Supplementary Information to accompany

Is it possible to control kinetic rates of radical polymerisation in ionic liquids?

Kaycee Low, Luke Wylie, David Scarbourough, Ekaterina I. Izgorodina

Contents

1	Figure S1 Comparison of explicit and implicit solvent models	3
2	Figure S2 Different conformations of the pre-complex, transision state, and product for methyl radical addition to CH ₂ =CHF.	4
3	Figure S3 Method used to locate transition state structures in radical propagation steps	5
4	Figures S4 and S5 Average interaction energies for model and propagating radical interaction with 1 and 2 ion pairs of ionic liquid	6
5	Figure S6 Reaction energies ΔH and ΔG for methyl radical addition to CH_2 =CHX	7
6	Table S1C…C bond formation distance in the propagation transition state in ionic liquids and CPCM modelled solvent	8
7	Table S2 Intermolecular separation (Å) between methyl radical and alkene CH ₂ =CHX in the reaction transition state	9
8	Table S3 Intermolecular separation between the radical and monomer (in Å) in the transition state and pre-complex	10
9	Table S4 Interaction energy decomposition for model radicals in 1 ion pair of ionic liquids	11
10	Table S5Interaction energy decomposition for propagating radicals in 1 and 2 ion pairs of ionic liquids	14
11	Table S6 Geodesic partial charge calculations for methyl radical addition to alkenes	17
12	Table S7Geodesic partial charge calculations for propagating radical transition states in ionic liquids	18
13	Table S8 Spin contamination results	19
14	Table S9 Activation and reaction energies for methyl radical addition	20
15	Table S10 Activation parameters for propagating radical addition reactions	21

1 Figure S1

IMPLICIT SOLVATION

EXPLICIT SOLVATION

Figure 1 Comparison of implicit and explicit solvent models as used in this study: CPCM solvation (left) and explicit solvation (right) for the ethyl radical in water.

2 Figure S2

Figure 2 Different conformations of the pre-complex, transition state, and product forms for the methyl radical addition to CH₂=CHF.

(a) Pre-complex

(b) Propagation transition state

(c) Polymer trimer

Figure 3 Method used to locate transition states structures for radical propagation studies: first, a three-monomer polymer was optimised. Bond length was extended to locate a transition state, and then a pre-complex was constructed. The propagation of acrylonitrile is shown in 2 ion pairs of $[C_1 mpyr][BF_4]$.

4 Figures S4 and S5

Figure 4 Average interaction energies (in $kJ mol^{-1}$) across all system conformations for model radical interaction with 1 ion pair of ionic liquid. Contributions from dispersion forces are shown in blue, contributions from electrostatic forces in orange.

Figure 5 Average interaction energies (in $kJ mol^{-1}$) across all system conformations for propagating radical interaction with 1 ion pair of ionic liquid. Contributions from dispersion forces are shown in blue, contributions from electrostatic forces in orange.

5 Figure S6

Figure 6 Reaction energies, ΔH and ΔG , in $kJ \mod^{-1}$ of the methyl radical addition to $CH_2 = CHX$ in the presence of a single ion pair of ionic liquids. Enthalpies (ΔH) are presented in red, and Gibbs free energies (ΔG) in blue.

Monomer	Solvent	R(C…C), Å	Ionic liquid	R(C…C), Å
Ethene	Gas	2.256	[C ₁ mim][dca]	2.258
	Ethanol	2.251	[C ₁ mpyr][BF ₄]	2.245
	Toluene	2.253	[Dema][OTf]	2.247
			[Et ₃ NH][HSO ₄]	2.258
			[EtOH ₂ NH ₂][NO ₃]	2.243
			[Hmim][HSO ₄]	2.234
			[PMe ₄][Mes]	2.239
VC	Gas	2.284	[C ₁ mim][dca]	2.282
	THF	2.278	[C ₁ mpyr][BF ₄]	2.256
	Toluene	2.280	[Dema][OTf]	2.300
			[Et ₃ NH][HSO ₄]	2.282
			[EtOH ₂ NH ₂][NO ₃]	2.268
			[Hmim][HSO ₄]	2.264
			[PMe ₄][Mes]	2.281
AN	Gas	2.272	[C ₁ mim][dca]	2.258
	DMF	2.263	[C ₁ mpyr][BF ₄]	2.24
	Toluene	2.267	[Dema][OTf]	2.249
			[Et ₃ NH][HSO ₄]	2.275
			[EtOH ₂ NH ₂][NO ₃]	2.269
			[Hmim][HSO ₄]	2.245
			[PMe ₄][Mes]	2.249
MMA	Gas	2.241	[C ₁ mim][dca]	2.201
	THF	2.240	[C ₁ mpyr][BF ₄]	2.242
	Toluene	2.241	[Dema][OTf]	2.226
			[Et ₃ NH][HSO ₄]	2.220
			[EtOH ₂ NH ₂][NO ₃]	2.229
			[Hmim][HSO ₄]	2.190
			[PMe₄][Mes]	2.237

C…C bond formation distance in the propagation transition state in ionic liquids and CPCM modelled solvent

Intermolecular separation (Å) between methyl radical and alkene CH_2 =CHX in the reaction transition state, using M06-2X/cc-pvDZ optimised geometries.

