Electronic Supplementary Information

Photoinduced ring-opening polymerisation of L-lactide *via* a photocaged superbase

P. K. Kuroishi^{a,b} and A. P. Dove*^b

^a Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK ^b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK *a.dove@bham.ac.uk

Table of Contents

Experimental Part

Figures and Table

Fig. S1 Plots of ln of initial monomer concentration by monomer concentration $(\ln([M]_0/[M]))$ against time for the ROP of L-LA (\blacksquare , [L-LA]_0/[BnOH]_0/[TMG]_0 = 50/1/0.5), δ -VL(\blacktriangle , ([δ -VL]_0/[BnOH]_0/[TMG]_0/[TU]_0 = 30/1/1.5/1.5), and ϵ -CL (\bullet , [ϵ -CL]_0/[BnOH]_0/[TMG]_0/[TU]_0 = 25/1/1.25/1.25). 4

Fig. S2 Number-average molecular weight $(M_n; \bullet)$ and dispersity $(\mathcal{D}_M = M_w/M_n; \circ)$ against monomer-to-initiator concentration ratio (M]/[I]) for the ROP of L-LA. 5

Fig. S3 ¹H NMR spectrum of PLLA (CDCl₃, 300 MHz, 298 K, $* = residual CHCl_3$). Reaction conditions: [L-LA]₀/[BnOH]₀/[TMG]₀ = 50/1/0.5. 5

Fig. S4MALDI-ToFMSspectrumofPLLA.Reactionconditions: $[L-LA]_0/[BnOH]_0/[TMG]_0 = 50/1/0.5.$ 5

Fig. S5 ¹H NMR spectrum of PVL (CDCl₃, 300 MHz, 298 K, * = residual CHCl₃, ** = residual H₂O). Reaction conditions: $[\delta$ -VL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 20/1/1/1. 6

Fig. S6MALDI-ToFMSspectrumofPVL.Reactionconditions:[δ-VL]_0/[BnOH]_0/[TMG]_0/[TU]_0 = 20/1/1/1.6

Fig. S7 ¹H NMR spectrum of PCL (CDCl₃, 300 MHz, 298 K, * = residual CHCl₃). Reaction conditions: $[\epsilon$ -CL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 25/1/1.25/1.25). 6

Fig. S8 MALDI-ToF MS spectrum of PVL. Reaction conditions: [ϵ -CL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 25/1/1.25/1.25). 7

Fig. S9 Photolysis of NPPOC-TMG under 320-400 nm UV irradiation.

Fig. S10 ¹H NMR spectra of polymeric solution of L-LA in the presence of NPPOC-TMG before A) before and B) after 320–400 nm irradiation for 15 minutes and C) more 175 minutes in the absence of light (CDCl₃, 300 MHz, 298 K).

Table S1 Monomer conversion and molecular weight of PLLA prepared by irradiating the
polymeric solutions containing NPPOC-TMG that were initially kept in the dark over 1, 2,
5 and 9 days.8

7

3

4

Fig. S11 Plots of ln of initial monomer concentration by monomer concentration $(\ln([M]_0/[M]))$ against time for the ROP of L-LA $([L-LA]_0/[BnOH]_0/[NPPOC-TMG]_0 = 100/1/1, 15$ minutes under 320-400 nm irradiation).

References

9

Experimental Part Materials

All chemicals and solvents, unless otherwise stated, were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification. 1,1,3,3-Tetramethylguanidine, δ -valerolactone, ε -caprolactone and benzyl alcohol were dried over CaH₂, distilled and stored under an inert atmosphere. CDCl₃ (Apollo Scientific) was dried over activated 4 Å molecular sieves and left to stand for 24 h before being transferred onto fresh 4 Å sieves and stand for further 24 h. 2-(Nitrophenyl)propoxycarbonyl-1,1,3,3-tetramethylguanidine was prepared as previously reported¹ and dried over P₂O₅ in a vacuum desiccator for one week, in which P₂O₅ was replaced every day. L-Lactide (Purac) was dissolved in CH₂Cl₂ and passed through a silica plug. The solution was transferred to a Schlenk flask and concentrated under vacuum. The resulting solid was recrystallised twice from dry hot toluene (70 °C), sublimed and stored in a glove box. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea (TU) was synthesised as previously reported² and dried over CaH₂ in dry tetrahydrofuran (THF). Dry solvents were obtained by purification over an Innovative Technology SPS alumina solvent column and degassed by repeated freeze-pump-thaw cycles prior to use.

