SUPPLEMENTARY INFORMATION

Rigid Tetraarylene-Bridged Cavitands from Reduced-Symmetry Resorcin[4]arene Derivatives

Jordan N. Smith and Nigel T. Lucas

MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand

Contents

General	1
Synthesis	2
Precursor Synthesis	2
Synthetic Methods and Characterisation	4
NMR Spectra1	0
ESI-MS	1
Compound 102	5
Crystallography2	7
Experimental Details2	7
Crystal structures not detailed in main text3	0
ORTEP Diagrams3	1
Structural Comparison of 4 to Related Structures3	4
References	5
	Synthesis Precursor Synthesis Synthetic Methods and Characterisation 1 IMR Spectra 1 ESI-MS 2 Compound 10 2 Crystallography 2 Experimental Details 2 Crystal structures not detailed in main text 3 ORTEP Diagrams 3 Structural Comparison of 4 to Related Structures 3

1. General

All commercially purchased starting materials were used as received unless otherwise noted. Solvents listed as "dry" were dried using a Pure-Solv MD-6 solvent purification system. All other solvents were LR grade unless otherwise noted. "Petrol" refers to the petroleum fraction boiling in the range 40–60 °C. Solvents were removed under "reduced pressure" by rotary evaporation. Standard Schlenk techniques were employed where an inert atmosphere of argon or nitrogen was required. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in 5 mm diameter tubes at 25 °C on a Varian 400 MR spectrometer (400, 100 and 376 MHz, respectively) or a Varian 500 AR spectrometer (500, 126 and 470 MHz, respectively). ¹H and ¹³C NMR signals were referenced against residual non-perdeuterated solvents where applicable. All reported coupling constants (/) are in Hz. 2-Dimensional NMR spectra (COSY, NOESY, HSQC, HMBC) were recorded for all new compounds to assist in assignments. HR MS (ESI) mass spectra were recorded on a Bruker MicrOTOF-Q electrospray ionisation mass spectrometer. Elemental composition was measured on a Carlo Erba 1108 CHNS combustion analyser at the Campbell Microanalytical Laboratory, University of Otago, Dunedin with an absolute uncertainty of ±0.3%. UV-visible absorption and emission spectra were recorded on an Edinburgh Instruments FS5 spectrofluorometer in 10 mm quartz cells.

2. Synthesis

2.1 Precursor Synthesis

 C_{2v} -symmetric compounds **11**, **12**, **13** and **5**- C_{2v} were prepared following literature procedures and were consistent with characterisation data as reported.¹ **5**- C_4 was prepared via a modified literature procedure² and was consistent with characterisation data reported.³

Scheme S1. Synthesis of **9**-*C*_{2v}. Reaction conditions: i. HCl, EtOH, 80 °C, 19 h; ii. TsCl, NEt₃, MeCN, 15 h, rt; iii. K₂CO₃, MeI, acetone, 70 °C, 19 h; iv. KOH, *n*-propanol, reflux, 21 h; v. Tf₂O, pyridine, CH₂Cl₂, 0 °C–rt, 16 h; vi. Pd₂(dba)₃, (±)-BINAP, NEt₃, formic acid, toluene, reflux, 48 h; vii. BBr₃, CH₂Cl₂, 0 °C–rt, 18 h; viii. Tf₂O, pyridine, CH₂Cl₂, 0 °C–rt, 16 h.

Scheme S2. Synthesis of **9**-*C*₄. Compounds **5**-*C*₄–**9**-*C*₄ were prepared as racemates; one enantiomer is shown for clarity. Reaction conditions: i. BF₃.Et₂O, CH₂Cl₂, 2h, rt; ii. Tf₂O, pyridine, CH₂Cl₂, 0 °C–rt, 16 h; iii. Pd₂(dba)₃, (±)-BINAP, NEt₃, formic acid, toluene, reflux, 48 h; iv. BBr₃, CH₂Cl₂, 0 °C–rt, 18 h; v. Tf₂O, pyridine, CH₂Cl₂, 0 °C–rt, 16 h.

2.2 Synthetic Methods and Characterisation

2.2.1 2,4,6,8-Tetraethyl-*1*⁴,*1*⁶,*5*⁴,*5*⁶-tetramethoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**7**-*C*_{2v})

Tetratriflate **6-** C_{2v} (1.20 g, 1.01 mmol) was dissolved in toluene (20 mL) and deoxygenated with argon bubbling for 10 mins. Triethylamine (1.70 mL, 1.22 g, 12.0 mmol), tris(dibenzylideneacetone)palladium(0) (90 mg, 0.10 mmol), (±)-BINAP (125 mg, 0.2 mmol) and formic acid (0.45 mL, 550 mg, 12.0 mmol) were added and the mixture heated at reflux for 48 h. After cooling, the dark brown mixture was diluted with CH₂Cl₂, the organic phase washed with H₂O, dried over MgSO₄, filtered and the solvents removed under reduced pressure. The dark solid was purified by column

chromatography (SiO₂, 50% CH₂Cl₂/petrol) affording **7**-*C*_{2v} as a white solid (555 mg, 0.94 mmol, 94%). ¹H-NMR (500 MHz, CDCl₃): δ 7.19–7.14 (m, 6H, Ar-*H*-3⁴,3⁵,3⁶,7⁴,7⁵,7⁶), 6.78 (s, 2H, Ar-*H*-1²,5²), 6.71 (s, 2H, Ar-*H*-3²,7²), 6.26 (s, 2H, Ar-*H*-1⁵,5⁵), 4.06 (t, *J* = 7.2 Hz, 4H, -C*H*), 3.70 (s, 12H, -OC*H*₃), 1.96–1.90 (m, 8H, -C*H*₂), 0.85 (t, *J* = 7.3 Hz, 12H, -C*H*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 155.62 (Ar-*C*-1⁴,1⁶,5⁴,5⁶), 144.59 (Ar-*C*-3¹,3³,7¹,7³), 127.07 (Ar-*C*-3⁵,7⁵), 126.75 (Ar-*C*-3²,7²), 126.54 (Ar-*C*-3⁴,3⁶,7⁴,7⁶), 125.97 (Ar-*C*-1¹,1³,5¹,5³), 125.67 (Ar-*C*-1²,5²), 95.43 (Ar-*C*-1⁵,5⁵), 55.75 (-OCH₃), 44.62 (-CH), 28.04 (-CH₂-), 12.95 (-CH₃). HR-ESI-MS: calcd [M+Na]⁺ (C₄₀H₄₈O₄Na) *m/z* 615.345; found 615.345. Anal. calcd [C₄₀H₄₈O₄·0.5H₂O·0.25CHCl₃]: C 77.59, H 8.01; found C 77.43, H 8.06.