Х	Solvent	Conformation	Distance Å
$C{\equiv}N$	[C ₁ mim][dca]	1	2.356
	[C ₁ mim][dca]	2	2.335
	[C ₁ mpyr][dca]	1	2.356
	[C ₁ mim][BF ₄]	1	2.345
	[C ₁ mpyr][BF ₄]	2	2.345
	Gas phase		2.353
F	[C ₁ mim][dca]	1	2.258
	[C ₁ mim][dca]	2	2.258
	[C ₁ mim][dca]	3	2.255
	[C ₁ mpyr][dca]	1	2.254
	[C ₁ mpyr][dca]	2	2.255
	[C ₁ mpyr][dca]	3	2.254
	[C ₁ mim][BF ₄]	1	2.250
	[C ₁ mim][BF ₄]	2	2.258
	[C ₁ mim][BF ₄]	3	2.246
	[C ₁ mpyr][BF ₄]	1	2.251
	[C ₁ mpyr][BF ₄]	2	2.255
	[C ₁ mpyr][BF ₄]	3	2.266
	Gas phase		2.267
NH_2	[C ₁ mim][dca]	1	2.303
	[C ₁ mim][dca]	2	2.298
	[C ₁ mpyr][dca]	1	2.301
	[C ₁ mpyr][dca]	2	2.296
	[C ₁ mim][BF ₄]	1	2.309
	[C ₁ mim][BF ₄]	2	2.315
	Gas phase		2.309
OH	[C ₁ mim][dca]	1	2.284
	[C ₁ mim][dca]	2	2.284
	[C ₁ mpyr][dca]	1	2.285
	[C ₁ mim][BF ₄]	1	2.284
	[C ₁ mpyr][BF ₄]	1	2.280
	[C ₁ mpyr][BF ₄]	2	2.282
	Gas phase		2.292
$\mathrm{HC}{\equiv}\mathrm{CH}$	[C ₁ mim][dca]	1	2.216
	[C ₁ mpyr][dca]	1	2.229
	[C ₁ mpyr][dca]	2	2.216
	[C ₁ mim][BF ₄]	1	2.217
	[C ₁ mim][BF ₄]	2	2.200
	[C ₁ mpyr][BF ₄]	1	2.218
	Gas phase		2.229

Solvent 7	rs distance	PC distance	Solvent	TS distance	PC distanc
	Ethene		Vin	yl chloride	
Gas	2.256	3.256	Gas	2.284	3.411
Ethanol	2.251	3.270	THF	2.278	3.431
Toluene	2.253	3.269	Toluene	2.280	3.817
[C ₁ mim][dca]	2.258	3.344	[C ₁ mim][dca]	2.282	3.207
[C ₁ mpyr][BF ₄]	2.245	3.628	[C ₁ mpyr][BF ₄]	2.256	3.187
[Dema][OTf]	2.247	3.652	[Dema][OTf]	2.300	3.859
[Et ₃ NH][HSO ₄]	2.258	3.273	[Et ₃ NH][HSO ₄]	2.282	3.556
[(EtOH) ₂ NH ₂][NO ₃] 2.243	3.606	[(EtOH) ₂ NH ₂][NO ₃	3] 2.268	3.164
[Hmim][HSO ₄]	2.234	3.183	[Hmim][HSO ₄]	2.264	3.252
[PMe ₄][Mes]	2.239	3.598	[PMe ₄][Mes]	2.281	3.727
	onitrile		Meth	hyl methate	
Gas	2.272	5.121	Gas	2.241	3.763
DMF	2.263	4.188	THF	2.240	3.383
Toluene	2.280	3.817	Toluene	2.267	5.854
[C ₁ mim][dca]	2.258	3.535	[C ₁ mim][dca]	2.201	3.537
[C ₁ mpyr][BF ₄]	2.243	3.094	[C ₁ mpyr][BF ₄]	2.242	3.328
[Dema][OTf]	2.244	3.115	[Dema][OTf]	2.226	3.888
[Et ₃ NH][HSO ₄]	2.275	3.577	[Et ₃ NH][HSO ₄]	2.220	3.603
[(EtOH) ₂ NH ₂][NO ₃] 2.269	3.684	[(EtOH) ₂ NH ₂][NO	3] 2.229	2.947
[Hmim][HSO ₄]	2.245	3.128	[Hmim][HSO ₄]	2.190	3.454
[PMe ₄][Mes]	2.249	3.328	[PMe ₄][Mes]	2.237	3.245

Intermolecular separation between the radical and monomer (in Å) in the transition state (TS) and pre-complex (PC), using M06-2X/cc-pvDZ optimised geometries.

Total interaction energy E _{total} as the sum of dispersion E	persion and electrostatic $E_{electrostatic}$ energies, in kJ mol ⁻¹ for	r model
radicals in ionic liquids, calculated at the SRS-MP2/cc-	TZ level of theory.	

D - 1' 1	TT	Comf	P	P	Б	0/ D: :
Kadical	IL	Conformation	E _{electrostatic}	L _{dispersion}	E _{total}	% Dispersion
CH_2Cl	$[C_1 mim][BF_4]$	1	-3.3	-26.4	-29.7	89
	[C ₁ mim][BF ₄]	2	10.5	-22.8	-12.3	185
	[C ₁ mim][BF ₄]	3	2.2	-22.1	-19.9	111
	[C ₁ mim][BF ₄]	4	-7.7	-21.3	-29.0	73
	[C ₁ mim][dca]	1	6.3	-25.6	-19.3	133
	[C ₁ mim][dca]	2	-5.0	-26.3	-31.3	84
	[C ₁ mim][dca]	4	0.9	-27.8	-26.9	103
	$[P(Me)_4][BF_4]$	1	-0.7	-22.6	-23.3	97
	$[P(Me)_4][BF_4]$	2	-8.0	-21.0	-29.0	72
	[P(Me) ₄][dca]	1	-7.9	-26.3	-34.2	77
	[P(Me) ₄][dca]	2	-7.1	-26.4	-33.5	79
	[P(Me) ₄][dca]	3	12.1	-30.3	-18.2	166
	[P(Me) ₄][Mes]	1	-12.7	-22.5	-35.2	64
	[C ₁ mpyr][BF ₄]	1	4.2	-20.0	-15.8	127
	[C ₁ mpyr][BF ₄]	2	-4.1	-19.0	-23.1	82
	[C ₁ mpyr][BF ₄]	3	-8.2	-14.9	-23.1	65
	[C ₁ mpyr][dca]	1	-6.1	-18.0	-24.1	75
	[C ₁ mpyr][dca]	2	0.1	-23.7	-23.6	100
	[C ₁ mpyr][dca]	3	-1.5	-24.9	-26.4	94
	[C ₁ mpyr][dca]	4	5.9	-25.0	-19.1	131
	[C ₁ mpyr][dca]	5	-4.8	-22.6	-27.4	82
CH ₂ CN	[C ₁ mim][BF ₄]	1	-9.4	-23.3	-32.7	71
	[C ₁ mim][BF ₄]	2	8.5	-26.1	-17.6	148
	[C ₁ mim][BF ₄]	3	-7.7	-21.5	-29.2	74
	[C ₁ mim][BF ₄]	4	-13.7	-17.6	-31.3	56
	[C ₁ mim][dca]	1	-11.6	-25.3	-36.9	69
	[C ₁ mim][dca]	2	-26.7	-24.9	-51.6	48
	[C ₁ mim][dca]	3	-23.1	-19.0	-42.1	45
	[C ₁ mim][dca]	4	-16.7	-26.6	-43.3	61
	$[P(Me)_4][BF_4]$	1	-29.9	-19.1	-49.0	39
	$[P(Me)_4][BF_4]$	2	-29.6	-20.8	-50.4	41
	[P(Me) ₄][dca]	1	-32.6	-23.4	-56.0	42
	[P(Me) ₄][dca]	2	-27.6	-24.7	-52.3	47
	[P(Me) ₄][dca]	3	-25.4	-23.8	-49.2	48
	[P(Me) ₄][Mes]	1	-36.6	-22.7	-59.3	38
	[C ₁ mpyr][BF ₄]	1	-2.1	-20.3	-22.4	91
	[C ₁ mpyr][BF ₄]	2	-18.5	-19.2	-37.7	51
	[C ₁ mpyr][BF ₄]	3	-30.9	-13.7	-44.6	31
	[C ₁ mpyr][dca]	1	-19.9	-16.7	-36.6	46
	[C ₁ mpyr][dca]	2	-17.9	-24.4	-42.3	58
	$[C_1 mpyr][dca]$	3	-15.9	-25.1	-41.0	61

