Highly Hindered 2-(Aryl-di-*tert*-Butylsilyl)-*N*-Methyl-Imidazoles: A New Tool for the Aqueous ¹⁹F - and ¹⁸F-Fluorination of Biomolecules-Based Structures.

Marion Tisseraud,^a Jürgen Schulz,^b Delphine Vimont,^b Murielle Berlande,^a Philippe Fernandez,^b Philippe Hermange^{*,a} and Eric Fouquet^{*,a}

^aUniv. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.

^bDepartment Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR-CNRS 5287, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France

philippe.hermange @u-bordeaux.fr, eric.fouquet @u-bordeaux.fr

Electronic Supplementary Information

Table of Contents

A)	Gener	al methods	p3
		ic syntheses	
	а.	Synthesis of 2-(aryl-di-tert-butylsilyl)-N-methyl-imidazole tags	<i>p4</i>
	<i>b</i> .	Determination of the pKa of [2b-H] ⁺ /2b	p7
	с.	Syntheses of the conjugated precursors	<i>p</i> 9
	<i>d</i> .	Optimization of the conditions for the ¹⁹ F-fluorination	p14
	e.	¹⁹ F-Fluorination of precursors 3a-g	
C)	Radio	syntheses	
	а.	Radiosynthesis of [¹⁸ F] 4e	<i>p21</i>
	<i>b</i> .	Radiosynthesis of $[^{18}F]$ 4g	<i>p</i> 27
D)	¹ H, ¹³ C	C, ²⁹ Si and ¹⁹ F NMR spectra	p30

A) General methods

All commercial materials were used without further purification, unless indicated. ¹H NMR and ¹³C NMR were recorded on BRUKER AVANCE I 300 Mhz (¹H: 300MHz, ¹³C: 75.3MHz), BRUKER AVANCE II 400 Mhz (¹H: 400MHz, ¹³C: 100.2 MHz) or BRUKER AVANCE III 600 Mhz (¹H: 600MHz, ¹³C: 150.3 MHz) spectrometers. The chemical shifts for the NMR spectra are reported in ppm relative to the solvent residual peak¹. Coupling constants J are reported in hertz (Hz). The following abbreviations are used for the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; qt, quintet; st, sextet; m, multiplet; br, broad; dd, doublet of doublet. Yields refer to isolated material determined to be pure by NMR spectroscopy and thin-layer chromatography (TLC), unless specified in the text. Analytical TLC was performed on Fluka Silica Gel 60 F254. Analytical HPLC were performed on a Dionex Ultimate 3000 UHPLC with a diode array detector and analysed using the Chromeleon 7 software. Preparative HPLC were performed on a JASCO AS-1555 HPLC with a Jasco UV-2075 Plus detector. High resolution mass spectra were performed by the CESAMO (Talence, France) and were recorded on Qq-TOF tandem mass spectrometer (API Q-STAR Pulsari, Applied Biosystems). Experiments under microwave irradiation were performed using a Biotage Initiator 2.5.

¹ Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, 29, 2176

B) Organic syntheses

a) Synthesis of 2-(aryl-di-tert-butylsilyl)-N-methyl-imidazole tags

2-(di-tert-butyl(phenyl)silyl)-1-methyl-1H-imidazole 2a

Under nitrogen, 1-methylimidazole (0.75 mmol, 61.6 mg) was dissolved in 1.75 mL of dry THF, and a *n*-butyllithium solution (1.6M in hexane, 0.825 mmol, 1.1 eq., 0.51 mL) was added at -80°C. After stirring at -80°C for 10 min, di-*tert*-butylsilyl bis(trifluoromethanesulfonate) (1.125 mmol, 1.5 eq., 496 mg) and a phenyllithium solution (1.9M in dibutyl ether, 1.5 mmol, 2 eq., 0.8 mL) were successively added dropwise. The reaction was allowed to warm to room

temperature and stirred for 16h at rt. The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on a silica gel (cyclohexane/EtOAc: 90/10; Rf = 0.5) to give **2a** (188.5 mg, 84%) as a yellow powder. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.63-7.60 (m, 2H), 7.40-7.34 (m, 3H), 7.32 (s, 1H), 7.00 (s, 1H), 3.40 (s, 3H), 1.16 (s, 18H) ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 148.2, 136.3 (2C), 135.1, 130.5, 129.3, 127.7 (2C), 123.3, 36.8, 29.4 (6C), 20.7 (2C). ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) -5.90. HRMS (ESI/TOF⁺) C₁₈H₂₉N₂Si [M+H]⁺ calculated 301.2094, found 301.2104. MP (°C): 76-77.

1-bromo-4-(methoxymethoxy)benzene

Br

Under nitrogen, 4-bromophenol (10 mmol, 1.73g) was dissolved in 10 mL of dry dichloromethane. Chloromethyl methyl ether (11 mmol, 1.1 eq., 0.88 mg, 0.84 mL) and N, N-diisopropylethylamine (11 mmol, 1.1 eq., 1.42 g,

1.92 mL) were added at 0°C. Then, the mixture was stirred at room temperature for 48h. The reaction was quenched with an aqueous saturated solution of ammonium chloride (10 mL). The aqueous layer was extracted three times with dichloromethane (3x 10 mL), and the combined organic layers were washed with brine (10 mL), dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on a silica gel (cyclohexane/dichloromethane: 80/20 ; Rf = 0.3) to give 1-bromo-4-(methoxymethoxy)benzene (1.85 g, 86%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38 (d, 2H, *J* = 9.0 Hz), 6.93 (d, 2H, *J* = 9.0 Hz), 5.14 (s, 2H), 3.46 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 156.4, 132.3 (2C), 118.2 (2C), 114.3, 94.5, 56.26. HRMS (EI⁺) C₈H₉BrO₂ [M]⁺ calculated 215.9786, found 215.9785.

2-(di-tert-butyl(4-(methoxymethoxy)phenyl)silyl)-1-methyl-1H-imidazole 2b

Under nitrogen, 1-methylimidazole (0.75 mmol, 61.6 mg) was dissolved in 1.75 mL of dry THF, and a *n*-butyllithium solution (1.6M in hexane, 0.825 mmol, 1.1eq., 0.51 mL) was added at -80°C. After stirring at -80°C for 10 min, di-*tert*-butylsilyl bis(trifluoromethanesulfonate) (1.125 mmol, 1.5 eq., 496 mg), 1-bromo-4-(methoxymethoxy)benzene (1.5 mmol, 2 eq., 326 mg) and a *n*-

butyllithium solution (1.6M in hexane, 1.65 mmol, 2.2 eq., 1.03 mL) were successively added dropwise. The reaction was allowed to warm to room temperature and stirred for 16h at rt. The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on a silica gel (cyclohexane/EtOAc: 90/10; Rf = 0.3) to give **2b** (81.4 mg, 70%) as a brown powder. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.54 (d, 2H, *J* = 8.6 Hz), 7.31 (s, 1H), 7.03 (d,

2H, J = 8.6 Hz), 6.99 (s, 1H), 5.20 (s, 2H), 3.50 (s, 3H), 3.42 (s, 3H), 1.15 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 158.4, 148.4, 137.7 (2C), 130.5, 127.1, 123.2, 115.5 (2C), 94.3, 56.3, 36.7, 29.4 (6C), 20.7(2C). ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) -6.81. HRMS (ESI/TOF⁺) C₂₀H₃₂N₂O₂Si [M+H]⁺ calculated 361.2305, found 361.2308. MP (°C): 100-101.

4-((1-methyl-1H-imidazol-2-yl)-di-tert-butylsilyl) phenol 2c

2b (0.6 mmol, 205.8 mg) was dissolved in 12 mL of methanol and 6 mL of an aqueous solution of sulfuric acid (6.2M) was added. The mixture was stirred at 50°C for 24h. The reaction was quenched with an aqueous solution of sodium bicarbonate, and extracted with dichloromethane (2x 10 mL). The combined organic layers were dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude mixture was

purified by column chromatography on silica gel (cyclohexane/EtOAc: 70/30; Rf = 0.3) to give **2c** (171 mg, 90%) as a white solid. ¹H NMR (300 MHz, MeOD) δ (ppm) 7.44 (d, 2H, *J* = 8.6 Hz), 7.2 (d, 1H, *J* = 1.1 Hz), 7.18 (d, 1H, *J* = 1.1 Hz), 6.85 (d, 2H, *J* = 8.6 Hz), 3.43 (s, 3H), 1.13 (s, 18H). ¹³C NMR (75 MHz, MeOD) δ (ppm) 159.8, 149.3, 138.7 (2C), 130.7, 124.9, 124.4, 116.1 (2C), 37.4, 29.8 (6C), 21.4(2C). ²⁹Si NMR (59 MHz, MeOD) (δ ppm) -6.53. HRMS (ESI/TOF⁺) C₁₈H₂₈N₂OSi [M+H]⁺ calculated 317.2043, found 317.2053. MP (°C): 98-99.

