SUPPLEMENTARY INFORMATION

Rigid Tetraarylene-Bridged Cavitands from Reduced-Symmetry Resorcin[4]arene Derivatives

Jordan N. Smith and Nigel T. Lucas

MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry,
University of Otago, Union Place, Dunedin 9016, New Zealand

Contents

1. General 1
2. Synthesis 2
2.1 Precursor Synthesis 2
2.2 Synthetic Methods and Characterisation 4
3. NMR Spectra 10
4. ESI-MS 21
5. Compound 10 25
6. Crystallography 27
6.1 Experimental Details 27
6.2 Crystal structures not detailed in main text 30
6.3 ORTEP Diagrams 31
6.4 Structural Comparison of 4 to Related Structures 34
7. References 35

1. General

All commercially purchased starting materials were used as received unless otherwise noted. Solvents listed as "dry" were dried using a Pure-Solv MD-6 solvent purification system. All other solvents were LR grade unless otherwise noted. "Petrol" refers to the petroleum fraction boiling in the range $40-60^{\circ} \mathrm{C}$. Solvents were removed under "reduced pressure" by rotary evaporation. Standard Schlenk techniques were employed where an inert atmosphere of argon or nitrogen was required. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded in 5 mm diameter tubes at $25^{\circ} \mathrm{C}$ on a Varian 400 MR spectrometer (400,100 and 376 MHz , respectively) or a Varian 500 AR spectrometer (500,126 and 470 MHz , respectively). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were referenced against residual non-perdeuterated solvents where applicable. All reported coupling constants () () are in Hz. 2-Dimensional NMR spectra (COSY, NOESY, HSQC, HMBC) were recorded for all new compounds to assist in assignments. HR MS (ESI) mass spectra were recorded on a Bruker MicrOTOF-Q electrospray ionisation mass spectrometer. Elemental composition was measured on a Carlo Erba 1108 CHNS combustion analyser at the Campbell Microanalytical Laboratory, University of Otago, Dunedin with an absolute uncertainty of $\pm 0.3 \%$. UV-visible absorption and emission spectra were recorded on an Edinburgh Instruments FS5 spectrofluorometer in 10 mm quartz cells.

2. Synthesis

2.1 Precursor Synthesis

$C_{2 \mathrm{v}}$-symmetric compounds $11,12,13$ and $5-\boldsymbol{C}_{2 \mathrm{v}}$ were prepared following literature procedures and were consistent with characterisation data as reported. ${ }^{1} \mathbf{5 - C} \boldsymbol{C}_{4}$ was prepared via a modified literature procedure ${ }^{2}$ and was consistent with characterisation data reported. ${ }^{3}$

Scheme S1. Synthesis of 9- $\boldsymbol{C}_{\mathbf{2 v}}$. Reaction conditions: i. $\mathrm{HCl}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 19 \mathrm{~h}$; ii. $\mathrm{TsCl}, \mathrm{NEt}_{3}, \mathrm{MeCN}$, 15 h , rt; iii. $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeI, acetone, $70^{\circ} \mathrm{C}$, 19 h ; iv. KOH , n-propanol, reflux, 21 h ; v. Tf $\mathrm{T}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 16 \mathrm{~h}$; vi. $\mathrm{Pd}_{2}(\mathrm{dba})_{3},(\pm)$-BINAP, NEt_{3}, formic acid, toluene, reflux, 48 h ; vii. BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 18 \mathrm{~h}$; viii. $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 16 \mathrm{~h}$.

Scheme S2. Synthesis of $\mathbf{9 -} \boldsymbol{C}_{\mathbf{4}}$. Compounds $\mathbf{5 - C} \mathbf{-} \mathbf{- 9}-\boldsymbol{C}_{\mathbf{4}}$ were prepared as racemates; one enantiomer is shown for clarity. Reaction conditions: i. $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$, rt ; ii. Tf 2 O , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 16 \mathrm{~h}$; iii. $\mathrm{Pd}_{2}(\mathrm{dba})_{3},(\pm)$-BINAP, NEt_{3}, formic acid, toluene, reflux, 48 h ; iv. BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 18 \mathrm{~h} ; \mathrm{v} . \mathrm{Tf}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 16 \mathrm{~h}$.

2.2 Synthetic Methods and Characterisation

2.2.1 2,4,6,8-Tetraethyl-14, $1^{6}, 5^{4}, 5^{6}$-tetramethoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (7-C $C_{2 v}$)

Tetratriflate $6-\boldsymbol{C}_{2 \mathrm{v}}(1.20 \mathrm{~g}, 1.01 \mathrm{mmol})$ was dissolved in toluene (20 mL) and deoxygenated with argon bubbling for 10 mins. Triethylamine ($1.70 \mathrm{~mL}, 1.22 \mathrm{~g}, 12.0 \mathrm{mmol}$), tris(dibenzylideneacetone)palladium(0) ($90 \mathrm{mg}, 0.10 \mathrm{mmol}$), (\pm)-BINAP ($125 \mathrm{mg}, 0.2 \mathrm{mmol}$) and formic acid ($0.45 \mathrm{~mL}, 550$ $\mathrm{mg}, 12.0 \mathrm{mmol}$) were added and the mixture heated at reflux for 48 h . After cooling, the dark brown mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The dark solid was purified by column chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petrol $)$ affording $7-\boldsymbol{C}_{2 \mathrm{v}}$ as a white solid ($555 \mathrm{mg}, 0.94 \mathrm{mmol}$, 94\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.19-7.14$ (m, 6H, Ar-H-34, $3^{5}, 3^{6}, 7^{4}, 7^{5}, 7^{6}$), 6.78 (s, 2H, Ar- $\mathrm{H}-$ $1^{2}, 5^{2}$), 6.71 (s, 2H, Ar- $-3^{2}, 7^{2}$), 6.26 ($\left.s, 2 H, \operatorname{Ar}-H-1^{5}, 5^{5}\right), 4.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 3.70(\mathrm{~s}$, $\left.12 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.96-1.90\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 0.85\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $155.62\left(\mathrm{Ar}-C-1^{4}, 1^{6}, 5^{4}, 5^{6}\right), 144.59\left(\mathrm{Ar}-C-3^{1}, 3^{3}, 7^{1}, 7^{3}\right), 127.07\left(\mathrm{Ar}-C-3^{5}, 7^{5}\right), 126.75\left(\mathrm{Ar}-C-3^{2}, 7^{2}\right)$, 126.54 ($\mathrm{Ar}-C-3^{4}, 3^{6}, 7^{4}, 7^{6}$), $125.97\left(\mathrm{Ar}-C-1^{1}, 1^{3}, 5^{11}, 5^{3}\right.$), 125.67 ($\mathrm{Ar}-C-1^{2}, 5^{2}$), $95.43\left(\mathrm{Ar}-C-1^{5}, 5^{5}\right), 55.75$ $\left(-\mathrm{OCH}_{3}\right), 44.62(-\mathrm{CH}), 28.04\left(-\mathrm{CH}_{2}-\right), 12.95\left(-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ 615.345; found 615.345. Anal. calcd $\left[\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{CHCl}_{3}\right]$: C 77.59, H 8.01; found C 77.43, H 8.06.

