Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Rational design of a neutral pH functional and stable organic photocathode

Laia Francàs, ‡a* Eric Burns, ‡a Ludmilla Steier, a Hyojung Cha, a Lluis Solà-Hernández, Xiaoe Li, a Pabitra Shakya Tuladhar, a Roger Bofill, Jordi García-Antón, Xavier Sala, James R. Durrant a*

Correponding authors: lfrancas@ic.ac.uk; j.durrant@imperial.ac.uk

1. Experimental information:

A. Chemicals and reagents

PC₇₀BM was purchased from Solenne BV, PCDTBT from 1-Material, PEDOT:PSS from Heraeus, evaporator materials from Kurt J. Lesker company, ultrasonic solder (alloy #GS155) from Cerasolzer, and 5-minute epoxy resin from Devcon. RuO₂ nanoparticles were synthesized by hydrothermal synthesis following a reported procedure.¹ All other materials and reagents were purchased from Sigma-Aldrich.

B. Device fabrication

Devices were prepared on cleaned ITO-glass substrates: ITO substrates were sonicated for 20 minutes in detergent water and followed by 3 sonicated washes of 5 minutes in DI water, 2 sonications of 5 minutes in acetone, and 1 sonication of 5 minutes in isopropanol. ITO-glass were then treated with an additional O_2 plasma treatment (8 min at 3 mbar O_2 at 155 W) immediately prior to device fabrication. OPV and OPV PEC devices were then constructed via subsequent spincoating/drying steps of different material layers. After each spincoated thin film, a narrow strip ~1 mm was removed using a complimentary solvent to reveal the ITO back contact as indicated in figure S1b. The final tested PEC devices were presenting an area between 0.6 to 0.7 cm².

NiO layer:

Nickel oxide (NiO) HTL solution was prepared from 52 mg nickel(II) acetate tetrahydrate in 1ml methoxyethanol and $12\mu l$ ethanolamine and stirred overnight. The NiO solution was filtered through a 0.45 micron PTFE filter and spincoated directly onto clean ITO at a spin speed of 4000 rpm for 45 s. A thin strip of the deposited film was wiped clean using isopropanol as indicated in figure S1b. NiO layers were annealed at 250 °C for 20 min and post-treated with O_2 plasma immediately prior to BHJ film deposition (8 min at 3 mbar O_2 at 155 W) which serves to shift the work function deeper – towards the HOMO energy level of the donor polymer.^{1,2}

PEDOT:PSS layer

PEDOT:PSS was filtered through a 0.45 micron PTFE filter and otherwise used as received. The PEDOT solution was spincoated at a spin speed of 3500 rpm for 45 s onto ITO-glass. A thin strip of the deposited film was wiped clean using DI water (as indicated in figure S1b) and the remaining film was subsequently annealed at 150 °C for 15 min.

PCDTBT: PC70BM blend

A solution of PCDTBT: $PC_{70}BM$ (1:2) 18 wt% in chlorobenzene was prepared and stirred for at least 12h before use. Note: the same solution may be kept over a period of several days under a stirred environment with no apparent loss in performance. The blend solution was spun onto the hole selective layer at a spin speed of 2000 rpm for 60 s with no post-treatment.³ A thin strip was wiped clean with chloroform to reveal the ITO back contact as indicated in figure S1b.

OPV fabrication:

Organic photovoltaic devices had the following structure: ITO || NiO or PEDOT:PSS || PCDTBT: PC₇₀BM || Ca (25 nm) || Al (150 nm)

Calcium and aluminium contacts were thermally evaporated as shown in Fig. S1c.

Photocathode fabrication:

Organic photocathode devices had the following structure: ITO || NiO or PEDOT:PSS || PCDTBT: PC₇₀BM || Au (70-80 nm) or ALD TiO₂ (100 nm) || RuO₂ NP

Gold was thermally evaporated onto the middle of the OPV cells to give a cumulative pixel area of 1 cm² (Fig. S2a).

