N-Heterocyclic Carbene-catalyzed Annulation of Ynals with Amidines: Access to 1,2,6-Trisubstituted Pyrimidin-4-ones

Yangxi Xie and Jian Wang*

School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education) Tsinghua University, Beijing, 100084 (China) E-mail: <u>wangjian2012@tsinghua.edu.cn</u>

Supporting Information

Contents:

General Information	2
General Procedure for the Synthesis of Amidines	2
Optimization of the Reaction Conditions	4
General Procedure for Thiazolium-catalyzed Annulation of Ynals with Amidines	6
Characterization Data	7
Crystal Structure of 3a	19
References	20
NMR Spectra	21

General Information

Chemicals were purchased from commercial suppliers and used as received. Solvents were dried on alumina columns using a solvent dispensing system. Thin-layer chromatography (TLC) was conducted on plates (GF254) supplied by Yantai Chemicals (China) and visualized with a UV light at 254 nm. ¹H, ¹³C NMR, ¹⁹F NMR, ³¹P NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26, Acetone δ 2.05, MeOH δ 3.31), carbon (chloroform δ 77.16) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra were obtained on Waters Xevo G2 QTof Mass Spectrometer. Flash chromatography separations were performed on Silica gel (200-300 mesh) supplied by Tsingdao Haiyang Chemicals (China).

General procedure for the synthesis of amidines ^[1-3]

Procedure A:

$$R^1-NH_2$$
 + $R^2-CN \xrightarrow{NaH} R^1 \underset{M}{\overset{NH}{\longrightarrow}} R^2$

A round bottom flask (25 mL in volume) was charged with NaH (60% in mineral oil) (300 mg, 7.5 mmol, 60%, 1.5 equiv). Under a stream of Ar, DMSO (2.5 mL) was added, and the resulting suspension was cooled with an ice-water bath prior to the addition of the aniline (5.5 mmol, 1.1 equiv) and the carbonitrile (5.0 mmol). The mixture was kept at 0 $\,^{\circ}$ C for 30-60 min and then stirred at room temperature until the starting material was consumed as monitored by TLC analysis. Ice-water (25 mL) was

added while maintaining vigorous stirring. In the cases when the amidine precipitated upon addition of water, the solid was filtered off and dissolved in EtOAc (20 mL). In all other cases, the aqueous layer was extracted with EtOAc (3×20 mL). The extracts were combined and washed with water (2×25 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified either by silica gel chromatography or upon recrystallization to provide the corresponding amidine derivatives ($R^2 = aryl$).

Procedure B:

$$R^{1}-NH_{2} + R^{2}-CN \xrightarrow{AICI_{3}} R^{1}_{120^{\circ}C} R^{1}_{H} \overset{NH}{\downarrow}_{R^{2}}$$

A pressure flask (50 mL in volume) equipped with a stirrer bar was charged with aniline (5.5 mmol, 1.1 equiv) and carbonitrile (5.0 mmol) under air. AlCl₃ (5.0 mmol, 1.0 equiv) was added in one portion. The flask was tightly sealed with a screw cap and lowered into a preheated oil bath at 120 °C. The reaction mixture was stirred until it was completed, and taken out of the oil bath. Ice-water (25 mL) was then added to the hot mixture while maintaining vigorous stirring. If necessary, the mixture was warmed with a heat gun to obtain a homogenous aqueous solution, before it was transferred into a separatory funnel. Concentrated aqueous NaOH was added until a pH of 14 was reached, and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was either purified by silica gel chromatography or upon recrystallization to provide the corresponding amidine derivatives ($R^2 = alkyl$).

Optimization of the reaction conditions

Table S1. The effect of catalysts and additives^{*a*}

Entry	Cat.	Additive	Yield $(\%)^b$
1	А	-	trace
2	В	-	trace
3	С	-	trace
4	D	-	33
5	Е	-	13
6	F	-	trace
7	D	LiCl	35
8	D	Sc(OTf) ₃	52
9	D	Cu(OTf) ₂	43
10	D	Mg(OTf) ₂	78
11	D	Al(OTf) ₃	66

^{*a*} Reaction conditions: **1a** (0.25 mmol), **2a** (0.1 mmol), cat. **A-F** (10 mol%), NaH (150 mol%), 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (DQ) (0.2 mmol), additive (20 mol%), 4Å MS, toluene (1.0 mL), room temperature, 48h. ^{*b*} Isolated yield after flash chromatograph.