	[C ₁ mpyr][dca]	4	-0.5	-26.0	-26.5	98
	[C ₁ mpyr][dca]	5	-22.7	-22.9	-45.6	50
CH ₂ F	$[C_1 mim][BF_4]$	1	-10.2	-13.0	-23.2	56
-	$[C_1 mim][BF_4]$	2	8.2	-18.1	-9.9	183
	$[C_1 mim][BF_4]$	3	0.1	-18.2	-18.1	101
	$[C_1 mim][BF_4]$	4	-5.2	-15.7	-20.9	75
	[C ₁ mim][dca]	1	2.9	-20.4	-17.5	117
	[C ₁ mim][dca]	2	-6.1	-20.7	-26.8	77
	[C ₁ mim][dca]	3	1.1	-19.3	-18.2	106
	[C ₁ mim][dca]	4	-0.9	-21.7	-22.6	96
	$[P(Me)_4][BF_4]$	1	-0.8	-20.1	-20.9	96
	$[P(Me)_4][BF_4]$	2	-6.9	-18.4	-25.3	73
	[P(Me) ₄][dca]	1	-8.9	-22.2	-31.1	71
	[P(Me) ₄][dca]	2	-8.8	-21.3	-30.1	71
	[P(Me) ₄][dca]	3	14.7	-24.4	-9.7	252
	[P(Me) ₄][Mes]	1	-10.6	-20.0	-30.6	65
	[C ₁ mpyr][BF ₄]	1	5.3	-17.0	-11.7	145
	[C ₁ mpyr][BF ₄]	2	-2.9	-14.8	-17.7	84
	[C ₁ mpyr][BF ₄]	3	-10.0	-12.9	-22.9	56
	[C ₁ mpyr][dca]	1	-7.1	-15.1	-22.2	68
	[C ₁ mpyr][dca]	2	8.4	-20.7	-12.3	168
	[C ₁ mpyr][dca]	3	-0.9	-19.5	-20.4	96
	[C ₁ mpyr][dca]	4	5.3	-20.9	-15.6	134
	[C ₁ mpyr][dca]	5	-5.5	-18.6	-24.1	77
CH_2NH_2	[C ₁ mim][BF ₄]	1	-1.2	-21.2	-22.4	95
	[C ₁ mim][BF ₄]	2	11.0	-21.5	-10.5	205
	[C ₁ mim][BF ₄]	3	-9.4	-26.8	-36.2	74
	[C ₁ mim][BF ₄]	4	0.9	-18.0	-17.1	105
	[C ₁ mim][dca]	1	-2.6	-18.8	-21.4	88
	[C ₁ mim][dca]	2	-5.2	-23.8	-29.0	82
	[C ₁ mim][dca]	3	-10.2	-33.0	-43.2	76
	[C ₁ mim][dca]	4	-24.7	-31.2	-55.9	56
	$[P(Me)_4][BF_4]$	1	-16.1	-26.2	-42.3	62
	$[P(Me)_4][BF_4]$	2	-1.9	-21.2	-23.1	92
	[P(Me) ₄][dca]	1	-3.8	-23.7	-27.5	86
	[P(Me) ₄][dca]	2	11.7	-25.1	-13.4	187
	[P(Me) ₄][dca]	3	-2.2	-34.1	-36.3	94
	[P(Me) ₄][Mes]	1	-15.6	-33.0	-48.6	68
	[C ₁ mpyr][BF ₄]	1	1.3	-30.1	-28.8	105
	[C ₁ mpyr][BF ₄]	2	6.3	-16.1	-9.8	164
	[C ₁ mpyr][BF ₄]	3	-0.7	-15.9	-16.6	96
	[C ₁ mpyr][dca]	1	-1.3	-16.9	-18.2	93
	[C ₁ mpyr][dca]	2	-5.1	-29.1	-34.2	85
	[C ₁ mpyr][dca]	3	4.1	-24.2	-20.1	120
	[C ₁ mpyr][dca]	4	-11.5	-29.3	-40.8	72
	[o]mpji][aca]				10.0	