2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethanol

Under nitrogen, triethylene glycol (10 mmol, 1.50 g, 1.34 mL) was added to a solution of potassium *tert*-butoxide (5 mmol, 0.5 eq., 561 mg) in 40 mL of dry THF and the mixture

was stirred for 30 min at rt. Propargyl bromide (5 mmol, 0.5 eq., 594.8 mg, 445.5 μ L) was added and the mixture was stirred at room temperature for 24h. The reaction mixture was filtered on celite and washed with ethyl acetate (2x 10 mL). The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (EtOAc: 100%; Rf = 0.5) to give 2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethanol (775 mg, 41 %) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.18 (d, 2H, *J* = 2.4 Hz), 3.72-3.57 (m, 12H), 2.42 (t, 1H, *J* = 2.4 Hz). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 79.6, 74.7, 72.6, 70.7, 70.4, 70.4, 69.2, 61.8, 58.5.

2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate

Under argon, triethylamine (12.5 mmol, 2.5 eq., 1.74 mL) was added to a solution of 2-(2-(2-(prop-2-ynyloxy) ethoxy) ethoxy)ethanol (5 mmol, 0.94 g) and trimethylamine hydrochloride (0.5 mmol, 0.1

eq., 47.8 mg) in 6 mL of dry acetonitrile at rt. Then, a solution of *p*-toluenesulfonyl chloride (10 mmol, 2 eq., 1.90 g) in dry acetonitrile (6 mL) was added to the mixture at 0°C and stirred at room temperature for 24h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (Cyclohexane/EtOAc: 70/30; Rf = 0.4) to give 2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (80%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.80 (d, 2H, *J* = 8.2 Hz), 7.34 (d, 2H, *J* = 8.2 Hz), 4.19 (d, 2H, *J* = 2.3 Hz), 4.17-4.14 (m, 2H), 3.70-3.59 (m, 10H), 2.44 (s, 3H), 2.42 (t, 1H, *J* = 2.3 Hz). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 144.9, 133.2, 129.9 (2C), 128.1 (2C), 79.7, 74.7, 70.9, 70.7, 70.6, 69.4, 69.2, 68.8, 58.5, 21.8.

<u>2-((4-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)phenyl)di-tert-butylsilyl)-1-methyl-1H-</u> imidazole 2d

Compound **2c** (0.08 mmol, 27.1 mg) was dissolved in dry THF (3 mL) under argon. Then, potassium *tert*-butoxide (0.12 mmol, 1.5 eq., 13.5 mg) and a solution of 2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (0.12 mmol, 1.5

eq., 41 mg) in dry THF (2 mL) were added at rt. The reaction was stirred at room temperature for 24h and a saturated aqueous solution of NaHCO₃ was added (10 mL). The mixture was extracted three times with ethyl acetate (3x 10 mL) and the combined organic layers were dried over magnesium sulfate. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/EtOAc: 80/20; Rf = 0.3) to give **2d** (32.8 mg, 85%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.52 (d, 2H, *J* = 8.4 Hz), 7.31 (d, 1H, *J* = 1.0 Hz), 6.99 (d, 1H, *J* = 1.0 Hz), 6.92 (d, 2H, *J* = 8.4 Hz), 4.2 (d, 2H, *J* = 2.4Hz), 4.16-4.13 (m, 2H), 3.89-3.98 (m, 2H), 3.76-3.67 (m, 8H), 3.40 (s, 3H), 2.41 (t, 1H, *J* = 2.4 Hz), 1.14 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 159.7, 148.4, 137.6 (2C), 130.4, 125.8, 123.2, 118.3, 114.0 (2C), 74.7, 70.9, 70.8, 70.6, 69.8, 69.3, 67.2, 58.5, 36.7, 29.4 (6C), 20.7 (2C). ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) -6.87. HRMS (ESI/TOF⁺) C₂₇H₄₂N₂O₄Si [M+H]⁺ calculated 487.2986, found 487.2984.

di-tert-butyl(4-(2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)phenyl)silane

4-(Di-*tert*-butylsilyl)phenol (3.4 mmol, 802 mg) was dissolved in dry THF (30 mL) under argon. Then, potassium *tert*-butoxide (5.1 mmol, 1.5 eq., 572.2 mg) and a solution of 2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl 4-

methylbenzenesulfonate (5.1 mmol, 1.5 eq., 1.74 g) in dry THF (15 mL) were added at rt. The reaction was stirred at room temperature for 24h and a saturated aqueous solution of NaHCO₃ was added (10 mL). The mixture was extracted three times with ethyl acetate (3x 10 mL) and the combined organic layers were dried over magnesium sulfate. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (cyclohexane/EtOAc: 70/30; Rf = 0.6) to give the title compound as a colorless oil. (298 mg, 67%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.47 (d, 2H, *J* = 8.6 Hz), 6.89 (d, 2H, *J* = 8.6 Hz), 4.19 (d, 2H, *J* = 2.4 Hz), 4.15-4.12 (m, 2H), 3.87-3.84 (m, 2H), 3.82 (s, 1H), 3.75-3.72 (m, 2H), 3.70-3.66 (m, 6H), 2.41 (t, 1H, *J* = 2.4 Hz), 1.02 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 159.6, 137.2 (2C), 126.6, 114.0 (2C), 79.8, 74.6, 70.9, 70.8, 70.6, 69.9, 69.3, 67.1, 58.54, 29.1 (6C), 19.2 (2C). ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) 12.53. HRMS (ESI/TOF⁺) C₂₃H₃₈O₄Si [M+Na]⁺ calculated 429.2431, found 429.2428.

b) Determination of the pKa of [2b-H]⁺/2b

2b (0.1 mmol, 36.1 mg) and 0.4 mL of an aqueous solution of HCl (0.4 mmol, 1M) were added to 90mL of water. Then, the resulting solution was titrated with an aqueous solution of NaOH (0.02M) and after each addition, the pH was measured by a pHmeter (H12211, Hanna Instruments) to follow the titration. The pKa of $[2b-H]^+/2b$ (6.26) was read on the pH = f(VNaOH) plotting at the half-equivalence of $[2b-H]^+$ + HO⁻ \rightarrow 2b + H₂O.

The measured pH values are s	summarised in the following table:
------------------------------	------------------------------------

V(NaOH) mL	pН	V(NaOH) mL	рН								
0	2.48	6.75	2.63	13.5	2.8	20	3.05	26.5	4.09	33.5	9.79
0.25	2.49	7	2.63	13.75	2.81	20.25	3.06	27	4.33	33.75	9.88
0.5	2.5	7.25	2.64	14	2.82	20.5	3.07	27.25	4.54	34	9.97
1	2.5	7.5	2.64	14.25	2.83	20.75	3.09	27.5	4.67	34.25	10.05
1.25	2.51	7.75	2.65	14.5	2.83	21	3.11	27.75	4.93	34.5	10.11
1.5	2.51	8	2.65	14.75	2.84	21.25	3.13	28	5.48	34.75	10.15
1.75	2.52	8.25	2.66	15	2.84	21.5	3.14	28.25	5.71	35	10.19
2	2.52	8.5	2.67	15.25	2.85	21.75	3.16	28.5	5.85	35.25	10.24
2.25	2.52	8.75	2.67	15.5	2.86	22	3.18	28.75	5.91	35.5	10.29
2.5	2.53	9	2.68	15.75	2.86	22.25	3.2	29	5.99	35.75	10.33
2.75	2.54	9.25	2.68	16	2.87	22.5	3.22	29.25	6.06	36	10.36
3	2.54	9.5	2.68	16.25	2.89	22.75	3.24	29.5	6.13	36.25	10.39
3.25	2.54	9.75	2.69	16.5	2.89	23	3.28	29.75	6.19	36.5	10.42
3.5	2.55	10	2.7	16.75	2.9	23.25	3.3	30	6.26	36.75	10.44
3.75	2.55	10.25	2.7	17	2.91	23.5	3.32	30.25	6.35	37	10.47
4	2.56	10.5	2.71	17.25	2.92	23.75	3.36	30.5	6.45	37.25	10.49
4.25	2.56	10.75	2.72	17.5	2.93	24	3.39	30.75	6.56	37.5	10.51
4.5	2.57	11	2.73	17.75	2.94	24.25	3.43	31	6.69	37.75	10.53
4.75	2.57	11.25	2.74	18	2.95	24.5	3.36	31.25	6.81	38	10.54
5	2.58	11.5	2.74	18.25	2.96	24.75	3.5	31.5	7.04	38.25	10.58
5.25	2.58	11.75	2.75	18.5	2.97	25	3.55	31.75	7.25	38.5	10.59
5.5	2.59	12	2.76	18.75	2.99	25.25	3.61	32	8.59	38.75	10.61
5.75	2.6	12.25	2.76	19	2.99	25.5	3.69	32.25	9.05	39	10.63
6	2.61	12.5	2.77	19.25	3.01	25.75	3.78	32.5	9.29	39.25	10.65
6.25	2.61	13	2.78	19.5	3.02	26	3.86	32.75	9.51	39.5	10.66
6.5	2.62	13.25	2.79	19.75	3.04	26.25	4.04	33	9.63	39.75	10.67