Atomic layer deposition of TiO₂:

A layer of 100 nm TiO_2 was deposited via atomic layer deposition (ALD) in a home-built ALD reactor, at 75 °C hotplate temperature in exposure mode with pulse, hold and purge times of 0.015 s/10 s/60 s for H_2O (held at room temperature) and 0.1 s/10 s/60 s for tetrakis(dimethylamino) titanium, (TDMAT, heated at 75 °C) with 10 sccm N_2 flow.⁴ A growth rate of 0.7 Å per cycle on a Si wafer as measured by a reflectometer (F20, Filmetrics). To avoid polymer degradation, the chamber was cooled to 30 °C before inserting and removing the samples. The substrates were heated only after evacuating the chamber to \sim 0.3 mbar under inert N_2 (Carbagas, 99.999% pure) flow. A thin strip of thermal tape was applied to the top of the photocathode device to prevent TiO_2 deposition onto the ITO back contact as seen in figure S2c.

RuO₂ deposition:

RuO $_2$ nanoparticles were prepared through a hydrothermal method previously published (Figure S3). RuO $_2$ nanoparticles were added to 1 ml methanol at concentration 10 mg/ml and stirred for 48 h to create a suspension. 30 μ l of the RuO $_2$ nanoparticles solution were spin-coated onto TiO $_2$ - or Aucoated devices at 4000 rpm for 40 s. A thin wire soldered to the ITO back contact via ultrasonic soldering and the final device was encapsulated around the edges with epoxy such that only the solution-OPV interface layer was exposed to the electrolyte (Fig. S2b). The catalyst after deposition on top of our photocathode was activated by performing several LSV under 1 sun illumination (Figure S11).

C. Instrumentation:

XRD patterns of the samples were recorded at the "Servei de Difracció de Rais X" at the UAB using a Phillips XPert diffractometer equipped with a two circle diffractometers and a Cu tube.

Transmission electron microscopy observations were performed at the "Servei de Microscòpia" of the UAB. TEM grids were prepared by drop-casting of the crude colloidal solution onto a holey carbon-coated copper grid. TEM analyses were performed on a JEOL 2011 electron microscope working at 200 kV with a point resolution of 1.8 Å. Statistical size distributions were built via manual analysis of enlarged micrographs by measuring ca. 200 non-touching nanoparticles. The analyses were done by assuming that the nanoparticles are spherical. Nanoparticle sizes are quoted as the mean diameter \pm the standard deviation.

Solar cell performance was evaluated under xenon lamp with AM 1.5G filters at 1 sun referenced to a certified silicon diode.

All photocathode electrochemical measurements were carried out in a cappuccino cell in a three-electrode configuration using an Ag/AgCl (sat'd KCl) as a reference, a Pt mesh as a counter and the photocathode as the working electrode in 0.1 M phosphate buffer (pH 7) or 0.1 M sulfuric acid (pH 1). Linear sweep voltammetry and chronoamperometry measurements were carried out with an Autolab PGSTAT101 potentiostat under simulated AM 1.5G illumination (1 sun calibrated with a certified Si diode using a KG3 filter).

Hydrogen evolution measurements were performed in a gas tight three electrode electrochemical cell with the best performing photocathode applying 0 V vs RHE under 1 sun back illumination. The hydrogen was detected using a gas-phase Clark-type hydrogen electrode (Unisense H₂-NP microsensor). Quantification of the evolved gas was done by adding known volumes of hydrogen.

D. Faradaic efficiency calculations

The Faradaic efficiency has been estimated as follows:

$$FE = \frac{\text{moles of gas phase H}_2 + \text{moles of dissolved H}_2}{\text{moles of H}_2 \text{ calculated from the photocurrent}} \times 100$$

Moles in the gas phase were directly estimated from the H_2 clark measurement =7.76 $10^{-6}\,H_2$ moles

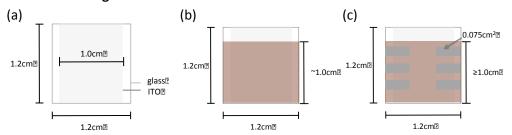
Moles of dissolved H₂:

$$[H_2] = \frac{P}{K_H}$$

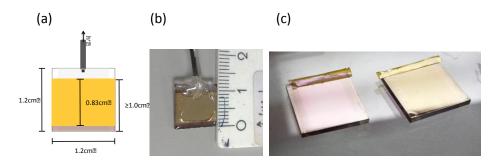
Where K_H (Henry constant) = 1282.05 $\frac{L \times atm}{mol}$, and P is the pressure in the head space of the cell