CH ₂ OH	$[C_1 mim][BF_4]$	1	-9.0	-15.6	-24.6	63
	[C ₁ mim][BF ₄]	2	3.0	-20.8	-17.8	117
	[C ₁ mim][BF ₄]	3	-32.6	-29.2	-61.8	47
	[C ₁ mim][BF ₄]	4	-1.5	-17.0	-18.5	92
	[C ₁ mim][dca]	1	-0.2	-21.6	-21.8	99
	[C ₁ mim][dca]	2	-2.8	-22.7	-25.5	89
	[C ₁ mim][dca]	3	-39.0	-35.8	-74.8	48
	[C ₁ mim][dca]	4	-43.5	-32.4	-75.9	43
	$[P(Me)_4][BF_4]$	1	-31.7	-27.3	-59.0	46
	$[P(Me)_4][BF_4]$	2	-31.7	-27.3	-59.0	46
	[P(Me) ₄][dca]	1	-1.0	-23.8	-24.8	96
	[P(Me) ₄][dca]	2	-3.9	-23.6	-27.5	86
	[P(Me) ₄][Mes]	1	-46.0	-32.0	-78.0	41
	[C ₁ mpyr][BF ₄]	1	10.3	-18.7	-8.4	223
	[C ₁ mpyr][BF ₄]	2	1.4	-15.9	-14.5	110
	[C ₁ mpyr][BF ₄]	3	-7.1	-16.2	-23.3	70
	[C ₁ mpyr][dca]	1	-32.8	-29.1	-61.9	47
	[C ₁ mpyr][dca]	2	18.6	-24.4	-5.8	421
	[C ₁ mpyr][dca]	3	1.3	-21.5	-20.2	106

Total interaction energy E_{total} as the sum of dispersion (E_{disp}) and electrostatic (E_{elec}) energies, in kJ mol⁻¹ for propagating radicals in various ionic liquids, calculated at the SRS-MP2/cc-pVTZ level of theory. Abbreviations for system conformation are as follows: aia = alternating ion arrangement, sia = same ion arrangement, p = planar.

Radical	Ionic liquid	IPs	Conformation	E _{elec}	E _{disp}	E _{total}	% Dispersion
CH ₃ C [·] H ₂	[C ₁ mim][dca]	1	opt1	6.8	-20.5	-13.8	148
	[C ₁ mim][dca]	2	aia	26.6	-60.8	-34.1	178
	[C ₁ mim][dca]	2	sia	19.3	-49.5	-30.2	163
	[C ₁ mpyr][BF ₄]	1	opt1	5.8	-16.7	-10.9	153
	[C ₁ mpyr][BF ₄]	2	aia	25.0	-52.6	-27.6	190
	[C ₁ mpyr][BF ₄]	2	sia	8.9	-53.5	-44.6	119
	[Dema][Otf]	1	in	9.4	-32.7	-23.3	140
	[Dema][Otf]	1	out	9.0	-20.5	-11.4	179
	[Dema][Otf]	2	aia	28.5	-54.0	-25.5	211
	[Dema][Otf]	2	sia	31.6	-70.1	-38.5	182
	[Et ₃ NH][HSO ₄]	1	opt1	-2.3	-23.6	-25.8	91
	[Et ₃ NH][HSO ₄]	2	aia	24.5	-58.0	-33.4	173
	[Et ₃ NH][HSO ₄]	2	sia	16.9	-54.8	-37.9	144
	[(EtOH) ₂ NH ₂][NO ₃]	2	aia	24.5	-58.0	-33.4	173
	[(EtOH) ₂ NH ₂][NO ₃]	2	sia	15.1	-50.9	-35.8	142
	[Hmim][HSO ₄]	1	р	13.8	-37.6	-23.8	157
	[Hmim][HSO ₄]	2	aia	14.5	-54.2	-39.7	136
	[Hmim][HSO ₄]	2	sia	20.0	-50.7	-30.7	165
	[P(Me) ₄][Mes]	1	opt1	5.7	-18.4	-12.8	143
	[P(Me) ₄][Mes]	2	aia	17.6	-47.6	-30.0	158
	[P(Me) ₄][Mes]	2	sia	6.3	-52.2	-45.9	113
CH3C.HCI	[C ₁ mim][dca]	1	opt1	5.5	-40.5	-35.0	115
	[C ₁ mim][dca]	2	aia	16.0	-64.8	-48.8	132
	[C ₁ mim][dca]	2	sia	4.6	-61.9	-57.3	108
	[C ₁ mpyr][BF ₄]	1	opt1	0.0	-21.1	-21.1	100
	[C ₁ mpyr][BF ₄]	2	aia	10.4	-53.4	-42.9	124
	[C ₁ mpyr][BF ₄]	2	sia	27.7	-60.5	-32.8	184
	[Dema][Otf]	1	in	7.8	-33.2	-25.4	130
	[Dema][Otf]	1	out	18.1	-25.2	-7.0	360
	[Dema][Otf]	2	aia	43.3	-87.5	-44.2	197
	[Dema][Otf]	2	sia	-10.6	-63.3	-74.0	85
	[Et ₃ NH][HSO ₄]	1	in	3.9	-30.5	-26.6	114
	[Et ₃ NH][HSO ₄]	1	out	-8.9	-26.5	-35.3	75
	[Et ₃ NH][HSO ₄]	2	aia	-2.9	-48.9	-51.7	94
	[Et ₃ NH][HSO ₄]	2	sia	-21.1	-58.8	-79.9	73
	[(EtOH) ₂ NH ₂][NO ₃]	1	out	6.3	-35.1	-28.8	121
	[(EtOH) ₂ NH ₂][NO ₃]	2	aia	33.8	-60.8	-27.1	224
	[(EtOH) ₂ NH ₂][NO ₃]	2	sia	21.1	-53.5	-32.4	165
	[Hmim][HSO ₄]	1	opt1	13.2	-38.1	-24.9	153
	[Hmim][HSO ₄]	1	opt2	6.8	-38.8	-31.9	121
	[Hmim][HSO ₄]	2	aia	24.3	-71.6	-47.3	151
	[Hmim][HSO ₄]	2	sia	18.2	-46.0	-27.8	165
	[P(Me) ₄][Mes]	1	opt1	-9.8	-29.7	-39.5	75
	[P(Me) ₄][Mes]	2	aia	21.0	-61.5	-40.5	151