Plotting of the pH as a function of the volume of aqueous NaOH added:

c) Syntheses of the conjugated precursors

O-[3-azidopropanyl)]-(2S)-2-(R)-cinchonidine (0.19 mmol, 0.95 eq., 71.6 mg), pentahydrate copper sulfate (0.04 mmol, 0.2 eq., 9.9 mg) and sodium ascorbate (0.2 mmol, 1 eq., 39.6 mg) were added to a solution of compound 2d (0.2 mmol, 116.9 mg) in tBuOH/H₂O: 3/1 (4 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel $(EtOAc/MeOH/NH_3: 95/5/1; Rf = 0.5)$ to give compound **3a** (97.1 mg, 59%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.88 (d, 1H, J = 4.3 Hz), 8.14 (s, 1H), 8.13 (s, 1H), 7.71 (t, 1H, J = 7.6 Hz), 7.57 (t, 1H, J = 7.9 Hz), 7.50 (d, 2H, J = 8.8 Hz), 7.45 (m, 1H), 7.40 (d, 1H, J = 4.1 Hz), 7.30 (s, 1H), 6.97 (s, 1H), 6.90 (d, 2H, J = 8.8 Hz), 5.76-5.70 (m, 1H), 4.97-4.92 (m, 2H), 4.64 (s, 2H), 4.52-4.43 (m, 2H), 4.13 (m, 2H), 3.85 (m, 2H), 3.73-3.71 (m, 2H), 3.68-3.65 (m, 7H), 3.43-3.40 (m, 1H), 3.39 (s, 3H), 3.37-3.33 (m, 2H), 3.15 (m, 1H), 3.07 (m, 1H), 2.75-2.59 (m, 2H), 2.29 (m, 1H), 2.19 (m, 2H), 1.84 (m, 1H), 1.78-1.64 (m, 3H), 1.57 (m, 1H), 1.13 (s, 18H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.7, 150.2, 148.7, 148.4, 146.0, 145.4, 141.6, 137.7 (2C), 130.7 (2C), 130.4, 129.3, 126.9, 126.5, 125.8, 123.2, 122.6, 114.7, 114.0 (2C), 70.9 (2C), 70.7 (2C), 70.7 (2C), 69.9, 69.8, 67.2, 65.9, 64.8, 60.6, 56.8, 47.5, 43.2, 39.8, 36.6, 30.8, 29.8, 29.4 (6C), 27.9, 20.7 (2C). ²⁹Si NMR (119 MHz, CDCl₃) (δ ppm) -6.88. HRMS (ESI/TOF⁺) C₄₉H₆₉N₇O₅Si [M+H]⁺ calculated 864.5202, found 864.5203.

<u>N-[3-(4-((2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy) ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl)propanyl]-biotinamide 3b</u>

1-Biotin-3-azidopropylamine (0.08 mmol, 0.95 eq., 27 mg), pentahydrate copper sulfate (0.017 mmol, 0.2 eq., 4.2 mg) and sodium ascorbate (0.084 mmol, 1 eq., 16.6 mg) were added to a solution of compound **2d** (0.084 mmol, 40.8 mg) in *t*BuOH/H₂O: 3/1 (2.5 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/MeOH: 90/10; Rf = 0.4) to give compound **3b** (34.4 mg, 53%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.75 (s, 1H), 7.49 (d, 2H, *J* = 8.5 Hz), 7.45 (s, 1H), 7.14 (s, 1H),

7.11 (s, 1H), 6.93 (d, 2H, J = 8.5 Hz), 6.64 (s, 1H), 5.78 (s, 1H), 4.63 (s, 2H), 4.50-4.48 (m, 1H), 3.38 (t, 2H, J = 6.8 Hz), 4.31-4.29 (m, 1H), 4.14-4.13 (m, 2H), 3.86-3.84 (m, 2H), 3.72-3.70 (m, 2H), 3.67-3.64, (m, 6H), 3.47 (s, 3H), 3.26-3.19 (m, 2H), 3.13-3.10 (m, 1H), 2.89-2.86 (dd, 1H, J = 13.1 Hz, J = 4.9 Hz), 2.72-2.70 (m, 1H), 2.19 (t, 2H, J = 7.3 Hz), 2.11-2.67 (m, 2H), 1.74-1.60 (m, 4H), 1.42-1.39 (m, 2H), 1.14 (s, 18H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 174.1, 164.3, 160.1, 147.9, 145.1, 137.5 (2C), 128.5, 128.4, 124.2, 123.6, 114.5 (2C), 70.9, 70.7, 70.6, 69.8, 69.7, 67.3, 64.6, 61.9, 60.3, 55.9, 48.1, 40.7, 37.5, 36.4, 35.8, 30.3, 29.3 (6C), 28.3, 28.1, 25.7, 20.7 (2C). ²⁹Si NMR (119 MHz, CDCl₃) (δ ppm) -5.32. HRMS (ESI/TOF⁺) C₄₀H₆₄N₈O₆SSi [M+H]⁺ calculated 813.4511, found 813.4500.

<u>β-D-1-Deoxy-1-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl]-glucopyranose 3c</u>

1-Azido-1-deoxy-β-D-glucopyranose (0.095 mmol, 0.95 eq., 19.5 mg), pentahydrate copper sulfate (0.02 mmol, 0.2 eq., 4.9 mg) and sodium ascorbate (0.1 mmol, 1 eq., 19.8 mg) were added to a solution of compound **2d** (0.1 mmol, 52.1 mg) in *t*BuOH/H₂O: 3/1 (3 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/MeOH: 85/15, Rf = 0.5) to give compound **3c** (29.5 mg, 45%) as a yellow oil. ¹H NMR (400 MHz, MeOD) (δ ppm) 8.20 (s, 1H), 7.54 (d, 2H, *J* = 8.5 Hz), 7.24 (m, 2H), 7.01 (d, 2H, *J* = 8.5 Hz), 5.60 (d, 1H, *J* = 9.1 Hz), 4.65 (s, 2H), 4.15 (m, 2H), 3.91-3.84 (m, 4H), 3.72-3.70 (m, 3H), 3.67 (m, 6H), 3.56-3.49 (m, 3H), 3.45 (s, 3H), 1.15 (s, 18H). ¹³C NMR (100 MHz, MeOD) (δ ppm) 160.1, 147.7, 144.6, 137.3 (2C), 128.8, 124.5, 123.9, 122.9, 113.9 (2C), 88.2, 79.7, 77.1, 72.6, 70.3, 70.2 (2C), 69.5 (2C), 69.4, 66.9, 63.5, 60.9, 36.2, 28.4 (6C), 19.9 (2C). ²⁹Si NMR (79 MHz, MeOD) (δ ppm) -6.22. HRMS (ESI/TOF⁺) C₃₃H₅₃N₅O₉Si [M+H]⁺ calculated 692.3685, found 692.3687.