2.2.2 2,4,6,8-Tetraethyl-*1*⁴,*1*⁶,*5*⁴,*5*⁶-tetrahydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (8-*C*_{2v})

Tetramethoxy **7**- C_{2v} (555 mg, 0.94 mmol) was dissolved in dry CH₂Cl₂ (30 mL) under argon and the solution cooled in an icewater bath. Boron tribromide (0.90 mL, 2.36 g, 9.40 mmol) was added dropwise and the resulting brown solution stirred cold for 30 min before allowing to warm to rt over 17 h. The reaction was quenched by the dropwise addition of methanol (5 mL) and diluted with CH₂Cl₂. The organic phase was washed with H₂O, aqueous NaCl (sat), dried over MgSO₄, filtered, and the solvents removed under reduced pressure affording **8**- C_{2v} as a white

solid (485 mg, 0.90 mmol, 96%). ¹H-NMR (500 MHz, d_6 -acetone): δ 7.74 (br s, 4H, -OH), 7.16 (d, J = 7.8 Hz, 4H, Ar-H-3⁴,3⁶,7⁴,7⁶), 7.08 (t, J = 7.8 Hz, 2H, Ar-H-3⁵,7⁵), 7.02 (m, 4H, Ar-H-1²,3²,5²,7²), 6.16 (s, 2H, Ar-H-1⁵,5⁵), 4.10 (t, J = 7.90 Hz, 4H, -CH), 2.02 (m, 8H, -CH₂-), 0.85 (t, J = 7.3 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, d_6 -acetone): δ 153.76 (Ar-C-1⁴,1⁶,5⁴,5⁶), 146.40 (Ar-C-3¹,3³,7¹,7³), 127.49 (Ar-C-3⁴,3⁶,7⁴,7⁶), 127.46 (Ar-C-3⁵,7⁵), 126.59 (Ar-C-3²,7²), 126.03 (Ar-C-1²,5²), 123.90 (Ar-C-1¹,1³,5¹,5³), 102.90 (Ar-C-1⁵,5⁵), 45.62 (-CH), 28.74 (-CH₂-), 13.19 (-CH₃). HR-ESI-MS: calcd [M+Na]⁺ (C₃₆H₄₀O₄Na) *m/z* 559.282; found 559.281. Anal. calcd [C₃₆H₄₀O₄·Et₂O·0.5H₂O]: C 77.51, H 8.29; found C 77.40, H 8.10.

2.2.3 2,4,6,8-Tetraethyl-*1*⁴,*1*⁶,*5*⁴,*5*⁶-tetra(triflyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**9**-*C*_{2v})

Tetrol **8-C_{2v}** (440 mg, 0.82 mmol) was suspended in dry CH₂Cl₂ (20 mL) and the mixture cooled in an ice water bath under an argon atmosphere. Pyridine (1.59 mL, 19.7 mmol) was added before the dropwise addition of triflic anhydride (0.83 mL, 1.40 g, 4.92 mmol). The resulting yellow solution was stirred cold for 30 min before allowing to warm to rt over 18 h. The reaction was quenched with HCl (5 M, 15 mL) with vigorous stirring, washed with water and then brine. The organic phase was dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude product was purified by column

chromatography (SiO₂, 25% CH₂Cl₂/petrol) affording **9**-*C*_{2v} as a white solid (798 mg, 91%). ¹H-NMR (500 MHz, CDCl₃): δ 7.36–7.33 (m, 2H, Ar-*H*-3⁵,7⁵), 7.26–7.24 (m, 4H, Ar-*H*-3⁴,3⁶,7⁴,7⁶), 7.07 (s, 2H, Ar-*H*-1⁵,5⁵), 6.91 (s, 2H, Ar-*H*-1²,5²), 6.28 (s, 2H, Ar-*H*-3²,7²), 4.08 (t, *J* = 7.6 Hz, 4H, -*CH*), 1.99–1.87 (m, 8H, -*CH*₂), 0.92 (t, *J* = 7.0 Hz, 12H, -*CH*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 145.20 (Ar-*C*-1⁴,1⁶,5⁴,5⁶), 142.48 (Ar-*C*-3¹,3³,7¹,7³), 138.22 (Ar-*C*-1¹,1³,5¹,5³), 128.92 (Ar-*C*-1²,5²), 128.65 (Ar-*C*-3⁵,7⁵), 127.36 (Ar-*C*-3²,7²), 126.90 (Ar-*C*-3⁴,3⁶,7⁴,7⁶), 118.52 (q, *J*_{CF} = 320 Hz, -OTf), 114.68 (Ar-*C*-1⁵,5⁵), 45.57 (-*C*H), 27.97 (-*C*H₂-), 12.43 (-*C*H₃). ¹⁹F-NMR (470 MHz, CDCl₃): δ -74.0 (s, -OTf). HR-ESI-MS: calcd [M+Na]⁺ (C₄₀H₃₆F₁₂O₁₂S₄Na) *m/z* 1087.079; found 1087.081. Anal. calcd [C₄₀H₃₆F₁₂O₁₂S₄·0.2CH₂Cl₂]: C 44.35, H 3.35; found C 44.31, H 3.32.