	[P(Me) ₄][Mes]	2	sia	20.2	-54.6	-34.4	158
CH ₃ C [•] (CH ₃)COOCH	[C ₁ mim][dca]	1	in	-25.6	-83.1	-108.8	76
	[C ₁ mim][dca]	1	out	-19.6	-47.9	-67.5	70
	[C ₁ mim][dca]	2	aia	67.5	-144.7	-77.2	187
	[C ₁ mim][dca]	2	sia	46.6	-124.7	-78.1	159
	[C ₁ mpyr][BF ₄]	1	opt1	-1.6	-36.9	-38.5	95
	[C ₁ mpyr][BF ₄]	2	aia	6.3	-86.8	-80.5	107
	[C ₁ mpyr][BF ₄]	2	sia	19.5	-76.0	-56.5	134
	[Dema][Otf]	1	in	8.5	-38.4	-29.9	128
	[Dema][Otf]	1	out	0.4	-39.0	-38.6	101
	[Dema][Otf]	2	aia	-14.3	-98.6	-112.9	87
	[Dema][Otf]	2	sia	27.8	-106.4	-78.7	135
	[Et ₃ NH][HSO ₄]	1	opt1	-16.2	-60.9	-77.1	78
	[Et ₃ NH][HSO ₄]	1	opt2	-55.1	-55.4	-110.5	50
	[Et ₃ NH][HSO ₄]	2	aia	-21.4	-95.9	-117.3	81
	[Et ₃ NH][HSO ₄]	2	sia	4.4	-107.2	-102.7	104
	[(EtOH) ₂ NH ₂][NO ₃]	1	in	-62.4	-53.3	-115.8	46
	[(EtOH) ₂ NH ₂][NO ₃]	1	out	-16.9	-48.3	-65.2	74
	[(EtOH) ₂ NH ₂][NO ₃]	2	aia	-42.6	-119.7	-162.3	73
	[(EtOH) ₂ NH ₂][NO ₃]	2	sia	-42.6	-119.7	-162.3	73
	[Hmim][HSO ₄]	1	in	-68.3	-70.2	-138.5	50
	[Hmim][HSO ₄]	2	aia	-6.7	-81.4	-88.1	92
	[Hmim][HSO ₄]	2	sia	-2.3	-73.8	-76.2	96
	[P(Me) ₄][Mes]	1	in	-68.8	-67.2	-130.6	51
	[P(Me) ₄][Mes]	1	out	-4.1	-49.2	-53.3	92
	[P(Me) ₄][Mes]	2	aia	-30.6	-81.8	-112.4	72
	[P(Me) ₄][Mes]	2	sia	-61.4	-87.8	-149.2	58
CH ₃ C [·] HCN	[C ₁ mim][dca]	1	in	7.4	-57.0	-49.6	114
	[C ₁ mim][dca]	1	out	13.1	-32.2	-19.1	168
	[C ₁ mim][dca]	2	aia	41.8	-110.6	-68.8	160
	[C ₁ mim][dca]	2	sia	-39.4	-83.1	-122.5	67
	[C ₁ mpyr][BF ₄]	1	out	-33.6	-19.9	-53.6	37
	[C ₁ mpyr][BF ₄]	2	aia	-36.5	-54.1	-90.6	59
	[C ₁ mpyr][BF ₄]	2	sia	-16.4	-63.6	-80.0	79
	[Dema][Otf]	1	in	-139.8	-32.2	-172.0	18
	[Dema][Otf]	2	aia	-31.2	-77.0	-108.2	71
	[Dema][Otf]	2	sia	-92.3	-64.3	-156.6	41
	[Et ₃ NH][HSO ₄]	1	in	-62.8	-38.9	-101.7	38
	[Et ₃ NH][HSO ₄]	1	out	-22.1	-31.3	-53.4	58
	[Et ₃ NH][HSO ₄]	2	aia	-31.0	-68.3	-99.3	68
	[Et ₃ NH][HSO ₄]	2	sia	-23.1	-65.0	-88.1	73
	[(EtOH) ₂ NH ₂][NO ₃]	1	in	-43.7	-34.7	-78.4	44
	[(EtOH) ₂ NH ₂][NO ₃]	2	aia	44.0	-69.9	-25.9	269
	[(EtOH) ₂ NH ₂][NO ₃]	2	sia	-38.0	-62.2	-100.1	62
	[Hmim][HSO ₄]	1	ар	16.9	-36.6	-19.7	185
	[Hmim][HSO ₄]	2	aia	-19.6	-85.9	-105.5	81
	[Hmim][HSO ₄]	2	sia	-7.0	-75.6	-82.7	91
	[P(Me) ₄][Mes]	1	opt1	-26.4	-28.6	-55.0	52
	[P(Me) ₄][Mes]	2	aia	-36.7	-57.6	-94.3	61
	[P(Me) ₄][Mes]	2	sia	-46.0	-63.9	-109.9	58

Atomic charge (*e*) of each component in system, as calculated by the Geodesic partial charge scheme for methyl radical addition to selected alkenes CH_2 =CHX using the MP2/KTZ2P level of theory.

