Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Dimerization of Boryl- and Amino-Substituted Acetylenes by B₂C₂ Four-Membered Ring Formation

Ryo Kitamura, Katsunori Suzuki,* and Makoto Yamashita*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Japan Department of Molecular and Macromolecular Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

E-mail: katsuno_suzu@oec.chembio.nagoya-u.ac.jp; makoto@oec.chembio.nagoya-u.ac.jp

(submitted to Chemical Communications)

Contents

1.	Experimental Procedures	S2
2.	Details of X-ray Crystallographic Analysis	S5
3.	Theoretical Calculations	S8
4.	References	S19

1. Experimental Procedures

General methods

All manipulations of air- and/or moisture-sensitive compounds were performed either using standard Schlenk-line techniques or in glovebox (MIWA and KOREA KIYON) under inert atmosphere of argon. Anhydrous hexane, toluene, and diethylether (Et₂O) were dried by passage through a GrassContour solvent purification system. Deuterated chloroform (CDCl₃) was distilled from CaH₂ prior to use. Deuterated benzene (C₆D₆) was distilled from tributylstannyl-substituted acetvlene **2**.^{S1} sodium/benzophenone prior to use. Diethylaminoand diphenylchloroborane 3a, ^{S2} and 9-borabicyclononyl chloride $3b^{S1}$ were prepared according to the literature procedure. Other chemicals were used as received. The nuclear magnetic resonance (NMR) measurements were carried out by a JEOL ECA-500 spectrometer (500 MHz for ¹H, 160 MHz for ¹¹B and 126 MHz for ¹³C). Chemical shifts (δ) are given by definition as dimensionless numbers and relative to ¹H and ¹³C NMR chemical shifts of the residual C₆D₅H for ¹H (δ = 7.16) and C₆D₆ itself for ¹³C (δ = 128.0). The absolute values of the coupling constants are given in Hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), septet (sep), multiplet (m), and broad (br). The ¹¹B cross-polarization magic angle spinning (CP-MAS) NMR spectra were recorded on a JEOL ECA-400 spectrometer (128 MHz for ¹¹B). Chemical shifts are referenced to NaBH₄ ($\delta_B = -42.06$). The IR spectra in solution and solid state were recorded on an Agilent Technologies Cary 630 FTIR spectrometer equipped with ATR apparatus in a glovebox filled with argon. High-resolution mass spectroscopy measurements were performed on a Bruker micrOTOF II mass spectrometer with an atmospheric pressure chemical ionization (APCI) probe. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. Melting points were measured on a MPA100 Optimelt Automated Melting Point System and are uncorrected.

Synthesis of diphenylboryl- and diethylamino-substituted acetylene dimer (1b)2

A toluene solution (5 mL) of diphenylchloroborane **3a** (712 mg, 3.55 mmol) was added to a solution of 1-trimethylstannyl-2-diethylaminoacetylene **2** (923 mg, 3.55 mmol) in toluene at -30 °C. A reaction mixture was allowed to warm to room temperature and stirred for 12 h. After the removal of volatiles, the residue was recrystallized from Et₂O to give pure (**1b**)₂ as pale yellow crystals (1.21 g, 1.10 mmol, 62%). In a solution state, the spectroscopic data indicated the dissociation of (**1b**)₂ to monomer **1b** (Fig. S1): mp (in a sealed tube) 75 °C (dec); ¹H NMR (C₆D₆, 500 MHz) δ 0.96 (t, *J* = 7 Hz, 6H), 2.59 (q, *J* = 7 Hz, 4H), 7.30 (m, 2H), 7.35 (m, 4H), 8.17 (dd, *J* = 8, 2 Hz, 4H); ¹¹B NMR (161 MHz) δ 50.8; ¹³C NMR (C₆D₆, 126 MHz) δ 13.2 (CH₃), 48.6 (CH₂), 90.8 (4°, br), 127.8 (CH), 130.0 (CH), 134.2 (4°, br), 136.8 (CH), 143.3 (4°, br); solid state CP-MAS ¹¹B NMR (128 MHz) δ : -10.1; HRMS (APCI, positive) Calcd. For C₃₆H₄₀¹¹B₂N₂ [M⁺]: 522.3384. Found: 522.3384; Anal. calcd. for C₃₆H₄₀B₂N₂: C, 82.78; H, 7.72; N, 5.36. Found: C, 82.88; H, 7.45; N, 5.40.