2.2.4 2,4,6,8-Tetraethyl- 1^4 , 1^6 , 5^4 , 5^6 -tetra(3',4'-dimethoxyphenyl)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**2-** C_{2v})

Tetratriflate **9**- C_{2v} (400 mg, 0.38 mmol), 3,4dimethoxyphenyl boronic acid (692 mg, 3.76 mmol) and cesium carbonate (2.45 g, 7.52 mmol) were suspended in toluene (15 mL), water (7 mL) and *n*-propanol (1 mL), and the mixture deoxygenated with gentle argon bubbling for 10 min. Dichloro[1,1'-bis(diphenylphosphino)ferrocene]

palladium(II) (27 mg, 0.038 mmol) was added and the mixture heated at 70 °C for 48

h with vigorous stirring. After cooling, the dark mixture was diluted with CH₂Cl₂, the organic phase washed with water, brine, then dried over MgSO₄ and the solvents removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, 2% acetone/CH₂Cl₂) affording **2-C**_{2v} as a white solid (295 mg, 0.29 mmol, 76%). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl₃ solution of **2-C**₄. ¹H-NMR (500 MHz, CDCl₃): δ 7.25 (s, 2H, Ar-H-1²,5²), 7.04 (s, 2H, Ar-H-3²,7²), 6.99–6.96 (m, 4H, Ar-H-1⁵,3⁵,5⁵,7⁵), 6.83 (d, *J* = 8.1 Hz, 4H, Ph-H₅·), 6.76–6.74 (m, 8H, Ph-H₂·,6[•]), 6.66 (dd, *J* = 7.7, 1.7 Hz, 4H, Ar-H-3⁴,3⁶,7⁴,7⁶), 4.01 (t, *J* = 7.7 Hz, 4H, -CH), 3.92 (s, 12H, C₄·-OCH₃), 3.77 (s, 12H, C₃·-OCH₃), 1.99 (quin, *J* = 7.2 Hz, 8H, -CH₂-), 0.80 (t, *J* = 7.2 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ 148.35 (Ph-C₃·), 148.06 (Ph-C₄), 145.34 (Ar-C-3¹,3³,7¹,7³), 141.60 (Ar-C-1¹,1³,5¹,5³), 139.52 (Ar-C-1⁴,1⁶,5⁴,5⁶), 134.54 (Ph-C₁·), 131.86 (Ar-C-3²,7²), 127.41 (Ar-C-3⁵,7⁵), 127.00 (Ar-C-3⁴,3⁶,7⁴,7⁶) 126.07 (Ar-C-1⁵,5⁵), 125.68 (Ar-C-1²,5²), 122.20 (PC₆·), 113.64 (Ph-C₂·), 110.75 (Ph-C₅·), 56.05 (C₄·-OCH₃), 56.01 (C₃·-OCH₃), 48.60 (-CH), 29.92 (-CH₂-), 12.96 (-CH₃). HR-ESI-MS: calcd [M+Na]+

(C₆₈H₇₂O₈Na) *m/z* 1039.512; found 1039.511. Anal. calcd [C₆₈H₇₂O₈·0.75MeOH]: C 79.30, H 7.26; found C 79.18, H 7.54. λ_{max}(CH₂Cl₂)/nm 250 (ε/dm³ mol⁻¹ cm⁻¹ 98000).

2.2.5 *rac*-2,4,6,8-Tetraethyl-*1*⁴,*3*⁶,*5*⁶,*7*⁶-tetramethoxy-*1*⁶,*3*⁴,*5*⁴,*7*⁴-tetra(triflyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**6**-*C*₄)

Tetrol **5**- C_4 (1.00 g, 1.52 mmol) was dissolved in dry CH₂Cl₂ (20 mL), pyridine (2.95 mL, 36.5 mmol) added and the solution cooled on an ice-water bath under an argon atmosphere. Triflic anhydride (1.53 mL, 2.58 g, 9.14 mmol) was added dropwise and the resulting light-purple solution stirred cold for 30 min before allowing to warm to rt overnight. The reaction was quenched by the dropwise addition of aqueous HCl (5 M, 10 mL) with vigorous stirring, washed twice with water and then brine, dried over MgSO₄ and filtered. The removal of solvents under reduced pressure

afforded **6**-*C*₄ as an off-white solid (1.80 g, 1.51 mmol, 99%). ¹H-NMR (500 MHz, CDCl₃): δ 6.79 (s, 4H, Ar-*H*-1²,3²,5²,7²), 6.61 (s, 4H, Ar-*H*-1⁵,3⁵,5⁵,7⁵), 4.41 (dd, *J* = 8.3, 6.8 Hz, 4H, -C*H*), 3.68 (s, 12H, -OC*H*₃), 1.98 (m, 4H, -C*H*₂-), 1.84 (m, 4H, -C*H*₂-), 0.93 (s, 12H, -C*H*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 156.16 (Ar-*C*-1⁴,3⁶,5⁶,7⁶), 147.14 (Ar-*C*-1⁶,3⁴,5⁴,7⁴), 131.96 (Ar-*C*-1³,3¹,5¹,7¹), 127.03 (Ar-*C*-1¹,3³,5³,7³), 126.63 (Ar-*C*-1²,3²,5²,7²), 118.61 (q, *J*_{CF} = 320 Hz, -OTf), 103.41 (Ar-*C*-1⁵,3⁵,5⁵,7⁵), 55.49 (-OCH₃), 37.78 (-CH), 27.99 (-CH₂-), 12.40 (-CH₃). ¹⁹F-NMR (470 MHz, CDCl₃): δ -74.6 (s, -OTf). HR-ESI-MS: calcd [M+Na]⁺ (C₄₄H₄₄F₁₂O₁₆S₄Na) *m/z* 1207.121; found 1207.120. Anal. calcd [C₄₄H₄₄F₁₂O₁₆S₄]: C 44.60, H 3.74; found C 44.64, H 3.69.