Х	Ionic liquid	Conformation	Reaction Stage	Anion	Cation	Methyl	Reactant	Radical+Reactant
				charge	charge	charge	charge	charge
F	[C ₁ mim][BF ₄]	1	Intermediate	-0.89	0.90	-0.02	0.01	-0.01
	$[C_1 mim][BF_4]$	1	Transition	-0.88	0.85	0.04	-0.01	0.03
	[C ₁ mim][BF ₄]	1	Product	-0.87	0.88	-0.01		-0.01
	$[C_1 mim][BF_4]$	3	Intermediate	-0.82	0.82	0.02	-0.02	-0.00
	[C ₁ mim][dca]	1	Intermediate	-0.84	0.85	-0.01	0.00	-0.00
	[C ₁ mim][dca]	1	Transition	-0.83	0.76	0.08	-0.02	0.08
	[C ₁ mim][dca]	1	Product	-0.84	0.83	0.01		0.01
	[C ₁ mim][dca]	2	Intermediate	-0.76	0.79	0.01	-0.04	-0.03
	[C ₁ mim][dca]	2	Transition	-0.78	0.76	0.03	-0.01	0.03
	[C ₁ mim][dca]	2	Product	-0.79	0.80	-0.01		-0.01
	[C ₁ mpyr][BF ₄]	2	Intermediate	-0.82	0.84	-0.01	-0.01	-0.02
	[C ₁ mpyr][BF ₄]	2	Transition	-0.82	0.77	0.06	-0.01	0.06
	[C ₁ mpyr][BF ₄]	2	Product	-0.83	0.82	0.01		0.01
	[C ₁ mpyr][BF ₄]	4	Intermediate	-0.86	0.82	0.04	-0.01	0.03
	[C ₁ mpyr][BF ₄]	4	Transition	-0.86	0.82	0.03	0.01	0.03
	[C ₁ mpyr][BF ₄]	4	Product	-0.85	0.82	0.03		0.03
	[C ₁ mpyr][dca]	1	Intermediate	-0.79	0.81	-0.01	-0.01	-0.02
	[C ₁ mpyr][dca]	1	Transition	-0.79	0.73	0.06	-0.01	0.06
	[C ₁ mpyr][dca]	1	Product	-0.78	0.81	-0.04		-0.04
$\rm NH_2$	[C ₁ mim][BF ₄]	1	Intermediate	-0.89	0.88	-0.04	0.06	0.01
	[C ₁ mim][BF ₄]	1	Transition	-0.90	0.85	-0.05	0.09	-0.05
	[C ₁ mim][BF ₄]	1	Product	-0.89	0.87	0.02		0.02
	[C ₁ mim][BF ₄]	3	Intermediate	-0.89	0.85	0.00	0.03	0.04
	[C ₁ mim][dca]	1	Intermediate	-0.84	0.85	-0.03	0.02	-0.03
	[C ₁ mim][dca]	1	Product	-0.83	0.79	0.04		0.04
	[C ₁ mim][dca]	2	Intermediate	-0.82	0.82	-0.03	0.03	0.00
	[C ₁ mim][dca]	2	Transition	-0.84	0.76	0.03	0.05	0.03
	[C ₁ mim][dca]	2	Product	-0.82	0.80	0.02		0.02
	[C ₁ mim][BF ₄]	2	Intermediate	-0.86	0.85	-0.01	0.01	0.01
	[C ₁ mpyr][BF ₄]	2	Product	-0.82	0.81	0.01		0.01
	[C ₁ mpyr][BF ₄]	4	Intermediate	-0.85	0.83	0.01	0.02	0.02
	[C ₁ mpyr][BF ₄]	4	Transition	-0.86	0.77	0.02	0.07	0.09
	[C ₁ mpyr][BF ₄]	4	Product	-0.85	0.78	0.07		0.07
	[C ₁ mpyr][dca]	1	Intermediate	-0.80	0.81	-0.03	0.02	-0.01
	[C ₁ mpyr][dca]	1	Transition	-0.78	0.74	-0.05	0.09	0.04
	[C ₁ mpyr][dca]	1	Product	-0.81	0.76	0.04		0.04
	[C ₁ mpyr][dca]	2	Intermediate	-0.85	0.85	-0.03	0.03	0.00
	[C ₁ mpyr][dca]	2	Transition	-0.83	0.78	0.02	0.04	0.06
	[C ₁ mpyr][dca]	2	Product	-0.79	0.78	0.01		0.01

Atomic charge (*e*) of each component in system, as calculated by the Geodesic partial charge scheme for transition states in 2 ion pairs of ionic liquid (including gas-phase results for comparison), using the MP2/KTZ2P level of theory.

Monomer	Solvent	Transition state	Radical	Monomer	IL
	Gas	0.00	0.03	-0.03	
	[C ₁ mim][dca]	-0.05	-0.02	-0.03	0.05
	[C ₁ mpyr][BF ₄]	0.16	0.26	-0.10	-0.16
Ethono	[Dema][OTf]	-0.08	0.09	-0.17	0.08
Ethene	[Et ₃ NH][HSO ₄]	-0.04	-0.13	0.09	0.04
	[(EtOH) ₂ NH ₂][NO ₃]	0.04	-0.13	0.09	0.04
	[Hmim][HSO ₄]	0.08	0.04	0.04	-0.08
	[PMe ₄][Mes]	0.06	0.06	0.00	-0.06
	Gas	0.00	0.02	-0.02	
	[C ₁ mim][dca]	0.12	0.19	-0.07	-0.12
	[C ₁ mpyr][BF ₄]	0.30	0.42	-0.12	-0.30
VC	[Dema][OTf]	-0.02	-0.04	0.03	0.02
vC	[Et ₃ NH][HSO ₄]	-0.14	0.02	-0.16	0.14
	[(EtOH) ₂ NH ₂][NO ₃]	-0.31	-0.24	-0.07	0.31
	[Hmim][HSO ₄]	0.07	0.00	0.07	-0.07
	[PMe ₄][Mes]	0.07	-0.10	0.17	-0.07
	Gas	0.00	0.00	0.00	
	[C ₁ mim][dca]	-0.07	-0.10	0.04	0.07
	[C ₁ mpyr][BF ₄]	0.06	-0.09	0.15	-0.06
ΔN	[Dema][OTf]	-0.35	-0.16	-0.20	0.35
7 11 1	[Et ₃ NH][HSO ₄]	0.18	0.15	0.02	-0.18
	[(EtOH) ₂ NH ₂][NO ₃]	0.02	0.02	0.00	-0.02
	[Hmim][HSO ₄]	-0.14	-0.10	-0.04	0.14
	[PMe ₄][Mes]	-0.08	0.02	-0.10	0.08
	Gas	0.00	0.02	-0.02	
	[C ₁ mim][dca]	0.04	0.05	-0.01	-0.04
	[C ₁ mpyr][BF ₄]	0.24	0.23	0.01	-0.24
	[Dema][OTf]	-0.09	-0.05	-0.04	0.09
	[Et ₃ NH][HSO ₄]	0.15	0.22	-0.07	-0.15
	[(EtOH) ₂ NH ₂][NO ₃]	0.31	0.49	-0.19	-0.31
	[Hmim][HSO ₄]	0.13	0.30	-0.16	-0.13
	[PMe ₄][Mes]	0.07	0.19	-0.12	-0.07

Spin contamination results: S^2 value for pre-complex and transition state optimised geometries before and after annihilation. As S^2 after annihilation is not greater than the expectation value (S = 0.75) by 10%, spin contamination is not considered significant in these systems.