<u>D-2-Deoxy-2-[4-((2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl]-glucopyranose 3d</u>

2-Azido-2-deoxy-D-glucose (0.119 mmol, 0.95 eq., 24.4 mg), pentahydrate copper sulfate (0.025 mmol, 0.2 eq., 6.2 mg) and sodium ascorbate (0.125 mmol, 1 eq., 24.7 mg) were added to a solution of compound **2d** (0.125 mmol, 60.7 mg) in *t*BuOH/H₂O: 3/1 (2.5 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/MeOH: 90/10; Rf = 0.3) to give compound **3d** (50.9 mg, 62%) as a white powder. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.11 (s, 0.5H), 8.02 (s, 0.5H), 7.55 (d, 2H, *J* = 8.2 Hz), 7.26 (m,

2H), 7.01 (m, 2H), 5.29 (d, 0.5H, J = 3.3 Hz), 5.12 (d, 0.5H, J = 8.2 Hz), 4.65-4.62 (m, 3H), 4.28-4.25 (m, 0.5H), 4.17-4.16 (m, 3H), 3.97-3.95 (m, 0.5H), 3.93 (dd, 0.5H, J = 11.6 Hz, J = 2.3 Hz), 3.86-3.84 (m, 2.5H), 3.80-3.73 (m, 1H), 3.71-3.69 (m, 2H), 3.67-3.64 (m, 6H), 3.55-3.44 (m, 4H), 1.15 (s, 18H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 161.6, 149.1, 145.5, 138.7 (2C), 130.1, 126.4, 125.7, 125.4, 124.5, 115.4 (2C), 96.2, 92.7, 78.2, 75.5, 73.3, 72.4, 72.1, 71.7, 71.5, 70.7, 69.7, 68.4, 66.8, 65.0, 64.9, 62.6, 62.5, 37.7, 29.8 (6C), 21.4 (2C). ²⁹Si NMR (119 MHz, CDCl₃) (δ ppm) -6.03. HRMS (ESI/TOF⁺) C₃₃H₅₃N₅O₉Si [M+H]⁺ calculated 692.3685, found 692.3698.

<u>3'-Deoxy-3'-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl]-thymidine <u>3e</u></u>

Zidovudine (0.119 mmol, 0.95 eq., 31.8 mg), pentahydrate copper sulfate (0.025 mmol, 0.2 eq., 6.2 mg) and sodium ascorbate (0.125 mmol, 1 eq., 24.7 mg) were added to a solution of compound **2d** (0.125 mmol, 60.7 mg) in *t*BuOH/H₂O: 3/1 (2.5mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane /MeOH: 95/5; Rf = 0.3) to give compound **3e** (66.3 mg, 74%) as a yellow powder. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 (s, 1H), 7.52 (d, 1H, *J* = 0.8 Hz), 7.50 (d, 2H, *J* = 8.6 Hz), 7.31 (d, 1H, *J* = 1 Hz), 7.0 (d, 1H, *J* = 0.9 Hz), 6.9 (d, 2H, *J* = 8.6 Hz), 6.25 (t, 1H, *J* = 6.6 Hz), 5.43-5.39 (m, 1H), 4.68 (s, 2H), 4.40-4.38 (m, 1H), 4.15-4.13 (m, 2H), 3.97 (dd, 1H, *J* = 12.4 Hz, *J* = 2.4 Hz), 3.87-3.85 (m, 2H), 3.77-3.66 (m, 9H), 3.42 (s, 3H), 2.92-2.88 (m, 2H), 1.9 (d, 3H, *J* = 1.1 Hz), 1.13 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.9, 159.7, 150.5, 148.3, 145.6, 137.8, 137.7 (2C), 130.1, 125.6, 123.4, 122.9, 114.1 (2C), 111.3, 88.4, 85.4, 70.9, 70.7 (2C), 70.1, 69.8, 67.2, 64.7, 61.6, 59.4, 37.7, 36.8, 29.4 (6C), 20.7 (2C), 12.6. ²⁹Si NMR (79 MHz, CDCl₃) (δ ppm) -6.38. HRMS (ESI/TOF⁺) C₃₇H₅₅N₇O₈Si [M+Na]⁺ calculated 776.3773, found 776.3771. MP (°C) : 85-86.

(S)-6-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1H-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy) ethoxy)methyl)-1H-1,2,3-triazol-1-yl]-2-(9-fluorenylmethoxycarbonyl)aminohexanoic acid 3f

N'-Diazo-L-Fmoc-lysine (0.19 mmol, 0.95 eq., 74.9 mg), pentahydrate copper sulfate (0.04 mmol, 0.2 eq., 10 mg) and sodium ascorbate (0.2 mmol, 1 eq., 39.6 mg) were added to a solution of compound

2d (0.2 mmol, 98.9 mg) in *t*BuOH/H₂O: 3/1 (4 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane /MeOH: 85/15; Rf = 0.5) to give compound **3f** (58.5 mg, 35%) as a yellow oil. ¹H NMR (600 MHz, MeOD) δ (ppm) 7.92 (s, 1H), 7.75 (d, 2H, *J* = 7.2 Hz), 7.62 (m, 2H), 7.49 (d, 2H, *J* = 8.5 Hz), 7.38-7.34 (m, 4H), 7.27 (t, 2H, *J* = 7.2 Hz), 6.97 (d, 2H, *J* = 8.5 Hz), 4.54 (s, 2H), 4.33 (m, 2H), 4.27 (m, 1H), 4.16 (m, 1H), 4.08 (m, 3H), 3.79 (m, 2H), 3.64 (m, 2H), 3.59 (m, 7H), 3.48 (s, 3H), 1.88 (m, 3H), 1.75-1.69 (m, 1H), 1.36 (m, 2H), 1.12 (s, 18H). ¹³C NMR (150 MHz, MeOD) δ (ppm) 161.7, 158.9, 148.8, 145.4 (2C), 145.2, 142.5 (2C), 138.6 (2C), 128.8 (2C), 128.2, 128.1 (2C), 126.3 (2C), 126.2, 125.1, 124.5, 121.0 (2C), 115.6 (2C), 71.7 (2C), 71.5, 71.5, 70.7, 70.7, 68.4, 67.7, 65.0, 51.2, 48.4, 38.3, 33.0, 30.9, 29.7 (6C), 23.8, 21.3 (2C). The signal for CO₂H was not detected. ²⁹Si NMR (119 MHz, MeOD) (δ ppm) -4.76. HRMS (ESI/TOF⁺) C₄₈H₆₄N₆O₈Si [M+H]⁺ calculated 881.4627, found 881.4622.

[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy) methyl)-1*H*-1,2,3-triazol-1-yl]-Cyclo-RGD 3g

Cyclo-RGDN₃ (0.04 mmol, 0.95 eq., 25.2 mg), pentahydrate copper sulfate (0.008 mmol, 0.2 eq., 2 mg) and sodium ascorbate (0.042 mmol, 1 eq., 8.3 mg) were added to a solution of compound 2d (0.042 mmol, 20.4 mg) in tBuOH/H₂O: 3/1 (2 mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by semi-preparative HPLC (Luna C18, 10µm, 10*250mm, H₂O+0.1%) TFA/CH₃CN+0.1% TFA: 95/5 to 24/76 linear gradient (0-15 min) then 24/76 to 5/95 linear gradient (15-17 min), 5 mL/min, $t_{3\sigma}$ = 11.87 min) to give compound **3g** (32.1 mg, 72%) as a colorless oil. The sample purity was checked by analytical HPLC (Luna C18, 5 μ m, 4.6*250mm, H₂O+0.1% TFA/CH₃CN+0.1% TFA: 90/10 gradient to 10/90 (0-20 min) then isocratic (20-25 min), 1 mL/min, t_{3g} = 12.14 min). ¹H NMR (600 MHz, CD₃CN/D₂O) δ (ppm) 8.44 (s, 1H), 8.18 (m, 1H), 8.15 (m, 1H), 8.12 (d, 2H, J = 8.4 Hz), 7.82 (m, 2H), 7.77-7-74 (m, 3H), 7.60 (d, 2H, J = 8.4 Hz), 5.24 (m, 1H), 5.16 (s, 2H), 5.13-5.11 (m, 1H), 4.42-4.39 (m, 1H), 4.37 (m, 2H), 4.22 (m, 2H), 4.20-4.16 (m, 9H), 3.95 (m, 1H), 3.67 (m, 2H), 3.48 (m, 2H), 3.37 (dd, 1H, J = 16.9 Hz, J = 8.4 Hz), 3.16 (dd, 1H, J = 16.7 Hz, J = 6.3 Hz), 2.55 (m, 5H), 2.38-2.33 (m, 1H), 2.31-2.26 (m, 2H), 2.17-2.09 (m, 2H), 2.05-1.96 (m, 3H), 1.73 (m, 1H), 1.69 (s, 18H), 1.53-1.49 (m, 2H). ¹³C NMR (150 MHz, CD₃CN/D₂O) δ (ppm) 176.6, 176.5, 176.2, 175.3, 175.1, 173.7, 173.6, 163.3, 159.5, 149.3, 146.9, 140.4 (2C), 139.1, 132.0 (2C), 131.4 (2C), 129.7, 127.1, 124.7, 123.5, 117.6 (2C), 72.8, 72.6, 72.5, 71.9, 71.8, 69.9, 66.1, 57.8, 57.6, 55.1, 52.5, 52.20, 46.1, 43.4, 41.6, 39.8, 37.0, 32.6, 31.5, 31.0 (6C), 30.1, 27.3, 25.1, 22.6 (2C). ²⁹Si NMR (119 MHz, CD₃CN/D₂O) (δ ppm) 1.06. HRMS (ESI/TOF⁺) C₅₄H₈₁N₁₃O₁₁Si [M+H]⁺ calculated 1116.6020, found 1116.6004.