2.2.6 *rac*-2,4,6,8-Tetraethyl-*1*⁴,*3*⁶,*5*⁶,*7*⁶-tetramethoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**7**-*C*₄)

Tetratriflate 6-C₄ (2.50 g, 2.11 mmol) was dissolved in toluene (30 mL) and triethylamine (3.50 mL, 25.3 mmol) under an argon atmosphere and the solution deoxygenated with gentle argon bubbling for 15 min. Formic acid (0.96 mL, 25.3 mmol) was added dropwise, followed by tris(dibenzylideneacetone)dipalladium(0) (192 mg, 0.21 mmol) and (±)-BINAP (261 mg, 0.42 mmol), and the darkpurple mixture heated at 100 °C for 24 h. After cooling, the mixture was diluted with CH₂Cl₂, and the organic phase washed with water, dried over MgSO₄, filtered and the

solvents removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, 25% CH₂Cl₂/petrol) affording **7-***C*₄ as a white solid (970 mg, 1.64 mmol, 78%). ¹H-NMR (500 MHz, CDCl₃): δ 7.07 (dd, *J* = 8.3, 2.2 Hz, 4H, Ar-*H*-1⁶,3⁴,5⁴,7⁴), 7.00 (d, *J* = 2.2 Hz, 4H, Ar-*H*-1²,3²,5²,7²), 6.66 (d, *J* = 8.3 Hz, 4H, Ar-*H*-1⁵,3⁵,5⁵,7⁵), 4.18 (t, *J* = 7.9 Hz, 4H, -C*H*), 3.73 (s, 12H, -OC*H*₃), 2.03 (m, 8H, -C*H*₂-), 0.87 (t, *J* = 7.2 Hz, 12H, -C*H*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 157.55 (Ar-*C*-1⁴,3⁶,5⁶,7⁶), 139.61 (Ar-*C*-1¹,3³,5³,7³), 136.50 (Ar-*C*-1³,3¹,5¹,7¹), 130.19 (Ar-*C*-1⁶,3⁴,5⁴,7⁴), 127.64 (Ar-*C*-1²,3²,5²,7²), 112.82 (Ar-*C*-1⁵,3⁵,5⁵,7⁵), 58.20 (-OCH₃), 46.63 (-*C*H), 30.29 (-*C*H₂-), 15.36 (-*C*H₃). HR-ESI-MS: calcd [M+Na]⁺ (C₄₀H₄₈O₄Na) *m/z* 615.345; found 615.343. Anal. calcd [C₄₀H₄₈O₄·0.7CHCl₃]: C 72.27, H 7.26; found C 72.33, H 7.52.

2.2.7 *rac*-2,4,6,8-Tetraethyl-*1*⁴,*3*⁶,*5*⁶,7⁶-tetrahydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (8-*C*₄)

Tetramethoxy **7-***C*₄ (1.65 g, 2.78 mmol) was dissolved in dry CH₂Cl₂ (50 mL) under argon and the solution cooled in an ice water bath. BBr₃ (1 M, 27.8 mL, 27.8 mmol) was added dropwise, the resulting purple solution stirred cold for 30 min before allowing to warm to rt over 4 h. The reaction was quenched with MeOH and diluted with Et₂O, the organic phase washed with water, brine, then dried over MgSO₄, filtered and the solvents removed under reduced pressure affording **8-***C*₄ as a white solid (1.37 g, 2.55 mmol, 92%). ¹H-NMR (500 MHz, *d*₆-acetone): δ 7.80 (s, 4H, -OH), 7.38 (d, *J* = 2.2 Hz, 4H, Ar-*H*-

1²,3²,5²,7²), 6.93 (dd, *J* = 8.1, 2.2 Hz, 4H, Ar-*H*-1⁶,3⁴,5⁴,7⁴), 6.55 (d, *J* = 8.1 Hz, 4H, Ar-*H*-1⁵,3⁵,5⁵,7⁵), 4.23 (t, *J* = 8.0 Hz, 4H, -C*H*), 2.15 (m, 8H, -C*H*₂-), 0.87 (t, *J* = 7.3 Hz, 12H, -C*H*₃). ¹³C-NMR (126 MHz, *d*₆-acetone): δ 153.05 (Ar-*C*-1⁴,3⁶,5⁶,7⁶), 137.44 (Ar-*C*-1³,3¹,5¹,7¹), 133.06 (Ar-*C*-1¹,3³,5³,7³), 128.65 (Ar-*C*-1⁶,3⁴,5⁴,7⁴), 124.92 (Ar-*C*-1²,3²,5²,7²), 115.02 (Ar-*C*-1⁵,3⁵,5⁵,7⁵), 44.68 (-CH), 28.48 (-*C*H₂-), 13.14 (-*C*H₃). HR-ESI-MS: calcd [M+Na]⁺ (C₃₆H₄₀O₄Na) *m/z* 559.282; found 559.280. Anal. calcd [C₃₆H₄₀O₄·Et₂O·0.5H₂O]: C 77.51, H 8.29; found C 77.56, H 8.29.