P was estimated using the ideal gases law:

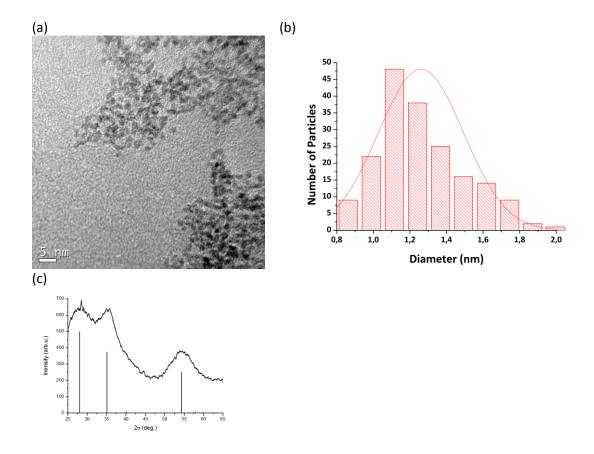
$$P = \frac{\text{moles H}_2 \times R \times T}{\text{Volume}} = \frac{7.76 \times 10^{-6} (\text{moles}) \times 0.082 \left(\frac{\text{L x atm}}{\text{K x mol}}\right) \times 298 \text{ (K)}}{5.2 \times 10^{-3} \text{(L)}} = 0.0365 \text{ atm}$$

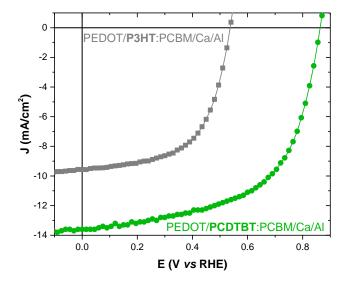

$$[H_2] = \frac{P}{K_H} = \frac{0.0365 \text{ (atm)}}{1282.05 \left(\frac{\text{L x atm}}{\text{mole}}\right)} = 2.85 \times 10^{-5} \frac{\text{mole}}{\text{L}}$$

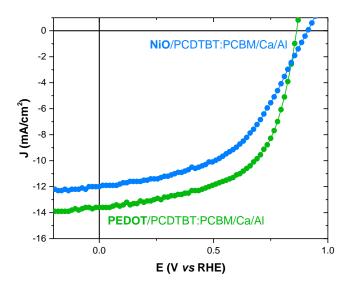
This concentration was in a 55 mL of aqueous solution, so 1.566×10^{-6} moles of H₂ were dissolved in the solution

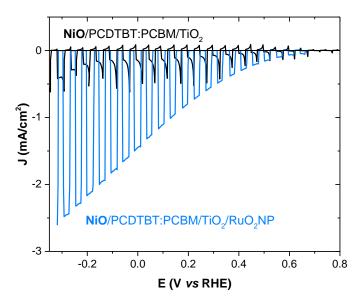

From the monitored photocurrent we know that we have accumulated 15.55 coulombs which corresponds to 8.06×10^{-5} moles of H_2

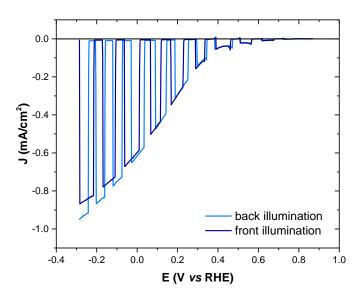
FE =
$$\frac{7.76 \times 10^{-5} + 1.566 \times 10^{-6} \text{ moles of H}_2}{8.06 \times 10^{-5}} \times 100 = 98 \%$$


2. Tables and Figures


Figure S1. (a) Typical ITO glass slide used in this work. (b) Device with absorber blend. In case of the organic photocathode, the ALD TiO_2 layer would cover the same absorber area. (c) OPV device after calcium and aluminum thermal evaporation.


Figure S2. (a) Photocathode after thermal evaporation of gold. (b) Photograph of a photocathode device coated with Au and RuO_2 nanoparticles. (c) Photograph of photocathode device coated without (left) and with (right) TiO_2 -ALD.