2.2.2 2,4,6,8-Tetraethyl-14,16,54,56-tetrahydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (8-C $\mathrm{C}_{2 \mathrm{v}}$)

Tetramethoxy $7-\boldsymbol{C}_{\mathbf{2 v}}$ ($555 \mathrm{mg}, 0.94 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) under argon and the solution cooled in an icewater bath. Boron tribromide ($0.90 \mathrm{~mL}, 2.36 \mathrm{~g}, 9.40 \mathrm{mmol}$) was added dropwise and the resulting brown solution stirred cold for 30 min before allowing to warm to rt over 17 h . The reaction was quenched by the dropwise addition of methanol (5 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, aqueous NaCl (sat), dried over MgSO_{4}, filtered, and the solvents removed under reduced pressure affording $\mathbf{8 - C _ { 2 v }}$ as a white solid ($485 \mathrm{mg}, 0.90 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, d_{6}\right.$-acetone): $\delta 7.74$ (br s, $4 \mathrm{H},-\mathrm{OH}$), 7.16 (d, J $=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}^{-3} 3^{4}, 3^{6}, 7^{4}, 7^{6}$), $7.08\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H-3^{5}, 7^{5}\right), 7.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{2}, 3^{2}, 5^{2}, 7^{2}\right)$, $6.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{-15}{ }^{5} 5^{5}\right), 4.10(\mathrm{t}, J=7.90 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 2.02\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H},-$ CH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, d_{6}\right.$-acetone): $\delta 153.76$ ($\mathrm{Ar}-\mathrm{C}-1^{4}, 1^{6}, 5^{4}, 5^{6}$), $146.40\left(\mathrm{Ar}-\mathrm{C}-3^{1}, 3^{3}, 7^{1}, 7^{3}\right)$, 127.49 ($\mathrm{Ar}-C-3^{4}, 3^{6}, 7^{4}, 7^{6}$), 127.46 ($\mathrm{Ar}-C-3^{5}, 7^{5}$), 126.59 ($\mathrm{Ar}-C-3^{2}, 7^{2}$), 126.03 ($\mathrm{Ar}-C-1^{2}, 5^{2}$), 123.90 (Ar-C-111, $\left.1^{3}, 5^{1}, 5^{3}\right), 102.90\left(\mathrm{Ar}-C-1^{5}, 5^{5}\right), 45.62(-C H), 28.74\left(-\mathrm{CH}_{2}-\right), 13.19\left(-C H_{3}\right)$. HR-ESI-MS: calcd $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 559.282$; found 559.281. Anal. calcd $\left[\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \cdot \mathrm{Et}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]: \mathrm{C} 77.51$, H 8.29; found C 77.40, H 8.10.
2.2.3 2,4,6,8-Tetraethyl-14,16,54,56-tetra(triflyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (9-C $\boldsymbol{C}_{2 \mathrm{v}}$)

Tetrol $\mathbf{8 -} \boldsymbol{C}_{2 \mathrm{v}}$ ($440 \mathrm{mg}, 0.82 \mathrm{mmol}$) was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and the mixture cooled in an ice water bath under an argon atmosphere. Pyridine ($1.59 \mathrm{~mL}, 19.7 \mathrm{mmol}$) was added before the dropwise addition of triflic anhydride ($0.83 \mathrm{~mL}, 1.40$ $\mathrm{g}, 4.92 \mathrm{mmol})$. The resulting yellow solution was stirred cold for 30 min before allowing to warm to rt over 18 h . The reaction was quenched with $\mathrm{HCl}(5 \mathrm{M}, 15 \mathrm{~mL})$ with vigorous stirring, washed with water and then brine. The organic phase was dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography ($\mathrm{SiO}_{2}, 25 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrol) affording $\mathbf{9 -} \boldsymbol{C}_{2 \mathrm{v}}$ as a white solid ($798 \mathrm{mg}, 91 \%$). ${ }^{1 \mathrm{H}}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-3^{5}, 7^{5}\right), 7.26-7.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-3^{4}, 3^{6}, 7^{4}, 7^{6}\right), 7.07$ (s, 2H, Ar-H-15, 5^{5}), 6.91 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{2}, 5^{2}$), 6.28 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-3^{2}, 7^{2}$), $4.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}$), $1.99-1.87\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH} \mathrm{C}_{2}\right), 0.92\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.20$ (Ar-$\left.C-1^{4}, 1^{6}, 5^{4}, 5^{6}\right), 142.48$ ($\mathrm{Ar}-\mathrm{C}-3^{1}, 3^{3}, 7^{11}, 7^{3}$), 138.22 ($\mathrm{Ar}-\mathrm{C}-1^{1}, 1^{3}, 5^{11}, 5^{3}$), 128.92 ($\mathrm{Ar}-\mathrm{C}^{-1} \mathbf{1}^{2}, 5^{2}$), 128.65 ($\mathrm{Ar}-$ $C-3^{5}, 7^{5}$), 127.36 ($\mathrm{Ar}-\mathrm{C}-3^{2}, 7^{2}$), $126.90\left(\mathrm{Ar}-C-3^{4}, 3^{6}, 7^{4}, 7^{6}\right), 118.52\left(\mathrm{q}, J_{\mathrm{CF}}=320 \mathrm{~Hz},-\mathrm{OTf}\right), 114.68$ (Ar-$\left.C-1^{5}, 5^{5}\right), 45.57(-\mathrm{CH}), 27.97\left(-\mathrm{CH}_{2}-\right), 12.43\left(-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-74.0(\mathrm{~s},-\mathrm{OTf})$. HR-ESI-MS: calcd $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ 1087.079; found 1087.081. Anal. calcd $\left[\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{~S}_{4} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$: C 44.35, H 3.35; found C 44.31, H 3.32.
2.2.4 2,4,6,8-Tetraethyl-14, $1^{6}, 5^{4}, 5^{6}$-tetra(3',4'-dimethoxyphenyl)-1,3,5,7(1,3)tetrabenzenacyclooctaphane (2-C2v)

