N241_C251	1 326(7)
	0.0000	$C_{251} C_{261}$	1 383(8)
	0.9900		0.0500
	0.9900		0.9500
C5-H5B	0.9900	C261-H261	0.9500
06-010	1.403(15)	0311-0321	1.426(7)
O6-C7	1.405(14)	C311-C361	1.449(7)
C7-C8	1.489(15)	C321-C331	1.434(7)
C7-H7A	0.9900	C331-C341	1.363(7)
C7-H7B	0.9900	C331-H331	0.9500
C8-C9	1.528(19)	C341-C351	1.422(8)
C8-H8A	0.9900	C341-H341	0.9500
C8-H8B	0.9900	C351-C361	1.368(8)
C9-C10	1 490(14)	C351-H351	0.9500
C9-H9A	0.9900	C361-H361	0.9500
	0.0000	C411 C461	1 370(8)
	0.0000		1.379(0)
	0.9900		1.309(0)
	0.9900		1.303(0)
	1.405(15)		0.9500
011-012	1.417(13)	C431-N441	1.339(8)
C12-C13	1.495(15)	C431-H431	0.9500
C12-H12A	0.9900	N441-C451	1.340(8)
C12-H12B	0.9900	C451-C461	1.390(8)
C13-C14	1.529(19)	C451-H451	0.9500
C13-H13A	0.9900	C461-H461	0.9500
C13-H13B	0.9900	C511-C561	1.391(8)
C14-C15	1.493(14)	C511-C521	1.392(8)
C14-H14A	0.9900	C521-C531	1.391(8)
C14-H14B	0.9900	C521-H521	0.9500
C15-H15A	0.9900	C531-N541	1.337(8)
C15-H15B	0.9900	C531-H531	0.9500
C11-C621	1 400(7)	N541-C551	1 333(9)
$C11_{-}C21$	1 /3/(7)	C551_C561	1 303(8)
C11_C111	1 508(7)	C551-H551	0.9500
C21 C21	1.000(7)		0.9500
C21-C51	1.440(7)		1 420(0)
	1.470(0)		1.430(0)
031-0311	1.393(7)		1.449(7)
C31-C211	1.496(7)	C621-C631	1.444(8)
C41-C321	1.415(7)	C631-C641	1.367(8)
C41-C51	1.435(7)	C631-H631	0.9500
C41-C411	1.497(7)	C641-C651	1.409(8)
C51-C61	1.435(7)	C641-H641	0.9500
C61-C611	1.402(7)	C651-C661	1.345(8)
C61-C511	1.498(7)	C651-H651	0.9500
C111-C121	1.374(8)	C661-H661	0.9500
C111-C161	1.389(8)	C12-C622	1.401(7)
C121-C131	1.393(8)	C12-C22	1.440(7)
C121-H121	0.9500	C12-C112	1 498(7)
C131-N141	1,323(8)	C22-C32	1 421(7)
C131_H131	0.9500	C22-C52	1 460(7)
N1/1 C151	1 325(8)	C22-002	1 / 12/7)
NIH-1-0101	1.525(0)	002-0012	1.413(1)

C32-C212	1.493(7)	C642-C652	1.416(8)
C42-C322	1.397(7)	C642-H642	0.9500
C42-C52	1,433(7)	C652-C662	1,351(8)
C42-C412	1 498(7)	C652-H652	0.9500
0.52-0.62	1 431(7)	C662-H662	0.9500
C62 C612	1 / 1 / (7)	C2 01 C5	108 7(6)
C62-C012	1.414(7)		100.7(0)
	1.497(7)		107.9(0)
0112-0122	1.385(8)	01-C2-H2A	110.1
C112-C162	1.397(8)	C3-C2-H2A	110.1
C122-C132	1.386(8)	01-C2-H2B	110.1
C122-H122	0.9500	C3-C2-H2B	110.1
C132-N142	1.324(8)	H2A-C2-H2B	108.4
C132-H132	0.9500	C2-C3-C4	102.4(6)
N142-C152	1.332(8)	C2-C3-H3A	111.3
C152-C162	1.392(8)	C4-C3-H3A	111.3
C152-H152	0.9500	C2-C3-H3B	111.3
C162-H162	0.9500	C4-C3-H3B	111.3
C212-C262	1.383(8)	H3A-C3-H3B	109.2
C212-C222	1,388(8)	C5-C4-C3	106 5(6)
C222-C232	1 372(7)	C5-C4-H4A	110.4
C222 0202	0.9500	C3-C4-H4A	110.4
C222-11222	1 221(9)		110.4
0232-IN242	1.331(0)		110.4
	0.9500		110.4
N242-C252	1.339(8)	H4A-C4-H4B	108.6
C252-C262	1.371(8)	01-C5-C4	104.9(7)
C252-H252	0.9500	01-C5-H5A	110.8
C262-H262	0.9500	C4-C5-H5A	110.8
C312-C322	1.428(7)	O1-C5-H5B	110.8
C312-C362	1.443(7)	C4-C5-H5B	110.8
C322-C332	1.450(7)	H5A-C5-H5B	108.9
C332-C342	1.351(8)	C10-O6-C7	105.9(13)
C332-H332	0.9500	O6-C7-C8	106.9(15)
C342-C352	1.415(8)	O6-C7-H7A	110.3 ໌
C342-H342	0.9500	C8-C7-H7A	110.3
C352-C362	1.363(7)	O6-C7-H7B	110.3
C352-H352	0.9500	C8-C7-H7B	110.3
C362-H362	0.9500	H7A-C7-H7B	108.6
C412-C422	1 371(8)	67-68-69	101 3(13)
C/12 C/62	1 / 16(8)		111 5
C412-C402	1.410(0)		111.5
C422-C432	0.0500		111.5
C422-11422	0.9500		111.5
C432-IN442	1.351(8)		111.5
C432-H432	0.9500	H8A-C8-H8B	109.3
N442-C452	1.311(7)	C10-C9-C8	106.1(12)
C452-C462	1.375(8)	C10-C9-H9A	110.5
C452-H452	0.9500	C8-C9-H9A	110.5
C462-H462	0.9500	C10-C9-H9B	110.5
C512-C522	1.377(7)	C8-C9-H9B	110.5
C512-C562	1.393(8)	H9A-C9-H9B	108.7
C522-C532	1.379(8)	O6-C10-C9	105.6(13)
C522-H522	0.9500	O6-C10-H10A	110.6
C532-N542	1.334(8)	C9-C10-H10A	110.6
C532-H532	0.9500	O6-C10-H10B	110.6
N542-C552	1.328(8)	C9-C10-H10B	110.6
C552-C562	1,396(8)	H10A-C10-H10B	108.8
C552-H552	0.9500	C15_O11_C12	106 0(13)
C562-H562	0.9500	010-011-012	105 8(15)
C612 C622	1 / 25/7)	O11 C12 U12A	110.6
C612 C662	1.420(7)		110.0
C600 C600	1.434(0)		110.0
	1.440(7)		110.0
0032-0042	1.345(8)	U13-U12-H12B	110.6
C032-H032	0.9500	H12A-C12-H12B	108.7

C12-C13-C14	101.1(13)
C12-C13-H13A	111.6
C14-C13-H13A	111.6
C12-C13-H13B	111.6
C14-C13-H13B	111.6
H13A-C13-H13B	109.4
C15-C14-C13	106.1(11)
C15-C14-H14A	110.5
C13-C14-H14A	110.5
C15-C14-H14B	110.5
C13-C14-H14B	110.5
H144-C14-H14B	108.7
	106 1(12)
O11 C15 H15A	110.5
	110.5
	110.5
	110.5
	10.0
	108.7
C621-C11-C21	120.3(5)
C621-C11-C111	116.1(5)
C21-C11-C111	123.1(5)
C11-C21-C31	122.1(5)
C11-C21-C51	119.5(5)
C31-C21-C51	118.4(5)
C311-C31-C21	121.4(5)
C311-C31-C211	117.4(5)
C21-C31-C211	120.9(5)
C321-C41-C51	121.4(5)
C321-C41-C411	116.5(5)
C51-C41-C411	122.0(5)
C61-C51-C41	124.7(5)
C61-C51-C21	117.4(5)
C41-C51-C21	117.8(5)
C611-C61-C51	121.4(5)
C611-C61-C511	115.1(5)
C51-C61-C511	123.3(5)
C121-C111-C161	117.6(6)
C121-C111-C11	122.8(6)
C161-C111-C11	119.0(5)
C111-C121-C131	119.2(6)
C111-C121-H121	120.4
C131-C121-H121	120.4
N141-C131-C121	123.7(6)
N141-C131-H131	118.1
C121-C131-H131	118.1
C131-N141-C151	117.3(6)
N141-C151-C161	123.1(7)
N141-C151-H151	118.4
C161-C151-H151	118.4
C111-C161-C151	119.0(6)
C111-C161-H161	120.5
C151-C161-H161	120.5
C221-C211-C261	117.6(5)
C221-C211-C31	119.8(5)
C261-C211-C31	122.6(5)
C211-C221-C231	120.1(6)
C211-C221-H221	120.0
C231-C221-H221	120.0
N241-C231-C221	123.1(6)
N241-C231-H231	118.5
C221-C231-H231	118.5
C251-N241-C231	116.0(5)
· · · - · · • - • ·	/-/