General Considerations

Unless otherwise stated, all polymerisations were performed under an inert nitrogen atmosphere in a glovebox in the dark. Irradiation of samples was conducted in a Metalight QX1 light box equipped with 12 x 9 W bulbs ranging from 320 to 400 nm, with a peak output at 365 nm. Samples were typically placed 10 cm away from the source with the bulbs arranged concentrically around them. ¹H NMR spectra were recorded on Bruker AV III HD-300 or AV III HD-500 MHz spectrometers at 298 K. Chemical shifts are reported as δ in parts per million (ppm) and referenced to the residual solvent signal (CDCl₃: ¹H, δ = 7.26 ppm, ¹³C, δ = 77.2 ppm). Matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-ToF/ MS) analysis was performed on a Bruker Autoflex Speed mass spectrometer using a nitrogen laser delivering 2 ns pulses at 337 nm with positive ion ToF detection performed using an accelerating voltage of 25 kV. Trans-2-[3-(4-tertbutylphenyl)-2-methyl-2propylidene]malonitrile (DCTB) was used as a matrix (a 40 g L⁻¹ solution in THF), with sodium trifluoroacetate (NaTFA) used as a cationic agent (10 g L⁻¹ solution in THF). Analyte (1 g L⁻¹ solution in THF) was mixed with the DCTB and NaTFA solutions (20 µL of each) and applied to form a thin matrix-analyte film. All samples were measured in reflectron mode and calibrated against a 3000 to 8000 g mol⁻¹ poly(ethylene glycol) standard. Size exclusion chromatography (SEC) was conducted on systems composed of a Varian 390-LC-Multi detector suite fitted with differential refractive index, light scattering, and ultraviolet detectors, equipped with a guard column (Varian Polymer Laboratories PLGel 5 μ M, 50 \times 7.5 mm) and two mixed D columns (Varian Polymer Laboratories PLGel 5 μ M, 300 \times 7.5 mm). The mobile phase was CHCl₃ (HPLC grade) with 2% Et₃N at a flow rate of 1 mL min⁻¹. SEC samples were calibrated against either Varian Polymer Laboratories Easi-Vials linear polystyrene standards $(162 - 2.4 \times 105 \text{ g mol}^{-1})$ (CHCl₃) using Cirrus v3.3 software.

General polymerisation procedure using TMG

L-LA (173 mg, 1.20 mmol) was dissolved in dry CDCl₃ (567 μ L). A solution of the benzyl alcohol initiator (26.0 μ L of a 100 g L⁻¹ solution in CDCl₃, 24.0 μ mol) was added to the monomer solution, followed by TMG (6.9 μ L of a 200 g L⁻¹ solution in CDCl₃, 12.0 μ mol).

The reaction solution was transferred to a NMR tube and monitored by ¹H NMR spectroscopy. The polymerisation was quenched after 2.5 h by the addition acid Amberlyst and purified by precipitation in hexanes (1 ×) and methanol (2 ×) to yield PLLA as a white powder. ¹H NMR (300 MHz, CDCl₃, 298 K) δ 7.34 (m, C₆H₅CH₂O), 5.16 (q, ³J = 7.0 Hz, O(CO)CHCH₃), 4.35 (m, O(CO)CHOH), 1.57 (d, ³J = 7.0 Hz, O(CO)CHCH₃), 1.50 (m, O(CO)CH(CH₃)OH). ¹³C NMR (75 MHz, CDCl₃, 298 K) 169.7 (O(CO)CHCH₃, 69.2 (O(CO)CHCH₃), 16.8 O(CO)CHCH₃.