2.2.8 *rac*-2,4,6,8-Tetraethyl-*1*⁴,*3*⁶,*5*⁶,*7*⁶-tetra(triflyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**9**-*C*₄)

Tetrol **8-***C*⁴ (500 mg, 0.93 mmol) was suspended in dry CH_2Cl_2 (30 mL) under argon and the mixture cooled in an ice water bath. Pyridine (1.80 mL, 1.77 g, 22.3 mmol) was added before the dropwise addition of triflic anhydride (1.60 mL, 2.62 g, 9.30 mmol). The resulting yellow solution was stirred cold for 30 min before allowing to warm to rt over 5 h. The reaction was quenched with HCl (5 M, 15 mL), and the organic phase washed with water, brine, then dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, 25%)

CH₂Cl₂/petrol) affording **9-C**₄ as a white solid (900 mg, 0.85 mmol, 91%). ¹H-NMR (500 MHz, CDCl₃): δ 7.15 (dd, *J* = 8.6, 2.1 Hz, 4H, Ar-*H*-1⁶,3⁴,5⁴,7⁴), 7.13 (d, *J* = 8.6 Hz, 4H, Ar-*H*-1⁵,3⁵,5⁵,7⁵), 6.94 (d, *J* = 2.1 Hz, 4H, Ar-*H*-1²,3²,5²,7²), 4.19 (t, *J* = 7.6 Hz, 4H, -CH), 2.13–1.96 (m, 8H, -CH₂-), 0.95 (t, *J* = 7.3 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ 146.37 (Ar-*C*-1⁴,3⁶,5⁶,7⁶), 143.56 (Ar-*C*-1³,3¹,5¹,7¹), 136.77 (Ar-*C*-1¹,3³,5³,7³), 130.22 (Ar-*C*-1⁶,3⁴,5⁴,7⁴), 126.45 (Ar-*C*-1²,3²,5²,7²), 121.43 (Ar-*C*-1⁵,3⁵,5⁵,7⁵), 118.61 (q, *J*_{CF} = 320 Hz, -OTf), 45.03 (-CH), 28.41 (-CH₂-), 12.37 (-CH₃). ¹⁹F-NMR (376 MHz, CDCl₃): δ -74.0 (s, -OTf). HR-ESI-MS: calcd [M+Na]⁺ (C₄₀H₃₆F₁₂O₁₂S₄Na) *m/z* 1087.079; found 1087.078. Anal. calcd [C₄₀H₃₆F₁₂O₁₂S₄]: C 45.11, H 3.41; found C 45.34, H 3.15.

2.2.9 *rac*-2,4,6,8-Tetraethyl-*1*⁴,*3*⁶,*5*⁶,*7*⁶-tetra(3',4'-dimethoxyphenyl)-1,3,5,7(1,3)tetrabenzenacyclooctaphane (**2**-*C*₄)

Tetratriflate **9-** C_4 (400 mg, 0.38 mmol), 3,4dimethoxyphenyl boronic acid (692 mg, 3.76 mmol) and cesium carbonate (2.45 g, 7.52 mmol) were suspended in toluene (15 mL), water (7 mL) and *n*-propanol (1 mL) and the mixture deoxygenated with gentle argon bubbling for 10 min. Dichloro[1,1'bis(diphenylphosphino)ferrocene]

palladium(II) (27 mg, 0.038 mmol) was added and the mixture heated at 70 °C for 48 h. After cooling, the dark mixture was diluted with CH_2Cl_2 , the organic phase washed with water, brine, then dried over MgSO₄ and the solvents removed under reduced pressure. The crude

product was purified by column chromatography (SiO₂, 2% acetone/CH₂Cl₂) affording **2-C**₄ as a white solid (355 mg, 0.35 mmol, 93%). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl₃ solution of **2-C**₄. ¹H-NMR (500 MHz, CDCl₃): δ 7.16 (br s, 4H, Ar-*H*-1²,3²,5²,7²), 6.96 (d, *J* = 7.8 Hz, 4H, Ph-*H*₅), 6.87 (d, *J* = 8.2 Hz, 4H, Ph-*H*₆), 6.74 (d, *J* = 8.0 Hz, 4H, Ar-*H*-1⁵,3⁵,5⁵,7⁵), 6.68 (dd, *J* = 8.0, 1.8 Hz, 4H, Ar-*H*-1⁶,3⁴,5⁴,7⁴), 6.49 (br s, 4H, Ph-*H*₂), 4.00 (t, *J* = 7.4 Hz, 4H, -C*H*), 3.91 (s, 12H, C₄-OC*H*₃), 3.72 (s, 12H, C₃-OC*H*₃), 2.12–1.94 (m, 8H, -C*H*₂-), 0.84 (t, *J* = 7.2 Hz, 12H, -C*H*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 148.20 (Ph-*C*₄-), 147.96 (Ar-*C*-1¹,3³,5³,7³), 144.99 (Ph-*C*₁-), 142.42 (Ph-*C*₃-), 139.78 (Ar-*C*-1⁴,3⁶,5⁶,7⁶), 134.83 (Ar-*C*-1³,3¹,5¹,7¹), 129.69 (Ph-*C*₅-), 127.29 (Ar-*C*-1⁶,3⁴,5⁴,7⁴), 125.63 (Ar-*C*-1²,3²,5²,7²), 121.55 (Ar-*C*-1⁵,3⁵,5⁵,5⁵), 113.33 (Ph-*C*₂-), 110.87 (Ph-*C*₆-), 56.07 (C₄-OCH₃), 55.72 (C₃-OCH₃), 47.84 (-*C*H), 29.73 (-*C*H₂-), 12.93 (-*C*H₃). HR-ESI-MS: calcd [M+Na]⁺ (C₆₈H₇₂O₈Na) *m/z* 1039.512; found 1039.512. Anal. calcd [C₆₈H₇₂O₈·0.6CHCl₃]: C 75.67, H 6.72; found C 75.88, H 7.04. λ_{max}(CH₂Cl₂)/nm 250 (ε/dm³ mol⁻¹ cm⁻¹ 96000).