N241-C251-C261	125.0(6)
N241-C251-H251	117.5
C261-C251-H251	117.5
C251-C261-C211	118 2(6)
C251-C261-H261	120.9
C211-C261-H261	120.9
C31_C311_C321	120.0
C31 C311 C361	120.4(5)
C221 C211 C261	122.3(3)
C44 C221 C214	117.4(3)
	119.0(0)
C41-C321-C331	121.1(5)
0311-0321-0331	119.1(5)
0341-0331-0321	121.5(6)
C341-C331-H331	119.3
C321-C331-H331	119.3
C331-C341-C351	120.2(6)
C331-C341-H341	119.9
C351-C341-H341	119.9
C361-C351-C341	119.9(5)
C361-C351-H351	120.0
C341-C351-H351	120.0
C351-C361-C311	121.8(6)
C351-C361-H361	119.1
C311-C361-H361	119.1
C461-C411-C421	117.4(5)
C461-C411-C41	119.8(6)
C421-C411-C41	122.4(5)
C431-C421-C411	119.1(6)
C431-C421-H421	120.4
C411-C421-H421	120.4
N441-C431-C421	124.1(7)
N441-C431-H431	117.9
C421-C431-H431	117.9
C431-N441-C451	116.1(6)
N441-C451-C461	123.6(6)
N441-C451-H451	118.2
C461-C451-H451	118.2
C411-C461-C451	119.5(6)
C411-C461-H461	120.3
C451-C461-H461	120.3
C561-C511-C521	118.0(6)
C561-C511-C61	120.8(6)
C521-C511-C61	121.0(6)
C531-C521-C511	118.9(7)
C531-C521-H521	120.6 ໌
C511-C521-H521	120.6
N541-C531-C521	123.1(7)
N541-C531-H531	118.4 ໌
C521-C531-H531	118.4
C551-N541-C531	118.0(6)
N541-C551-C561	122.9(7)
N541-C551-H551	118.6
C561-C551-H551	118.6
C511-C561-C551	119,1(7)
C511-C561-H561	120.4
C551-C561-H561	120.4
C61-C611-C621	120.1(5)
C61-C611-C661	121 9(5)
C621-C611-C661	117 9(5)
C11-C621-C611	120.1(5)
C11-C621-C631	122.5(5)
C611-C621-C631	117.5(5)

C641-C631-C621	121.7(6)
C641-C631-H631	119.2
C621-C631-H631	119.2
C631-C641-C651	120.0(6)
C631-C641-H641	120.0 ໌
C651-C641-H641	120.0
C661-C651-C641	121.0(6)
C661 C651 H651	110.5
	110.5
	119.0
	121.0(0)
C651-C661-H661	119.2
C611-C661-H661	119.2
C622-C12-C22	120.8(5)
C622-C12-C112	115.5(5)
C22-C12-C112	123.4(5)
C32-C22-C12	123.8(5)
C32-C22-C52	118.5(5)
C12-C22-C52	117.6(5)
C312-C32-C22	121.2(5)
C312-C32-C212	116.0(5)
C22-C32-C212	122 6(5)
C322 - C42 - C52	121 3(5)
$C_{222} C_{42} C_{42} C_{412}$	116 9(5)
C52 C42 C412	10.0(5)
002-042-0412	121.3(3)
002-052-042	121.9(5)
062-052-022	119.8(5)
C42-C52-C22	118.3(5)
C612-C62-C52	119.8(5)
C612-C62-C512	115.7(5)
C52-C62-C512	124.1(5)
C122-C112-C162	117.6(5)
C122-C112-C12	120.9(5)
C162-C112-C12	121.0(6)
C112-C122-C132	118.5(6)
C112-C122-H122	120.8
C132-C122-H122	120.8
N142-C132-C122	124 9(7)
N142-C132-H132	117.6
C122 C132 H132	117.6
C122-0132-11132	116.5(6)
0132-IN142-0132	10.0(0)
N 142-C 152-C 162	123.0(0)
N142-C152-H152	118.2
C162-C152-H152	118.2
C152-C162-C112	118.9(6)
C152-C162-H162	120.6
C112-C162-H162	120.6
C262-C212-C222	116.1(5)
C262-C212-C32	119.9(6)
C222-C212-C32	123.9(5)
C232-C222-C212	119.8(6)
C232-C222-H222	120.1
C212-C222-H222	120.1
N242-C232-C222	124.6(7)
N242-C232-H232	117 7
C222-C232-H232	117 7
$C_{232}N_{242}C_{252}$	115 1/6)
N242_C252 C252	124 4(6)
N242-0202-0202	117 0
11242-0202-0202	117.0
0202-0252-H252	117.ð 110.0(c)
	119.9(0)
0252-0262-H262	120.1
C212-C262-H262	120.1

C32-C312-C322	119.6(5)
C32-C312-C362	121.8(5)
C322-C312-C362	118.5(5)
C42-C322-C312	120.0(5)
C42-C322-C332	122.2(5)
C312-C322-C332	117.8(5)
C342-C332-C322	121 1(5)
C342-C332-H332	119.4
C302 C332 H332	110.4
$C_{222} C_{242} C_{252}$	101 0(5)
0332-0342-0352	121.2(3)
	119.4
C352-C342-H342	119.4
0362-0352-0342	119.9(6)
C362-C352-H352	120.1
C342-C352-H352	120.1
C352-C362-C312	121.3(5)
C352-C362-H362	119.4
C312-C362-H362	119.4
C422-C412-C462	117.7(5)
C422-C412-C42	120.9(5)
C462-C412-C42	121.4(5)
C412-C422-C432	119.8(6)
C412-C422-H422	120.1
C432-C422-H422	120.1
NAA2 CA32 CA22	123.0(6)
N442-0432-0422	123.9(0)
C400 C400 L400	110.1
0422-0432-FH432	
C452-N442-C432	114.7(5)
N442-C452-C462	127.4(6)
N442-C452-H452	116.3
C462-C452-H452	116.3
C452-C462-C412	116.5(6)
C452-C462-H462	121.8
C412-C462-H462	121.8
C522-C512-C562	117.7(5)
C522-C512-C62	123.5(5)
C562-C512-C62	118.6(5)
C512-C522-C532	119.3(6)
C512-C522-H522	120.3
C532-C522-H522	120.3
N542-C532-C522	124 0(6)
N542_C532_H532	118.0
CE22 CE22 HE22	110.0
CEE2 NE42 CE22	110.0
0002-N042-0002	10.7(0)
N542-C552-C562	123.5(0)
N542-C552-H552	118.2
C562-C552-H552	118.2
C512-C562-C552	118.6(6)
C512-C562-H562	120.7
C552-C562-H562	120.7
C62-C612-C622	119.9(5)
C62-C612-C662	121.6(5)
C622-C612-C662	118.5(5)
C12-C622-C612	120.7(5)
C12-C622-C632	121.6(5)
C612-C622-C632	117.7 ⁽ 5)
C642-C632-C622	121.4(6)
C642-C632-H632	119.3
C622-C632-H632	119.3
C632_C642_C652	
	120 4(5)
C632-C642-H642	120.4(5) 119.8
C632-C642-H642	120.4(5) 119.8

C662-C652-C642	120.6(6)
C662-C652-H652	119.7
C642-C652-H652	119.7
C652-C662-C612	121.1(6)
C652-C662-H662	119.5
C612-C662-H662	119.5

5,12-Dihydro-5,6,11,12-tetra(4-pyridyl)-5,12-epidioxynaphthacene (**TARO2**) CCDC 1821076