General polymerisation procedure using NPPOC-TMG and UV light

L-LA (173 mg, 1.20 mmol) was dissolved in dry CDCl₃ (509 μ L). A solution of the benzyl alcohol initiator (52.0 μ L of a 50 g L⁻¹ solution in CDCl₃, 24.0 μ mol) was added to the monomer solution, followed by NPPOC-TMG (38.7 μ L of a 100 g L⁻¹ solution in CDCl₃, 12.0 μ mol). The reaction solution was transferred to a NMR tube and sealed. The solution was then subjected to UV irradiation for 15 minutes and monitored by ¹H NMR spectroscopy. The polymerisation was quenched after 3 h by the addition acid Amberlyst and purified by precipitation in hexanes (1 ×) and methanol (2 ×) to yield PLLA as a white powder.

Figures and Table

Fig. S1 Plots of ln of initial monomer concentration by monomer concentration $(\ln([M]_0/[M]))$ against time for the ROP of L-LA (\blacksquare , [L-LA]_0/[BnOH]_0/[TMG]_0 = 50/1/0.5), δ -VL(\triangle , ([δ -VL]_0/[BnOH]_0/[TMG]_0/[TU]_0 = 30/1/1.5/1.5), and ϵ -CL (\bullet , [ϵ -CL]_0/[BnOH]_0/[TMG]_0/[TU]_0 = 25/1/1.25/1.25).

Fig. S2 Number-average molecular weight $(M_n; \bullet)$ and dispersity $(\mathcal{D}_M = M_w/M_n; \circ)$ against monomer-to-initiator concentration ratio ([M]/[I]) for the ROP of L-LA.

Fig. S3 ¹H NMR spectrum of PLLA (CDCl₃, 300 MHz, 298 K, * = residual CHCl₃). Reaction conditions: [L-LA]₀/[BnOH]₀/[TMG]₀ = 30/1/0.3.

Fig. S4 MALDI-ToF MS spectrum of PLLA. Reaction conditions: $[L-LA]_0/[BnOH]_0/[TMG]_0$ = 50/1/0.5.

Fig. S5 ¹H NMR spectrum of PVL (CDCl₃, 300 MHz, 298 K, * = residual CHCl₃, ** = residual H₂O). Reaction conditions: $[\delta$ -VL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 30/1/1.5/1.5.

Fig. S7 ¹H NMR spectrum of PCL (CDCl₃, 300 MHz, 298 K, * = residual CHCl₃). Reaction conditions: $[\epsilon$ -CL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 25/1/1.25/1.25).

Fig. S8 MALDI-ToF MS spectrum of PVL. Reaction conditions: [ϵ -CL]₀/[BnOH]₀/[TMG]₀/[TU]₀ = 25/1/1.25/1.25).

Fig. S9 Photolysis of NPPOC-TMG under 320-400 nm UV irradiation.

Fig. S10 ¹H NMR spectra of polymeric solution of L-LA in the presence of NPPOC-TMG before A) before and B) after 320–400 nm irradiation for 15 minutes and C) further 175 minutes in the absence of light (CDCl₃, 300 MHz, 298 K).

Table S1 Monomer conversion and molecular weight of PLLA prepared by irradiating the polymeric solutions containing NPPOC-TMG that were initially kept in the dark over 1, 2, 5 and 9 days.

Day	Monomer Conversion ^a (%)	$M_{\rm n}{}^b$ (kg mol ⁻¹)	$\boldsymbol{D}_{\mathrm{M}}^{b}$
1	90	9.9	1.05
2	90	10.0	1.05
5	91	10.0	1.05
9	91	10.3	1.06

^{*a*} Determined by ¹H NMR spectroscopy. ^{*b*} Obtained from SEC analysis in CHCl₃, calibrated against polystyrene standards.

Fig. S11 Plots of ln of initial monomer concentration by monomer concentration $(\ln([M]_0/[M]))$ against time for the ROP of L-LA $([L-LA]_0/[BnOH]_0/[NPPOC-TMG]_0 = 100/1/1, 15$ minutes under 320-400 nm irradiation).

References

- 1. W. Xi, H. Peng, A. Aguirre-Soto, C. J. Kloxin, J. W. Stansbury and C. N. Bowman, *Macromolecules*, 2014, **47**, 6159.
- 2. R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, P. N. P. Lundberg, A. P. Dove, H. Li, C. G. Wade, R. M. Waymouth and J. L. Hedrick, *Macromolecules*, 2006, **39**, 7863.