Entry	Base	Solvent	Yield $(\%)^b$
1	NaH	Toluene	78
2	LiOt-Bu	Toluene	68
3	K_2CO_3	Toluene	77
4	Na ₂ CO ₃	Toluene	87
5	Cs_2CO_3	Toluene	84
6	KHCO ₃	Toluene	83
7	K ₂ HPO ₄	Toluene	84
8	Na ₂ HPO ₄	Toluene	83
9	Et ₃ N	Toluene	22
10	Na ₂ CO ₃	THF	23
11	Na ₂ CO ₃	Et ₂ O	18
12	Na ₂ CO ₃	CH_2Cl_2	16
13	Na ₂ CO ₃	CH ₃ CN	12
14^c	Na ₂ CO ₃	Toluene	89
15^d	Na ₂ CO ₃	Toluene	86
16^e	Na ₂ CO ₃	Toluene	93
17 ^f	Na ₂ CO ₃	Toluene	82
18^g	Na ₂ CO ₃	Toluene	92
19^h	Na ₂ CO ₃	Toluene	81

Table S2. The effect of base and solvent^a

^{*a*} Reaction conditions: **1a** (0.25 mmol), **2a** (0.1 mmol), Cat. **D** (10 mol%), base (150 mol%), DQ (200 mol%), Mg(OTf)₂ (20 mol%), **4**Å MS, toluene (1.0 mL), room temperature, 48h. ^{*b*} Isolated yield after flash chromatograph. ^{*c*} DQ (0.15 mmol). ^{*d*} DQ (0.12 mmol). ^{*e*} DQ (0.12 mmol), **1a** (0.15 mmol). ^{*f*} DQ (0.12 mmol), **1a** (0.15 mmol). ^{*h*} DQ (0.12 mmol), **1a** (0.15 mmol), Na₂CO₃ (50 mol%). ^{*h*} DQ (0.12 mmol), **1a** (0.15 mmol), Na₂CO₃ (20 mol%).

General procedure for Thiazolium-catalyzed Annulation of Ynals with Amidines

In a nitrogen-filled glovebox, to a flame-dried Schlenk tube was added amidine **2** (0.10 mmol), pre-catalyst **D** (3.7 mg, 0.01 mmol), Na₂CO₃ (5.3 mg, 0.05 mmol), Mg(OTf)₂ (6.4 mg, 0.02 mmol), 4 Å molecular sieves and DQ (49.0 mg, 0.12 mmol), then aldehyde **1** (0.15 mmol) in dry toluene (1.0 ml) was added. The mixture was stirred at room temperature (or indicated temperature) until the reaction was completed (monitored by TLC). The mixture was concentrated under reduced pressure and purified by column chromatography on silica gel (DCM to DCM/MeOH = 10:1) to afford the desired product.

Characterization data

3a: 48 h, Yield = 92%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.6 Hz, 2H), 7.22 – 7.00 (m, 11H), 6.94-6.83 (m, 2H), 6.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 161.2, 154.8, 138.7, 134.7, 133.3, 129.6, 129.5, 129.3, 129.3, 129.0, 128.9, 128.7, 128.2, 127.7, 112.1; HRMS (ESI): *m/z*: calculated for C₂₂H₁₇N₂O ([M + H]⁺) 325.1341, found: 325.1340.

3b: 36 h, Yield = 89%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.2 Hz, 2H), 7.25 – 7.04 (m, 6H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.94-6.84 (m, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.31 (s, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 161.3, 160.2, 154.7, 138.9, 134.8, 130.5, 129.6, 129.5, 129.3, 128.9, 128.7, 127.8, 125.6, 113.7, 112.1, 55.3; HRMS (ESI): *m*/*z*: calculated for C₂₃H₁₉N₂O₂ ([M + H]⁺) 355.1447, found: 355.1445.