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	gxi3sq C ₃₈ H ₂₄ N ₄ O ₂ 568.61 200(2) K 0.71073 Å tetragonal P4/n 16
Unit cell dimensions	a = 29.9853(18) Å α = 90 deg.
	b = 29.9853(18) Å β = 90 deg.
	$c = 14.2542(9) \text{ Å}$ $\gamma = 90 \text{ deg.}$
Volume	12816.2(17) A ³
Density (calculated)	1.18 g/cm ³
Absorption coefficient	0.07 mm ⁻¹
Crystal shape	
Crystal size	0.15 x 0.10 x 0.03 mm ³
	colourless
I heta range for data collection	1.0 to 20.4 deg.
Index ranges	-29≤h≤29, -29≤k≤29, -13≤l≤13
Reflections collected	52616
Independent reflections	6330 (R(int) = 0.1772)
Observed reflections	$3410 (I > 2\sigma(I))$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.91
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	030/700/793
Goodness-oi-iil oir F ²	1.04
Largest diff peak and hole	$R_1 = 0.070, WRZ = 0.177$ 0.30 and 0.33 e^{3}
Largest unit. peak and note	0.50 and -0.55 CA -

Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **TARO2**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	Z	U _{eq}
011	0.6350(2)	0.4533(2)	0.6176(3)	0.0386(13)
021	0.6577(2)	0.4850(2)	0.6796(3)	0.0363(12)
C11	0.6320(2)	0.4712(2)	0.5210(5)	0.0329(16)
C21	0.6795(2)	0.4833(2)	0.4928(5)	0.0331(17)
C31	0.7062(2)	0.4628(2)	0.4265(5)	0.0342(17)
C41	0.7375(2)	0.5378(2)	0.5322(5)	0.0335(17)
C51	0.6965(2)	0.5190(2)	0.5506(5)	0.0309(17)
C61	0.6650(2)	0.5292(2)	0.6343(5)	0.0319(16)
C121	0.5921(2)	0.3963(2)	0.5104(5)	0.041(2)
H121	0.5970	0.3913	0.5755	0.049
C111	0.6073(2)	0.4349(2)	0.4681(5)	0.0336(17)
C131	0.5697(2)	0.3650(3)	0.4569(6)	0.047(2)
H131	0.5597	0.3385	0.4869	0.056
N141	0.5614(2)	0.3699(2)	0.3659(5)	0.0478(18)
C151	0.5749(2)	0.4080(3)	0.3259(6)	0.047(2)
H151	0.5689	0.4126	0.2612	0.057
C161	0.5970(2)	0.4406(2)	0.3741(5)	0.0369(18)
H161	0.6053	0.4674	0.3430	0.044
C211	0.6941(2)	0.4224(2)	0.3716(6)	0.0395(19)
C221	0.6924(3)	0.3816(3)	0.4125(7)	0.061(2)
H221	0.6981	0.3784	0.4777	0.073
U231	0.0820(3)	0.3437(3)	0.3567(7)	0.072(3)
N241	0.0003	0.3152	0.3033	0.000
C251	0.0743(3) 0.6777(3)	0.3474(3) 0.3870(3)	0.2047(7) 0.2253(7)	0.004(3)
H251	0.6731	0.3895	0.2233(7)	0.000(3)
C261	0.6872(3)	0.3035 0.4244(3)	0.1333	0.073
H261	0.6892	0.4523	0.2438	0.052(2)
C311	0.7497(2)	0.4816(2)	0.4094(5)	0.0343(18)
C321	0.7647(2)	0.5200(2)	0.4576(5)	0.0328(17)
C331	0.8066(2)	0.5384(3)	0.4357(5)	0.0405(19)
H331	0.8161	0.5647	0.4669	0.049 `´
C341	0.8337(2)	0.5191(3)	0.3703(5)	0.044(2)
H341	0.8619	0.5321	0.3565	0.053
C351	0.8201(2)	0.4804(3)	0.3237(5)	0.045(2)
H351	0.8392	0.4669	0.2787	0.053
C361	0.7795(2)	0.4621(2)	0.3430(5)	0.040(2)
H361	0.7708	0.4356	0.3114	0.049
C411	0.7560(2)	0.5771(2)	0.5813(5)	0.0334(18)
C421	0.7846(2)	0.5733(3)	0.6591(5)	0.0408(19)
H421	0.7922	0.5447	0.6830	0.049
C431	0.8013(2)	0.6112(3)	0.7005(6)	0.047(2)
H431	0.8200	0.6078	0.7538	0.056
N441	0.7931(2)	0.6522(2)	0.6707(5)	0.0574(19)
	0.7668(3)	0.6558(3)	0.5957(6)	0.058(2)
C461	0.7000	0.0040	0.57 19	0.070
U401 H/61	0.1410(3)	0.0190(3)	0.0003(0)	0.0 4 0(2) 0.057
C511	0.7290	0.0243 0.5554(2)	0.4975	0.037
C521	0.0000(2)	0.5345(3)	0 7952(5)	0.0421(19)
H521	0 7036	0 5029	0 7968	0.051
C531	0.7154(2)	0.5593(3)	0.8707(5)	0.046(2)
H531	0.7272	0.5440	0.9236	0.055
N541	0.7134(2)	0.6040(2)	0.8737(5)	0.0508(18)
C551	0.6974(2)	0.6240(3)	0.7957(6)	0.048(2)

H551	0.6962	0.6557	0.7950	0.057
C561	0.6827(2)	0.6016(3)	0.7175(6)	0.044(2)
H561	0.6719	0.6176	0.6646	0.052
C611	0.6203(2)	0.5433(2)	0.5950(5)	0.0313(16)
C621	0.6026(2)	0.5127(2)	0.5318(5)	0.0346(17)
C631	0.5612(2)	0.5198(2)	0.4932(5)	0.0374(19)
H631	0.5493 ໌	0.4992`́	0.4493 ົ໌	0.045 `´
C641	0.5366(2)	0.5574(3)	0.5185(6)	0.044(2)
H641	0.5081	0.5625	0.4914	0.053
C651	0.5535(2)	0.5870(2)	0.5824(5)	0.0381(19)
H651	0.5368	0.6127	0.5989	0.046
C661	0.5950(2)	0.5798(2)	0.6234(5)	0.0358(19)
H661	0.6059	0.5995	0 6702	0.043
012	0.9677(2)	0.3967(2)	-0.1152(3)	0.0454(13)
022	1.0051(2)	0.3868(2)	-0 1789(3)	0.0407(13)
C12	0.9768(2)	0.3792(2)	-0.0209(5)	0.0360(17)
C22	1.0211(2)	0.3732(2) 0.3984(2)	-0.0203(3) 0.0074(5)	0.0300(17) 0.0335(17)
C32	1.0211(2) 1.0300(2)	0.0004(2) 0.4299(2)	0.007 + (0)	0.0000(17)
C42	1.0000(2) 1.1005(2)	0.7233(2)	0.0700(5) 0.0341(5)	0.0233(10) 0.0313(17)
C52	1.1003(2) 1.0570(2)	0.3940(2)	0.0523(5)	0.0313(17) 0.0302(16)
C62	1.0370(2) 1.0397(2)	0.3029(2)	-0.0323(3)	0.0302(10)
C02	1.0307(2)	0.3300(2)	-0.1300(3)	0.0336(10)
C122	0.9350(2)	0.3695(3)	0.0337(0)	0.040(2)
	0.0974(3)	0.4000(3)	-0.0000(7)	0.077(3)
0122	0.0975	0.4149	-0.0723	0.092
	0.8602(3)	0.4115(5)	0.0449(8)	0.129(5)
H132	0.8345	0.4233	0.0148	0.154
N142	0.8565(3)	0.4011(4)	0.1352(7)	0.116(4)
0152	0.8925(3)	0.3840(3)	0.1754(7)	0.071(3)
H152	0.8911	0.3757	0.2397	0.086
C162	0.9319(3)	0.3780(2)	0.1278(6)	0.047(2)
H162	0.9570	0.3659	0.1594	0.056
0212	0.9949(2)	0.4533(2)	0.1315(5)	0.0312(17)
0222	0.9645(2)	0.4805(2)	0.0892(6)	0.046(2)
H222	0.9650	0.4844	0.0230	0.055
0232	0.9328(3)	0.5024(3)	0.1436(7)	0.065(3)
H232	0.9116	0.5206	0.1123	0.078
N242	0.9302(2)	0.4996(2)	0.2369(6)	0.062(2)
C252	0.9596(3)	0.4730(3)	0.2759(6)	0.055(2)
H252	0.9585	0.4695	0.3421	0.066
C262	0.9919(2)	0.4500(2)	0.2282(5)	0.0410(19)
H262	1.0123	0.4317	0.2617	0.049
C312	1.0757(2)	0.4433(2)	0.0929(5)	0.0319(17)
C322	1.1107(2)	0.4243(2)	0.0410(5)	0.0321(17)
C332	1.1547(2)	0.4374(2)	0.0603(5)	0.042(2)
H332	1.1784	0.4235	0.0272	0.050
C342	1.1645(2)	0.4691(2)	0.1243(5)	0.041(2)
H342	1.1946	0.4776	0.1350	0.049
C352	1.1300(2)	0.4895(2)	0.1747(5)	0.042(2)
H352	1.1365	0.5120	0.2195	0.050
C362	1.0869(2)	0.4768(2)	0.1591(5)	0.042(2)
H362	1.0638	0.4909	0.1936	0.050
C412	1.1404(2)	0.3771(2)	-0.0878(5)	0.0325(17)
C422	1.1578(2)	0.4001(2)	-0.1639(5)	0.0356(18)
H422	1.1441	0.4267	-0.1859	0.043
C432	1.1950(2)	0.3835(3)	-0.2062(6)	0.048(2)
L122		0 2002	-0 2592	0.058
H432	1.2060	0.3992	-0.2002	0.050
N442	1.2060 1.2173(2)	0.3992	-0.1798(5)	0.0499(18)
N442 C452	1.2060 1.2173(2) 1.2010(3)	0.3471(2) 0.3261(3)	-0.1798(5) -0.1056(6)	0.0499(18) 0.054(2)
N442 C452 H452	1.2060 1.2173(2) 1.2010(3) 1.2166	0.3992 0.3471(2) 0.3261(3) 0.3006	-0.1798(5) -0.1056(6) -0.0837	0.0499(18) 0.054(2) 0.065
N442 C452 H452 C462	1.2060 1.2173(2) 1.2010(3) 1.2166 1.1627(2)	0.3992 0.3471(2) 0.3261(3) 0.3006 0.3389(2)	-0.1798(5) -0.1056(6) -0.0837 -0.0572(5)	0.0499(18) 0.054(2) 0.065 0.043(2)
N442 C452 H452 C462 H462	1.2060 1.2173(2) 1.2010(3) 1.2166 1.1627(2) 1.1521	0.3992 0.3471(2) 0.3261(3) 0.3006 0.3389(2) 0.3221	-0.1798(5) -0.1056(6) -0.0837 -0.0572(5) -0.0052	0.0499(18) 0.054(2) 0.065 0.043(2) 0.052