Tetratriflate $\mathbf{9 -} \boldsymbol{C}_{\mathbf{2 v}}$ ($400 \mathrm{mg}, 0.38 \mathrm{mmol}$), 3,4dimethoxyphenyl boronic acid ($692 \mathrm{mg}, 3.76$ mmol) and cesium carbonate ($2.45 \mathrm{~g}, 7.52$ mmol) were suspended in toluene (15 mL), water (7 mL) and n-propanol (1 mL), and the mixture deoxygenated with gentle argon bubbling for 10 min. Dichloro[1,1'bis(diphenylphosphino)ferrocene] palladium(II) (27 mg, 0.038 mmol$)$ was added and the mixture heated at $70^{\circ} \mathrm{C}$ for 48 h with vigorous stirring. After cooling, the dark mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase washed with water, brine, then dried over MgSO_{4} and the solvents removed under reduced pressure. The crude product was purified by column chromatography ($\mathrm{SiO}_{2}, 2 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) affording $\mathbf{2 - \boldsymbol { C } _ { 2 v }}$ as a white solid ($295 \mathrm{mg}, 0.29 \mathrm{mmol}, 76 \%$). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl_{3} solution of $\mathbf{2 - C} \mathbf{C}_{4}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25$ (s, 2H, Ar-H-12, 5^{2}), 7.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-3^{2}, 7^{2}$), 6.99-6.96 (m, 4H, Ar-$\left.H-1^{5}, 3^{5}, 5^{5}, 7^{5}\right), 6.83\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H_{5^{\prime}}\right), 6.76-6.74\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}-\mathrm{H}_{2^{\prime}} 6^{\prime}\right), 6.66(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-3^{4}, 3^{6}, 7^{4}, 7^{6}\right), 4.01(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 3.92\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime}-\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{3}{ }^{\prime}-\mathrm{OCH}_{3}\right)$, 1.99 (quin, $J=7.2 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{CH}_{2}-$), $0.80\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 $1^{4}, 1^{6}, 5^{4}, 5^{6}$), 134.54 ($\mathrm{Ph}-C_{1}$), 131.86 ($\mathrm{Ar}-\mathrm{C}^{-32} \mathbf{3}^{2}$), 127.41 ($\mathrm{Ar}-\mathrm{C}-3^{5}, 7^{5}$), 127.00 ($\mathrm{Ar}-\mathrm{C}-3^{4}, 3^{6}, 7^{4}, 7^{6}$) 126.07 ($\mathrm{Ar}-\mathrm{C}-1^{5}, 5^{5}$), 125.68 ($\mathrm{Ar}-\mathrm{C}-1^{2}, 5^{2}$), 122.20 ($\mathrm{P} 6_{6^{\prime}}$), 113.64 ($\mathrm{Ph}-C_{2^{\prime}}$), 110.75 ($\mathrm{Ph}-C_{5^{\prime}}$), 56.05 $\left(\mathrm{C}_{4}{ }^{-}-\mathrm{OCH}_{3}\right), 56.01\left(\mathrm{C}_{3^{-}}-\mathrm{OCH}_{3}\right), 48.60(-\mathrm{CH}), 29.92\left(-\mathrm{CH}_{2}-\right), 12.96\left(-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd [M+Na] ${ }^{+}$
$\left(\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ 1039.512; found 1039.511. Anal. calcd [$\left.\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{O}_{8} \cdot 0.75 \mathrm{MeOH}\right]: \mathrm{C} 79.30, \mathrm{H} 7.26$; found C 79.18, H 7.54. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 250\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 98000\right)$.
2.2.5 rac-2,4,6,8-Tetraethyl-14,36,56,76-tetramethoxy-16,34, ${ }^{4}, 7^{4}$-tetra(triflyloxy)-1,3,5,7(1,3)tetrabenzenacyclooctaphane (6-C4)

Tetrol 5- $\boldsymbol{C}_{\mathbf{4}}(1.00 \mathrm{~g}, 1.52 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), pyridine ($2.95 \mathrm{~mL}, 36.5 \mathrm{mmol}$) added and the solution cooled on an ice-water bath under an argon atmosphere. Triflic anhydride ($1.53 \mathrm{~mL}, 2.58 \mathrm{~g}, 9.14 \mathrm{mmol}$) was added dropwise and the resulting light-purple solution stirred cold for 30 min before allowing to warm to rt overnight. The reaction was quenched by the dropwise addition of aqueous $\mathrm{HCl}(5 \mathrm{M}, 10 \mathrm{~mL})$ with vigorous stirring, washed twice with water and then brine, dried over MgSO_{4} and filtered. The removal of solvents under reduced pressure afforded 6- $\boldsymbol{C}_{\mathbf{4}}$ as an off-white solid ($1.80 \mathrm{~g}, 1.51 \mathrm{mmol}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.79$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{2}, 3^{2}, 5^{2}, 7^{2}$), $6.61\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{5}, 3^{5}, 5^{5}, 7^{5}\right.$), 4.41 (dd, $J=8.3,6.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}$), 3.68 (s , $12 \mathrm{H},-\mathrm{OCH}_{3}$), $1.98\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.84\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.93\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3}): $\delta 156.16\left(\mathrm{Ar}-\mathrm{C}-1^{4}, 3^{6}, 5^{6}, 7^{6}\right), 147.14\left(\mathrm{Ar}-\mathrm{C}-1^{6}, 3^{4}, 5^{4}, 7^{4}\right), 131.96\left(\mathrm{Ar}-\mathrm{C}-1^{3}, 3^{1}, 5^{1}, 7^{1}\right), 127.03$ (Ar-C-1 ${ }^{1}, 3^{3}, 5^{3}, 7^{3}$), $126.63\left(\operatorname{Ar}-C-1^{2}, 3^{2}, 5^{2}, 7^{2}\right), 118.61\left(q, J_{\text {cF }}=320 \mathrm{~Hz},-0 T f\right), 103.41$ (Ar-C$\left.1^{5}, 3^{5}, 5^{5}, 7^{5}\right), 55.49\left(-\mathrm{OCH}_{3}\right), 37.78(-\mathrm{CH}), 27.99\left(-\mathrm{CH}_{2}-\right), 12.40\left(-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -74.6 (s, -OTf). HR-ESI-MS: calcd [M+Na]+ $\left(\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~F}_{12} \mathrm{O}_{16} \mathrm{~S}_{4} \mathrm{Na}\right) \mathrm{m} / z 1207.121$; found 1207.120. Anal. calcd $\left[\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~F}_{12} \mathrm{O}_{16} \mathrm{~S}_{4}\right]$: C 44.60, H 3.74; found C 44.64, H 3.69.
2.2.6 rac-2,4,6,8-Tetraethyl-14,36,56,76-tetramethoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (7-C4)