Figure S3. RuO₂-NP characterisation. (a) TEM image (b) size distribution histogram and (c) powder XRD diffractogram with RuO₂ theoretical pattern. The presented experiments show the rutile RuO₂ nature of the as synthesised 1.3 ± 0.3 nm nanoparticles.


Figure S4. J-V curves for the conventional solar cell devices using P3HT:PCBM (grey) or PCDTBT (green).

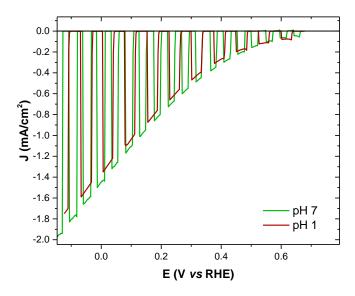

Figure S5. J-V curves for the conventional solar cell devices using PEDOT/PCDTBT:PCBM (green) or NiO/PCDTBT:PCBM (blue).

Figure S6. J-V curves at pH 7 using photocathodes with the conformation NiO/PCDTBT:PCBM/TiO₂ (black trace) and NiO/PCDTBT:PCBM/TiO₂/RuO₂-NP (blue trace) using back illumination (Area = 0.7 cm^2).

Figure S7. J-V curves at pH 7 using photocathodes with the conformation NiO/PCDTBT:PCBM/TiO $_2$ /RuO $_2$ -NP using front and back illumination (Area = 0.6 cm²).

Figure S8. J-V curves using NiO/PCDTBT:PCBM/TiO $_2$ /RuO $_2$ -NP as a photocathode at pH 1 (red) and pH 7 (green), back illumination (Area = 0.7 cm 2).

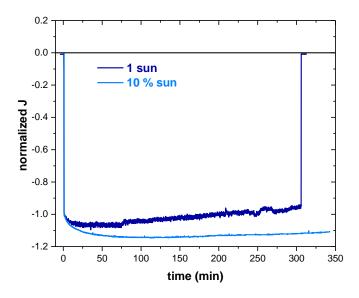
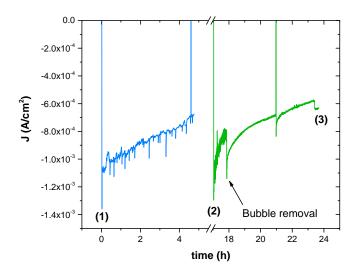
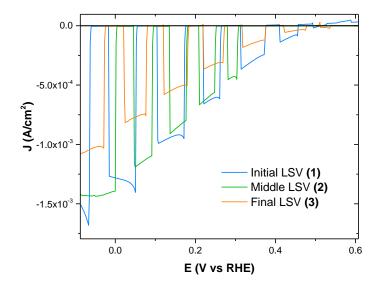
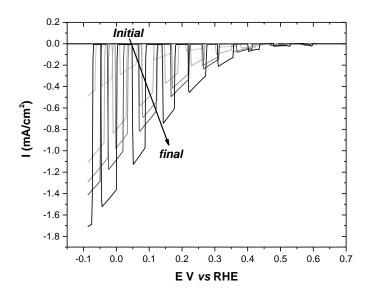




Figure S9. Bulk electrolysis at 0 V vs RHE at 1 sun (dark blue) and 10% of a sun (light blue) (Area = 0.7 cm^2).


(a)

(b)

Figure S10. Long term bulk electrolysis experiment performed with NiO/PCDTBT:PCBM/TiO₂/RuO₂-NP [2] at 0 V vs RHE at 1 sun. (a) Current density vs time during two consecutive 5 h bulk electrolysis, 1-5 hours (light blue) and 5-10 hours (green). (b) LSV before the experiment (light blue), after 5 h of bulk electrolysis (green) and after 10 h of bulk electrolysis (orange). The initial 5 hours decay can be associated with bubble formation, as indicated by the lack of deactivation measured by the LSV before (light blue) and after (green) this first 5 hours of bulk electrolysis. In the next 5 hours of electrolysis (green) the decay of performance is due to some deactivation of the system and is around 20%. (area 0.7 cm²).