C522	1.0702(2)	0.3777(2)	-0.2957(5)	0.0386(19)
H522	1.0514	0.4033	-0.2966	0.046
C532	1.0980(2)	0.3692(3)	-0.3706(5)	0.043(2)
H532	1.0977	0.3895	-0.4219	0.052
N542	1.1252(2)	0.3342(2)	-0.3750(5)	0.0492(17)
C552	1.1251(3)	0.3074(3)	-0.3009(6)	0.046(2)
H552	1.1447	0.2826	-0.3017	0.056
C562	1.0988(2)	0.3131(2)	-0.2238(5)	0.0348(18)
H562	1.1006	0.2924	-0.1734	0.042
C612	1.0130(2)	0.3164(2)	-0.1008(5)	0.0366(18)
C622	0.9811(2)	0.3283(2)	-0.0339(5)	0.0394(18)
C632	0.9532(3)	0.2967(3)	0.0024(6)	0.056(2)
H632	0.9303	0.3051	0.0449	0.067
C642	0.9582(3)	0.2525(3)	-0.0225(7)	0.070(3)
H642	0.9401	0.2303	0.0060	0.084
C652	0.9896(3)	0.2405(3)	-0.0890(6)	0.060(2)
H652	0.9926	0.2102	-0.1069	0.072
C662	1.0164(2)	0.2723(2)	-0.1291(5)	0.045(2)
H662	1.0373	0.2641	-0.1763	0.053

Hydrogen coordi	inates and isotr	opic displacement	parameters (Å ²) for TARO2.
-----------------	------------------	-------------------	----------------------------	--------------

Atom	x	у	Z	U _{eq}
H121	0.5970	0.3913	0.5755	0.049
H131	0.5597	0.3385	0.4869	0.056
H151	0.5689	0.4126	0.2612	0.057
H161	0.6053	0.4674	0.3430	0.044
H221	0.6981	0.3784	0.4777	0.073
H231	0.6803	0.3152	0.3855	0.086
H251	0.6731	0.3895	0.1595	0.079
H261	0.6892	0.4523	0.2438	0.063
H331	0.8161	0.5647	0.4669	0.049
H341	0.8619	0.5321	0.3565	0.053
H351	0.8392	0.4669	0.2787	0.053
H361	0.7708	0.4356	0.3114	0.049
H421	0.7922	0.5447	0.6830	0.049
H431	0.8200	0.6078	0.7538	0.056
H451	0.7608	0.6848	0.5719	0.070
H461	0.7290	0.6243	0.4975	0.057
H521	0.7036	0.5029	0.7968	0.051
H531	0.7272	0.5440	0.9236	0.055
H551	0.6962	0.6557	0.7950	0.057
H561	0.6719	0.6176	0.6646	0.052
H631	0.5493	0.4992	0.4493	0.045
H641	0.5081	0.5625	0.4914	0.053
H651	0.5368	0.6127	0.5989	0.046
H661	0.6059	0.5995	0.6702	0.043
H122	0.8975	0.4149	-0.0723	0.092
H132	0.8345	0.4233	0.0148	0.154
H152	0.8911	0.3757	0.2397	0.086
H162	0.9570	0.3659	0.1594	0.056
H222	0.9650	0.4844	0.0230	0.055
H232	0.9116	0.5206	0.1123	0.078
H252	0.9585	0.4695	0.3421	0.066
H262	1.0123	0.4317	0.2617	0.049
H332	1.1784	0.4235	0.0272	0.050
H342	1.1946	0.4776	0.1350	0.049
H352	1.1365	0.5120	0.2195	0.050

H362	1.0638	0.4909	0.1936	0.050
H422	1.1441	0.4267	-0.1859	0.043
H432	1.2060	0.3992	-0.2592	0.058
H452	1.2166	0.3006	-0.0837	0.065
H462	1.1521	0.3221	-0.0052	0.052
H522	1.0514	0.4033	-0.2966	0.046
H532	1.0977	0.3895	-0.4219	0.052
H552	1.1447	0.2826	-0.3017	0.056
H562	1.1006	0.2924	-0.1734	0.042
H632	0.9303	0.3051	0.0449	0.067
H642	0.9401	0.2303	0.0060	0.084
H652	0.9926	0.2102	-0.1069	0.072
H662	1.0373	0.2641	-0.1763	0.053