Tetratriflate $6-\boldsymbol{C}_{\mathbf{4}}(2.50 \mathrm{~g}, 2.11 \mathrm{mmol})$ was dissolved in toluene (30 mL) and triethylamine ($3.50 \mathrm{~mL}, 25.3 \mathrm{mmol}$) under an argon atmosphere and the solution deoxygenated with gentle argon bubbling for 15 min . Formic acid (0.96 mL , 25.3 mmol) was added dropwise, followed by tris(dibenzylideneacetone)dipalladium(0) (192 mg, 0.21 mmol) and (\pm)-BINAP ($261 \mathrm{mg}, 0.42 \mathrm{mmol}$), and the darkpurple mixture heated at $100^{\circ} \mathrm{C}$ for 24 h . After cooling, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase washed with water, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petrol) affording $\mathbf{7 - C} \boldsymbol{C}_{\mathbf{4}}$ as a white solid ($970 \mathrm{mg}, 1.64 \mathrm{mmol}$, 78%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.07$ (dd, $J=8.3,2.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{6}, 3^{4}, 5^{4}, 7^{4}$), 7.00 (d, $J=2.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{2}, 3^{2}, 5^{2}, 7^{2}$), $6.66\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{5}, 3^{5}, 5^{5}, 7^{5}\right), 4.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 3.73$ (s, 12H, $-\mathrm{OCH}_{3}$), $2.03\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.87\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 157.55 ($\mathrm{Ar}-C-1^{4}, 3^{6}, 5^{6}, 7^{6}$), 139.61 ($\mathrm{Ar}-C-1^{1}, 3^{3}, 5^{3}, 7^{3}$), 136.50 ($\mathrm{Ar}-C-1^{3}, 3^{1}, 5^{1}, 7^{1}$), 130.19 ($\mathrm{Ar}-C-$ $\left.1^{6}, 3^{4}, 5^{4}, 7^{4}\right), 127.64\left(\mathrm{Ar}-\mathrm{C}-1^{2}, 3^{2}, 5^{2}, 7^{2}\right), 112.82\left(\mathrm{Ar}-\mathrm{C}-1^{5}, 3^{5}, 5^{5}, 7^{5}\right), 58.20\left(-0 \mathrm{CH}_{3}\right), 46.63(-\mathrm{CH}), 30.29$ $\left(-\mathrm{CH}_{2}-\right), 15.36\left(-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd [M+Na] ${ }^{+}\left(\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 615.345$; found 615.343. Anal. calcd $\left[\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{4} \cdot 0.7 \mathrm{CHCl}_{3}\right]$: C 72.27, H 7.26; found C 72.33, H 7.52.
2.2.7 rac-2,4,6,8-Tetraethyl-14,36,56,76-tetrahydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (8-C4)

Tetramethoxy 7- $\boldsymbol{C}_{\mathbf{4}}$ ($1.65 \mathrm{~g}, 2.78 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) under argon and the solution cooled in an ice water bath. $\mathrm{BBr}_{3}(1 \mathrm{M}, 27.8 \mathrm{~mL}, 27.8 \mathrm{mmol})$ was added dropwise, the resulting purple solution stirred cold for 30 min before allowing to warm to rt over 4 h . The reaction was quenched with MeOH and diluted with $\mathrm{Et}_{2} \mathrm{O}$, the organic phase washed with water, brine, then dried over MgSO_{4}, filtered and the solvents removed under reduced pressure affording 8- $\boldsymbol{C}_{\mathbf{4}}$ as a white solid ($1.37 \mathrm{~g}, 2.55 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, d_{6}-\right.$ acetone): $\delta 7.80(\mathrm{~s}, 4 \mathrm{H},-\mathrm{OH}), 7.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-$ $1^{2}, 3^{2}, 5^{2}, 7^{2}$), 6.93 (dd, $J=8.1,2.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{6}, 3^{4}, 5^{4}, 7^{4}$), 6.55 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{5}, 3^{5}, 5^{5}, 7^{5}$), $4.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 2.15\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.87\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, d_{6}-acetone): $\delta 153.05$ ($\mathrm{Ar}-C-1^{4}, 3^{6}, 5^{6}, 7^{6}$), 137.44 ($\mathrm{Ar}-C-1^{3}, 3^{1}, 5^{1}, 7^{1}$), 133.06 ($\mathrm{Ar}-C-1^{1}, 3^{3}, 5^{3}, 7^{3}$), 128.65 ($\mathrm{Ar}-\mathrm{C}-1^{6}, 3^{4}, 5^{4}, 7^{4}$), 124.92 ($\mathrm{Ar}-C-1^{2}, 3^{2}, 5^{2}, 7^{2}$), 115.02 ($\mathrm{Ar}-C-1^{5}, 3^{5}, 5^{5}, 75$), $44.68(-\mathrm{CH}), 28.48$ $\left(-\mathrm{CH}_{2}-\right), 13.14\left(-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd [M+Na]+ $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Na}\right) \mathrm{m} / z$ 559.282; found 559.280. Anal. calcd $\left[\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \cdot \mathrm{Et}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]$: C 77.51, H 8.29; found C 77.56, H 8.29.
2.2.8 rac-2,4,6,8-Tetraethyl-14,36,56,76-tetra(triflyloxy)-1,3,5,7(1,3)-
tetrabenzenacyclooctaphane ($\mathbf{9}-\boldsymbol{C}_{\mathbf{4}}$)