3c: 36 h, Yield = 94%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 2H), 7.11-7.04 (m, 3H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.89-6.84 (m, 2H), 6.33 (s, 1H), 2.55 (q, *J* = 7.6

Hz, 2H), 1.15 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 161.2, 154.9, 145.8, 138.9, 134.8, 130.7, 129.6, 129.6, 129.4, 129.0, 128.9, 128.7, 127.8, 127.8, 112.2, 28.6, 15.2; **HRMS** (ESI): m/z: calculated for C₂₄H₂₁N₂O ([M + H]⁺) 353.1654, found: 353.1656.

3d: 60 h, Yield = 67%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.2 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.17 – 7.04 (m, 7H), 6.94-6.84 (m, 4H), 6.30 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 164.2, 161.8, 161.4, 153.8, 138.7, 134.6, 131.1, 131.1, 129.7, 129.6, 129.5, 129.5, 129.4, 129.1, 128.9, 127.8, 115.7, 115.5, 112.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.5; HRMS (ESI): *m*/*z*: calculated for C₂₂H₁₆FN₂O ([M + H]⁺) 343.1247, found: 343.1245.

3e: 60 h, Yield = 74%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.25 – 7.20 (m, 1H), 7.20 – 7.07 (m, 7H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.93 – 6.86 (m, 2H), 6.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 161.4, 153.6, 138.6, 135.8, 134.6, 131.8, 130.4, 129.8, 129.6, 129.4, 129.2, 129.1, 128.7, 127.9, 112.4; HRMS (ESI): *m/z*: calculated for C₂₂H₁₆ClN₂O ([M + H]⁺) 359.0951, found: 359.0953.

3f: 48 h, Yield = 94%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 2H), 7.09 – 7.01 (m, 5H), 6.91 – 6.80 (m, 4H), 6.33 (s, 1H), 2.20 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 161.3, 155.1, 138.8, 138.1, 134.7, 133.2, 130.1, 129.7, 129.7, 129.6, 129.4, 128.9, 128.8, 128.1, 127.8, 126.1, 112.2, 21.3. **HRMS** (ESI): *m/z*: calculated for C₂₃H₁₉N₂O ([M + H]⁺) 339.1497, found: 339.1493.

3g: 60 h, Yield = 75%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.25 (m, 2H), 7.25-7.19 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.14-7.07 (m, 5H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.93-6.87 (m, 2H), 6.31 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 161.4, 153.3, 138.5, 134.9, 134.5, 134.4, 129.8, 129.6, 129.5, 129.4, 129.2, 129.1, 129.1, 127.9, 127.2, 112.4; **HRMS** (ESI): *m*/*z*: calculated for C₂₂H₁₆ClN₂O ([M + H]⁺) 359.0951, found: 359.0951.

3h: 48 h, Yield = 83%, light brown solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0, 1H), 7.46-7.39 (m, 1H), 7.37-7.29 (m, 3H), 7.28 – 7.23 (m, 1H), 7.22 – 7.15 (m, 1H), 7.12 (m, 2H), 7.04 – 6.90 (m, 4H), 6.90 – 6.79 (m, 1H), 6.18 (s, 1H), 3.80 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 165.8, 160.9, 154.9, 138.8, 134.7, 134.2, 132.2, 131.1, 130.4, 129.7, 129.6, 129.5, 129.4, 129.2, 128.7, 128.6, 128.5, 127.7, 110.8, 52.5; **HRMS** (ESI): *m*/*z*: calculated for C₂₄H₁₉N₂O₃ ([M + H]⁺) 383.1396, found: 383.1395.

3i: 60 h, Yield = 76%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.71 (m, 3H), 7.58 (d, J = 8.4 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 7.20-7.13 (m, 2H), 7.06 – 6.98 (m, 4H), 6.96 – 6.90 (m, 2H), 6.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 161.3, 154.8, 138.8, 134.7, 133.0, 132.6, 130.9, 129.7, 129.6, 129.4, 129.2, 129.0, 128.8, 128.4, 127.9, 127.8, 127.6, 127.1, 125.5, 112.7; HRMS (ESI): m/z: calculated for C₂₆H₁₉N₂O ([M + H]⁺) 375.1497, found: 375.1498.

