Electronic Supplemental Information

Coexisting Order and Disorder Within a Common 40-Residue Amyloid- β Fibril Structure in Alzheimer's Disease Brain Tissue

Ujjayini Ghosh, Wai-Ming Yau, and Robert Tycko
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health, Bethesda, Maryland 20892-0520, U.S.A.

Materials and Methods

Fibril preparation

Specifically labeled A $\beta 40$ peptides were synthesized with a Protein Technologies Tribute synthesizer using Fmoc solid phase peptide synthesis (amino acid sequence NH_{2}-DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV-COOH) and an Fmoc-Val Wang resin (0.4 $\mathrm{meq} / \mathrm{g}$). Purification was done by reverse-phase HPLC with acetonitrile/water gradient using a preparative C18 column and resulted in $>95 \%$ purity, as estimated from liquid chromatographymass spectrometry with electrospray ionization.

To prepare second-generation fibrils, the first-generation PCA3f sample of Qiang et al. ${ }^{3}$ was unpacked from its magic-angle spinning (MAS) rotor, then resuspended in fibril growth buffer (10 mM phosphate buffer, pH 7.4 , with $0.01 \% \mathrm{w} / \mathrm{v}$ sodium azide) and sonicated to break the PCA3f fibrils into fragments. A 10% portion of this material was used as seeds for second-generation fibrils. After dilution of the seeds in fibril growth buffer to a total volume of $2.4 \mathrm{ml}, 1.0 \mathrm{mg}$ of specifically labeled A $\beta 40$ was dissolved in $50 \mu \mathrm{l}$ of dimethyl sulfoxide and added to the seed solution. Fibril growth then proceeded by incubation at room temperature without stirring or agitation of the solution. Each fibril solution was self-seeded 1-2 days after initial seeding. Selfseeding was done by taking an aliquot ($\sim 5 \%$ by volume) from the fibril solution, sonicating it briefly, and returning it to the same fibril solution. Self-seeded solutions were then incubated for an additional 5-6 days before pelleting and lyophilization for ssNMR. TEM images were recorded after the first overnight incubation, and also before pelleting.

Third-generation fibrils were prepared in the same way, but using approximately 5% by mass of second-generation fibrils as the seeds.

Fibrils were pelleted by ultracentrifugation for 2 h at $176,000 \mathrm{xg}$ and $4^{\circ} \mathrm{C}$. The supernatant was discarded and the pellet was resuspended in $3-5 \mu l$ of deionized water, then lyophilized. Lyophilized fibrils were packed into 1.8 mm MAS rotors, rehydrated with 5-10 μ l of fibril growth buffer, then centrifuged at $17,000 \mathrm{xg}$ at $20^{\circ} \mathrm{C}$ for $5-35 \mathrm{~min}$. Excess buffer was removed before capping the MAS rotor.