2.2.10 1⁴,7⁴:3⁴,5⁶-Bis(4,5-dimethoxy[1,2]benzeno)-1⁶,5⁴-bis(3,4-dimethoxyphenyl)-2,4,6,8-tetraethyl-1,3,5,7(1,3)tetrabenzenacyclooctaphane (**3**)

Macrocycle **2**- C_{2v} (300 mg, 0.30 mmol) was dissolved in CH₂Cl₂ (150 mL, AR grade) and the solution purged with gentle argon bubbling for 10 min. FeCl₃ (1.15 g, 7.10 mmol) in CH₃NO₂ (5 mL) was added dropwise and the resulting dark green solution stirred at rt with continued argon bubbling. After 30 min, the reaction mixture was washed with water brine, then dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, 2% acetone/CH₂Cl₂) affording **3** as an off-white solid (270 mg, 0.27

mmol, 90%). Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CHCl₃ solution of **3**. ¹H-NMR (500 MHz, CDCl₃): δ 7.64 (s, 2H, Ar-*H*-1²,5²), 7.55 (s, 2H, Ar-*H*-

3²,7²), 7.18 (s, 2H, Ar-*H*-1⁵,5⁵), 7.07 (s, 2H, $H_{3"}$), 7.05 (d, *J* = 7.8 Hz, 2H, Ar-*H*-3⁵,7⁵), 7.02 (s, 2H, *H*₆"), 6.97 (br d, *J* = 7.8 Hz, 2H, Ph-*H*₅'), 6.92 (br m, 4H, Ph-*H*_{2',6'}), 6.38 (d, *J* = 7.8 Hz, Ar-*H*-3⁶,7⁶), 4.07 (t, *J* = 8.0 Hz, 2H, 4, 8-C*H*), 3.97 (s, 6H, C₄--OC*H*₃), 3.93 (s, 6H, C₅"-OC*H*₃), 3.91 (s, 6H, C₄"-OC*H*₃), 3.81 (br s, 6H, C₃"-OC*H*₃), 3.40 (t, *J* = 7.6 Hz, 2H, 2, 6-C*H*), 2.68–2.60 (m, 4H, 2, 6-C*H*₂), 2.45–2.23 (m, 4H, 4, 8-C*H*₂), 1.22 (t, *J* = 7.2 Hz, 6H, 2, 6-C*H*₃), 1.04 (t, *J* = 7.2 Hz, 6H, 4-C*H*₃, 8-C*H*₃). ¹³C-NMR (126 MHz, CDCl₃): δ 148.48 (Ph-C₅"), 148.23 (*C*₅"), 148.21 (*C*₄"), 148.04 (Ph-*C*₄"), 145.31 (Ar-*C*-3¹,7¹), 144.23 (Ar-*C*-3³,7³), 143.01 (Ar-*C*-1³,5¹), 142.52 (Ar-*C*-1¹,5³), 138.77 (Ar-*C*-1⁶,5⁴), 136.30 (Ar-*C*-3⁴,7⁴), 135.52 (Ar-*C*-1⁴,5⁶), 134.72 (*C*₁"), 131.74 (*C*₂"), 131.19 (Ph-*C*₁"), 130.28 (Ar-*C*-1⁵,5⁵), 128.52 (Ar-*C*-3⁵,7⁵), 126.63 (Ar-*C*-3⁶,7⁶), 122.01 (Ph-*C*₂"), 119.49 (Ar-*C*-1²,5²), 118.49 (Ph-*C*-3²,7²), 113.61 (Ph-*C*₆"), 112.04 (*C*₆"), 111.75 (*C*_{3"}), 110.90 (Ph-*C*₃"), 56.17 (C₄"-OCH₃), 56.10 (C₅"-OCH₃), 56.08 (C₄-OCH₃), 56.07 (C₃"-OCH₃), 47.90 (4, 8-CH), 45.10 (2, 6-CH), 29.17 (4, 8-CH₂), 21.95 (2, 6-CH₂), 13.20 (4, 8-CH₃), 12.78 (2, 6-CH₃). HR-ESI-MS: calcd [M+Na]⁺ (C₆₈H₆₈NaO₈) *m/z* 1035.481; found 1035.481. Anal. calcd [C₆₈H₆₈O₈·1.5Me₂CO]: C 79.13, H 7.05; found C 78.87, H 6.89. λ_{max} (CH₂Cl₂)/nm 262 (ε/dm³ mol⁻¹ cm⁻¹ 200000).

2.2.11 1⁴,7⁴:1⁶,3⁶:3⁴,5⁶:5⁴,7⁶-Tetrakis(4,5-dimethoxy[1,2]benzeno)-2,4,6,8-tetraethyl-1,3,5,7(1,3)-tetrabenzenacyclooctaphane (**4**)

Bis-bridged macrocycle **3** (650 mg, 0.64 mmol) was dissolved in CH_2Cl_2 (dry, 50 mL) under an argon atmosphere and cooled on a ice/brine bath to –10 °C. Triflic acid (5.65 mL, 9.60 g, 64.0 mmol) was added dropwise giving a deep purple solution. DDQ (655 mg, 2.89 mmol) was added immediately in one aliquot and the resulting deep blue solution was stirred at –10 °C for 30 min. The reaction was quenched with NaOH (2 M, 10 mL), diluted with water and separated. The organic phase was washed with HCl (2 M, 20 ml), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude product was

purified by column chromatography (SiO₂, 5% ethyl acetate/ CH_2Cl_2) affording **4** as a white solid (312 mg, 0.30 mmol, 48%) with a trace amount of deep red impurity. Crystals suitable for X-ray diffraction were grown by the layered diffusion of MeOH into a CH₂Cl₂ solution of 4, or the evaporation of CHCl₃/DMSO mixtures. ¹H-NMR (500 MHz, CDCl₃): δ 7.16 (s, 8H, H_{3',6'}), 7.12 (s, 4H, Ar-H-1⁵,3⁵,5⁵,7⁵), 7.09 (s, 4H, Ar-H-1²,3²,5²,7²), 3.99 (s, 24H, -OCH₃), 3.51 (t, J = 7.7 Hz, 4H, -CH), 2.53 (p, J = 7.3 Hz, 8H, -CH₂-), 1.17 (t, J = 7.2 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ 148.34 (C4',5'), 143.36 (Ar-C-1¹,1³), 135.47 (Ar-C-1⁴,1⁶), 131.85 (C_{1',2'}), 130.08 (Ar-C-1⁵), 113.72 (Ar-C-1²), 111.60 (C_{3',6'}), 56.37 (-OCH₃), 44.81 (-CH), 20.97 (-CH₂-), 12.47 (-CH₃). HR MS (ESI) m/z: [M+Na]+ Calcd for $C_{68}H_{64}NaO_8$ 1031.449; found 1031.447. Anal. Calcd for C₆₈H₆₄O₈·0.7CH₂Cl₂·0.6MeOH: C, 76.40; H, 6.51: Found C, 76.51; H, 6.28. λ_{max}(CH₂Cl₂)/nm 264 $(\epsilon/dm^3 \text{ mol}^{-1} \text{ cm}^{-1} 164000).$