Anisotropic displacement parameters (Å²) for **TARO2**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
011	0.045(3)	0.034(3)	0.037(3)	0.003(2)	-0.002(2)	-0.013(2)
O21	0.045(3)	0.030(3)	0.035(3)	-0.001(2)	0.002(2)	-0.005(2)
C11	0.033(4)	0.039(4)	0.027(4)	0.001(3)	0.003(3)	-0.003(3)
C21	0.033(4)	0.036(4)	0.030(4)	0.005(3)	-0.003(3)	0.002(3)
C31	0.037(4)	0.038(4)	0.028(4)	0.003(3)	-0.002(3)	0.003(3)
C41	0.028(4)	0.041(4)	0.031(4)	-0.003(3)	-0.003(3)	-0.004(3)
C51	0.032(4)	0.028(4)	0.033(4)	0.004(3)	0.002(3)	0.004(3)
C61	0.031(4)	0.029(4)	0.035(4)	0.000(3)	0.005(3)	0.001(3)
C121	0.047(5)	0.041(4)	0.035(5)	0.007(3)	-0.001(4)	-0.011(4)
C111	0.024(4)	0.038(4)	0.040(4)	0.006(3)	0.000(3)	-0.005(3)
C131	0.048(5)	0.037(5)	0.055(5)	0.006(4)	-0.005(4)	-0.011(4)
N141	0.046(4)	0.047(4)	0.051(4)	0.004(3)	-0.013(4)	-0.011(3)
C151	0.039(5)	0.049(5)	0.054(5)	0.000(4)	-0.005(4)	-0.005(4)
C161	0.033(5)	0.042(5)	0.036(4)	0.005(4)	0.004(4)	0.000(4)
C211	0.033(5)	0.036(4)	0.049(5)	-0.002(3)	0.008(4)	0.003(4)
C221	0.074(6)	0.035(4)	0.073(6)	0.004(4)	0.011(5)	0.005(4)
C231	0.084(7)	0.040(5)	0.092(6)	0.000(5)	0.024(6)	-0.004(5)
N241	0.087(6)	0.073(5)	0.092(6)	-0.024(5)	0.007(5)	-0.010(5)
C251	0.056(6)	0.078(6)	0.063(6)	-0.031(5)	0.009(5)	-0.004(5)
C261	0.055(6)	0.055(5)	0.048(5)	-0.014(4)	0.005(4)	0.002(4)
C311	0.032(4)	0.039(4)	0.032(5)	0.008(3)	-0.001(3)	0.007(3)
C321	0.028(4)	0.038(4)	0.032(4)	0.011(3)	0.001(3)	0.009(3)
C331	0.033(4)	0.052(5)	0.036(5)	0.005(4)	0.001(3)	-0.005(4)
C341	0.031(5)	0.064(5)	0.037(5)	0.013(4)	0.005(4)	-0.005(4)
C351	0.031(4)	0.060(5)	0.043(5)	0.005(4)	0.005(4)	0.010(4)
C361	0.041(4)	0.044(5)	0.037(5)	0.000(4)	0.003(4)	-0.004(4)
C411	0.025(4)	0.038(4)	0.037(5)	0.005(3)	-0.002(3)	-0.006(3)
C421	0.036(5)	0.043(4)	0.044(5)	0.010(4)	-0.004(4)	-0.008(4)
C431	0.034(5)	0.049(5)	0.058(6)	-0.001(4)	-0.005(4)	-0.006(4)
N441	0.056(5)	0.051(4)	0.066(5)	-0.006(4)	-0.012(4)	-0.007(4)
C451	0.066(6)	0.035(5)	0.073(6)	0.010(4)	-0.020(5)	-0.004(4)
C461	0.053(5)	0.044(4)	0.046(5)	0.008(4)	-0.011(4)	-0.004(4)
C511	0.022(4)	0.043(4)	0.035(4)	-0.007(3)	0.003(3)	0.002(3)
C521	0.031(5)	0.054(5)	0.041(5)	-0.002(4)	0.003(4)	-0.002(4)
C531	0.047(5)	0.056(5)	0.034(5)	0.006(4)	0.007(4)	-0.009(4)
N541	0.046(4)	0.062(4)	0.045(4)	-0.009(4)	-0.003(3)	0.005(4)
C551	0.040(5)	0.045(5)	0.058(5)	-0.010(4)	-0.008(4)	0.009(4)
C561	0.037(5)	0.046(4)	0.049(5)	-0.010(4)	-0.003(4)	0.003(4)
C611	0.027(4)	0.039(4)	0.028(4)	0.011(3)	0.010(3)	-0.004(3)
C621	0.032(4)	0.041(4)	0.031(5)	0.006(3)	0.008(3)	-0.005(3)

C631	0.037(4)	0.044(5)	0.031(5)	0.003(4)	0.004(3)	-0.004(4)
C641	0.027(5)	0.053(5)	0.054(6)	0.000(4)	-0.003(4)	0.002(4)
C651	0.029(4)	0.044(5)	0.041(5)	0.004(4)	0.007(4)	-0.001(4)
C661	0.027(4)	0.049(5)	0.031(5)	-0.002(4)	0.006(3)	-0.003(3)
012	0.032(3)	0.062(4)	0.042(3)	-0.002(3)	-0.003(2)	0.018(3)
022	0.038(3)	0.049(3)	0.035(3)	0.001(2)	0.002(2)	0.017(3)
C12	0.028(4)	0.044(4)	0.036(4)	-0.001(4)	-0.003(3)	0.007(3)
C22	0.031(4)	0.035(4)	0.034(4)	0.007(3)	0.002(3)	0.009(3)
C32	0.031(4)	0.028(4)	0.030(4)	0.008(3)	0.002(0)	0.008(3)
C42	0.034(4)	0.029(4)	0.032(4)	0.000(0)	0.005(3)	0.005(3)
C52	0.031(4)	0.020(1)	0.002(1)	0.002(0)	0.006(3)	0.000(3)
C62	0.034(4)	0.027(1)	0.034(4)	0.003(3)	-0.003(3)	0.011(3)
C112	0.004(4)	0.00+(+) 0.051(5)	0.056(5)	-0.003(4)	0.000(0)	0.011(0)
C122	0.031(4) 0.034(5)	0.001(0)	0.068(6)	-0.000(4)	-0.009(4)	0.011(4)
C132	0.004(0)	0.100(0)	0.000(0)	-0.010(0)	-0.005(4)	0.000(0)
N142	0.043(0)	0.20+(10)	0.077(7)	-0.030(3)	-0.000(5)	0.002(0)
C152	0.038(5)	0.220(12)	0.003(0)	-0.044(7)	0.009(3)	0.021(0)
C162	0.040(3)	0.099(0)	0.009(7)	-0.034(3)	0.010(4)	-0.013(3)
C102	0.030(4)	0.030(3)	0.034(3)	-0.000(4)	0.003(4)	-0.001(4)
0212	0.027(4)	0.030(4)	0.030(4)	0.005(3)	0.007(3)	0.003(3)
0222	0.042(3)	0.047(5)	0.046(5)	0.020(4)	0.017(4)	0.011(4)
UZ3Z	0.057(6)	0.055(6)	0.082(6)	0.028(5)	0.035(5)	0.022(4)
N242	0.069(5)	0.042(5)	0.074(5)	0.004(4)	0.036(4)	0.012(4)
0252	0.067(6)	0.057(6)	0.042(5)	-0.008(4)	0.018(4)	-0.003(4)
C262	0.045(5)	0.045(5)	0.033(4)	-0.002(4)	0.001(4)	-0.001(4)
C312	0.030(4)	0.035(4)	0.031(4)	0.004(3)	0.001(3)	0.005(3)
0322	0.030(4)	0.033(4)	0.033(4)	0.002(3)	-0.003(3)	0.007(3)
C332	0.033(4)	0.051(5)	0.040(5)	-0.005(4)	0.003(4)	0.000(4)
C342	0.033(4)	0.055(5)	0.036(5)	-0.003(4)	-0.006(4)	0.003(4)
C352	0.038(4)	0.044(5)	0.042(5)	-0.011(4)	-0.003(4)	0.001(4)
C362	0.035(4)	0.046(5)	0.043(5)	-0.004(4)	-0.001(4)	0.005(4)
C412	0.035(4)	0.029(4)	0.033(4)	-0.007(3)	-0.002(3)	0.001(3)
C422	0.032(4)	0.032(4)	0.042(5)	0.000(3)	0.000(3)	0.000(3)
C432	0.041(5)	0.050(5)	0.053(6)	0.005(4)	0.010(4)	0.002(4)
N442	0.038(4)	0.050(4)	0.062(5)	-0.002(4)	0.014(3)	0.009(3)
C452	0.048(5)	0.047(5)	0.068(6)	0.009(4)	0.009(4)	0.014(4)
C462	0.042(5)	0.040(5)	0.048(5)	0.006(4)	0.001(4)	0.005(4)
C512	0.029(4)	0.034(4)	0.041(4)	-0.002(3)	-0.001(3)	-0.001(3)
C522	0.039(5)	0.038(5)	0.039(5)	0.002(4)	-0.005(4)	0.002(4)
C532	0.051(5)	0.043(5)	0.037(5)	0.002(4)	-0.007(4)	0.001(4)
N542	0.060(5)	0.044(4)	0.043(4)	-0.003(3)	0.005(4)	0.009(3)
C552	0.055(5)	0.037(5)	0.047(5)	-0.004(4)	0.007(4)	0.016(4)
C562	0.034(4)	0.036(4)	0.035(4)	-0.005(4)	-0.001(3)	-0.004(3)
C612	0.038(5)	0.036(4)	0.036(5)	-0.004(3)	0.000(3)	0.002(3)
C622	0.034(5)	0.042(4)	0.042(5)	-0.006(4)	0.000(3)	-0.001(3)
C632	0.051(6)	0.051(5)	0.066(6)	-0.010(4)	0.012(4)	-0.010(4)
C642	0.070(7)	0.047(5)	0.093(8)	-0.016(5)	0.030(5)	-0.029(5)
C652	0.067(6)	0.037(5)	0.074(7)	-0.015(4)	0.014(5)	-0.011(4)
C662	0.044(5)	0.041(̀4)́	0.048(5)	-0.009(4)	-0.002(4)	-0.006(4)
	. ,		. /	. /	. /	. /

Bond lengths (Å) and angles (deg) for TARO2.