Tetrol 8- $\boldsymbol{C}_{\mathbf{4}}$ ($500 \mathrm{mg}, 0.93 \mathrm{mmol}$) was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) under argon and the mixture cooled in an ice water bath. Pyridine ($1.80 \mathrm{~mL}, 1.77 \mathrm{~g}, 22.3 \mathrm{mmol}$) was added before the dropwise addition of triflic anhydride $(1.60 \mathrm{~mL}, 2.62 \mathrm{~g}, 9.30$ mmol). The resulting yellow solution was stirred cold for 30 \min before allowing to warm to rt over 5 h . The reaction was quenched with $\mathrm{HCl}(5 \mathrm{M}, 15 \mathrm{~mL})$, and the organic phase washed with water, brine, then dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \%\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petrol) affording $9-\boldsymbol{C}_{4}$ as a white solid ($900 \mathrm{mg}, 0.85 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.15$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{6}, 3^{4}, 5^{4}, 7^{4}$), 7.13 (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{5}, 3^{5}, 5^{5}, 7^{5}$), $6.94\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{2}, 3^{2}, 5^{2}, 7^{2}\right), 4.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 2.13-1.96\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $0.95\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.37\left(\mathrm{Ar}-\mathrm{C}-1^{4}, 3^{6}, 5^{6}, 76\right), 143.56(\mathrm{Ar}-$ $C-1^{3}, 3^{1}, 5^{1}, 7^{1}$), $136.77\left(\operatorname{Ar}-C-1^{1}, 3^{3}, 5^{3}, 7^{3}\right), 130.22\left(\mathrm{Ar}-C-1^{6}, 3^{4}, 5^{4}, 7^{4}\right), 126.45\left(\mathrm{Ar}-C-1^{2}, 3^{2}, 5^{2}, 7^{2}\right)$, $121.43\left(\mathrm{Ar}-\mathrm{C}-1^{5}, 3^{5}, 5^{5}, 75\right), 118.61\left(\mathrm{q}, J_{\mathrm{CF}}=320 \mathrm{~Hz},-\mathrm{OTf}\right), 45.03(-\mathrm{CH}), 28.41\left(-\mathrm{CH}_{2}-\right), 12.37\left(-\mathrm{CH}_{3}\right)$. ${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.0$ (s, -OTf). HR-ESI-MS: calcd [M+Na] $+\left(\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Na}\right.$) m / z 1087.079; found 1087.078. Anal. calcd [$\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{~S}_{4}$]: C 45.11, H 3.41; found C 45.34, H 3.15 .
2.2.9 rac-2,4,6,8-Tetraethyl-14,36,56,76-tetra(3',4'-dimethoxyphenyl)-1,3,5,7(1,3)tetrabenzenacyclooctaphane (2-C4)

Tetratriflate $9-\boldsymbol{C}_{4}$ ($400 \mathrm{mg}, 0.38 \mathrm{mmol}$), 3,4dimethoxyphenyl boronic acid ($692 \mathrm{mg}, 3.76$ mmol) and cesium carbonate ($2.45 \mathrm{~g}, 7.52$ mmol) were suspended in toluene (15 mL), water (7 mL) and n-propanol (1 mL) and the mixture deoxygenated with gentle argon bubbling for 10 min. Dichloro[1,1'bis(diphenylphosphino)ferrocene] palladium(II) ($27 \mathrm{mg}, 0.038 \mathrm{mmol}$) was added and the mixture heated at $70{ }^{\circ} \mathrm{C}$ for 48 h . After cooling, the dark mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase washed with water, brine, then dried over MgSO_{4} and the solvents removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording $2-\boldsymbol{C}_{4}$ as a white solid ($355 \mathrm{mg}, 0.35 \mathrm{mmol}, 93 \%$). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl_{3} solution of $\mathbf{2 - C} \boldsymbol{C}_{4}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16$ (br s, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}^{2} 1^{2}, 3^{2}, 5^{2}, 7^{2}$), $6.96\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H_{5^{\prime}}\right.$), 6.87 ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H_{6^{\prime}}$), $6.74(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{5}, 3^{5}, 5^{5}, 7^{5}$), 6.68 (dd, $J=8.0,1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{-1}{ }^{6}, 3^{4}, 5^{4}, 7^{4}$), 6.49 (br s, 4H, Ph- H_{2}), $4.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}), 3.91\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime}-\mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{3^{\prime}}-\mathrm{OCH}_{3}\right), 2.12-1.94(\mathrm{~m}, 8 \mathrm{H}$, -$\mathrm{CH}_{2}-$), $0.84\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.20\left(\mathrm{Ph}-\mathrm{C}_{4}\right), 147.96(\mathrm{Ar}-\mathrm{C}-$ $1^{1}, 3^{3}, 5^{3}, 7^{3}$), $144.99\left(\mathrm{Ph}-C_{1^{\prime}}\right), 142.42$ ($\mathrm{Ph}-C_{3^{\prime}}$), 139.78 ($\mathrm{Ar}-C-1^{4}, 3^{6}, 5^{6}, 7^{6}$), $134.83\left(\mathrm{Ar}-C-1^{3}, 3^{1}, 5^{1}, 7^{1}\right.$), 129.69 ($\mathrm{Ph}-C_{5}$), 127.29 ($\mathrm{Ar}-C-1^{6}, 3^{4}, 5^{4}, 7^{4}$), $125.63\left(\mathrm{Ar}-C-1^{2}, 3^{2}, 5^{2}, 7^{2}\right.$), $121.55\left(\mathrm{Ar}-C-1^{5}, 3^{5}, 5^{5}, 7^{5}\right)$, $113.33\left(\mathrm{Ph}-\mathrm{C}_{2^{\prime}}\right), 110.87\left(\mathrm{Ph}-C_{6^{\prime}}\right), 56.07\left(\mathrm{C}_{4}{ }^{\prime}-\mathrm{OCH}_{3}\right), 55.72\left(\mathrm{C}_{3^{\prime}}-\mathrm{OCH}_{3}\right), 47.84(-\mathrm{CH}), 29.73\left(-\mathrm{CH}_{2^{-}}\right)$, $12.93\left(-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ 1039.512; found 1039.512. Anal. calcd $\left[\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{O}_{8} \cdot 0.6 \mathrm{CHCl}_{3}\right]$: C 75.67, H 6.72; found C 75.88, H 7.04. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 250\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 96000$).
2.2.10 $1^{4}, 7^{4}: 3^{4}, 5^{6}-$ Bis(4,5-dimethoxy[1,2]benzeno)-16,54-bis(3,4-dimethoxyphenyl)-2,4,6,8-tetraethyl-1,3,5,7(1,3)tetrabenzenacyclooctaphane (3)