3. NMR Spectra

Compound 9-C_{2v}

Compound 2-C_{2v}

Compound 2-C4

¹³C NMR (126 MHz, CDCl₃, 298 K)

4. ESI-MS

Compound 2-C_{2v}

Compound 3

5. Compound 10

The oxidative cyclodehydrogenation of $2-C_4$ using the FeCl₃/CH₃NO₂ method returned a complex mixture of products that could not be separated by column chromatography. A single, impure fraction contained a compound, likely possessing two-fold symmetry as consistent with 10. attempts at crystallisation Repeated were unsuccessful. The ¹H NMR spectrum shows four signals at ca 3.9 ppm, consistent with methoxyprotons. Two triplets at similar frequency are seen at ca. 0.5 ppm, consistent with the methyl protons of the ethyl feet. Nine aromatic signals are seen where eight are expected, likely due to the

obvious impurities. HR-ESI-MS supports the structural assignment for this fraction.

6. Crystallography

6.1 Experimental Details

Data were collected on an Agilent SuperNova with Atlas CCD using mirror monochromated microfocus Cu K_{α} radiation (λ = 1.54184 Å) at 40 W. The data processing was undertaken within CrysAlisPro,⁴ including a numerical absorption correction over a face-indexed model and/or a multiscan empirical correction. The structures were solved by direct methods with SHELXT2014 or SHELXS2014⁵⁻⁶ and extended and refined against all F^2 data with SHELXL2014⁵ using the X-Seed⁷ interface. The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and refined using a riding model with fixed C–H distances (sp^2 CH 0.95 Å, sp^3 CH₃ 0.98 Å, sp^3 CH₂ 0.99 Å; sp^3 CH 1.00 Å,) and isotropic displacement parameters estimated as $U_{iso}(H) = 1.2U_{eq}(C)$, except for CH₃, where $U_{iso}(H) = 1.5U_{eq}(C)$.

Many structures contained disordered fragments and/or solvent molecules that were modelled with the aid of geometric (SADI, DFIX, FLAT, EXYZ) and ADP (RIGU, SIMU, EADP, ISOR) restraints/constraints. Where structures contained regions of highly disordered solvent that could not be adequately modelled, the PLATON SQUEEZE⁸ function was used. Details of the SQUEEZE process for each structure, including the volume and electron count for the disordered regions (per unit cell), and suggested solvent contents, are included in Table S1. Water molecules in structures $2-C_{2v}$ were modelled without hydrogen atoms as insufficient residual electron density was observed for their localisation.

CCDC 1826428–1826432, 1834922 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the Cambridge Crystallographic Data Centre.

	2-C₂v ·0.5H₂0	2-<i>C</i>₄·2CHCl₃	$3 \cdot 1.5 CHCl_3$
CCDC No.	1826428	1826429	1826430
Formula	$C_{68}H_{73}O_{8.5}$	$C_{70}H_{74}Cl_6O_8$	$C_{139}H_{139}Cl_9O_{16}$
М	1026.25	1255.98	2384.54
Т(К)	100	100	100
Crystal system	triclinic	triclinic	triclinic
Space group	P-1 (#2)	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)
a (Å)	12.3530(4)	13.6525(4)	14.3309(4)
b (Å)	14.6695(4)	15.3663(4)	18.0783(5)
c (Å)	16.1299(5)	17.4716(5)	24.9943(5)
α (°)	93.266(2)	109.493(3)	72.549(2)
β (°)	105.038(3)	102.788(3)	80.550(2)
γ (°)	100.126(3)	99.544(2)	75.159(2)
V (Å ³)	2762.64(15)	3253.02(17)	5944.5(3)
Z [Z']	2	2	2 [2]
Crystal description	colourless block	colourless prism	pale yellow irregula
Crystal size (mm ³)	0.20 × 0.08 ×0.05	0.24 × 0.09 ×0.08	0.31 × 0.16 × 0.08
μ (mm ⁻¹)	0.633	2.841	2.477
$2 heta_{ ext{max}}, 2 heta_{ ext{full}}$ (°)	149.63, 134.00	148.38, 134.00	148.53, 134.00
$N_{ m measured\ refl}$	31061	24041	45719
$N_{ m independentrefl}\left[R_{ m int} ight]$	11056 [0.0355]	12810 [0.0292]	23441 [0.0360]
$N_{\text{observed refl}} [I > 2\sigma(I)]$	8798	10680	17397
$N_{ m parameters}$	906	812	1632
$N_{ m restraints}$	78	0	348
$R\left[I>2\sigma(I)\right]$	0.0559	0.0449	0.0984
wR [all data]	0.1570	0.1274	0.3244
GOF	1.027	1.031	1.248
SQUEEZE details	-	-	-
(per unit cell)			
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å-3)	0.750, -0.502	0.923, -0.547	1.537, -0.835