Electron microscopy

Negatively-stained TEM images were obtained with an FEI Morgagni microscope, operating at 80 kV and equipped with an AMT Advantage HR CCD camera. Samples were diluted
ten times in deionized water. A $10 \mu \mathrm{l}$ aliquot of the diluted sample was then adsorbed onto a glowdischarged carbon film on a lacey-carbon-coated copper mesh grid. The grid was blotted, washed with $10 \mu \mathrm{l}$ of deionized water, blotted, stained with 2% uranyl acetate solution, blotted, and dried in air.
ssNMR spectroscopy
2D and 3D ssNMR spectra were acquired at $14.1 \mathrm{~T}\left(599.1 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ NMR frequency), using a Varian InfinityPlus spectrometer and a 1.8 mm MAS probe produced by the laboratory of Dr. Ago Samoson (Tallinn University of Technology, Estonia). Sample temperatures were approximately $25^{\circ} \mathrm{C}$. An MAS frequency of $13.6 \mathrm{kHz},{ }^{1} \mathrm{H}$ decoupling fields of 100 kHz , and 1.0 s recycle delays were used for all spectra.
$2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ ssNMR spectra were acquired with 50 ms DARR mixing periods. ${ }^{4}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ cross-polarization contact times were 1.5 ms , with $63 \mathrm{kHz}{ }^{1} \mathrm{H}$ fields and ramped ${ }^{13} \mathrm{C}$ fields centered at approximately 50 kHz . Data sets contained 186 complex t_{1} points and 512 complex t_{2} points, with 46.3 kHz and 66.7 kHz spectral widths in t_{1} and t_{2} dimensions, respectively. $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$ spectra were acquired with 4.0 ms band-selective ${ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$ cross-polarization between t_{1} and t_{2}, with $9.0 \mathrm{kHz}{ }^{15} \mathrm{~N}$ fields and approximately $23 \mathrm{kHz}{ }^{13} \mathrm{C}$ fields. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ cross-polarization used 52 kHz ${ }^{1} \mathrm{H}$ fields and ramped ${ }^{15} \mathrm{~N}$ fields centered at approximately 38 kHz . Data sets contained 80 complex t_{1} points and 512 complex t_{2} points, with 9.0 kHz and 66.7 kHz spectral widths in t_{1} and t_{2} dimensions, respectively. 2D spectra were processed with $50-80 \mathrm{~Hz}$ Gaussian line broadening in both dimensions. Total data acquisition times were $24-48 \mathrm{~h}$ for $2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ spectra and $48-36 \mathrm{~h}$ for $2 \mathrm{D}^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$ spectra.

The 3D NCACX spectrum of uniformly ${ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}$-labeled $\mathrm{A} \beta 40$ fibrils was acquired with a DARR mixing time of 50 ms , and with 36 and 32 complex points and 4.72 kHz and 4.72 kHz spectral widths in the t_{1} and t_{2} dimensions, respectively. A total of 120 scans were acquired for each free-induction decay. Other conditions were the same as in $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{13} \mathrm{C}$ spectra. The 3 D NCOCX spectrum was acquired with the same conditions, but with a total of 80 scans for each free-induction decay.

Spectra were referenced externally to the ${ }^{13} \mathrm{CO}$ signal of L-alanine powder at 179.65 ppm (relative to DSS). Data were processed and displayed with NMRPipe (available from https://www.ibbr.umd.edu/nmrpipe/) and Sparky (available from https://www.cgl.ucsf.edu/home/sparky/) software.

ESI references

1. A. K. Paravastu, R. D. Leapman, W. M. Yau and R. Tycko, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 18349-18354.
2. Y. Ishii, J. Chem. Phys., 2001, 114, 8473-8483.
3. W. Qiang, W. M. Yau, J. X. Lu, J. Collinge and R. Tycko, Nature, 2017, 541, 217-221.
4. K. Takegoshi, S. Nakamura and T. Terao, J. Chem. Phys., 2003, 118, 2325-2341.
5. Y. Shen and A. Bax, J. Biomol. NMR, 2013, 56, 227-241.
6. J. X. Lu, W. Qiang, W. M. Yau, C.D. Schwieters, S. C. Meredith, and R. Tycko, Cell, 2013, 154, 1257-1268.

Figure S 1 : Superposition of $2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ NMR spectra of first-generation $\mathrm{A} \beta 40$-sl1 (blue) and second-generation $\mathrm{A} \beta$-sl2 (red) fibrils. Positions of one-bond crosspeaks are in good agreement, indicating accurate propagation of the molecular structure from the first-generation to the second-generation. Mixing periods were 2.35 ms fpRFDR ${ }^{2}$ for the $A \beta 40$-sll spectrum and 50 ms DARR ${ }^{4}$ for the A $\beta 40$-sl2 spectrum, accounting for differences in multiple-bond crosspeaks amplitudes. S26 was isotopically labeled in $\mathrm{A} \beta 40$-s11, but not in $\mathrm{A} \beta 40$-s12.

Figure S2: Superposition of $2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ NMR spectra of second-generation (red) and thirdgeneration (cyan) A $\beta 40$-sl5 fibrils. The good agreement of crosspeak positions indicates accurate propagation of the molecular structure from the second generation to the third generation.