011-021	1.465(6)	C31-C211	1.488(10)
O11-C11	1.481(8)	C41-C51	1.376(9)
O21-C61	1.491(8)	C41-C321	1.442(9)
C11-C111	1.517(10)	C41-C411	1.479(9)
C11-C21	1.524(9)	C51-C61	1.553(9)
C11-C621	1.533(9)	C61-C611	1.513(9)
C21-C31	1.383(9)	C61-C511	1.522(9)
C21-C51	1.444(9)	C121-C111	1.382(9)
C31-C311	1.442(9)	C121-C131	1.383(10)

C121-H121	0.9500	C12-C112	1.507(10)
C111-C161	1.386(9)	C12-C622	1.541(10)
C131-N141	1.330(9)	C22-C32	1.386(9)
C131-H131	0.9500	C22-C52	1.448(9)
N141-C151	1.341(9)	C32-C312	1.449(9)
C151-C161	1.365(10)	C32-C212	1.491(9)
C151-H151	0.9500	C42-C52	1.371(9)
C161-H161	0.9500	C42-C322	1.437(9)
C211-C221	1.354(10)	C42-C412	1.509(9)
C211-C261	1.391(10)	C52-C62	1.528(9)
C221-C231	1.422(11)	C62-C512	1.507(9)
C221-H221	0.950Ò ´	C62-C612	1.520(10)
C231-N241	1.335(11)	C112-C122	1.376(10)
C231-H231	0.950Ò ´	C112-C162	1.389(10)
N241-C251	1.317(11)	C122-C132	1.354(12)
C251-C261	1.359(10)	C122-H122	0.950Ò ́
C251-H251	0.950Ò ´	C132-N142	1.329(13)
C261-H261	0.9500	C132-H132	0.9500
C311-C321	1.414(10)	N142-C152	1.326(12)
C311-C361	1.427(9)	C152-C162	1.374(10)
C321-C331	1.407(9)	C152-H152	0.950Ò ́
C331-C341	1.366(10)	C162-H162	0.9500
C331-H331	0.9500	C212-C222	1.364(9)
C341-C351	1.399(10)	C212-C262	1.385(9)
C341-H341	0.9500	C222-C232	1.393(10)
C351-C361	1.364(9)	C222-H222	0.9500
C351-H351	0.9500	C232-N242	1.334(10)
C361-H361	0.9500	C232-H232	0.9500
C411-C461	1.372(9)	N242-C252	1.312(10)
C411-C421	1.406(9)	C252-C262	1.369(10)
C421-C431	1.377(10)	C252-H252	0.9500
C421-H421	0.9500	C262-H262	0.9500
C431-N441	1.324(9)	C312-C322	1,405(9)
C431-H431	0.9500	C312-C362	1.418(9)
N441-C451	1.332(10)	C322-C332	1.402(9)
C451-C461	1.386(10)	C332-C342	1.350(9)
C451-H451	0.9500	C332-H332	0.9500
C461-H461	0.9500	C342-C352	1.398(9)
C511-C521	1.385(10)	C342-H342	0.9500
C511-C561	1.387(9)	C352-C362	1,364(9)
C521-C531	1.375(10)	C352-H352	0.9500
C521-H521	0.950Ò ´	C362-H362	0.9500
C531-N541	1.341(9)	C412-C422	1.387(9)
C531-H531	0.9500	C412-C462	1.396(9)
N541-C551	1.352(9)	C422-C432	1.362(9)
C551-C561	1.374(10)	C422-H422	0.9500
C551-H551	0.950Ò ´	C432-N442	1.333(9)
C561-H561	0.9500	C432-H432	0.950Ò ́
C611-C621	1.390(9)	N442-C452	1.325(9)
C611-C661	1.393(9)	C452-C462	1.393(10)
C621-C631	1.375(9)	C452-H452	0.9500
C631-C641	1.395(9)	C462-H462	0.9500
C631-H631	0.9500	C512-C522	1.394(9)
C641-C651	1.368(10)	C512-C562	1.401(9)
C641-H641	0.9500	C522-C532	1.379(10)
C651-C661	1.390(9)	C522-H522	0.9500
C651-H651	0.9500	C532-N542	1.332(9)
C661-H661	0.9500	C532-H532	0.9500
012-C12	1,469(8)	N542-C552	1,325(9)
012-022	1.473(6)	C552-C562	1.363(9)
O22-C62	1.483(8)	C552-H552	0.9500
C12-C22	1.503(9)	C562-H562	0.9500

C612-C662	1.386(9)
C612-C622	1.399(9)
C622-C632	1.366(10)
C632-C642	1.378(10)
C632-H632	0.9500
C642-C652	1.383(11)
C642-H642	0.9500
C652-C662	1.372(10)
C652-H652	0.9500
C662-H662	0.9500
O21-O11-C11	110.7(4)
O11-O21-C61	112.6(4)
O11-C11-C111	103.4(5)
O11-C11-C21	106.0(5)
C111-C11-C21	119.8(6)
O11-C11-C621	103.6(5)
C111-C11-C621	110.5(6)
C21-C11-C621	111.8(6)
C31-C21-C51	121.0(7)
C31-C21-C11	127.9(7)
C51-C21-C11	110.9(6)
C21-C31-C311	117.7(7)
021-031-0211	125.5(7)
0311-031-0211	116.7(6)
C51-C41-C321	119.6(6)
	124.8(6)
0321-041-0411	115.6(6)
C41-C51-C21	120.7(6)
	127.0(0)
	111.0(0)
021-001-0011	100.2(5)
C611 C61 C511	118 1(6)
021 C61 C51	104 4(5)
C611 C61 C51	104.4(5)
C511 C61 C51	117 0(6)
C111 C121 C121	110.2(7)
C111 C121 H121	120 4
C131_C121_H121	120.4
C121 C111 C161	120.4
C121-C111-C101	123 0(7)
C161_C111_C11	120.0(7)
N141-C131-C121	123.7(7)
N141-C131-H131	118.2
C121-C131-H131	118.2
C131-N141-C151	116.9(7)
N141-C151-C161	122.9(8)
N141-C151-H151	118.6
C161-C151-H151	118.6
C151-C161-C111	120.5(7)
C151-C161-H161	119.8
C111-C161-H161	119.8
C221-C211-C261	117.4(8)
C221-C211-C31	121.2(8)
C261-C211-C31	121.3(̈́7)́
C211-C221-C231	119.3(9)́
C211-C221-H221	120.4 ົ
C231-C221-H221	120.4
N241-C231-C221	121.3(9)
N241-C231-H231	119.3 [`] ́
C221-C231-H231	119.3
C251-N241-C231	118.7(9)

N241-C251-C261	122.5(9)
N241-C251-H251	118.8
C261-C251-H251	118.8
C251-C261-C211	120.7(9)
C251-C261-H261	119.6
C211-C261-H261	119.6
C321-C311-C361	117.1(7)
C321-C311-C31	121.6(7)
C361-C311-C31	121.3(7)
C331-C321-C311	119.7(7)
C331-C321-C41	121.5(7)
C311-C321-C41	118.7(6)
C341-C331-C321	121 1(7)
C341-C331-H331	119.4
C321-C331-H331	119.4
C331_C341_C351	120 1(7)
C331_C341_H341	110.0
C351_C341_H341	110.0
$C_{261} C_{251} C_{241}$	110.0(7)
C361 C351 U351	120.1
C241 C251 U251	120.1
	120.1
	121.9(7)
	119.1
C311-C361-H361	119.1
C461-C411-C421	116.1(7)
C461-C411-C41	121.3(7)
C421-C411-C41	122.5(7)
C431-C421-C411	119.5(7)
C431-C421-H421	120.3
C411-C421-H421	120.3
N441-C431-C421	124.3(8)
N441-C431-H431	117.9
C421-C431-H431	117.9
C431-N441-C451	116.2(7)
N441-C451-C461	123.8(8)
N441-C451-H451	118.1
C461-C451-H451	118.1
C411-C461-C451	120.1(7)
C411-C461-H461	119.9
C451-C461-H461	119.9
C521-C511-C561	117.0(7)
C521-C511-C61	122.0(7)
C561-C511-C61	120.9(7)
C531-C521-C511	120.3(8)
C531-C521-H521	119.9
C511-C521-H521	119.9
N541-C531-C521	123.5(8)
N541-C531-H531	118.3
C521-C531-H531	118.3
C531-N541-C551	115.7(7)
N541-C551-C561	124.4(8)
N541-C551-H551	117.8
C561-C551-H551	117.8
C551-C561-C511	119.1(8)
C551-C561-H561	120.4
C511-C561-H561	120.4
C621-C611-C661	119.8(7)
C621-C611-C61	113.2(6)
C661-C611-C61	126.5(7)
C631-C621-C611	120.1(7)
C631-C621-C11	127.3(7)
C611-C621-C11	112.3(6)
	- (-)