Macrocycle 2-C $\mathbf{C l v}^{\mathbf{2}}$ ($300 \mathrm{mg}, 0.30 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($150 \mathrm{~mL}, \mathrm{AR}$ grade) and the solution purged with gentle argon bubbling for $10 \mathrm{~min} . \mathrm{FeCl}_{3}(1.15 \mathrm{~g}, 7.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(5 \mathrm{~mL})$ was added dropwise and the resulting dark green solution stirred at rt with continued argon bubbling. After 30 min , the reaction mixture was washed with water brine, then dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 2 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording 3 as an off-white solid ($270 \mathrm{mg}, 0.27$ $\mathrm{mmol}, 90 \%$). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl_{3} solution of $\mathbf{3 .}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-1^{2}, 5^{2}\right), 7.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-$
 $H_{6^{\prime \prime}}$), 6.97 (br d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H_{5}{ }^{\prime}$), 6.92 (br m, 4H, Ph- $H_{2^{\prime}, 6^{\prime}}$), 6.38 (d, $J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}^{-3}{ }^{6}, 7^{6}$), 4.07 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 4,8-\mathrm{CH}$), 3.97 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{4}-\mathrm{OCH}_{3}$), 3.93 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5}{ }^{\prime \prime}-\mathrm{OCH}_{3}$), 3.91 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{4}{ }^{\prime \prime}-$ OCH_{3}), 3.81 (br s, 6H, C $3^{\prime}-\mathrm{OCH}_{3}$), $3.40(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 2,6-\mathrm{CH}$), 2.68-2.60 (m, 4H, 2, 6-CH2), 2.45$2.23\left(\mathrm{~m}, 4 \mathrm{H}, 4,8-\mathrm{CH}_{2}\right), 1.22\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2,6-\mathrm{CH}_{3}\right), 1.04\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 4-\mathrm{CH}_{3}, 8-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.48\left(\mathrm{Ph}-C_{5^{\prime}}\right), 148.23\left(C_{5^{\prime \prime}}\right), 148.21\left(C_{4^{\prime \prime}}\right), 148.04\left(\mathrm{Ph}-C_{4^{\prime}}\right), 145.31(\mathrm{Ar}-$ $C-3^{1}, 7^{1}$), $144.23\left(\mathrm{Ar}-C-3^{3}, 7^{3}\right), 143.01\left(\mathrm{Ar}-C-1^{3}, 5^{1}\right), 142.52\left(\mathrm{Ar}-C-1^{1}, 5^{3}\right), 138.77\left(\mathrm{Ar}-C-1^{6}, 5^{4}\right), 136.30$ $\left(\mathrm{Ar}-\mathrm{C}-3^{4}, 7^{4}\right), 135.52\left(\mathrm{Ar}-C-1^{4}, 5^{6}\right), 134.72\left(C_{1^{\prime \prime}}\right), 131.74\left(C_{2^{\prime \prime}}\right), 131.19\left(\mathrm{Ph}-C_{1^{\prime}}\right), 130.28\left(\mathrm{Ar}-C-1^{5}, 5^{5}\right)$, $128.52\left(\mathrm{Ar}-C-3^{5}, 7^{5}\right), 126.63\left(\mathrm{Ar}-C-3^{6}, 7^{6}\right), 122.01\left(\mathrm{Ph}-C_{2}\right), 119.49\left(\mathrm{Ar}-C-1^{2}, 5^{2}\right), 118.49(\mathrm{Ph}-C-$ $3^{2}, 7^{2}$), $113.61\left(\mathrm{Ph}-C_{6^{\prime}}\right), 112.04\left(C_{6^{\prime \prime}}\right), 111.75\left(C_{3^{\prime \prime}}\right), 110.90\left(\mathrm{Ph}-C_{3^{\prime}}\right), 56.17\left(\mathrm{C}_{4}{ }^{\prime \prime}-\mathrm{OCH}_{3}\right), 56.10\left(\mathrm{C}_{5 "-}\right.$
 $21.95\left(2,6-\mathrm{CH}_{2}\right), 13.20\left(4,8-\mathrm{CH}_{3}\right), 12.78\left(2,6-\mathrm{CH}_{3}\right)$. HR-ESI-MS: calcd $[\mathrm{M}+\mathrm{Na}]+\left(\mathrm{C}_{68} \mathrm{H}_{68} \mathrm{NaO}_{8}\right) \mathrm{m} / \mathrm{z}$ 1035.481; found 1035.481. Anal. calcd $\left[\mathrm{C}_{68} \mathrm{H}_{68} \mathrm{O}_{8} \cdot 1.5 \mathrm{Me}_{2} \mathrm{CO}\right]$: C 79.13, H 7.05; found C 78.87, H 6.89. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 262\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 200000\right)$.
2.2.11 $1^{4}, 7^{4}: 1^{6}, 3^{6}: 3^{4}, 5^{6}: 5^{4}, 76$-Tetrakis(4,5-dimethoxy[1,2]benzeno)-2,4,6,8-tetraethyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (4)

Bis-bridged macrocycle 3 ($650 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dry, 50 mL) under an argon atmosphere and cooled on a ice/brine bath to $-10{ }^{\circ} \mathrm{C}$. Triflic acid ($5.65 \mathrm{~mL}, 9.60 \mathrm{~g}, 64.0 \mathrm{mmol}$) was added dropwise giving a deep purple solution. DDQ ($655 \mathrm{mg}, 2.89 \mathrm{mmol}$) was added immediately in one aliquot and the resulting deep blue solution was stirred at $-10^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with $\mathrm{NaOH}(2 \mathrm{M}, 10 \mathrm{~mL})$, diluted with water and separated. The organic phase was washed with $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{ml})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ ethyl acetate $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ affording 4 as a white solid ($312 \mathrm{mg}, 0.30 \mathrm{mmol}, 48 \%$) with a trace amount of deep red impurity. Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 4 , or the evaporation of $\mathrm{CHCl}_{3} / \mathrm{DMSO}$ mixtures. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16\left(\mathrm{~s}, 8 \mathrm{H}, H_{3^{\prime}, 6^{\prime}}\right), 7.12(\mathrm{~s}, 4 \mathrm{H}$, Ar- $H-1^{5}, 3^{5}, 5^{5}, 7^{5}$), $7.09\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-H-1^{2}, 3^{2}, 5^{2}, 72\right.$), $3.99\left(\mathrm{~s}, 24 \mathrm{H},-0 C H_{3}\right), 3.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH})$, $2.53\left(\mathrm{p}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.17\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.34$ ($C_{4^{\prime}, 5^{5}}$), $143.36\left(\mathrm{Ar}-C-1^{1}, 1^{3}\right), 135.47\left(\mathrm{Ar}-C-1^{4}, 1^{6}\right), 131.85\left(C_{1^{\prime}, 2^{\prime}}\right), 130.08\left(\mathrm{Ar}-C-1^{5}\right), 113.72\left(\mathrm{Ar}-C-1^{2}\right)$, $111.60\left(C_{3^{\prime}, 6^{\prime}}\right), 56.37\left(-\mathrm{OCH}_{3}\right), 44.81(-\mathrm{CH}), 20.97\left(-\mathrm{CH}_{2}-\right), 12.47\left(-\mathrm{CH}_{3}\right)$. HR MS (ESI) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{NaO}_{8}$ 1031.449; found 1031.447. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{8} \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.6 \mathrm{MeOH}: \mathrm{C}, 76.40 ; \mathrm{H}, 6.51$: Found C, $76.51 ; \mathrm{H}, 6.28$. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 264$ ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 164000$).