Figure S11. Activation process of NiO/PCDTBT:PCBM/TiO $_2$ /RuO $_2$ -NP by performing J-V curves at pH 7, back illumination. (Area = 0.7 cm 2).

Table S1: Literature review on organic photocathodes.

Entry	HTL	Active Layer	ETL	Catalyst	Stability	Current Onset (vs RHE)	Current (mA/cm²) 0 RHE	рН	Ref
1	NiO	PCDTBT:PCBM	ALD-TiO₂	RuO ₂ -NP	-10 % in 5 hours (@ 0 vs RHE)	0.67	1.4	7	In this work
2	PEDOT	PCDTBT:PCBM	ALD-TiO ₂	RuO ₂ -NP	95 % in 90 min (@ 0 V vs RHE)	0.67	2.9	7	In this work
3	Cul	P3HT:PC ₆₀ BM	TiO2-ALD	RuOx	3.5 hours (@ 0 V vs RHE)	0.5	3	5	6
4	Cul	P3HT:PC ₆₀ BM	TiO2-PEI	Pt	-40% in 40 min (@ 0 vs RHE)	0.60	5.25	1.0	7
5	p-MoS ₂	P3HT:PC ₆₀ BM	TiO ₂	MoS ₃	-50% in 5 min (@ 0 vs RHE)	0.56	1.21	1.0	8
6	WO ₃	P3HT:PC ₆₀ BM	TiO ₂	Pt	-30% peak in 8h (@ 0.20 vs RHE)	0.56	2.48	1.4	9
7	PEDOT:PSS	P3HT:PC ₆₀ BM		MoS ₃	-100% <15 min (@ 0 vs RHE) ª	-0.15	0.05	2	10
8		P3HT:PC ₆₀ BM		MoS ₃	NA	0.19	0.6	2	10
9	rGO	P3HT:PC ₆₀ BM		MoS ₃	No loss in 1h	0.20	0.7	2	10
10	NiO _x (sol. gel.)	P3HT:PC ₆₀ BM		MoS ₃	+100% in 1h (@ 0 vs RHE) ^b	0.34	1.3	2	10
11	MoO _x (sol. gel.)	P3HT:PC ₆₀ BM		MoS ₃	-20% in 1h (@ 0 vs RHE)	0.41	2.2	2	10
12	PEDOT:PSS	α-6T/SubPc	C ₆₀	MoS ₃	-90% in 5min (@ 0 vs RHE)			0-1	11
13	PEDOT:PSS	α-6T/SubNc	C ₆₀	MoS ₃	-30% in 5min (@ 0 vs RHE)	0.69	3.6	0-1	11
14	PEDOT:PSS	α-6T/ SubNc/SubPc	C ₆₀	MoS ₃	-70% in 5min (@ 0 vs RHE)	0.70	1.5	0-1	11
15	PEDOT:PSS	α-6T/α-6T: SubNc/SubNc	C ₆₀	MoS ₃	-90% in 5min (@ 0 vs RHE)	0.68	2.4	0-1	11
16	MoO ₃	P3HT:PC ₆₀ BM	TiO ₂	Pt	-80% in 30min (@ 0.18 vs RHE)	~0.6	~1.5	1.37	12
17		P3HT:PC ₆₀ BM	TiO ₂	Pt	No loss in100min ^{c,d}			1.37	13
18	MoO ₃	P3HT:PC ₆₀ BM	TiO ₂	Pt	-90% in 100min (@ 0 vs RHE) ^{c,e}	~0.55	~3	1.37	13
19	Cul	P3HT:PC ₆₀ BM	TiO ₂	Pt	-60% in 20min	0.72	~8	1	14