Figure S3: Representative strip plots from 3D NCOCX (red) and NCACX (blue) spectra of uniformly ${ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}$-labeled $\mathrm{A} \beta 40$ fibrils, showing chemical shift assignments for residues 2933. 2D planes are taken at ${ }^{15} \mathrm{~N}$ NMR frequencies indicated in each plot. Contour levels of the increase by successive factors of 1.4.

Figure S4: (A) Site-specific differences in ${ }^{13} \mathrm{C}$ chemical shifts between $\mathrm{A} \beta 40$ fibrils prepared in vitro by Paravastu et al. ${ }^{1}$ (BioMagResBank code 18129) and brain-derived A $\beta 40$ fibrils discussed in this paper. Although these two types of fibrils have similar morphologies in TEM images, the chemical shift differences indicate differences in molecular structure. (B) Site-specific differences in ${ }^{13} \mathrm{C}$ chemical shifts between brainderived A $\beta 40$ fibrils from patient 1 of Lu et al. ${ }^{6}$ (BioMagResBank code 19009) and brainderived $A \beta 40$ fibrils discussed in this paper.

Table S1: ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ chemical shifts in brain-derived $\mathrm{A} \beta 40$ fibrils, in parts-per-million relative to liquid NH_{3} and 4,4-dimethyl-4-silapentane-1-sulfonic acid, respectively. Uncertainties are full widths of crosspeaks at half height. Predicted ϕ, ψ torsion angles are from the TALOS-N program. ${ }^{5}$