3j: 60 h, Yield = 86%, light brown solid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.36 – 7.26 (m, 3H), 7.25 – 7.17 (m, 3H), 7.17 – 7.09 (m, 4H), 6.77 (s, 1H), 6.21 (dd, *J* = 3.6, 1.8 Hz, 1H), 5.29 (d, *J* = 3.6 Hz, 1H); ¹³**C** NMR (100 MHz, CDCl₃) δ 170.3, 161.6, 144.9, 144.5, 144.2, 138.9, 134.4, 130.0, 129.6, 129.5, 129.5, 129.1, 127.8, 114.9, 112.0, 109.0; **HRMS** (ESI): *m/z*: calculated for C₂₀H₁₅N₂O₂ ([M + H]⁺) 315.1134, found: 315.1136.

3k: 48 h, Yield = 97%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, *J* = 5.0 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.24 – 7.11 (m, 6H), 7.02 (d, *J* = 7.4 Hz, 2H), 6.87 – 6.82 (m, 1H), 6.77 (d, *J* = 3.5 Hz, 1H), 6.51 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 161.6, 148.2, 138.7, 134.7, 133.7, 130.6, 129.8, 129.7, 129.6, 129.5, 129.2, 127.8, 127.2, 112.7; **HRMS** (ESI): *m/z*: calculated for C₂₀H₁₅N₂OS ([M + H]⁺) 331.0905, found: 331.0904.

31: 36 h, Yield = 96%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 6.8 Hz, 2H), 7.23 – 7.11 (m, 7H), 7.10-7.06 (m, 1H), 6.96 (d, *J* = 7.2 Hz, 2H), 6.55 (d, *J* = 4.8 Hz, 1H), 6.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 161.3, 150.1, 138.9, 134.7, 133.6, 129.6, 129.4, 129.3, 129.1, 127.8, 127.6, 127.4, 126.1, 112.0; HRMS (ESI): *m/z*: calculated for C₂₀H₁₅N₂OS ([M + H]⁺) 331.0905, found: 331.0902.

3m: 48 h, Yield = 71%, light brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 3H), 7.26-7.22 (m, 2H), 7.21 – 7.15 (m, 1H), 7.15 – 7.08 (m, 4H), 6.21 (m, 1H), 1.97 (d, *J* = 0.9 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 161.3, 151.8, 138.7,

134.5, 129.7, 129.6, 129.6, 129.3, 128.9, 127.8, 111.0, 21.2.; **HRMS** (ESI): m/z: calculated for C₁₇H₁₅N₂O ([M + H]⁺) 263.1184, found: 263.1181.

3n: 48 h, Yield = 62%, light brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (m, 3H), 7.25 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 7.15 – 7.09 (m, 4H), 6.25 (m, 1H), 2.27-2.15 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 170.54, 161.41, 156.63, 138.27, 134.71, 129.61, 129.60, 129.45, 129.26, 129.21, 127.76, 108.79, 26.30, 11.42. **HRMS** (ESI): *m/z*: calculated for C₁₈H₁₇N₂O ([M + H]⁺) 277.1341, found: 277.1344.

30: 48 h, Yield = 58%, light brown solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 3H), 7.25 – 7.20 (m, 2H), 7.21 – 7.15 (m, 1H), 7.15 – 7.08 (m, 4H), 6.23 (s, 1H), 2.24 – 2.12 (m, 2H), 1.47-1.36 (m, 2H), 1.28 – 1.09 (m, 10H), 0.85 (t, *J* = 7.0 Hz, 3H).; ¹³**C NMR** (100 MHz, CDCl₃) δ 170.45, 161.45, 155.59, 138.27, 134.75, 129.60, 129.55, 129.44, 129.30, 129.20, 127.76, 109.68, 32.87, 31.81, 29.13, 29.07, 29.03, 27.46, 22.70, 14.18.; **HRMS** (ESI): *m/z*: calculated for C₂₄H₂₉N₂O ([M + H]⁺) 361.2280, found: 361.2283.