					(@ 0 vs RHE)				
20	PANI	P3HT:PC ₆₀ BM			-70% in 1h	0.1	0.3	2	15
					(@ 0 vs RHE)				
21	PEDOT:PSS	P3HT:PC ₆₀ BM	AZO	C-Pt	-60% in 1h	~0.25	~1.2	7	16
22	PEDOT:PSS	P3HT:PC ₆₀ BM	LiF/Al	Ti- MoS₃	-45% in 10 min	0.48	8.47	0-1	17
			(evap)		(@ 0 vs RHE) ^a				
23	PEDOT:PSS	P3HT:PC ₆₀ BM	LiF/Al	Ti-Pt/C	NA	0.67	7.87	0-1	17
			(evap)						
24	PEDOT:PSS	P3HT:PC ₆₀ BM		Ti- MoS ₃	-12% in 10 min (@ 0	0.32	6.81	0-1	17
					vs RHE) ^a				
25	PEDOT:PSS	P3HT:PC ₆₀ BM	C ₆₀	C_{60} -MoS ₃	-60% in ~1 min	0.24	0.86	0-1	17
					(@ 0 vs RHE) ^a				
26	Crosslinked-PEDOT	P3HT:PC ₆₀ BM	TiO _x (sol.gel)	Platinum	No loss >3h	>0.2	<0.4	2	18
27		P3HT		Pt	NA	~0.24	~0.04	~1	19
28	PEDOT:PSS	P3HT	C ₆₀	Co-N ₃	Stable 1h	>0.3	~0.002	4.5	20
29	Au	CdSe:P3HT		Pt	-50% in 5h	~0.8	1.2	7	21
30		ZnPc/C ₆₀ (bilayer)		Pt		~0	Negligible	2	22
31		P3HT			No observed		~0.015	1	23
					photocurrent				
					degradation-hours				
32	PEDOT:PSS	P3HT:PC ₆₀ BM	MoS_3	MoS_3	-50% in 45 min (@	0.25	0.05	~0	24
			(np. suspension)		0.16 vs RHE) ^a				
33	PEDOT:PSS	P3HT:PC ₆₀ BM	TiO2		NA	0.45	~0.1	~0	24
			(np. suspension)						
34	PEDOT:PSS	P3HT:PC ₆₀ BM	TiO2/ MoS₃ (np.	MoS₃	-30% in 45 min (@	0.45	~0.2	~0	24
			suspension)		0.16 vs RHE) ^a				
35		H ₂ Pc:C ₆₀ (bilayer)		Pt	NA	~0.3	~0.05	2	25
36		P3HT: Dy@C ₈₂			Stable over 1h	~0.7	~0.012	6.5	26
		, =			(@ OCP)				
37		P3HT: Dy@C ₈₂			Stable over 1h	~0.6	~0.008e	~6.5	27
		, -			(@ OCP)				
38		P3HT			-10% over 2h	~0.1	Negligible ^e	4.0	28
		Poly(pyrrole)						~2	29

^aOnly surface of photocathode in contact with water. ^bPerformance increases in first few minutes and then plateaus ^cPerformance first increases and then decreases ^d-50% in 90min from peak. ^emonochromatic light.