3. NMR Spectra

Compound 7- $\boldsymbol{C}_{2 \mathrm{v}}$
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound $\mathbf{8 - \boldsymbol { C } _ { \mathbf { 2 v } }}$

Compound $9-\boldsymbol{C}_{\mathbf{2 v}}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

Compound $2-\boldsymbol{C}_{\mathbf{2 v}}$

${ }^{13}$ C NMR (126 MHz, CDCl 3 , 298 K)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

Compound 6-C4

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound 7-C4

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound 8-C \boldsymbol{C}_{4}
${ }^{13}$ C NMR ($126 \mathrm{MHz}, d_{6}$-acetone, 298 K)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | ppm

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \boldsymbol{d}_{\mathbf{6}}$-acetone, 298 K)

Compound 9-C4

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound 2-C4

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound $\mathbf{3}$

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

Compound 4

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

4. ESI-MS

Compound 2-C4

Compound 2- $\mathbf{C}_{2 \mathrm{v}}$

Compound 3

Compound 4.

5. Compound 10

The oxidative cyclodehydrogenation of $\mathbf{2}-\boldsymbol{C}_{\mathbf{4}}$ using the $\mathrm{FeCl}_{3} / \mathrm{CH}_{3} \mathrm{NO}_{2}$ method returned a complex mixture of products that could not be separated by column chromatography. A single, impure fraction contained a compound, likely possessing two-fold symmetry as consistent with 10. Repeated attempts at crystallisation were unsuccessful. The ${ }^{1} \mathrm{H}$ NMR spectrum shows four signals at ca 3.9 ppm , consistent with methoxyprotons. Two triplets at similar frequency are seen at ca. 0.5 ppm , consistent with the methyl protons of the ethyl feet. Nine aromatic signals are seen where eight are expected, likely due to the obvious impurities. HR-ESI-MS supports the structural assignment for this fraction.

ESI-MS for Compound 10

6. Crystallography

6.1 Experimental Details

Data were collected on an Agilent SuperNova with Atlas CCD using mirror monochromated microfocus $\mathrm{Cu} K_{\alpha}$ radiation $(\lambda=1.54184 \AA ̊)$ at 40 W . The data processing was undertaken within CrysAlisPro, ${ }^{4}$ including a numerical absorption correction over a face-indexed model and/or a multiscan empirical correction. The structures were solved by direct methods with SHELXT2014 or SHELXS20145-6 and extended and refined against all F^{2} data with SHELXL20145 using the XSeed ${ }^{7}$ interface. The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and refined using a riding model with fixed C-H distances ($s p^{2} \mathrm{CH} 0.95 \AA, s p^{3} \mathrm{CH}_{3} 0.98 \AA, s p^{3} \mathrm{CH}_{2} 0.99$ $\AA \AA ; s p^{3} \mathrm{CH} 1.00 \AA$,) and isotropic displacement parameters estimated as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, except for CH_{3}, where $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Many structures contained disordered fragments and/or solvent molecules that were modelled with the aid of geometric (SADI, DFIX, FLAT, EXYZ) and ADP (RIGU, SIMU, EADP, ISOR) restraints/constraints. Where structures contained regions of highly disordered solvent that could not be adequately modelled, the PLATON SQUEEZE ${ }^{8}$ function was used. Details of the SQUEEZE process for each structure, including the volume and electron count for the disordered regions (per unit cell), and suggested solvent contents, are included in Table S1. Water molecules in structures $2-\boldsymbol{C}_{2 \mathrm{v}}$ were modelled without hydrogen atoms as insufficient residual electron density was observed for their localisation.

CCDC 1826428-1826432, 1834922 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

Table S1. X-ray crystallography data and structure refinement parameters

	2- $\mathrm{C}_{2 \mathrm{v}} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	2-C4.2CHCl ${ }_{3}$	3-1.5 CHCl_{3}
CCDC No.	1826428	1826429	1826430
Formula	$\mathrm{C}_{68} \mathrm{H}_{73} \mathrm{O}_{8.5}$	$\mathrm{C}_{70} \mathrm{H}_{74} \mathrm{Cl}_{6} \mathrm{O}_{8}$	$\mathrm{C}_{139} \mathrm{H}_{139} \mathrm{Cl}_{9} \mathrm{O}_{16}$
M	1026.25	1255.98	2384.54
T (K)	100	100	100
Crystal system	triclinic	triclinic	triclinic
Space group	P-1 (\#2)	P-1 (\#2)	P-1 (\#2)
$a(\AA)$	12.3530(4)	13.6525(4)	14.3309(4)
$b(\AA)$	14.6695(4)	$15.3663(4)$	18.0783(5)
$c(\AA)$	16.1299(5)	17.4716(5)	24.9943(5)
$\alpha\left({ }^{\circ}\right)$	93.266(2)	109.493(3)	72.549(2)
$\beta\left({ }^{\circ}\right.$	105.038(3)	102.788(3)	80.550(2)
$\gamma\left({ }^{\circ}\right)$	100.126(3)	99.544(2)	75.159(2)
$V\left(\AA^{3}\right)$	2762.64(15)	3253.02(17)	5944.5(3)
$Z[Z]$	2	2	2 [2]
Crystal description	colourless block	colourless prism	pale yellow irregular
Crystal size (mm^{3})	$0.20 \times 0.08 \times 0.05$	$0.24 \times 0.09 \times 0.08$	$0.31 \times 0.16 \times 0.08$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.633	2.841	2.477
$2 \theta_{\text {max }}, 2 \theta_{\text {full }}\left({ }^{\circ}\right)$	149.63, 134.00	148.38, 134.00	148.53, 134.00
$N_{\text {measured refl }}$	31061	24041	45719
$N_{\text {independent refl }}\left[R_{\text {int }}\right]$	11056 [0.0355]	12810 [0.0292]	23441 [0.0360]
$N_{\text {observed refl }}[I>2 \sigma(I)]$	8798	10680	17397
$N_{\text {parameters }}$	906	812	1632
$N_{\text {restraints }}$	78	0	348
$R[I>2 \sigma(I)]$	0.0559	0.0449	0.0984
$w R$ [all data]	0.1570	0.1274	0.3244
GOF	1.027	1.031	1.248
SQUEEZE details (per unit cell)	-	-	-
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.750, -0.502	0.923, -0.547	1.537, -0.835

Table S1 (continued). X-ray crystallography data and structure refinement parameters