3p: 96 h, Yield = 67%, light brown solid; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 3H), 7.25 (d, *J* = 6.4 Hz, 2H), 7.22 – 7.08 (m, 5H), 6.00 (s, 1H), 1.30-1.18 (m, 1H), 0.85-0.72 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 161.4, 156.9, 138.8, 134.7, 129.5, 129.5, 129.4, 129.3, 127.8, 106.4, 14.0, 8.9; HRMS (ESI): *m/z*: calculated for C₁₉H₁₇N₂O ([M + H]⁺) 289.1341, found: 289.1343.

4a: 42 h, Yield = 88%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.11 (m, 8H), 7.08 (d, *J* = 7.0 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.8 Hz, 2H), 6.32 (s, 1H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 161.6, 159.1, 155.1, 134.8, 133.4, 131.3, 130.5, 129.3, 129.2, 129.1, 128.9, 128.2, 127.7, 113.8, 112.0, 55.3; **HRMS** (ESI): *m*/*z*: calculated for C₂₃H₁₉N₂O₂ ([M + H]⁺) 355.1447, found: 355.1446.

4b: 36 h, Yield = 91%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.13 (m, 8H), 7.09 (d, *J* = 6.8 Hz, 2H), 6.94-6.86 (m, 2H), 6.75 (t, *J* = 8.4 Hz, 2H), 6.31 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 163.2, 161.4, 160.7, 154.8, 134.9, 134.9, 134.6, 133.2, 131.5, 131.4, 129.8, 129.5, 129.3, 129.0, 128.5, 128.0, 116.2, 115.9, 112.3; ¹⁹**F**

NMR (376 MHz, CDCl₃) δ -110.8; **HRMS** (ESI): *m*/*z*: calculated for C₂₂H₁₆FN₂O ([M + H]⁺) 343.1247, found: 343.1248.

4c: 48 h, Yield = 96%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.12 (m, 6H), 7.09-7.04 (m, 2H), 6.95 – 6.89 (m, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.69 – 6.63 (m, 2H), 6.32 (s, 1H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 161.3, 154.8, 139.1, 138.6, 134.8, 133.4, 130.1, 129.6, 129.4, 129.3, 128.9, 128.6, 128.2, 127.7, 126.6, 112.2, 21.0; **HRMS** (ESI): *m*/*z*: calculated for C₂₃H₁₉N₂O ([M + H]⁺) 339.1497, found: 339.1492.

4d: 84 h, Yield = 71%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.27-7.24 (m, 1H), 7.24-7.14 (m, 5H), 7.13 – 7.08 (m, 2H), 7.07-6.99 (m, 1H), 6.83-6.77 (m, 1H), 6.77-6.72 (m, 1H), 6.70-6.65 (m, 1H), 6.30 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 163.4, 161.0, 160.9, 154.5, 140.1, 140.0, 134.4, 133.0, 130.1, 130.0, 129.9, 129.6, 129.2, 128.9, 128.5, 127.9, 125.8, 125.8, 117.5, 117.3, 116.2, 116.0, 112.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.34; **HRMS** (ESI): m/z: calculated for C₂₂H₁₆FN₂O ([M + H]⁺) 343.1247, found: 343.1246.

4e: 84 h, Yield = 69%, white solid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.27 – 7.15 (m, 7H), 7.13 – 7.06 (m, 3H), 6.93 (t, *J* = 7.8 Hz, 1H), 6.90-6.85 (m, 1H), 6.31 (s, 1H); ¹³**C** NMR (100 MHz, CDCl₃) δ 169.7, 161.0, 154.5, 139.9, 134.3, 132.9, 132.8, 131.9, 130.0, 129.9, 129.7, 129.3, 129.0, 128.5, 128.4, 128.0, 122.2, 112.2; **HRMS** (ESI): *m/z*: calculated for C₂₂H₁₆BrN₂O ([M + H]⁺) 403.0446, found: 403.0446.

4f: 54 h, Yield = 94%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.25 – 7.11 (m, 6H), 7.08 – 6.87 (m, 6H), 6.35 (s, 1H), 1.96 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.2, 161.4, 154.9, 137.6, 135.4, 134.4, 133.0, 131.2, 130.7, 129.9, 129.6, 129.6, 129.2, 128.7, 128.2, 127.7, 126.4, 112.4, 18.0; **HRMS** (ESI): *m/z*: calculated for C₂₃H₁₉N₂O ([M + H]⁺) 339.1497, found: 339.1495.