Residue	CO	C α	$\mathrm{C} \beta$	C γ	C δ	C ε	N	Predicted ϕ, ψ values (degrees)
A2	$\begin{aligned} & 175.2 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 50.5 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 22.2 \\ \pm 0.9 \end{gathered}$				$\begin{aligned} & 120.6 \\ & \pm 1.5 \end{aligned}$	
D7	$\begin{aligned} & 175.5 \\ & \pm 1.8 \end{aligned}$	$\begin{gathered} 52.5 \\ \pm 1.1 \end{gathered}$	42.2	$\begin{aligned} & 179.6 \\ & \pm 0.9 \end{aligned}$			$\begin{aligned} & 127.5 \\ & \pm 1.0 \end{aligned}$	
G9	$\begin{aligned} & 171.6 \\ & \pm 0.9 \end{aligned}$	$\begin{gathered} 44.1 \\ \pm 0.8 \end{gathered}$					-	
E11	$\begin{gathered} 174.4 \\ \pm 0.9 \end{gathered}$	$\begin{gathered} 54.1 \\ \pm 1.0 \end{gathered}$	33.6		$\begin{aligned} & 182.7 \\ & \pm 0.8 \end{aligned}$		$\begin{aligned} & 126.4 \\ & \pm 1.5 \end{aligned}$	$-104.2 \pm 12.9,132.1 \pm 12.1$
V12	$\begin{aligned} & 174.6 \\ & \pm 1.1 \end{aligned}$	$\begin{gathered} 60.2 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 34.7 \\ \pm 1.4 \end{gathered}$	$\begin{array}{r} 20.6 \\ \pm 1.1 \end{array}$			$\begin{aligned} & 124.2 \\ & \pm 1.4 \end{aligned}$	$-114.3 \pm 8.9,130.9 \pm 6.4$
H13	174.1	$\begin{gathered} 53.6 \\ \pm 1.0 \end{gathered}$	31.7	134.3			120.0	$-132.6 \pm 12.5,147.6 \pm 10.1$
L17	$\begin{aligned} & 174.6 \\ & \pm 0.9 \end{aligned}$	$\begin{gathered} 54.2 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 44.1 \\ \pm 1.0 \end{gathered}$	-	-		$\begin{aligned} & 126.8 \\ & \pm 0.9 \end{aligned}$	$-110.1 \pm 10.9,125.6 \pm 10.6$
V18	$\begin{aligned} & 172.8 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 60.0 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 32.9 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 20.4 \\ \pm 0.6 \end{gathered}$			120.9 ± 1.2	$-106.9 \pm 11.6,129.1 \pm 8.5$
F19	$\begin{aligned} & 172.9 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 55.7 \\ \pm 0.5 \end{gathered}$	$\begin{gathered} 40.7 \\ \pm 0.6 \end{gathered}$	132.3	138.2	131.0	$\begin{aligned} & 125.7 \\ & \pm 0.8 \end{aligned}$	$-108.7 \pm 9.6,127.5 \pm 8.3$
F20	$\begin{aligned} & 172.4 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 56.4 \\ \pm 0.6 \end{gathered}$	42.2				$\begin{aligned} & 126.7 \\ & \pm 1.3 \end{aligned}$	$-116.9 \pm 9.8,127.3 \pm 8.0$
A21	$\begin{aligned} & 174.8 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 49.6 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 22.6 \\ \pm 0.8 \end{gathered}$				$\begin{aligned} & 128.7 \\ & \pm 1.5 \end{aligned}$	$-124.3 \pm 15.3,137.3 \pm 15.8$
E22	$\begin{aligned} & 175.2 \\ & \pm 0.8 \end{aligned}$	$\begin{gathered} 52.9 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 33.1 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 34.6 \\ \pm 0.6 \end{gathered}$	$\begin{aligned} & 180.3 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & 120.1 \\ & \pm 1.2 \end{aligned}$	$-128.6 \pm 11.6,139.7 \pm 11.6$
D23	$\begin{aligned} & 174.4 \\ & \pm 0.6 \end{aligned}$	$\begin{gathered} 56.5 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 38.8 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & 183.0 \\ & \pm 0.5 \end{aligned}$			$\begin{aligned} & 122.7 \\ & \pm 1.2 \end{aligned}$	$-126.6 \pm 21.9,141.2 \pm 16.3$
V24	$\begin{aligned} & 176.4 \\ & \pm 0.9 \end{aligned}$	$\begin{gathered} 59.7 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 32.7 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 20.7 \\ \pm 1.0 \end{gathered}$			$\begin{aligned} & 121.7 \\ & \pm 1.2 \end{aligned}$	$-122.0 \pm 19.2,132.5 \pm 12.5$
G25	$\begin{aligned} & 170.8 \\ & \pm 1.0 \end{aligned}$	$\begin{gathered} 46.6 \\ \pm 0.8 \end{gathered}$					$\begin{aligned} & 115.5 \\ & \pm 1.1 \end{aligned}$	$-139.3 \pm 26.4,162.3 \pm 23.4$