<u>3'-Deoxy-3'-[4-((2-(2-(2-(4-(di-*tert*-butylsilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1*H*-1,2,3-<u>triazol-1-yl]-thymidine 3h</u></u>

Zidovudine (0.047 mmol, 0.95 eq., 12.6 mg), pentahydrate copper sulfate (0.01 mmol, 0.2 eq., 2.5 mg) and sodium ascorbate (0.05 mmol, 1 eq., 11.9 mg) were added to a solution of di-*tert*-butyl(4-(2-(2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)phenyl)silane (0.05 mmol, 20 mg) in *t*BuOH/H₂O: 3/1 (1.5mL). The mixture was stirred for 5 min at 100°C under microwave irradiation (40 W). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane /MeOH: 97/3; Rf = 0.1) to give compound **3h** (22.1 mg, 70%) as a white powder. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.77 (s, 1H), 7.47-7.43 (m, 3H), 6.86 (d, 2H, *J* = 8.6 Hz), 6.22 (t, 1H, *J* = 6.5 Hz), 5.44-5.38 (m, 1H), 4.67 (s, 2H), 4.39-4.37 (m, 1H), 4.14-4.10 (m, 2H), 3.99-3.96 (m, 1H), 3.86-3.83 (m, 2H), 3.80 (s, 1H), 3.74-3.64 (m, 9H), 2.90-2.87 (m, 2H), 1.90 (s, 3H), 1.00 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 163.9, 159.5, 150.6, 145.7, 137.9, 137.3 (2C), 126.8, 123.0, 113.9 (2C), 111.3, 88.5, 85.4, 70.8, 70.7, 70.6, 70.0, 69.8, 67.1, 64.7, 61.6, 59.3, 37.6, 29.0 (6C), 19.1 (2C), 12.6. ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) 12.47. HRMS (ESI/TOF⁺) C₃₃H₅₁N₅O₈Si [M+Na]⁺ calculated 696.3399, found 696.3389.

General procedure

Mesitylene (0.198 mmol, 6eq., 27 μ L) and precursor **3e** or **3h** (0.033 mmol) were dissolved in 1 mL of THF-d₈. The fluoride source (x eq.) and the acid (y eq.) were added. The mixture was stirred at 70°C for 2h. The reaction was followed by ¹H-NMR at t = 0, 15, 30, 60, 90 and 120 min, and the corresponding ¹H NMR yields were determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard.

				¹ H NMR Yields					
Experience	Precursor	"F" (x equiv)	Acid (y equiv)	t = 0 min	t = 15 min	t = 30 min	t = 60 min	t = 90 min	t = 120 min
1	3e	TBAF (1.5 equiv)	AcOH (10 equiv)	0	20	50	70	80	85
2	3h	TBAF (1.5 equiv)	AcOH (10 equiv)	0	0	10	20	30	30
3	3e	KF/ Kryptofix (1.5 equiv)	AcOH (10 equiv)	0	50	70	80	90	90
4 ^a	3e	TBAF (1.5 equiv)	AcOH (10 equiv)	0	0	10	20	20	20
5	3e	TBAF (1.5 equiv)	-	0	0	0	0	0	0
6	3e	TBAF (1.5 equiv)	NH ₄ Cl (10 equiv)	0	20	20	30	50	50
7	3e	TBAF (1.5 equiv)	CH ₃ SO ₃ H (1.5 equiv)	0	60	90	100	100	100
8^{b}	3e	TBAF (1.5 equiv)	$PS-SO_3H (1.5 \text{ equiv})^d$	0	50	64	81	82	93
9	3e	0.1 M HF _{aq} (1.5 equiv)	-	0	44	72	84	89	90
10 ^c	3e	0.1 M HF _{aq} (0.5 equiv)	-	0	24	58	68	76	88
11	3e	0.1 M NaF _{aq} (0.5 equiv)	1.0 M HCl _{aq} (0.5 equiv)	0	22	56	74	90	90
12	3e	0.1 M NaF _{aq} (0.5 equiv)	AcOH (10 equiv)	0	40	70	80	90	100

Experiments

^aDMSO-d₆ was used as solvent. ^bPS-SO₃H = Sulfonic acid functionalized polystyren resin (1.18 mmol/g). ^cA 1:1 mixture of H₂O and THF-d₈ was used as solvent, trimethoxybenzene was used as internal standard.

Evolution in time of the ¹H NMR yields of 4e under various conditions of fluorination:

e) ¹⁹F-Fluorination of precursors **3a-g**

Mesitylene (0.06 mmol, 6eq., 8.3 µL) and compound **3a** (0.01 mmol, 8.8 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (15 µmol, 1.5eq., 0.1 M, 150 µL) was added. The mixture was stirred at 70°C for 2h. A 100% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (CHCl₃/MeOH: 95/5; Rf = 0.2) to give compound 4a (2.3 mg, 29%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.90 (d, 1H, J = 4.4 Hz), 8.25 (m, 1H), 8.15 (d, 1H, J = 8.4 Hz), 7.74 (t, 1H, J = 6.8 Hz), 7.62 (m, 1H), 7.50 (m, 3H), 7.42 (d, 1H, J = 4.2 Hz), 6.92(d, 2H, J = 8.4 Hz), 5.69 (m, 1H), 4.96 (m, 2H), 4.66 (s, 2H), 4.50 (m, 2H), 4.13 (m, 2H), 3.85 (m, 2H), 3.74-3.66 (m, 9H), 3.49-3.42 (m, 3H), 3.20 (m, 2H), 2.82 (m, 2H), 2.39 (m, 1H), 2.22 (m, 2H), 1.91 (m, 3H), 1.25 (m, 2H), 1.03 (s, 18H), 0.85 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.1, 150.2, 148.7, 145.5, 135.6 (2C, d, *J* = 4.2 Hz), 130.7, 129.5, 127.3, 126.2, 124.8 (2C, d, J = 14.1 Hz), 123.3, 122.6, 118.6, 114.1 (2C), 77.4, 70.9 (2C), 70.8 (2C), 70.7 (2C), 69.9, 69.8, 67.2, 66.4, 66.1, 64.8, 60.5, 56.5, 47.6, 43.4, 30.8, 29.7, 27.7, 27.5 (6C), 20.5 (2C, d, J = 12.8 Hz). ²⁹Si NMR (79 MHz, CDCl₃) (δ ppm) 14.39 (d, J = 297 Hz). ¹⁹F NMR (376 MHz, CDCl₃) (δ ppm) -183.7. HRMS (ESI/TOF⁺) C₄₅H₆₄N₅O₅SiF [M+H]⁺ calculated 802.4733, found 802.4725.

<u>N-[3-(4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-</u> triazol-1-yl)propanyl]-biotinamide 4b

Mesitylene (0.06 mmol, 6eq., 8.3 µL) and compound **3b** (0.01 mmol, 8.2 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (15.0 µmol, 1.5eq., 0.1 M, 150 µL) was added. The mixture was stirred at 70°C for 2h. A 100% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (dichloromethane/MeOH : 90/10; Rf = 0.5) to give compound **4b** (2.3 mg, 31%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (s, 1H), 7.50 (d, 2H, *J* = 8.4 Hz), 6.92 (d, 2H, *J* = 8.4 Hz), 6.68 (t, 1H, *J* = 6.1 Hz), 6.39 (s, 1H), 5.44 (s, 1H), 4.66 (s, 1H), 4.50 (m, 1H), 4.40 (t, 2H, *J* = 6.5 Hz), 4.30

(m, 1H), 4.14 (m, 2H), 3.86 (m, 2H), 3.86 (m, 2H), 3.74-3.65 (m, 9H), 3.27-3.23 (m, 2H), 3.15-3.11 (m, 1H), 2.90 (dd, 1H, J = 12.7 Hz, J = 5.2 Hz), 2.72 (m, 1H), 2.19 (m, 2H), 2.11 (m, 2H), 1.42 (m, 2H), 1.03 (d, 18H, J = 1.05 Hz. ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.7, 163.9, 159.9, 135.5 (2C, d, J = 4.0 Hz), 124.7 (d, J = 13.5 Hz), 113.9 (2C), 70.8 (2C), 70.6 (2C), 70.5, 69.8, 69.7, 67.0, 64.7, 61.8, 60.2, 55.7, 48.0, 40.6, 36.4, 35.7, 30.0, 28.1, 27.9, 27.4 (6C), 25.5, 20.3 (2C, d, J = 11.9 Hz). ²⁹Si NMR (79 MHz, CDCl₃) (δ ppm) 14.40 (d, J = 294 Hz). ¹⁹F NMR (376 MHz, CDCl₃) (δ ppm) -188.7. HRMS (ESI/TOF⁺) C₃₆H₅₉N₆O₆SSiF [M+Na]⁺ calculated 773.3862, found 773.3862.