4g: 84 h, Yield = 79%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.38-7.36 (m, 1H), 7.36 – 7.30 (m, 2H), 7.17 – 7.03 (m, 8H), 6.97 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.37 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 161.5, 155.0, 136.1, 134.7, 133.4, 132.4, 132.2, 129.7, 129.4, 129.3, 129.0, 128.9, 128.9, 128.3, 128.0, 127.8, 127.6, 127.3, 126.5, 112.3; **HRMS** (ESI) calculated for C₂₆H₁₉N₂O ([M + H]⁺) 375.1497, found: 375.1494.

4h: 54 h, Yield = 96%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.10 (m, 5H), 7.07 – 7.01 (m, 5H), 6.93 – 6.86 (m, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 6.23 (s, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 160.8, 160.4, 154.9, 139.0, 133.4, 131.4, 129.6, 129.1, 128.9, 128.8, 128.6, 128.1, 126.8, 113.0, 111.8, 55.2; HRMS (ESI): *m/z*: calculated for C₂₃H₁₉N₂O₂ (M + H]⁺) 355.1447, found: 355.1442.

4i: 36 h, Yield = 82%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 7.15 (m, 4H), 7.10 – 7.04 (m, 5H), 7.03-6.98 (m, 1H), 6.98 – 6.95 (m, 2H), 6.90 – 6.85 (m, 2H), 6.31 (s, 1H), 2.19 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 161.4, 154.7, 138.9, 137.7, 134.6, 133.4, 130.4, 130.3, 129.6, 129.3, 129.0, 128.8, 128.7, 128.3, 127.5, 126.4, 112.2, 21.2; **HRMS** (ESI): *m/z*: calculated for C₂₃H₁₉N₂O ([M + H]⁺) 339.1497, found: 339.1500.

4j: 96 h, Yield = 71%, white solid; ¹**H** NMR (400 MHz, DMSO- d_6) δ 7.32–7.15 (m, 10H), 7.13 – 7.03 (m, 4H), 6.15 (s, 1H).; ¹³**C** NMR (100 MHz, CDCl₃) δ 169.7, 161.9 (d, J = 246.0 Hz), 159.9 (d, J = 2.0 Hz), 154.8, 138.5, 136.6 (d, J = 8.0 Hz), 133.1, 129.6, 129.5, 129.1, 129.1, 129.0, 128.3, 125.2 (d, J = 3.0 Hz), 116.8 (d, J = 21.0 Hz), 116.7(d, J = 24.0 Hz), 112.4; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -112.5; **HRMS** (ESI): m/z: calculated for C₂₂H₁₆FN₂O ([M + H]⁺) 343.1247, found: 343.1247.

4k: 36 h, Yield = 85%, white solid; ¹H NMR (400 MHz, Methanol-*d*₄, 50°C) δ 7.92 (s, 1H), 7.75 (t, *J* = 6.2 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.52-7.43 (m, 2H), 7.40 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.31 – 7.20 (m, 5H), 7.19-7.12 (m, 2H), 7.07 – 7.00 (m, 3H), 6.40 (s, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 161.2, 154.9, 138.8, 133.4, 133.3, 132.3, 132.0, 130.5, 129.7, 129.3, 129.0, 128.9, 128.8, 128.7, 128.3, 127.6, 127.5,

127.2, 126.6, 125.7, 112.3; **HRMS** (ESI): m/z: calculated for C₂₆H₁₉N₂O ([M + H]⁺) 375.1497, found: 375.1495.

41: 48h, Yield = 71%, white solid; ¹**H NMR** (400 MHz, Acetone- d_6) δ 7.49 (dd, J = 1.8, 0.8 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.35 – 7.22 (m, 8H), 6.37 (dd, J = 3.6, 1.8 Hz, 1H), 6.09 (dd, J = 3.6, 0.8 Hz, 1H), 5.98 (s, 1H).; ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 154.6, 150.7, 146.1, 145.7, 138.5, 132.8, 129.5, 129.3, 129.2, 129.2, 129.1, 128.1, 118.5, 111.9, 111.8; **HRMS** (ESI): m/z: calculated for C₂₀H₁₅N₂O₂ ([M + H]⁺) 315.1134, found: 315.1131.