S26	$\begin{aligned} & 174.0 \\ & \pm 0.6 \end{aligned}$	$\begin{gathered} 55.8 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 65.3 \\ \pm 0.5 \end{gathered}$				$\begin{aligned} & 107.5 \\ & \pm 0.9 \end{aligned}$	$-144.3 \pm 12.7,154.9 \pm 10.5$
N27	$\begin{aligned} & 174.5 \\ & \pm 1.0 \end{aligned}$	$\begin{gathered} 53.1 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 40.8 \\ \pm 0.9 \end{gathered}$	$\begin{aligned} & 176.4 \\ & \pm 0.8 \end{aligned}$			$\begin{aligned} & 115.2 \\ & \pm 1.1 \end{aligned}$	
K28	$\begin{aligned} & 174.2 \\ & \pm 0.9 \end{aligned}$	$\begin{gathered} 55.6 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 35.6 \\ \pm 1.0 \end{gathered}$	$\begin{gathered} 29.9 \\ \pm 1.2 \end{gathered}$	$\begin{gathered} 27.9 \\ \pm 1.0 \end{gathered}$	$\begin{gathered} 42.8 \\ \pm 1.0 \end{gathered}$	$\begin{aligned} & 126.8 \\ & \pm 1.0 \end{aligned}$	$-129.6 \pm 15.2,148.4 \pm 15.4$
G29	$\begin{aligned} & 172.1 \\ & \pm 0.6 \end{aligned}$	$\begin{gathered} 43.2 \\ \pm 1.1 \end{gathered}$					$\begin{aligned} & 108.7 \\ & \pm 1.5 \end{aligned}$	
A30	$\begin{aligned} & 175.3 \\ & \pm 0.6 \end{aligned}$	$\begin{gathered} 49.9 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 21.5 \\ \pm 1.2 \end{gathered}$				$\begin{aligned} & 127.6 \\ & \pm 1.0 \end{aligned}$	$-114.9 \pm 10.4,128.1 \pm 10.1$
I31	$\begin{aligned} & 174.0 \\ & \pm 0.6 \end{aligned}$	$\begin{gathered} 60.7 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 39.8 \\ \pm 0.4 \end{gathered}$	$\begin{gathered} 27.8 \pm 0.4 \\ 19.0 \pm 0.4 \end{gathered}$	$\begin{gathered} 13.3 \\ \pm 0.5 \end{gathered}$		$\begin{aligned} & 124.8 \\ & \pm 1.1 \end{aligned}$	$-107.6 \pm 11.3,125.1 \pm 7.6$
I32	$\begin{aligned} & 175.9 \\ & \pm 0.4 \end{aligned}$	$\begin{gathered} 57.2 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 42.2 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 26.4 \pm 0.5 \\ 16.9 \pm 0.6 \end{gathered}$	$\begin{gathered} 13.7 \\ \pm 0.6 \end{gathered}$		$\begin{aligned} & 124.7 \\ & \pm 0.8 \end{aligned}$	$-127.3 \pm 7.0,136.5 \pm 7.9$
G33	$\begin{aligned} & 172.0 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 48.8 \\ & \pm 0.5 \end{aligned}$					$\begin{aligned} & 114.7 \\ & \pm 0.8 \end{aligned}$	
L34	$\begin{aligned} & 173.6 \\ & \pm 1.7 \end{aligned}$	$\begin{gathered} 53.1 \\ \pm 0.8 \end{gathered}$	$\begin{aligned} & 45.6 \\ & \pm 0.7 \end{aligned}$	$\begin{gathered} 27.5 \\ \pm 0.7 \end{gathered}$	$\begin{array}{r} 25.0 \\ \pm 0.5 \end{array}$		$\begin{aligned} & 114.8 \\ & \pm 1.0 \end{aligned}$	$-130.1 \pm 14.5,141.2 \pm 12.5$
M35	$\begin{aligned} & 173.6 \\ & \pm 0.8 \end{aligned}$	$\begin{gathered} 53.8 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 36.9 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} 31.8 \\ \pm 1.0 \end{gathered}$			$\begin{aligned} & 121.6 \\ & \pm 1.0 \end{aligned}$	$-120.8 \pm 11.1,129.3 \pm 5.9$
V36	$\begin{aligned} & 173.5 \\ & \pm 0.8 \end{aligned}$	$\begin{gathered} 59.0 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} 35.9 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 20.4 \\ \pm 1.0 \end{gathered}$			$\begin{aligned} & 123.6 \\ & \pm 1.1 \end{aligned}$	$-132.9 \pm 11.9,142.9 \pm 12.0$
G37	$\begin{aligned} & 171.2 \\ & \pm 1.5 \end{aligned}$	$\begin{gathered} 46.5 \\ \pm 1.0 \end{gathered}$					$\begin{aligned} & 111.6 \\ & \pm 1.3 \end{aligned}$	$-173.3 \pm 13.9,-179.6 \pm 13.9$
G38	$\begin{aligned} & 171.1 \\ & \pm 1.0 \end{aligned}$	$\begin{gathered} 45.6 \\ \pm 1.0 \end{gathered}$					$\begin{array}{r} 103.5 \\ \pm 2.5 \end{array}$	$-173.2 \pm 17.8,-179.3 \pm 13.6$
V39	$\begin{aligned} & 173.6 \\ & \pm 1.4 \end{aligned}$	$\begin{gathered} 60.4 \\ \pm 1.2 \end{gathered}$	$\begin{gathered} 34.3 \\ \pm 1.4 \end{gathered}$	$\begin{gathered} 20.7 \\ \pm 1.8 \end{gathered}$			$\begin{aligned} & 118.6 \\ & \pm 2.5 \end{aligned}$	$-115.5 \pm 17.7,135.7 \pm 9.3$