C621-C631-C641	120.0(7)
C621-C631-H631	120.0
C641-C631-H631	120.0
C651-C641-C631	120 0(7)
C651 C641 H641	120.0(7)
	120.0
C631-C641-H641	120.0
C641-C651-C661	120.7(7)
C641-C651-H651	119.6
C661-C651-H651	119.6
C651-C661-C611	119 2(7)
	120.4
	120.4
C611-C661-H661	120.4
C12-O12-O22	110.6(4)
O12-O22-C62	112.6(5)
O12-C12-C22	105.8(6)
012-012-0112	104 1(6)
C22 C12 C112	104.1(0)
	121.2(0)
012-012-0622	105.0(5)
C22-C12-C622	109.8(6)
C112-C12-C622	109.5(6)
C32-C22-C52	119.4(6)
C_{32} C_{22} C_{12}	128 4(6)
C52-C22-C12	120.4(0)
052-022-012	112.0(6)
C22-C32-C312	119.3(6)
C22-C32-C212	124.0(6)
C312-C32-C212	116.7(6)
C52-C42-C322	119 9(6)
C52 C42 C412	125 2(6)
002-042-0412	120.2(0)
0322-042-0412	114.9(6)
C42-C52-C22	121.1(7)
C42-C52-C62	127.8(6)
C22-C52-C62	110.9(6)
022-062-0512	100 5(5)
022 C62 C612	106.0(5)
	100.0(3)
0512-062-0612	110.3(0)
022-C62-C52	104.8(5)
C512-C62-C52	118.0(6)
C612-C62-C52	109.4(6)
C122-C112-C162	117 0(8)
$C_{122} - C_{112} - C_{12}$	122 5(8)
	122.3(0)
	120.3(7)
C132-C122-C112	118.4(10)
C132-C122-H122	120.8
C112-C122-H122	120.8
N142-C132-C122	125.6(10)
N142-C132-H132	117.2
	117.2
C122-C132-H132	117.2
C152-N142-C132	116.2(9)
N142-C152-C162	122.5(10)
N142-C152-H152	118.7
C162-C152-H152	118 7
C152 C162 C112	120.2(8)
	120.2(0)
C152-C162-H162	119.9
C112-C162-H162	119.9
C222-C212-C262	116.1(7)
C222-C212-C32	121.2(7)
C262-C212-C32	122.7(7)
C212_C222_C222	110 5(8)
0212-0222-0232	100.0
0212-0222-H222	120.3
C232-C222-H222	120.3
N242-C232-C222	124.4(8)
N242-C232-H232	117 8

C222-C232-H232	117.8
C252-N242-C232	115.0(7)
N242-C252-C262	124.8(8)
N242-C252-H252	117.6 ໌
C262-C252-H252	117.6
C252 C262 C212	120 3(8)
	120.3(0)
	119.9
C212-C262-H262	119.9
C322-C312-C362	117.5(7)
C322-C312-C32	120.4(7)
C362-C312-C32	122.1(6)
C332-C322-C312	118.9(7)
C332-C322-C42	121.7(7)
C312-C322-C42	119 3(6)
C342 - C332 - C322	122 4(7)
C342 C332 U332	110 0
C342-C332-H332	110.0
0322-0332-11332	118.8
0332-0342-0352	119.6(7)
C332-C342-H342	120.2
C352-C342-H342	120.2
C362-C352-C342	119.6(7)
C362-C352-H352	120.2
C342-C352-H352	120.2
C352-C362-C312	122 0(7)
C352-C362-H362	119.0
C312-C362-H362	110.0
C422 C412 C462	110.0
C422-C412-C402	110.2(7)
0422-0412-042	121.9(0)
	119.8(7)
0432-0422-0412	118.2(7)
C432-C422-H422	120.9
C412-C422-H422	120.9
N442-C432-C422	125.8(8)
N442-C432-H432	117.1
C422-C432-H432	117.1
C452-N442-C432	115.4(7)
N442-C452-C462	124.6(7)
N442-C452-H452	117.7 ໌
C462-C452-H452	117.7
C452-C462-C412	117 7(7)
C452-C462-H462	121.1
	121.1
CF12-CF12 CF62	121.1
C522-C512-C502	114.0(7)
	122.3(6)
0562-0512-062	122.9(6)
0532-0522-0512	120.6(7)
C532-C522-H522	119.7
C512-C522-H522	119.7
N542-C532-C522	123.5(7)
N542-C532-H532	118.2
C522-C532-H532	118.2
C552-N542-C532	116.0(7)
N542-C552-C562	124.7(7)
N542-C552-H552	117.7
C562-C552-H552	117 7
C552-C562-C512	120 3(7)
C552-C562-H562	110.8
C512-C562 U562	110.0
C662 C642 C622	113.0
	119.5(7)
	120.0(7)
0622-0612-062	111.6(6)
C632-C622-C612	120.0(7)

C632-C622-C12	126.3(7)
C612-C622-C12	113.0(6)
C622-C632-C642	120.2(8)
C622-C632-H632	119.9
C642-C632-H632	119.9
C632-C642-C652	120.0(8)
C632-C642-H642	120.0
C652-C642-H642	120.0
C662-C652-C642	120.3(8)
C662-C652-H652	119.9
C642-C652-H652	119.9
C652-C662-C612	119.8(8)
C652-C662-H662	120.1
C612-C662-H662	120.1

S8. Cartesian Coordinates of computational studied molecules

Coordinates of rubrene:

С	-0.03043	1.84339	-4.59077
С	0 50666	2 97722	-3 91902
Č	0.67410	2.05706	2 5570
C	0.07419	2.95790	-2.5579
С	0.32328	1.80782	-1.77581
С	-0.08119	0 60341	-2 48009
Č	0.00110	0.00041	2.40000
C	-0.31131	0.6966	-3.89297
С	0.32442	1.82604	-0.36527
C	0 00829	0 63451	0 36038
Č	0.00020	0.00401	0.00000
C	0.00049	-0.03470	-0.35874
С	-0.19974	-0.61272	-1.77524
С	-0.30061	0 6271	1 75724
Č	0.00001	0.6211	0 46700
C	-0.30255	-0.59176	2.40720
С	0.08657	-1.81852	1.79337
С	0 19332	-1 84048	0 38678
Č	0.64225	0 66797	2 9599
	-0.04223	-0.00707	3.0500
С	-0.47756	-1.82636	4.57423
С	0.04436	-2.9901	3.94292
Ĉ	0 31366	2 08/17	2 50805
0	0.51500	-2.90417	2.59005
C	-0.70008	-1.81431	-2.50804
С	-0.79087	1.85645	2.44995
C	0.82213	3 05057	0 33054
0	0.02210	2.00077	0.00004
C	0.67122	-3.09377	-0.27080
С	-2.0049	-2.26737	-2.24617
С	-2.55672	-3.3252	-2.97094
Ċ	1 810//	3 05576	3 060/5
0	-1.01044	-0.55570	-3.303-3
C	-0.51117	-3.51683	-4.23891
С	0.03541	-2.45182	-3.52078
С	0.13786	4.27682	0.29857
Ċ	0.68520	5 / 1678	0 8805
0	0.00523	5.41070	0.0035
C	1.93577	5.35713	1.51101
С	2.63206	4.14636	1.54197
С	2.0786	3.00455	0.95997
C C	2 04509	2 27625	2 09762
0	-2.04390	2.37033	2.00702
C	-2.59489	3.4663	2.76565
С	-1.89508	4.06234	3.81766
С	-0 64591	3 55628	4 18785
Č	0 10202	2 4506	2 51507
0	-0.10302	2.4590	3.51597
C	-0.08403	-4.27785	-0.29277
С	0.43897	-5.44951	-0.84228
С	1 73451	-5 46495	-1 36665
C C	2 50007	4 20715	1 24254
0	2.50067	-4.29715	-1.34234
C	1.97247	-3.12313	-0.80259
Н	-0.20514	1.88259	-5.66706
н	0 77143	3 86993	-4 48778
	1 06407	2 02726	2 04700
п	1.06407	3.03/30	-2.04799
Н	-0.7005	-0.17443	-4.41758
Н	-1.02085	0.22502	4.35358
н	_0 73335	1 85258	5 63457
	0.10000	2 00424	4 50004
П	0.21044	-3.69434	4.52681
Н	0.69079	-3.88539	2.1176
Н	-2.59226	-1.77175	-1.47143
н	_3 57/01	-3 65/30	-2 75670
11	-0.07491	-0.00400	-2.13019
н	-2.23889	-4.78398	-4.535/6
Н	0.08147	-4.0065	-5.01322
Н	1.05013	-2.1148	-3.73594
н	-0 83869	4 32958	-0 18411
	0,0000		0.10711