β-D-1-Deoxy-1-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl]-glucopyranose 4c

Mesitylene (0.084 mmol, 6eq., 11.6 µL) and compound **3c** (0.014 mmol, 10 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (21.0 µmol, 1.5eq., 0.1 M, 210 µL) was added. The mixture was stirred at 70°C for 2h. A 100% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (dichloromethane/MeOH: 90/10) to give compound **4c** (4.2 mg, 48%) as a colorless oil. ¹H NMR (600 MHz, MeOD) δ (ppm) 8.19 (s, 1H), 7.52 (d, 2H, *J* = 8.5 Hz), 6.98 (d, 2H, *J* = 8.5 Hz), 5.59 (d, 1H, *J* = 9.3 Hz), 4.65 (s, 2H), 4.15 (m, 2H), 3.90-3.84 (m, 4H), 3.72-3.69 (m, 3H), 3.67-3.65 (m, 6H), 3.57-3.54 (m, 2H), 3.51-3.48 (m, 1H), 1.04 (d, 18H, *J* = 0.2 Hz). ¹³C NMR (150 MHz, MeOD) δ (ppm) 161.7, 146.0, 136.6 (2C, d, *J* = 4.10 Hz), 125.6 (d, *J* = 13.5 Hz), 124.4, 115.2 (2C), 89.6, 81.2, 78.5, 74.1, 71.7, 71.6, 71.5, 70.6, 70.8 (2C), 68.3, 64.9, 62.4, 27.8 (6C), 21.1(2C, d, *J* = 13.2 Hz). ²⁹Si NMR (119 MHz, MeOD) (δ ppm) 14.26 (d, *J* = 293 Hz). ¹⁹F NMR (376 MHz, CDCl₃) (δ ppm) -189.6. HRMS (ESI/TOF⁺) C₂₉H₄₈N₃O₉SiF [M+Na]⁺ calculated 652.3036, found 652.3032.

<u>D-2-Deoxy-2-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-</u> 1,2,3-triazol-1-yl]-glucopyranose 4d

Mesitylene (0.132 mmol, 6eq., 18.4 μ L) and compound **3d** (0.022 mmol, 15 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (33.0 μ mol, 1.5eq., 0.1 M, 330 μ L) was added. The mixture was stirred at 70°C for 5h. A 100% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (dichloromethane/MeOH: 90/10; Rf = 0.3) to give compound **4d** (5.0 mg, 36%) as a yellow oil. ¹H NMR (600 MHz, MeOD) δ (ppm) 8.10 (s, 0.5H), 8.0 (s, 0.5H, s), 7.52 (d, 2H, *J* = 8.6 Hz), 6.99 (d,

2H, J = 8.6 Hz), 5.28 (m, 0.5H), 5.12 (s, 0.5H), 4.65 (m, 2.5H), 4.58 (m, 1H), 4.27-4.24 (m, 0.5H), 4.17-4.13 (m, 3H), 3.99-3.92 (m, 1H), 3.87-3.84 (m, 2H), 3.80-3.73 (m, 1H), 3.72-3.70 (m, 2H), 3.67-3.64 (m, 6H), 3.55-3.43 (m, 1H), 1.08 (d, 18H, J = 1.1 Hz). ¹³C NMR (150 MHz, MeOD) δ (ppm) 161.7, 145.5, 145.3, 136.6 (2C, d, J = 3.9 Hz), 126.4, 125.5 (d, J = 14.6 Hz), 124.5, 115.2 (2C), 96.2, 92.7, 78.2, 75.6, 73.3, 72.4, 72.2, 71.8, 71.7, 71.6, 71.5, 70.8, 70.7, 69.7, 68.3, 66.9, 65.1, 65.0, 62.7, 62.5, 59.5, 27.8 (6C), 24.8, 21.1 (2C, d, J = 12.7 Hz), 20.7, 13.9. ²⁹Si NMR (119 MHz, MeOD) (δ ppm) 14.26 (d, J = 294 Hz). ¹⁹F NMR (282 MHz, MeOD) (δ ppm) -189.6 HRMS (ESI/TOF⁺) C₂₉H₄₈N₃O₉SiF [M+Na]⁺ calculated 652.3036, found 652.3046.

<u>3'-Deoxy-3'-[4-((2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)</u> ethoxy)ethoxy)methyl)-1*H*-<u>1,2,3-triazol-1-yl]-thymidine 4e</u>

Mesitylene (0.198 mmol, 6eq, 27 µL) and compound **3e** (0.033 mmol, 25 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (49.5 µmol, 1.5eq., 0.1 M, 495 µL) was added. The mixture was stirred at 70°C for 2h. A 90% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (dichloromethane/MeOH: 95/5; Rf = 0.3) to give compound **4e** (19.9 mg, 87%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.77 (s, 1H), 7.50-7.47 (m, 3H), 6.90 (d, 2H, *J* = 8.6 Hz), 6.22 (t, 1H, *J* = 6.6 Hz), 5.44-5.38 (m, 1H), 4.68 (s, 2H), 4.40-4.38 (m, 1H), 4.1-4.12 (m, 2H), 4.00-3.95 (dd, 1H, *J* = 12.1 Hz, *J* = 2.3 Hz), 3.87-3.84 (m, 2H), 3.79-3.65 (m, 9H), 2.91 (t, 2H, *J* = 6.9 Hz), 1.91 (s, 3H), 1.02 (d, 18H, *J* = 1.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 164.0, 159.9, 150.6, 145.7, 137.9, 135.56 (2C, d, *J* = 4.9 Hz), 124.9 (d, *J* = 14.3 Hz), 123.10, 114.1 (2C), 111.3, 88.7, 85.4, 70.9, 70.7, 70.6, 70.04, 69.8, 67.2, 64.9, 61.6, 59.4, 37.6, 27.46 (6C), 20.4 (2C, d, *J* = 12.8 Hz), 12.5. ²⁹Si NMR (59 MHz, CDCl₃) (δ ppm) 14.37 (d, *J* = 297 Hz). ¹⁹F NMR (282 MHz, CDCl₃) (δ ppm) -188.6. HRMS (ESI/TOF⁺) C₃₃H₅₀N₅O₈SiF [M+Na]⁺ calculated 714.3304, found 714.3304.

(S)-6-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3triazol-1-yl]-2-(9-fluorenylmethoxycarbonyl)aminohexanoic acid 4f

Mesitylene (0.09 mmol, 6eq, 12.5 μ L) and compound **3f** (0.015 mmol, 13.3 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (22.5 µmol, 1.5eq., 0.1 M, 225 µL) was added. The mixture was stirred at 70°C for 3h. A 100% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by column chromatography on a silica gel (dichloromethane/MeOH: 95/5; Rf = 0.1) to give compound 4f (4.1 mg, 33%) as a yellow oil. ¹H NMR (600 MHz, MeOD) δ (ppm) 7.93 (s, 1H), 7.78 (d, 2H, J = 7.7 Hz), 7.67-7.64 (m, 2H), 7.50 (d, 2H, J = 8.3 Hz), 7.38 (m, 2H), 7.30 (m, 2H), 6.95 (d, 2H, J = 8.3 Hz), 4.57 (s, 2H), 4.38-4.31 (m, 4H), 4.20 (t, 1H, J =6.2 Hz), 4.11 (m, 2H), 4.07 (m, 1H), 3.81 (m, 2H), 3.66 (m, 2H), 3.61 (m, 7H), 1.90 (m, 2H), 1.70 (m, 1H), 1.38 (m, 2H), 1.03 (d, 18H, J = 1.0 Hz). ¹³C NMR (150 MHz, MeOD) δ (ppm) 161.7, 158.5, 145.9, 145.4, 145.2, 142.6 (2C), 136.5 (2C, d, J = 4.2 Hz), 128.8 (2C), 128.2 (2C), 126.3 (2C), 125.5 (d, J = 13.7 Hz), 125.0, 120.9 (2C), 115.2 (2C), 71.7 (2C), 71.5, 71.5, 70.8, 70.8, 68.3, 67.8, 64.9, 51.2, 48.5, 32.6, 30.8, 27.8 (6C), 23.8, 21.1 (2C, d, J = 12.7 Hz). The signal for CO₂H was not detected. ²⁹Si NMR (119 MHz, MeOD) (δ ppm) 14.26 (d, J = 294 Hz). ¹⁹F NMR (282 MHz, MeOD) (δ ppm) -189.5. HRMS (ESI/TOF⁺) C₄₄H₅₉N₄O₈SiF [M+Na]⁺ calculated 841.3978, found 841.3982.