Fig. S1 ¹H NMR spectrum of $(1b)_2$ (500 MHz, C₆D₆).

Synthesis of 9-borabicyclononyl- and diethylamino-acetylene dimer (1c)₂

A toluene solution (3 mL) of *B*-chloroborabicyclo[3.3.1]nonane **3b** (238 mg, 1.52 mmol) was added to a solution of 1-trimethylstannyl-2-diethylaminoacetylene **2** (396 mg, 1.52 mmol) at -30 °C. A reaction mixture was allowed to warm to room temperature and stirred for 12 h. After the removal of volatiles, the residue was recrystallized from toluene to give pure (**1c**)₂ as colorless crystals (258 mg, 0.594 mmol, 73%). In a solution state, the spectroscopic data indicated the dissociation of (**1c**)₂ to form a mixture between dimer (**1c**)₂ and monomer **1c** (Fig. S2): mp (in a sealed tube) 102 °C (dec); ¹H NMR (C₆D₆, 500 MHz) δ 0.92 (t, *J* = 7 Hz, CH₃(**1c**)₂), 1.27 (br, CH₃(**1c**)), 1.40-2.50 (m, BBN), 2.60 (br, CH₂(**1c**)), 2.66 (q, *J* = 7 Hz, CH₃(**1c**)₂); ¹¹B NMR (161 MHz) δ -2.9 for (**1c**)₂, 66.1 for **1c**; solid state CP-MAS ¹¹B NMR (128 MHz) δ -10.4; HRMS (APCI, positive) Calcd. For C₂₈H₄₈¹⁰B¹¹BN₂ [M⁺] (dimer): 433.4035. Found: 433.4058. Calcd. For C₁₄H₂₄BN [M⁺] (monomer): 217.1999. Found: 217.2020; Anal. calcd. for C₂₈H₄₈B₂N₂: C, 77.43; H, 11.14; N, 6.45. Found: C, 77.49; H, 11.31; N, 6.41.

Fig. S2 ¹H NMR spectrum of $(1c)_2$ (500 MHz, C_6D_6).

2. X-ray Crystallographic Analysis

Crystallographic data for $(1b)_2$ and $(1c)_2$ are summarized in Table S1. The crystal was coated with oil (Immersion Oil, type B: Code 1248, Cargille Laboratories, Inc.) and put on a MicroMountTM (MiTeGen, LLC), and then mounted on diffractometer. Diffraction data were collected on a Saturn CCD detectors using MoK α radiation. The Bragg spots were integrated using the CrystalClear program package.^{S4} Absorption corrections were applied. All the following procedure for analysis, Yadokari-XG 2009 was used as a graphical interface.^{S5} The structures were solved by a direct method with programs of SIR-97^{S6} and refined by a full-matrix least squares method with the program of SHELXL-2014.^{S7} Anisotropic temperature factors were applied to all non-hydrogen atoms. The hydrogen atoms were put at calculated positions, and refined applying riding models. The detailed crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: Deposition code CCDC 1830300 for (1b)₂, CCDC 1830301 for (1c)₂. A copy of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk /products/csd/request.

	(1b) ₂	(1c) ₂
Formula	$C_{36}H_{40}B_2N_2$	$C_{28}H_{48}B_2N_2$
Μ	522.32	434.30
T/K	93	93
Color	Colorless	colorless
size / mm	0.29 x 0.21 x 0.17	0.14 x 0.07 x 0.07
crystal system	Triclinic	Monoclinic
space group	<i>P</i> -1 (#2)	<i>P</i> 2 ₁ / <i>a</i> (#14)
<i>a</i> / Å	9.3775(15)	13.356(3)
<i>b</i> / Å	9.7968(14)	10.8079(18)
<i>c</i> / Å	10.2151(19)	18.731(4)
lpha / °	62.343(8)	90
β/\circ	79.192(12)	102.739(3)
γ/°	65.439(10)	90
$V/\text{\AA}^3$	756.0(2)	2637.2(8)
Ζ	1	4
$D_{\rm x}$ / g cm ⁻³	1.147	1.094
μ (Mo K α) / mm ⁻¹	0.065	0.061
<i>F</i> (000)	280	960
θ range / °	3.27 to 27.46	3.07 to 27.48
reflections collected	6209	21262
unique reflections	3336	6021
refined parameters	183	289
GOF on F^2	0.975	1.049
$R1 \left[I > 2\sigma(I)\right]^{a}$	0.0464	0.0681
wR2 (all data) ^b	0.1102	0.1754
$\Delta ho_{ m min,\ max}$ / e Å ⁻³	+0.189, -0.338	+0.294, -0.344