	0.13171 2.36528 3.61268 2.62811 -2.59775 -3.57463 -2.32095 -0.0896 0.87273 -1.09582 -0.16922 2.14431 3.51636 2.57538	6.3567 6.25033 4.09015 2.06185 1.90735 3.8475 4.91566 4.01819 2.07075 -4.27211 -6.35519 -6.38302 -4.29965 -2.214	0.8642 1.9672 2.01757 0.9786 1.27133 2.47287 4.34745 5.00498 3.80954 0.1142 -0.86135 -1.79044 -1.74211 0.77844
Coordina	tes of DAR:		
٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥	0.15423 0.65919 0.78494 0.42066 0.04555 -0.13919 0.38057 0.04945 0.06123 -0.09193 -0.2959 -0.32425 0.0727 0.22181 -0.70182 -0.56964 -0.04427 0.26347 -0.55557 -0.78897 0.86074 0.71802 -1.862 -2.37114 -1.5789 -0.27837 0.22461 0.19135 0.76914 1.9579 2.60115 2.10274 -2.02626 -2.5705 -1.88205 -0.65159 -0.11534 -0.02267 0.56446	1.89312 3.02396 2.99152 1.82949 0.63077 0.73688 1.82768 0.62794 -0.63182 -0.59337 0.60513 -0.62165 -1.84393 -1.84637 -0.70924 -1.87742 -3.03966 -3.02166 -3.02166 -1.79118 1.83208 3.04476 -3.09462 2.26351 -3.3283 -3.94715 -3.48681 -2.41319 4.27672 5.38003 5.35232 4.17442 3.01128 2.37433 3.47251 4.05536 3.52529 2.41838 -4.28316 -5.42421	-4.56675 -3.86601 -2.5008 -1.74257 -2.47203 -3.89043 -0.33264 0.37188 -0.36294 -1.78493 1.7599 2.45531 1.77828 0.37543 3.83605 4.54201 3.91125 2.57491 -2.54619 2.45367 0.38662 -0.27663 2.33113 -3.07649 -4.04643 -4.27121 -3.53488 0.36669 0.99682 1.6206 1.62839 1.04013 2.06398 2.73248 3.7993 4.19822 3.53822 -0.34746 -0.89646

Ν	1.82487 -5.47348 -1.35698
С	2.53447 -4.33707 -1.27841
С	2.03521 -3.14159 -0.75962
Н	0.01367 1.94293 -5.64744
Н	0.93287 3.92544 -4.41616
Н	1.15104 3.8703 -1.97267
Н	-0.50398 -0.13176 -4.43597
Н	-1.08346 0.18251 4.33037
Н	-0.85463 -1.9132 5.59443
Н	0.1 -3.95294 4.49032
Н	0.64394 -3.92319 2.09782
Н	-2.48424 -1.77866 -1.57688
Н	-3.39098 -3.67375 -2.89943
Н	-1.97221 -4.78366 -4.62568
Н	0.34943 -3.96839 -5.02223
Н	1.2406 -2.0593 -3.71482
Н	-0.77765 4.37113 -0.12395
Н	0.24919 6.34261 0.99776
Н	3.573 4.1606 2.13117
Н	2.68008 2.08623 1.07595
Н	-2.56763 1.91756 1.23386
Н	-3.53647 3.87195 2.41925
Н	-2.30188 4.91779 4.31875
Н	-0.10419 3.97823 5.02596
Н	0.84581 2.01062 3.85393
Н	-1.05223 -4.31466 0.00982
Н	-0.00889 -6.35327 -0.96721
Н	3.56308 -4.38593 -1.64848
Н	2.66761 -2.25374 -0.71758

Coordinates of TAR:

С	0.04725	1.80382	-4.61019
С	0.54849	2.95216	-3.93597
С	0.68531	2.94743	-2.57163
С	0.33625	1.79768	-1.7884
С	-0.03807	0.58264	-2.49074
С	-0.23364	0.6591	-3.90962
С	0.31257	1.82339	-0.37845
С	-0.00335	0.63663	0.35434
С	0.00229	-0.6375	-0.35412
С	-0.16349	-0.62613	-1.77483
С	-0.32379	0.63809	1.74814
С	-0.34062	-0.5732	2.47046
С	0.04391	-1.80846	1.81004
С	0.17385	-1.83722	0.40574
С	-0.69216	-0.63376	3.85963
С	-0.54888	-1.78904	4.58419

0.24562 -2.9719 2.62433 0.66186 -3.09542 -0.2323 $-0.81509 1.87281 2.4285^{\circ}$ 0.79179 3.0566 0.31292 -0.63979 -1.8353 -2.50896 0.11116 4.28214 0.28099 0.68224 5.39786 0.89583 1.87522 5.38633 1.51221 2.53044 4.21554 1.5286 2.03816 3.04056 0.9584 -2.06359 2.40301 2.06745 -2.5677 3.50468 2.76054 -1.92223 4.11449 3.76636 -0.72731 3.606 4.10836 -0.72731 3.606 4.10836 -0.72731 3.606 4.10836 -0.72731 3.606 4.10836 -0.72731 3.606 4.10836 $-0.74454 2.49851 3.4893^{\circ}$ -0.7789 -4.28598 -0.2728 $0.49924 -5.43156 -0.8237^{\circ}$ 1.7498 -5.48168 -1.31044 2.4596 -4.34425 -1.25821 1.96843 -3.14367 -0.743 $-1.94238 -2.30657 -2.2828^{\circ}$ $-2.42337 -3.38096 -3.0326^{\circ}$ -1.7071 -4.01803 -3.97129 -0.46038 -3.56687 -4.1833 0.10687 -2.49045 -3.49876 -0.1005 1.83066 -5.69059 0.81051 3.84448 -4.50608 $1.04886 3.83874 -2.0633^{\circ}$ $-0.59618 -0.22073 -4.4382^{\circ}$ -1.0629 0.2661 4.34729 $-0.81332 -1.80397 5.6423^{\circ}$ 0.11371 -3.86696 4.55927 $0.61515 -3.88283 2.15686^{\circ}$ $-0.86153 4.36249 -0.2051^{\circ}$ $0.15312 6.35505 0.89227^{\circ}$ $3.50602 4.21715 2.02416^{\circ}$ $2.62374 2.12098 1.00165^{\circ}$ $-2.64145 1.94911 1.2609^{\circ}$ -3.54506 3.91865 2.4947 -0.20627 4.11278 4.9255 $0.82927 2.13603 3.81969^{\circ}$ $-1.09943 -4.31614 0.1072^{\circ}$ $-0.07391 -6.36158 -0.8763^{\circ}$ 3.48045 -4.3959 -1.64862 $2.5924 -2.25385 -0.7248^{\circ}$	
-1.09943 -4.31614 0.10723 -0.07391 -6.36158 -0.8763 3.48045 -4.3959 -1.64862 2.59924 -2.25385 -0.72482 -2.57868 -1.82833 -1.53659 -3.4414 -3.74859 -2.87212 0.11808 -4.09584 -4.94608 1.12597 -2.1746 -3.72381	

COCOCOZOCOZOCOZOCOZOCOZOCZITITITI

H H

H H H H

S9. References

[1] CrystalExplorer (Version 3.1): S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, University of Western Australia, **2012**.

[2] Hinderer, F.; Bunz, U. H. F. Chem. Eur. J. 2013,19, 8490–8496.

[3] Chi, X.; Li, D.; Zhang ,H.; Chen, Y.; Garcia, V.; Garcia C.; Siegrist, T. *Org. Electron.* **2008**, *9*, 234–240.

[4] Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C.; *Adv. Mater.* **2011**, 23, 2367-2371.