Monomer	Ionic liquid	Pre-com	Pre-complex		Transition state		
		Before	After	Before	After		
	[C ₁ mim][dca]	0.7548	0.7500	0.7791	0.7502		
	[C ₁ mpyr][BF ₄]	0.7549	0.7500	0.7794	0.7502		
	[Dema][OTf]	0.7545	0.7500	0.7797	0.7502		
Ethene	[Et ₃ NH][HSO ₄]	0.7552	0.7500	0.7788	0.7502		
	[EtOH ₂ NH ₂][NO ₃]	0.7548	0.7500	0.7782	0.7502		
	[Hmim][HSO ₄]	0.7551	0.7500	0.7782	0.7502		
	[PMe ₄][Mes]	0.7551	0.7500	0.7781	0.7502		
	[C ₁ mim][dca]	0.7556	0.7500	0.7750	0.7502		
	[C ₁ mpyr][BF ₄]	0.7549	0.7500	0.7794	0.7502		
	[Dema][OTf]	0.7553	0.7500	0.7755	0.7502		
VC	[Et ₃ NH][HSO ₄]	0.7550	0.7500	0.7758	0.7502		
	[EtOH ₂ NH ₂][NO ₃]	0.7555	0.7500	0.7757	0.7502		
	[Hmim][HSO ₄]	0.7554	0.7500	0.7757	0.7502		
	[PMe ₄][Mes]	0.7551	0.7500	0.7748	0.7502		
	[C ₁ mim][dca]	0.7642	0.7501	0.7849	0.7506		
	[C ₁ mpyr][BF ₄]	0.7648	0.7501	0.7835	0.7505		
	[Dema][OTf]	0.7545	0.7500	0.7797	0.7502		
AN	[Et ₃ NH][HSO ₄]	0.7631	0.7501	0.7823	0.7505		
	[EtOH ₂ NH ₂][NO ₃]	0.7636	0.7501	0.7825	0.7505		
	[Hmim][HSO ₄]	0.7635	0.7501	0.7841	0.7505		
	[PMe ₄][Mes]	0.7634	0.7501	0.7833	0.7505		
	[C ₁ mim][dca]	0.7574	0.7500	0.7783	0.7503		
	[C ₁ mpyr][BF ₄]	0.7572	0.7500	0.7787	0.7503		
	[Dema][OTf]	0.7576	0.7500	0.7781	0.7503		
	[Et ₃ NH][HSO ₄]	0.7570	0.7500	0.7788	0.7502		
	[EtOH ₂ NH ₂][NO ₃]	0.7568	0.7500	0.7789	0.7503		
	[Hmim][HSO ₄]	0.7564	0.7500	0.7790	0.7502		
	[PMe ₄][Mes]	0.7577	0.7500	0.7779	0.7503		

Activation and reaction energies in $kJ \text{ mol}^{-1}$ of the addition of a methyl radical to an ethane derivative monomer using CCSD(T)/CBS ONIOM, with SRS-MP2/cc-pVTZ to model the solvent effect.

Monomer	Ionic liquid	Conf					Average	Average	Average	Average	Average	Average
	1		ΔH^{\ddagger}	ΔH	ΔG^{\ddagger}	ΔG	ΔΔS	ΔΔΗ	ΔΔG	$\Delta\Delta S^{\ddagger}$	$\Delta\Delta H^{\ddagger}$	$\Delta\Delta G^{\ddagger}$
CH2=CH2	Gas		34.4		60.3							
$CH_2 = CHCN$	[C ₁ mim][dca]	2	28.2	-112.2	40.6	-97.6						
	Gas		37.5	-106.4	48.8	-92.5						
	[C ₁ mim][dca]	1	15.7	-129.7	28.1	-117.6						
	[C ₁ mpyr][dca]	1	12.2	-117.4	13.3	-106.8	1.3	-14.2	-14.6	9.9	-17.6	-17.4
	[C ₁ mim][BF ₄]	1	14.6	-126.3	27.9	-112.5						
	[C ₁ mpyr][BF ₄]	2	29.0	-117.5	47.0	-101.1	-4.0	-15.5	-14.3	22.1	-15.7	-11.4
CH ₂ =CHF	[C ₁ mim][dca]	2	26.8	-81.1	37.0	-60.8						
	[C ₁ mpyr][BF ₄]	3	28.5		43.8		5.0	20.0	18.5	-10.2	13.9	17.0
	[C ₁ mpyr][BF ₄]	2	30.6	-73.3	35.2	-66.2						
	[C ₁ mpyr][BF ₄]	1	30.5	-71.9	39.2	-60.6						
	[C ₁ mim][BF ₄]	3	22.0	-94.7	27.2	-84.7	-18.2	9.4	14.9	-16.0	14.3	19.1
	[C ₁ mim][BF ₄]	1	42.3	-72.6	61.5	-52.0						
	[C ₁ mim][dca]	3	25.5	-95.6	30.8	-87.6	-7.6	4.9	7.2	-2.9	9.9	10.8
	[C ₁ mpyr][dca]	1	27.0	-85.2	33.2	-81.4						
	[C ₁ mpyr][dca]	2	35.1	-82.6	44.6	-73.8						
	[C ₁ mpyr][dca]	3	32.5	-84.0	39.1	-71.9	8.3	8.7	6.2	-0.2	12.5	12.6
	Gas		16.4	-92.6	24.6	-81.9						
	[C ₁ mim][BF ₄]	2	27.9	-82.2	42.4	-64.4						
	[C ₁ mim][dca]	1	26.7	-86.4	38.4	-75.8						
$CH_2 = CHNH_2$	[C ₁ mpyr][dca]	1	35.2	-83.0	51.2	-64.0						
	[C ₁ mpyr][dca]	2	19.2		21.6		-8.5	-15.7	-13.2	3.8	-10.1	-11.2
	[C ₁ mim][dca]	1	25.8	-91.1	35.6	-76.4						
	Gas		35.4	-73.3	43.4	-62.0						
	$[C_1 mim][BF_4]$	2	28.1	-91.6	39.4	-84.0	24.3	-24.6	-31.8	3.9	-10.3	-11.5
	[C ₁ mim][dca]	2	21.2	-92.9	20.5	-85.1						
	[C ₁ mim][BF ₄]	1	22.1	-104.1	24.5	-103.6						
CH2=CHOH	[C ₁ mim][dca]	1	25.9	-89.1	37.7	-71.1						
	[C ₁ mim][dca]	2	19.6	-96.5	31.2	-84.4						
	[C ₁ mim][BF ₄]	1	27.7	-102.8	46.7	-75.9						
	[C ₁ mpyr][BF ₄]	1	24.0	-91.6	35.7	-72.0						
	[C ₁ mpyr][BF ₄]	2	24.0	-93.4	37.1	-80.6	6.8	-23.6	-25.7	13.4	-10.3	-14.3
	[C ₁ mpyr][dca]	1	25.5	-90.2	45.2	-67.3	13.9	-19.6	-23.8	14.2	-11.8	-16.1
	Gas		35.5	-72.3	54.1	-50.5						
HC≡CH	[C ₁ mpyr][dca]	2	30.7	-94.9	37.0	-85.1	4.1	-8.6	-9.8	-0.6	-15.1	-14.9
	[C ₁ mpyr][BF ₄]	1	33.5	-90.5	35.1	-83.0	8.7	-5.0	-7.6	7.6	-12.3	-14.6
	[C ₁ mim][BF ₄]	2	33.3	-88.3	38.4	-83.3			-8.7			
	[C ₁ mim][BF ₄]	1	33.9	-87.0	45.9	-70.4						
	[C ₁ mim][dca]	1	31.5	-92.7	34.6	-85.2						
	[C ₁ mpyr][dca]	1	30.2	-88.9	46.8	-73.0						
	Gas		45.9	-83.6	54.4	-71.3						