Table S1: Cr	ystallographic	data for ((1b) ₂ ,	and ((1c) ₂ .
--------------	----------------	------------	------------------------------	-------	------------------------------

 $\Delta \rho_{\min, \max} / e Å^{-3} + 0.189, -0.338$ ^a R1 = $\Sigma ||Fo| - |Fc|| / \Sigma |Fo|, {}^{b} wR2 = [\Sigma \{w(Fo^{2} - Fc^{2})^{2} / \Sigma w(Fo^{2})^{2}\}]^{1/2}$

Fig. S3 Molecular structure of $(1b)_2$ (thermal ellipsoids set at 50% probability; hydrogen atoms omitted for clarity). Selected bond distances (Å) and angles (°) for $(1b)_2$: B1–C1 = 1.6709(18), B1*–C1 = 1.6747(18), C1–C2 = 1.2430(16), C2–N1 = 1.2949(16), B1–C1–B1* = 84.69(9), C1–B1–C1* = 95.31(9), B1–C1–C2 = 136.58(12), B1*–C1–C2 = 138.65(12), C1–C2–N1 = 179.31(14).

Fig. S4 Molecular structure of $(1c)_2$ (thermal ellipsoids set at 50% probability; hydrogen atoms omitted for clarity). Selected bond distances (Å) and angles (°) for $(1c)_2$: B1–C1 = 1.677(3), B1–C3 = 1.664(2), B2–C1 = 1.670(3), B2–C3 = 1.680(2), C1–C2 = 1.243(2), C3–C4 = 1.243(2), C2–N1 = 1.300(2), C4–N2 = 1.298(2), B1–C1–B2 = 84.56(12), B1–C3–B2 = 84.65(12), C1–B1–C3 = 94.70(12), C1–B2–C3 = 94.37(12), B1–C1–C2 = 135.89(16), B2–C1–C2 = 139.19(16), B1–C3–C4 = 139.96(16), B2–C3–C4 = 134.37(16), C1–C2–N1 = 176.23(19), C3–C4–N2 = 178.5(2).

3. Theoretical Calculations

All calculations were curried out by using Gaussian09 program package.^{S8} The geometry optimizations of **1b-1d**, $(1b)_2$, $(1c)_2$, and $(1d)_2$ were performed at the B3LYP/6-31G(d)^{S9,10} level of theory. The optimized structures and selected structural parameters are shown in Fig. S5–8. The Wiberg bond index (WBI)^{S11} and natural population analysis (NPA)^{S12} charge distribution were calculated by natural bond orbital (NBO) method (Fig. S5–8).^{S12}

	calcd. frequency / cm^{-1}	corrected by scale factor ^{a} / cm ⁻¹	experimentally obsd. / cm ⁻¹
1b	2209.7378	2124.4419	2103 (heptane solution)
(1b) ₂	2059.8647	1980.3539	1980 (solid)
1c	2201.6854	2116.7003	2101 (benzene soln.)
(1c) ₂	2040.3359	1961.5789	1975 (solid), 1979 (benzene)
	610		

Table S2: Calculated C-C triple bond vibrational frequencies of 1b, 1c, (1b)₂, and (1c)₂.

^{*a*} scaling factor: 0.9614^{S10}

Table S3: Calculated energies of 1b, 1c, 1d, $(1b)_2$, $(1c)_2$, and $(1d)_2$.

	SCF	SCF + ZPE	Relative energy	Relative energy
	/ hartree	/ hartree	/ hartree	/ kcal mol ⁻¹
1b	-777.541701321	-777.204543	0.0	0.0
(1b) ₂	-1555.07677070	-1554.401383	+0.007703	+4.83
1c	-627.514581021	-627.152111	0.0	0.0
(1c) ₂	-1255.03242774	-1254.304946	-0.000724	-0.45

Fig. S5 (a) Top view and (b) side view of optimized structure of **1b** (C_2 symmetry) at the B3LYP/6-31G(d) level of theory (yellow: boron, gray: carbon, blue: nitrogen, and white: hydrogen). (c) Selected bond distances (Å, Red) and angles (°, Blue). (d) Bond orders based on Wiberg bond index (WBI, Red) and natural population analysis (NPA) charge (Blue) distributions calculated at the B3LYP/6-31G(d) level of theory.