[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl]-Cyclo-RGD 4g

Mesitylene (0.042 mmol, 6eq, 5.8 µL) and compound 3f (7.0 µmol, 8.5 mg) were dissolved in 1 mL of THF-d₈. Aqueous hydrofluoric acid (10.5 µmol, 1.5eq., 0.1 M, 105 µL) was added. The mixture was stirred at 70°C for 3h. A 90% ¹H NMR yield was determined by ¹H NMR analysis of an aliquot of the mixture using mesitylene as the internal standard. The solvent was removed under reduced pressure and the residue was purified by semi-preparative HPLC (Luna C18, 10µm, 10*250mm, H₂O+0.1%) TFA/CH₃CN+0.1% TFA: 95/5 to 5/95 linear gradient (0-20 min), 5 mL/min, $t_{3g} = 16.67$ min) to give compound 4g (5.3 mg, 72%) as a colorless oil. The sample purity was checked by analytical HPLC (Luna C18, 5µm, 4.6*250mm, H₂O+0.1% TFA/CH₃CN+0.1% TFA: 90/10 gradient to 10/90 (0-20 min) then isocratic (20-25 min), 1 mL/min, $t_{3g} = 17.18$ min). ¹H NMR (400 MHz, CD₃CN/D₂O) δ (ppm) 7.79 (m, 1H), 7.52 (d, 2H, J = 8.3 Hz), 7.27 (m, 2H), 7.22 (m, 3H), 6.96 (d, 2H, J = 8.3 Hz, 4.59 (t, 1H, J = 6.9 Hz), 4.56 (m, 2H), 4.29 (t, 2H, J = 6.3 Hz), 4.21-4.18 (m, 2H), 4.12 (m, 2H), 3.95 (m, 1H), 3.79-3.77 (m, 3H), 3.64-3.57 (m, 9H), 3.33 (m, 1H), 3.10 (m, 2H), 3-2.96 (m, 1H), 2.90-2.85 (m, 1H), 1.78 (t, 1H, J = 6.3 Hz), 1.59 (m, 1H), 1.52 (m, 1H), 1.25-1.20 (m, 6H), 1.09 (m, 2H), 1.02 (d, 18H, J = 1.1 Hz), 0.86 (m, 1H). ²⁹Si NMR (119 MHz, CD₃CN/D₂O) (δ ppm) 14.78 (d, J = 297 Hz). ¹⁹F NMR (282 MHz, CD₃CN/D₂O) (δ ppm) -185.6. HRMS (ESI/TOF⁺) C₅₀H₇₆N₁₁O₁₁SiF [M+Na]⁺ calculated 1076.5371, found 1076.5382.

Analytic HPLC chromatogram of 4g:

C) Radiosyntheses

Radiosynthesis of $[^{18}F]$ 4e

No-carrier-added $[^{18}F]$ fluoride was produced by the $^{18}O(p,n)^{18}F$ nuclear reaction by irradiation of enriched [¹⁸O]H₂O.[¹⁸F]Fluoride production: Bombardment: 30-60 min; 30-60 µA; target volume 1.8-2.5 mL; 24-110 GBq were obtained. [¹⁸F]Fluoride was trapped on an anion-exchange resin cartridge (Sep-Pak QMA light, Waters). The cartridge was eluted with an aqueous solution of NaCl (0.9% w/w, $300 \,\mu\text{L}$) and the resulting saline solution was transferred to the reaction vial previously loaded with a THF solution of the silvlated precursor and the acid. The resulting mixture was allowed to react at 70 or 100 °C under constant stirring for 15 min. After this time, the mixture was diluted with mobile phase (4 mL), and the resulting solution was injected into a semi-preparative HPLC (Luna C18, 5µm, 10*250mm, H₂O+0.1% TFA/CH₃CN+0.1% TFA: 30/70 isocratic (0-20 min), 2.5 mL/min, t_{118F14e} = 11.7 min). Then, the activity of the collected fraction of $[^{18}F]$ 4e was measured and the purity of a precise fraction of the sample was checked by analytical HPLC (Luna C18, 5µm, 4.6*250mm, H₂O+0.1% TFA/CH₃CN: 35/65 isocratic (0-30 min), 1 mL/min, $t_{118F14e} = 11.53$ min). The molar quantity in the sample was determined by fitting the UV pic area into a calibration line previously realized, then allowing to calculate the molar activity of the whole collected fraction containing $[^{18}F]$ **4e**.

Preparative HPLC chromatogram of [¹⁸F]4e obtained from 3e:

Analytic HPLC chromatogram of the collected fraction of [¹⁸F]4e obtained from 3e:

No. V_VIS_	Ret.Time UV_VIS_1 min	Peak Name UV_VIS_1	Height UV_VIS_1 mAU	Area UV_VIS_1 mAU*min	Rel.Area UV_VIS_1 %	Amount UV_VIS_1	Type UV_VIS_1
n.a.	11,53	AZTSIF	23,428	5,561	100,00	n.a.	BMB*^
Total:			23,428	5,561	100,00	0,000	

Screening of conditions for the radiosynthesis of [¹⁸F]4e

Exp	Bom- bard- ment	Aqueous solution for QMA elution (% w/w)	Reacting Vial	Condi- tions	Activity at the end of bombar- dment in GBq	Activity of [¹⁸ F]4e in GBq (Time, ^a decay corrected)	Activity yield (AY) ^b (Radio- chemical yield)	Molar activity (GBq/ µmol) ^c	Mean ^d of AY (Mean of RCY)	Mean ^d of molar activity (GBq/ µmol)
1	30min - 30µA	300µL NaCl (0.9%)	3e (10 mg, 13.3μmol), THF (400μL), HCl _{aq} (1M, 1 equiv, 13.3μL), H ₂ O (82.7μL)	70°C - 15min	24	0.72 (35 min, 0.89)	3.0% (3.7%)	6		
2	42min - 55μA	300µL NaCl (0.9%)	3e (10 mg, 13.3μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 13.3μL)	100°C - 15min	79	11.6 (29 min, 13.8)	14.6% (17.5%)	188	14.6 ± 0.03%	188 ±
3	58min - 55µA	300µL NaCl (0.9%)	3e (10 mg, 13.3μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 13.3μL)	100°C - 15min	78,5	11.5 (29 min, 13.8)	14.7% (17.6%)	181	(17.5 ± 0.02%)	5
4	59min - 55µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	110,6	38.5 (31 min, 46.1)	34.8% (41.7%)	166		
5	59min - 55µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	88,7	20.4 (29 min, 24.5)	23.0% (27.7%)	115	28.6 ± 5.9% (34.4 ± 7.0%)	130 ± 31
6	58min - 55µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	94	26.4 (30 min, 31.8)	28.0% (33.8%)	109	7.0%)	
7	58min - 55µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), PS- SO ₃ H (6 mg, 1 equiv)	100°C - 15min	96,5	22.5 (29 min, 27.0)	23.3% (28.0%)	61		
8	51min - 60µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), AcOH (10 equiv, 3.8μL)	100°C - 15min	105	32 (29 min, 38.7)	30.5% (36.9%)	103	28.8 ± 2.3%	89 ±
9	54min - 60µA	300µL NaCl (0.9%)	3e (5 mg, 6.6μmol), THF (300μL), AcOH (10 equiv, 3.8μL)	100°C - 15min	101,6	27.6 (31 min, 33.4)	27.2% (32.9%)	75	(34.9 ± 2.8%)	20
10	55min - 55µA	300µL NaCl (0.9%)	4e (4,6 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	94	0.4 (30 min, 0.5)	0.4% (0.5%)	nd		
11	59min - 60µA	300µL NaCl (0.9%)	3h (4,5 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	75	0 (39 min, 0)	0	nd		
12	58min - 60µA	300µL NaCl (0.9%)	3h (4,5 mg, 6.6μmol), THF (300μL), AcOH (10 equiv, 3.8μL)	100°C - 15min	80	0 (39 min, 0)	0	nd		
13	65min - 55μA	600μL H ₂ O, 1mL CH ₃ CN (K ₂ CO ₃ + K2.2.2.) Azeotropic drying	3h (7,3 mg, 10 μmol), DMSO (300μL), AcOH (5 equiv, 3.0μL)	60°C - 15min	182.6	60.9 (52 min , 84.6)	33.4% (46.3%)	nd		
14	57min - 55μA	300μL Na ₂ SO ₄ (2.1%)	3e (5 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	110	33.5 (40.4)	30.4% (36.7%)	111		

^aFrom the end of bombardment to the measurement of the activity of [¹⁸F]**4e**. ^bCalculated as the activity in the collected vial divided by the activity at the end of bombardment (x100). ^bMolar activity determined by HPLC/radio HPLC. ^cmean \pm standard deviation of the *n* experiments. nd = Non determined. PS-SO₃H = Sulfonic acid functionalized polystyren resin (1.18 mmol/g).