4m: 48 h, Yield = 73%, pale red solid; ¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 4H), 7.24 – 7.16 (m, 3H), 7.15 – 7.10 (m, 2H), 7.09-7.03 (m, 2H), 6.75 (dd, J = 5.1, 4.0 Hz, 1H), 6.47-6.42 (m, 1H), 6.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 154.8, 154.5, 138.5, 137.3, 133.1, 132.9, 132.6, 130.1, 129.9, 129.7, 129.3, 129.2, 128.2, 127.5, 112.0; **HRMS** (ESI): m/z: calculated for C₂₀H₁₅N₂OS ([M + H]⁺) 331.0905, found: 331.0902.

4n: 24h, Yield = 95%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.25 (m, 3H), 7.22-7.11 (m, 3H), 7.08 – 7.01 (m, 4H), 6.17 (s, 1H), 2.28-2.17 (m, 1H), 1.88 – 1.76 (m, 2H), 1.75-1.63 (m, 4H), 1.59-1.48 (m, 1H), 1.26 – 1.11 (m, 1H), 0.99-0.83 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.8, 167.2, 154.4, 138.2, 133.5, 129.6, 129.5, 129.2, 129.0, 128.9, 128.2, 111.3, 42.5, 31.1, 25.8, 25.4; **HRMS** (ESI): *m/z*: calculated for C₂₂H₂₃N₂O ([M + H]⁺) 331.1810, found: 331.1811.

40: 24 h, Yield = 87%, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 3H), 7.22 – 7.12 (m, 5H), 7.07-7.00 (m, 2H), 6.15 (s, 1H), 1.42-1.31 (m, 3H), 0.88-0.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 165.1, 154.3, 138.3, 133.3, 129.6, 129.5, 129.2, 129.0, 128.2, 111.2, 14.2, 11.8; HRMS (ESI): *m*/*z*: calculated for C₁₉H₁₇N₂O ([M + H]⁺) 289.1341, found: 289.1343.

4p: 24 h, Yield = 68%, white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.27 (m, 3H), 7.22 – 7.13 (m, 3H), 7.10-7.02 (m, 4H), 6.20 (s, 1H), 2.38 – 2.29 (m, 2H), 1.80 – 1.68 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.5, 163.5, 154.5, 138.3, 133.3, 129.6, 129.6, 129.3, 129.0, 129.0, 128.2, 111.3, 37.6, 20.5, 13.9; **HRMS** (ESI): *m*/*z*: calculated for C₁₉H₁₉N₂O ([M + H]⁺) 291.1497, found: 291.1499.

Crystal structure of 3a

Basic information pertaining to crystal parameters and structure refinement is summarized in Table S3.

Identification code	3a
Empirical formula	$C_{22}H_{16}N_2O$
Formula weight	324.37
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	23.5316(6)
b/Å	6.70060(10)
c/Å	24.2907(6)
α/°	90
β/°	115.166(3)
γ/°	90
Volume/Å ³	3466.50(15)
Z	8
$\rho_{calc}g/cm^3$	1.243
μ/mm^{-1}	0.609
F(000)	1360.0
Crystal size/mm ³	$0.3 \times 0.2 \times 0.05$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2O range for data collection/°	7.316 to 143.044
Index ranges	$-27 \le h \le 28, -5 \le k \le 7, -29 \le l \le 28$
Reflections collected	12227
Independent reflections	6491 [$R_{int} = 0.0161$, $R_{sigma} = 0.0209$]
Data/restraints/parameters	6491/0/451
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0461, wR_2 = 0.1213$
Final R indexes [all data]	$R_1 = 0.0586, wR_2 = 0.1328$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.18

Table S3 Crystal data and structure refinement for 3a.

References:

- Digwal, C. S.; Yadav, U.; Sri Ramya, P. V.; Sana, S.; Swain, B.; Kamal, A. J. Org. Chem. 2017, 82, 7332–7345.
- 2. Wang, Y.; Wang, H. G.; Peng, J. L.; Zhu, Q. Org. Lett. 2011, 13, 4604–4607.
- 3. Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2010, 12, 3963–3965.

NMR Spectra