Fig. S6 (a) Top view and (b) side view of optimized structure of $(1b)_2$ (D_2 symmetry) at the B3LYP/6-31G(d) level of theory (yellow: boron, gray: carbon, blue: nitrogen, and white: hydrogen). (c) Selected bond distances (Å, Red) and angles (°, Blue). (d) Bond orders based on Wiberg bond index (WBI, Red) and natural population analysis (NPA) charge (Blue) distributions calculated at the B3LYP/6-31G(d) level of theory.

Fig S7. (a) Top view and (b) side view of optimized structure of **1c** (C_2 symmetry) at the B3LYP/6-31G(d) level of theory (yellow: boron, gray: carbon, blue: nitrogen, and white: hydrogen). (c) Selected bond distances (Å, Red) and angles (°, Blue). (d) Bond orders based on Wiberg bond index (WBI, Red) and natural population analysis (NPA) charge distributions (Blue) calculated at the B3LYP/6-31G(d) level of theory.

Fig. S8 (a) Top view and (b) side view of optimized structure of $(1c)_2$ (D_2 symmetry) at the B3LYP/6-31G(d) level of theory (yellow: boron, gray: carbon, blue: nitrogen, and white: hydrogen). (c) Selected bond distances (Å, Red) and angles (°, Blue). (d) Bond orders based on Wiberg bond index (WBI, Red) and natural population analysis (NPA) charge (Blue) distributions calculated at the B3LYP/6-31G(d) level of theory.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	5	0	-2.022141	0.000000	0.000000	
2	6	0	-0.527987	0.000000	0.000000	
3	6	0	0.706162	0.000000	0.000000	
4	7	0	2.024676	0.000000	0.000000	
5	6	0	-2.779779	-1.377648	0.068480	
6	6	0	-4.053617	-1.559998	-0.508203	
7	6	0	-4.704067	-2.794130	-0.472190	
8	6	0	-4.100771	-3.883089	0.159382	
9	6	0	-2.838855	-3.732662	0.740716	
10	6	0	-2.189127	-2.501370	0.683184	
11	1	0	-4.535588	-0.723303	-1.006665	
12	1	0	-5.681606	-2.906267	-0.935096	
13	1	0	-4.608508	-4.843944	0.196034	
14	1	0	-2.362726	-4.577380	1.233123	
15	1	0	-1.202291	-2.395990	1.127367	
16	6	0	2.772214	-1.267637	-0.060153	
17	6	0	3.067851	-1.716346	-1.492657	
18	1	0	3.703181	-1.132677	0.503304	
19	1	0	2.184298	-2.026875	0.463820	
20	1	0	3.622827	-2.661643	-1.489606	
21	1	0	3.668527	-0.972415	-2.028060	
22	1	0	2.134962	-1.865507	-2.045746	
23	6	0	-2.779779	1.377648	-0.068480	
24	6	0	-4.053617	1.559998	0.508203	
25	6	0	-4.704067	2.794130	0.472190	
26	6	0	-4.100771	3.883089	-0.159382	
27	6	0	-2.838855	3.732662	-0.740716	
28	6	0	-2.189127	2.501370	-0.683184	
29	1	0	-4.535588	0.723303	1.006665	
30	1	0	-5.681606	2.906267	0.935096	
31	1	0	-4.608508	4.843944	-0.196034	
32	1	0	-2.362726	4.577380	-1.233123	
33	1	0	-1.202291	2.395990	-1.127367	
34	6	0	2.772214	1.267637	0.060153	
35	6	0	3.067851	1.716346	1.492657	
36	1	0	3.703181	1.132677	-0.503304	
37	1	0	2.184298	2.026875	-0.463820	
38	1	0	3.622827	2.661643	1.489606	
39	1	0	3.668527	0.972415	2.028060	
40	1	0	2.134962	1.865507	2.045746	