	$4 \cdot CH_2Cl_2$	4 ·7DMSO	4 ·3.5(EtPh)
CCDC No.	1826431	1826432	1834922
Formula	$C_{138}H_{132}Cl_4O_{16}$	$C_{164}H_{212}O_{30}S_{14}$	C96H99O8
М	2188.22	3112.16	1380.75
<i>Т</i> (К)	100	100	100
Crystal system	triclinic	triclinic	triclinic
Space group	P-1 (#2)	P-1 (#2)	P-1 (#2)
a (Å)	17.7109(5)	16.7858(4)	14.2685(3)
b (Å)	19.3230(7)	20.0431(4)	14.5929(2)
<i>c</i> (Å)	21.2976(7)	25.8482(5)	19.2492(3)
α (°)	78.212(3)	87.859(2)	101.4820(10)
β (°)	65.437(3)	88.846(2)	91.2600(10)
γ (°)	66.098(3)	68.982(2)	95.4360(10)
V (Å ³)	6054.9(4)	8111.9(3)	3906.74(12)
Z [Z']	2 [2]	2 [2]	2
Crystal description	colourless plate	light yellow block	colourless plate
Crystal size (mm ³)	$0.17 \times 0.15 \times 0.08$	$0.41 \times 0.27 \times 0.18$	0.25 × 0.23 × 0.05
μ (mm ⁻¹)	1.398	2.307	0.570
$2 heta_{ ext{max}}, 2 heta_{ ext{full}}$ (°)	149.69, 134.00	149.09, 134.00	149.77, 134.00
$N_{ m measured}$ refl	45912	63304	73852
$N_{ m independentrefl}\left[R_{ m int} ight]$	24089 [0.0408]	32042 [0.0260]	15664 [0.0249]
$N_{\text{observed refl}} [I > 2\sigma(I)]$	18185	27481	13432
$N_{ m parameters}$	1499	2000	998
$N_{ m restraints}$	34	249	315
$R\left[I>2\sigma(I)\right]$	0.0667	0.1001	0.0885
wR [all data]	0.1820	0.2868	0.0970
GOF	1.022	1.040	1.025
SQUEEZE details	10 CH ₃ OH, 2 H ₂ O	4 H ₂ 0	-
(per unit cell)	(697 ų, 214 e)	(160 Å ³ , 50 e)	
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å-3)	0.671, -0.449	2.533, -2.463	0.916, -0.696

6.2 Crystal structures not detailed in main text

Figure S1. Stick diagrams of **4** showing encapsulation of 6 DMSO molecules in space-filling representation. Hydrogen atoms and non-encapsulated DMSO molecules omitted for clarity.

6.3 **ORTEP Diagrams**

Representative ORTEP diagrams of the asymmetric unit (ASU) with 50% probability ellipsoids are shown for all compounds analysed crystallographically. Labels are omitted as required for clarity.

Figure S2. ORTEP diagram of the ASU of $2-C_{2v} \cdot 0.5H_2O$ shown in top and side views. The 2nd component of disorder is omitted for clarity. The partial water molecule split over three sites in a highly disordered region of the structure.

Figure S3. ORTEP diagram of the ASU of **2**-*C*₄·2CHCl₃ shown in top and side views.

Figure S4. ORTEP diagram of the ASU of $3 \cdot 1.5$ CHCl₃. The 2nd component of disorder is omitted for clarity

Figure S5. ORTEP diagram of the ASU of $4 \cdot CH_2Cl_2$ shown in top and side views. The 2nd component of disorder is omitted for clarity.

Figure S6. ORTEP diagram of the ASU of **4**·7DMSO. 10 of the 14 DMSO molecules in the ASU are disordered, with the 2nd component omitted for clarity.

Figure S7. ORTEP diagram of the ASU of **4**·3.5(EtPh) in top and side views. The 2nd component of disorder is omitted for clarity.

6.4 Structural Comparison of 4 to Related Structures

Structural dissimilarities in the solid state between **4** and Cram-type caviplexes **1a** and **1b** are primarily in the angles of the conical core and extended walls, driven by the size of the unsaturated rings and flexibility in the walls (Figure S7, Table S2). The angle at the conical core (α) of **4** is approximately half that of **1b** and increases across the series with increasing size of the unsaturated ring. The angle between arylene walls of **4** approaches 90°, while the angle of **1b** in the vase conformation shows an inward inflection with a β angle of –18.8°.

Figure S8. Diagram of cavitand showing angles α and β .

Table S2. Structural comparison between cavitands 4, 1a and 1b in the solid state

Cavitand	4	1a ^{<i>a</i>}	$\mathbf{1b}^{b}$
Ring size	7	8	9
α (°)	36.3	58.2	73.7
β (°)	88.3	-	-18.8

^aR = Me, caviplex binding CH₂Cl₂.⁹ ^bR = CH₂CH₂CH₂COOMe, caviplex in vase conformation binding MeCN.¹⁰

7. References

- 1. Bartenstein, J. E.; Lucas, N. T., *Supramol. Chem.* **2012**, *24*, 618-626.
- 2. McIldowie, M. J.; Mocerino, M.; Skelton, B. W.; White, A. H., *Org. Lett.* **2000**, *2*, 3869-3871.
- Thakar, A. S.; Parekh, H. M.; Pansuriya, P. B.; Friedrich, H. B.; Maguire, G. E. M., *Eur. J. Org. Chem.* 2014, 2014, 4600-4609.
- 4. *CrysAlisPro*, version 1.171.37.33; Agilent Technologies: Yarnton, Oxfordshire, UK, 2013.
- 5. Sheldrick, G. M., *Acta Crystallogr. Sect. A: Found. Crystallogr.* **2008**, *64*, 112-122.
- 6. Sheldrick, G. M., *Acta Crystallogr. Sect. A: Found. Adv.* **2015**, *71*, 3-8.
- 7. Barbour, L. J., *J. Supramol. Chem.* **2001**, *1*, 189-191.
- 8. Spek, A. L., Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 9-18.
- 9. Kane, C. M.; Ugono, O.; Barbour, L. J.; Holman, K. T., *Chem. Mater.* **2015**, *27*, 7337-7354.
- 10. Azov, V. A.; Skinner, P. J.; Yamakoshi, Y.; Seiler, P.; Gramlich, V.; Diederich, F., *Helv. Chim. Acta* **2003**, *86*, 3648-3670.