Preparative HPLC chromatogram of [¹⁸F]4e obtained from 3h in aqueous conditions (entry 12):

Preparative HPLC chromatogram of $[^{18}F]$ 4e obtained from 3h in anhydrous conditions (entry 13):

Analytic HPLC chromatogram of the collected fraction of [¹⁸F]4e obtained from 3h in anhydrous conditions (entry 13):

1	23-03-18	
---	----------	--

Sample Name:	23-03-18 Injection Volume:	20,0
Vial Number:	3 Channel:	Gabi
Sample Type:	unknown Wavelength:	n.a.
Control Program:	AZTSIF iso colonne Luna CQ 35 65 TFA ACN sans Bandwidth:	n.a.
Quantif. Method:	DEFAULT Dilution Factor:	1,0000
Recording Time:	23/03/2018 12:25 Sample Weight:	1,0000
Run Time (min):	19.91 Sample Amount:	1,0000

Syste	m Suitability Test Results:			
No.	Test Name	Sample Condition	Peak Condition	Test Result
	Number of executed single tests:	n.a.	Total test result:	n.a.

b. Radiosynthesis of $[^{18}F]$ 4g

No-carrier-added [¹⁸F]fluoride was produced by the ¹⁸O(p,n)¹⁸F nuclear reaction by irradiation of enriched [¹⁸O]H₂O.[¹⁸F]Fluoride production: Bombardment: 50-60 min; 60-65 μ A; target volume 1.8-2.5 mL; 48-94 GBq were obtained. [¹⁸F]Fluoride was trapped on an anion-exchange resin cartridge (Sep-Pak QMA light, Waters). The cartridge was eluted with an aqueous solution of NaCl (0.9% w/w, 300 μ L) and the resulting saline solution was transferred to the reaction vial previously loaded with a THF solution of the silylated precursor and the acid. The resulting mixture was allowed to react at 100 °C under constant stirring for 15 min or 30 min. After this time, the mixture was diluted with mobile phase (4 mL), and the resulting solution was injected into a semi-preparative HPLC (Luna C18, 5 μ m, 10*250mm, H₂O+0.1% TFA/CH₃CN: 50/50 isocratic (0-30 min), 2.5 mL/min, t_{[18F]4g} = 18.6 min). Then, the activity of the collected fraction of [¹⁸F]**4g** was measured and the purity of a known amount of the sample was checked by analytical HPLC (Luna C18, 5 μ m, 4.6*250mm, H₂O+0.1% TFA/CH₃CN: 50/50 isocratic (0-30 min), 1 mL/min, t_{[18F]4g} = 16.23 min). The molar quantity was determined by fitting the UV pic area into a calibration line previously realized, allowing to calculate the molar activity of the whole collected fraction containing [¹⁸F]**4g**.

Exp	Bom- bard- ment	Aqueous solution for QMA elution (% w/w)	Reacting Vial	Condi- tions	Activity at the end of bombar- dment in GBq	Activity of [¹⁸ F]4g in GBq (Time, ^a decay corrected)	Activity yield (AY) ^b (Radio- chemical yield)	Molar activity (GBq/ µmol) ^c	Mean ^d of AY (Mean of RCY)	Mean ^d of molar activity (GBq/ µmol)
1	58min - 60µA	300µL NaCl (0.9%)	3g (7.4 mg, 6.6μmol), THF (300μL), HCl _{aq} (1M, 1 equiv, 6.6μL)	100°C - 15min	84	0.6 (42 min, 0.8)	0.7% (1.0%)	100		
2	59min - 60µA	300µL NaCl (0.9%)	3g (7.4 mg, 6.6μmol), THF (300μL), H ₂ O (100 μL), AcOH (10 equiv, 3.8μL)	100°C - 15min	100	4.1 (40 min, 5.3)	4.1% (5.3%)	86		
3	59min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (20 equiv, 3.8μL)	100°C - 15min	84	3.5 (38 min, 4.5)	4.2% (5.3%)	189		
4	50min - 65µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (20 equiv, 3.8μL)	100°C - 30min	64	3.8 (60 min, 5.6)	5.9% (8.7%)	82		
5	60min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL)	100°C - 30min	48	1.4 (61 min, 2.4)	2.9% (5.0%)	80		
6	60min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (2 equiv, 0.38μL)	100°C - 30min	94	5.5 (60 min, 8.5)	5.8% (9.0%)	116		
7	60min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (2 equiv, 0.38μL)	100°C - 30min	101	16.5 (58 min, 23.9)	16.4% (23.8%)	184	$13.8 \pm 5.4\%$ (20.4 ± 7.7%)	129 ± 37
8	53min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (2 equiv, 0.38μL)	100°C - 30min	99	15.2 (62 min, 22.4)	15.4% (22.8%)	115	7.7%)	
9	60min - 60µA	300µL NaCl (0.9%)	3g (3.7 mg, 3.3μmol), THF (300μL), AcOH (2 equiv, 0.38μL)	100°C - 30min	89	15.7 (61 min, 23.1)	17.6% (25.9%)	101		

Screening of	conditions f	for the	radiosynthesis	of [¹⁸ F]4g
--------------	--------------	---------	----------------	-------------------------

^aFrom the end of bombardment to the measurement of the activity of [¹⁸F]**4g**. ^bCalculated as the activity in the collected vial divided by the activity at the end of bombardment (x100). ^bMolar activity determined by HPLC/radio HPLC. ^cmean \pm standard deviation of the *n* experiments. nd = Non determined.

Product: 18F, Process: MPPF, Batch No.: RGD 19-02-18, Operator: fxfn, Start of Synthesis: 19/02/2018 12:34:40, Page 1/1

Time / min

Analytic HPLC chromatogram of the collected fraction of [¹⁸F]4g:

D) ¹H, ¹³C, ²⁹ Si and ¹⁹F NMR spectra

2-(di-tert-butyl(phenyl)silyl)-1-methyl-1H-imidazole 2a

1-bromo-4-(methoxymethoxy)benzene

2-(di-tert-butyl(4-(methoxymethoxy)phenyl)silyl)-1-methyl-1H-imidazole 2b

4-((1-methyl-1*H*-imidazol-2-yl)-di-tert-butylsilyl) phenol 2c

<u>2-((4-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)phenyl)di-tert-butylsilyl)-1-methyl-1H-imidazole 2d</u>

(2S)-2-(R)-O-[3-(4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl)propanyl]-cinchonidine 3a

<u>N-[3-(4-((2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy) ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl)propanyl]-biotinamide 3b</u>

<u>D-2-Deoxy-2-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl]-glucopyranose 3d</u>

<u>3'-Deoxy-3'-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy) ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl]-thymidine <u>3e</u></u>

(<u>S)-6-[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1H-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy)</u> ethoxy)methyl)-1H-1,2,3-triazol-1-yl]-2-(9-fluorenylmethoxycarbonyl)aminohexanoic acid 3f

S45

[4-((2-(2-(2-(4-(di-*tert*-butyl(1-methyl-1*H*-imidazol-2-yl)silyl)phenoxy)ethoxy)ethoxy) methyl)-1*H*-1,2,3-triazol-1-yl]-Cyclo-RGD 3g

<u>3'-Deoxy-3'-[4-((2-(2-(2-(4-(di-*tert*-butylsilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1*H*-1,2,3-<u>triazol-1-yl]-thymidine 3h</u></u>

-155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 ppm

$\underline{N-[3-(4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)propanyl]-biotinamide 4b}$

-155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 ppm

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm

<u>D-2-Deoxy-2-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-</u> 1,2,3-triazol-1-yl]-glucopyranose 4d

-20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

<u>3'-Deoxy-3'-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)</u> ethoxy)ethoxy)methyl)-1*H*-<u>1,2,3-triazol-1-yl]-thymidine 4e</u>

-20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

(<u>S</u>)-6-[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3triazol-1-yl]-2-(9-fluorenylmethoxycarbonyl)aminohexanoic acid 4f

[4-((2-(2-(2-(4-(di-tert-butylfluorosilyl)phenoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl]-Cyclo-RGD 4g