Table S4: Cartesian Coordinates for 1b.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	5	0	0.000000	1.143184	0.000000	
2	6	0	0.000000	0.000000	-1.232582	
3	6	0	0.000000	0.000000	-2.488061	
4	7	0	0.000000	0.000000	-3.785115	
5	6	0	-1.366755	2.009553	0.078322	
6	6	0	-2.529755	1.729126	-0.656761	
7	6	0	-3.692182	2.495234	-0.522881	
8	6	0	-3.723648	3.574700	0.358917	
9	6	0	-2.580526	3.879292	1.103614	
10	6	0	-1.427483	3.106558	0.961938	
11	1	0	-2.533659	0.885481	-1.341989	
12	1	0	-4.574249	2.245300	-1.108869	
13	1	0	-4.624384	4.174913	0.463767	
14	1	0	-2.585484	4.725899	1.787246	
15	1	0	-0.542102	3.370014	1.537425	
16	6	0	-1.271633	-0.082057	-4.541916	
17	6	0	-1.689424	-1.523860	-4.827572	
18	1	0	-2.035793	0.433453	-3.954765	
19	1	0	-1.134389	0.481476	-5.471445	
20	1	0	-1.853062	-2.067664	-3.891694	
21	1	0	-2.622497	-1.536246	-5.402260	
22	1	0	-0.926944	-2.054290	-5.409090	
23	6	0	1.366755	2.009553	-0.078322	
24	6	0	2.529755	1.729126	0.656761	
25	6	0	3.692182	2.495234	0.522881	
26	6	0	3.723648	3.574700	-0.358917	
27	6	0	2.580526	3.879292	-1.103614	
28	6	0	1.427483	3.106558	-0.961938	
29	1	0	2.533659	0.885481	1.341989	
30	1	0	4.574249	2.245300	1.108869	
31	1	0	4.624384	4.174913	-0.463767	
32	1	0	2.585484	4.725899	-1.787246	
33	1	0	0.542102	3.370014	-1.537425	
34	6	0	1.271633	0.082057	-4.541916	
35	6	0	1.689424	1.523860	-4.827572	
36	1	0	2.035793	-0.433453	-3.954765	
37	1	0	1.134389	-0.481476	-5.471445	
38	1	0	1.853062	2.067664	-3.891694	
39	1	0	2.622497	1.536246	-5.402260	
40	1	0	0.926944	2.054290	-5.409090	

Table S5: Cartesian Coordinates for $(1b)_{2}$.

<u>`</u>	,		. ,-			
Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
41	5	0	0.000000	-1.143184	0.000000	
42	6	0	0.000000	0.000000	1.232582	
43	6	0	0.000000	0.000000	2.488061	
44	7	0	0.000000	0.000000	3.785115	
45	6	0	-1.366755	-2.009553	-0.078322	
46	6	0	-2.529755	-1.729126	0.656761	
47	6	0	-3.692182	-2.495234	0.522881	
48	6	0	-3.723648	-3.574700	-0.358917	
49	6	0	-2.580526	-3.879292	-1.103614	
50	6	0	-1.427483	-3.106558	-0.961938	
51	1	0	-2.533659	-0.885481	1.341989	
52	1	0	-4.574249	-2.245300	1.108869	
53	1	0	-4.624384	-4.174913	-0.463767	
54	1	0	-2.585484	-4.725899	-1.787246	
55	1	0	-0.542102	-3.370014	-1.537425	
56	6	0	-1.271633	0.082057	4.541916	
57	6	0	-1.689424	1.523860	4.827572	
58	1	0	-2.035793	-0.433453	3.954765	
59	1	0	-1.134389	-0.481476	5.471445	
60	1	0	-1.853062	2.067664	3.891694	
61	1	0	-2.622497	1.536246	5.402260	
62	1	0	-0.926944	2.054290	5.409090	
63	6	0	1.366755	-2.009553	0.078322	
64	6	0	2.529755	-1.729126	-0.656761	
65	6	0	3.692182	-2.495234	-0.522881	
66	6	0	3.723648	-3.574700	0.358917	
67	6	0	2.580526	-3.879292	1.103614	
68	6	0	1.427483	-3.106558	0.961938	
69	1	0	2.533659	-0.885481	-1.341989	
70	1	0	4.574249	-2.245300	-1.108869	
71	1	0	4.624384	-4.174913	0.463767	
72	1	0	2.585484	-4.725899	1.787246	
73	1	0	0.542102	-3.370014	1.537425	
74	6	0	1.271633	-0.082057	4.541916	
75	6	0	1.689424	-1.523860	4.827572	
76	1	0	2.035793	0.433453	3.954765	
77	1	0	1.134389	0.481476	5.471445	
78	1	0	1.853062	-2.067664	3.891694	
79	1	0	2.622497	-1.536246	5.402260	
80	1	0	0.926944	-2.054290	5,409090	