	4- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4.7DMSO	4-3.5(EtPh)
CCDC No.	1826431	1826432	1834922
Formula	$\mathrm{C}_{138} \mathrm{H}_{132} \mathrm{Cl}_{4} \mathrm{O}_{16}$	$\mathrm{C}_{164} \mathrm{H}_{212} \mathrm{O}_{30} \mathrm{~S}_{14}$	$\mathrm{C}_{96} \mathrm{H}_{99} \mathrm{O}_{8}$
M	2188.22	3112.16	1380.75
T (K)	100	100	100
Crystal system	triclinic	triclinic	triclinic
Space group	P-1 (\#2)	P-1 (\#2)	P-1 (\#2)
$a(\AA)$	17.7109(5)	16.7858(4)	14.2685(3)
$b(A ̊)$	19.3230(7)	20.0431(4)	14.5929(2)
$c(A)$	21.2976(7)	25.8482(5)	19.2492(3)
$\alpha\left({ }^{\circ}\right)$	78.212(3)	87.859(2)	101.4820(10)
$\beta\left({ }^{\circ}\right)$	65.437(3)	88.846(2)	91.2600(10)
$\gamma\left({ }^{\circ}\right)$	66.098(3)	68.982(2)	95.4360(10)
$V\left(\AA^{3}\right)$	6054.9(4)	8111.9(3)	3906.74(12)
$Z\left[Z^{\prime}\right]$	2 [2]	2 [2]	2
Crystal description	colourless plate	light yellow block	colourless plate
Crystal size (mm^{3})	$0.17 \times 0.15 \times 0.08$	$0.41 \times 0.27 \times 0.18$	$0.25 \times 0.23 \times 0.05$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.398	2.307	0.570
$2 \theta_{\text {max }}, 2 \theta_{\text {full }}\left({ }^{\circ}\right)$	149.69, 134.00	149.09, 134.00	149.77, 134.00
$N_{\text {measured refl }}$	45912	63304	73852
$N_{\text {independent refl }}\left[R_{\text {int }}\right]$	24089 [0.0408]	32042 [0.0260]	15664 [0.0249]
$N_{\text {observed refl }}[I>2 \sigma(I)]$	18185	27481	13432
$N_{\text {parameters }}$	1499	2000	998
$N_{\text {restraints }}$	34	249	315
$R[I>2 \sigma(I)]$	0.0667	0.1001	0.0885
$w R$ [all data]	0.1820	0.2868	0.0970
GOF	1.022	1.040	1.025
SQUEEZE details (per unit cell)	$\begin{aligned} & 10 \mathrm{CH}_{3} \mathrm{OH}, 2 \mathrm{H}_{2} \mathrm{O} \\ & \left(697 \AA^{3}, 214 \mathrm{e}\right) \end{aligned}$	$\begin{aligned} & 4 \mathrm{H}_{2} \mathrm{O} \\ & \left(160 \AA^{3}, 50 \mathrm{e}\right) \end{aligned}$	-
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.671, -0.449	2.533, -2.463	0.916, -0.696

6.2 Crystal structures not detailed in main text

Figure S1. Stick diagrams of 4 showing encapsulation of 6 DMSO molecules in space-filling representation. Hydrogen atoms and non-encapsulated DMSO molecules omitted for clarity.

6.3 ORTEP Diagrams

Representative ORTEP diagrams of the asymmetric unit (ASU) with 50\% probability ellipsoids are shown for all compounds analysed crystallographically. Labels are omitted as required for clarity.

Figure S2. ORTEP diagram of the ASU of $\mathbf{2}-\boldsymbol{C}_{\mathbf{2 v}} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ shown in top and side views. The 2 nd component of disorder is omitted for clarity. The partial water molecule split over three sites in a highly disordered region of the structure.

Figure S3. ORTEP diagram of the ASU of $\mathbf{2} \cdot \boldsymbol{C}_{\mathbf{4}} \cdot \mathbf{2} \mathrm{CHCl}_{3}$ shown in top and side views.

Figure S4. ORTEP diagram of the ASU of $\mathbf{3} \cdot 1.5 \mathrm{CHCl}_{3}$. The 2 nd component of disorder is omitted for clarity

Figure S5. ORTEP diagram of the ASU of $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ shown in top and side views. The 2nd component of disorder is omitted for clarity.

Figure S6. ORTEP diagram of the ASU of 4•7DMSO. 10 of the 14 DMSO molecules in the ASU are disordered, with the 2nd component omitted for clarity.

Figure S7. ORTEP diagram of the ASU of $4 \cdot 3.5(\mathrm{EtPh})$ in top and side views. The 2 nd component of disorder is omitted for clarity.

6.4 Structural Comparison of 4 to Related Structures

Structural dissimilarities in the solid state between 4 and Cram-type caviplexes 1a and $\mathbf{1 b}$ are primarily in the angles of the conical core and extended walls, driven by the size of the unsaturated rings and flexibility in the walls (Figure S7, Table S2). The angle at the conical core (α) of $\mathbf{4}$ is approximately half that of $\mathbf{1 b}$ and increases across the series with increasing size of the unsaturated ring. The angle between arylene walls of 4 approaches 90°, while the angle of $\mathbf{1 b}$ in the vase conformation shows an inward inflection with a β angle of -18.8°.

Figure S8. Diagram of cavitand showing angles α and β.
Table S2. Structural comparison between cavitands 4, 1a and 1b in the solid state

Cavitand	$\mathbf{4}$	$\mathbf{1 a}^{a}$	$\mathbf{1 b}^{b}$
Ring size	7	8	9
$\alpha\left({ }^{\circ}\right)$	36.3	58.2	73.7
$\beta\left({ }^{\circ}\right)$	88.3	-	-18.8

${ }^{a} \mathrm{R}=\mathrm{Me}$, caviplex binding $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{9}{ }^{5} \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOM}$ e, caviplex in vase conformation binding MeCN. ${ }^{10}$

7. References

1. Bartenstein, J. E.; Lucas, N. T., Supramol. Chem. 2012, 24, 618-626.
2. Mclldowie, M. J.; Mocerino, M.; Skelton, B. W.; White, A. H., Org. Lett. 2000, 2, 3869-3871.
3. Thakar, A. S.; Parekh, H. M.; Pansuriya, P. B.; Friedrich, H. B.; Maguire, G. E. M., Eur. J. Org. Chem. 2014, 2014, 4600-4609.
4. CrysAlisPro, version 1.171.37.33; Agilent Technologies: Yarnton, Oxfordshire, UK, 2013.
5. Sheldrick, G. M., Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112-122.
6. Sheldrick, G. M., Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3-8.
7. Barbour, L. J., J. Supramol. Chem. 2001, 1, 189-191.
8. Spek, A. L., Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 9-18.
9. Kane, C. M.; Ugono, O.; Barbour, L. J.; Holman, K. T., Chem. Mater. 2015, 27, 73377354.
10. Azov, V. A.; Skinner, P. J.; Yamakoshi, Y.; Seiler, P.; Gramlich, V.; Diederich, F., Helv. Chim. Acta 2003, 86, 3648-3670.