Activation Gibbs free energy (ΔG^{\pm}), enthalpy (ΔH^{\pm}), entropy ($T\Delta S^{\pm}$), and energy (E_a) in kJ mol⁻¹; and propagation constant (k_p) in L mol⁻¹ s⁻¹ for T = 298 K and molecularity = 2. ONIOM results using SRS-MP2 to treat the ionic liquid, and CCSD(T)/cc-pVTZ for ethene and vinyl chloride; CCSD(T)/CBS for acrylonitrile; and CCSD/CBS for methyl methacrylate.

Monomer	Solvent	ΔG^{\pm}	ΔH^{\pm}	k_p	$T\Delta S^{\pm}$	E_a
	Gas	50.5	25.9	8.99×10^3	-24.6	28.3
	Ethanol	46.3	25.8	4.78×10^4	-19.6	28.3
	Toluene	46.5	25.8	4.42×10^4	-20.1	28.3
Fthene	[C ₁ mim][dca]	45.2	40.0	7.58×10^4	-13.2	34.5
Luiene	[C ₁ mpyr][BF ₄]	50.7	34.2	8.19×10^3	-16.5	36.6
	[Dema][OTf]	44.2	37.0	1.12×10^5	-7.2	39.5
	[Et ₃ NH][HSO ₄]	36.5	23.1	2.46×10^{6}	-13.5	25.5
	[(EtOH) ₂ NH ₂][NO ₃]	46.1	31.5	5.26×10^4	-14.6	34.0
	[Hmim][HSO ₄]	30.6	20.7	2.72×10^7	-9.9	23.2
	[PMe ₄][Mes]	49.6	36.3	1.28×10^4	-13.3	38.8
	Gas	34.0	21.4	6.88×10^6	-12.6	23.9
	THF	34.0	21.4	1.31×10^7	-12.9	23.9
	Toluene	36.9	24.9	$2.54 imes10^6$	-12.0	27.4
VC	[C ₁ mim][dca]	21.1	13.4	$1.23 imes10^9$	-7.7	15.9
νC	[C ₁ mpyr][BF ₄]	37.2	28.0	$1.86 imes10^6$	-9.2	30.5
	[Dema][OTf]	41.1	32.4	$3.92 imes 10^5$	-8.7	34.9
	[Et ₃ NH][HSO ₄]	34.4	22.1	$5.88 imes10^6$	-12.3	24.6
	[(EtOH) ₂ NH ₂][NO ₃]	43.3	26.9	$1.60 imes 10^5$	-16.4	29.4
	[Hmim][HSO ₄]	18.8	17.8	$3.12 imes 10^9$	-1.1	20.2
	[PMe ₄][Mes]	68.7	76.3	5.75	7.6	78.8
AN	Gas	50.2	40.6	1.00×10^4	-9.5	43.1
	DMF	46.1	32.7	5.17×10^4	-15.9	35.1
	Toluene	56.6	46.4	$7.43 imes10^2$	-11.2	48.9
	[C ₁ mim][dca]	46.6	46.4	4.33×10^4	-0.1	48.9
	[C ₁ mpyr][BF ₄]	27.2	17.8	$1.05 imes 10^8$	-9.5	20.2
	[Dema][OTf]	34.7	18.1	$5.27 imes10^6$	-16.6	20.5
	[Et ₃ NH][HSO ₄]	26.9	27.7	1.19×10^8	0.8	30.2
	[(EtOH) ₂ NH ₂][NO ₃]	35.4	23.4	3.90×10^{6}	-12.0	25.8
	[Hmim][HSO ₄]	31.6	24.3	1.80×10^7	-7.3	26.8
	[PMe ₄][Mes]	33.5	25.7	8.24×10^6	-7.9	28.2
	Gas	45.0	34.6	$8.00 imes 10^4$	-10.4	37.1
	THF	47.6	35.2	2.90×10^4	-9.6	37.7
	Toluene	45.0	34.3	8.01×10^4	-9.5	36.8
νανα	[C ₁ mim][dca]	32.0	28.7	1.56×10^7	-3.3	31.2
10110174	[C ₁ mpyr][BF ₄]	62.0	54.5	8.62×10^{1}	-7.5	57.0
	[Dema][OTf]	45.0	41.0	8.15×10^4	-4.0	43.4
	[Et ₃ NH][HSO ₄]	37.6	30.5	1.64×10^6	-7.1	32.9
	[(EtOH) ₂ NH ₂][NO ₃]	43.3	32.4	1.62×10^5	-10.9	34.8
	[Hmim][HSO ₄]	61.2	55.7	$1.16 imes 10^2$	-5.5	58.2
	[PMe ₄][Mes]	52.5	35.1	3.98×10^3	-17.4	37.6