F. References:

- 1. K.-H. Chang and C.-C. Hu, *Electrochem. Solid-State Lett*, 2004. **7**, A466-A469.
- 2. S. Wheeler, F. Deledalle, N. Tokmoldin, T. Kirchartz, J. Nelson and J. R. Durrant, *Phys. Rev. Appl.*, 2015, **4**, 024020.
- 3. S. R. Cowan, J. V. Li, D. C. Olson and E. L. Ratcliff, Adv. Energy Mater., 2015, 5, 1400549.
- 4 H. Cheng Wong, Z. Li, C. Hong Tan, H. Zhong, Z. Huang, H. Bronstein, I. McCulloch, ao T. Cabral and J. R. Durrant, *ACS Nano*, 2014, **8**, 1297-1308.
- 5 L. Steier, J. Luo, M. Schreier, M. T. Mayer, T. Sajavaara and M. Grätzel, *ACS Nano*, 2015, **9**, 11775–11783.
- 6 L. Steier, S. Bellani, H. C. Rojas, L. Pan, M. Laitinen, T. Sajavaara, F. Di Fonzo, M. Grätzel, M. R. Antognazza and M. T. Mayer, *Sustain. Energy Fuels*, 2017, 1915–1920.
- H. C. Rojas, S. Bellani, E. A. Sarduy, F. Fumagalli, M. T. Mayer, M. Schreier, M. Grätzel, F. Di Fonzo and M. R. Antognazza, *ACS Omega*, 2017, **2**, 3424–3431.
- S. Bellani, L. Najafi, A. Capasso, A. E. Del Rio Castillo, M. R. Antognazza and F. Bonaccorso, *J. Mater. Chem. A*, 2017, **5**, 4384–4396.
- 9 A. Mezzetti, F. Fumagalli, A. Alfano, D. Iadicicco, M. R. Antognazza and F. di Fonzo, *Faraday Discuss.*, 2017, **198**, 433–448.
- T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, S. Campidelli, R. Cornut and B. Jousselme, *J. Mater. Chem. A*, 2016, **4**, 4831–4839.
- A. Morozan, T. Bourgeteau, D. Tondelier, B. Geffroy, B. Jousselme and V. Artero, *Nanotechnology*, 2016, **27**.
- A. Ghadirzadeh, F. Fumagalli, A. Mezzetti, S. Bellani, L. Meda, M. R. Antognazza and F. Di Fonzo, *ChemPhotoChem*, 2018, **2**, 1-11.
- F. Fumagalli, S. Bellani, M. Schreier, S. Leonardi, H. C. Rojas, A. Ghadirzadeh, G. Tullii, A. Savoini, G. Marra, L. Meda, M. Grätzel, G. Lanzani, M. T. Mayer, M. R. Antognazza and F. Di Fonzo, *J. Mater. Chem. A*, 2016, **4**, 2178–2187.
- H. C. Rojas, S. Bellani, F. Fumagalli, G. Tullii, S. Leonardi, M. T. Mayer, M. Schreier, M. Grä, G. Lanzani, F. Di Fonzo and M. R. Antognazza, *Energ. Environ. Sci.* 2016, **9**, 3710.
- E. Belarbi, V. M. Blas-Ferrando, M. Haro, H. Maghraoui-Meherzi and S. Gimenez, *Chem. Eng. Sci.*, 2016, **154**, 143-149.
- M. Haro, C. Solis, V. M. Blas-Ferrando, O. Margeat, S. Ben Dhkil, C. Videlot-Ackermann, J. Ackermann, F. Di Fonzo, A. Guerrero and S. Gimenez, *ChemSusChem*, 2016, **9**, 3062–3066.
- T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, R. Cornut, V. Artero and B. Jousselme, *ACS Appl. Mater. Interfaces*, 2015, **7**, 16395-16403.
- 18 M. Haro, C. Solis, G. Molina, L. Otero, J. Bisquert, S. Gimenez and A. Guerrero, *J. Phys. Chem. C*, 2015, **119**, 6488-6494.
- 19 G. M. Suppes, P. J. Fortin and S. Holdcroft, J. Electrochem. Soc., 2015, 162, H551–H556.
- 20 Y. Chen, H. Chen and H. Tian, *Chem. Commun.*, 2015, **51**, 11508–11511.
- 21 L.-H. Lai, W. Gomulya, M. Berghuis, L. Protesescu, R. J. Detz, J. N. H. Reek, M. V. Kovalenko and M. a.

- Loi, ACS Appl. Mater. Interfaces, 2015, 7, 19083–19090.
- T. Abe, Y. Hiyama, K. Fukui, K. Sahashi and K. Nagai, *Int. J. Hydrogen Energy*, 2015, **40**, 9165–9170.
- 23 G. Suppes, E. Ballard and S. Holdcroft, 2013, **4**, 5345-5350.
- T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, C. Laberty-Robert, S. Campidelli, R. de Bettignies, V. Artero, S. Palacin and B. Jousselme, *Energy. Sustain. Soc.*, 2013, **6**, 2706–2713.
- 25 T. Abe, S. Tobinai, N. Taira, J. Chiba, T. Itoh and K. Nagai, *J. Phys. Chem. C*, 2011, **115**, 7701–7705.
- 26 S. Yang, L. Fan and S. Yang, *J. Phys. Chem. B*, 2004, **108**, 4394-4404.
- 27 S. Yang, L. Fan and S. Yang, *Chem. Phys. Lett.*, 2004, **388**, 253-258.
- 28 O. A. El-Rashiedy and S. Holdcroft, *J. Phys. Chem.* 1996, **100**, 5481-5484.
- 29 M. Kaneko, K. Okuzumi and A. Yamada, *J. Electroanal. Chem. Interfacial Electrochem.*, 1985, **183**, 407–410