Table S5 (continued): Cartesian Coordinates for (1b)₂.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	5	0	-2.178859	0.000000	0.000000	
2	6	0	-0.698025	0.000000	0.000000	
3	6	0	0.537309	0.000000	0.000000	
4	7	0	1.854829	0.000000	0.000000	
5	6	0	-4.715291	-0.142564	1.569280	
6	6	0	-3.920561	1.173039	1.421598	
7	6	0	-3.080843	1.302324	0.118289	
8	6	0	-3.921180	1.410298	-1.186460	
9	1	0	-5.054342	-0.237233	2.610201	
10	1	0	-5.630114	-0.087901	0.971431	
11	1	0	-3.227887	1.260870	2.271769	
12	1	0	-4.613040	2.024328	1.509631	
13	1	0	-2.488774	2.223528	0.202049	
14	1	0	-4.614132	2.263077	-1.118910	
15	1	0	-3.229022	1.650765	-2.007083	
16	6	0	2.603548	1.265617	0.084601	
17	6	0	2.923901	1.861291	-1.287798	
18	1	0	3.525624	1.073703	0.646500	
19	1	0	2.005317	1.966045	0.674212	
20	1	0	3.478522	2.800261	-1.176205	
21	1	0	3.534330	1.177455	-1.888342	
22	1	0	2.000932	2.069139	-1.838761	
23	6	0	-4.715291	0.142564	-1.569280	
24	6	0	-3.920561	-1.173039	-1.421598	
25	6	0	-3.080843	-1.302324	-0.118289	
26	6	0	-3.921180	-1.410298	1.186460	
27	1	0	-5.054342	0.237233	-2.610201	
28	1	0	-5.630114	0.087901	-0.971431	
29	1	0	-3.227887	-1.260870	-2.271769	
30	1	0	-4.613040	-2.024328	-1.509631	
31	1	0	-2.488774	-2.223528	-0.202049	
32	1	0	-4.614132	-2.263077	1.118910	
33	1	0	-3.229022	-1.650765	2.007083	
34	6	0	2.603548	-1.265617	-0.084601	
35	6	0	2.923901	-1.861291	1.287798	
36	1	0	3.525624	-1.073703	-0.646500	
37	1	0	2.005317	-1.966045	-0.674212	
38	1	0	3.478522	-2.800261	1.176205	
39	1	0	3.534330	-1.177455	1.888342	
40	1	0	2.000932	-2.069139	1.838761	

 Table S6:
 Cartesian Coordinates for 1c.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	5	0	0.000000	1.129002	0.000000	
2	6	0	0.000000	0.000000	-1.236949	
3	6	0	0.000000	0.000000	-2.493348	
4	7	0	0.000000	0.000000	-3.797869	
5	6	0	-1.310126	2.099522	0.016905	
6	1	0	-2.250320	1.527212	0.028420	
7	6	0	-1.318487	2.948109	-1.277601	
8	1	0	-1.510768	2.263690	-2.115441	
9	1	0	-2.163371	3.655031	-1.268222	
10	6	0	-0.019703	3.733721	-1.569048	
11	1	0	-0.033385	4.071175	-2.615988	
12	1	0	-0.011416	4.653095	-0.974977	
13	6	0	1.310126	2.099522	-0.016905	
14	1	0	2.250320	1.527212	-0.028420	
15	6	0	1.285295	2.946006	-1.313316	
16	1	0	1.454413	2.264350	-2.158870	
17	1	0	2.130785	3.652023	-1.325779	
18	6	0	-1.285295	2.946006	1.313316	
19	1	0	-1.454413	2.264350	2.158870	
20	1	0	-2.130785	3.652023	1.325779	
21	6	0	0.019703	3.733721	1.569048	
22	1	0	0.033385	4.071175	2.615988	
23	1	0	0.011416	4.653095	0.974977	
24	6	0	1.318487	2.948109	1.277601	
25	1	0	1.510768	2.263690	2.115441	
26	1	0	2.163371	3.655031	1.268222	
27	6	0	-1.269728	-0.002519	-4.559310	
28	6	0	-1.605382	1.352319	-5.185562	
29	1	0	-2.053296	-0.306810	-3.862392	
30	1	0	-1.202262	-0.775694	-5.333744	
31	1	0	-2.558210	1.283200	-5.722513	
32	1	0	-1.699198	2.124978	-4.416570	
33	1	0	-0.843401	1.672057	-5.904459	
34	6	0	1.269728	0.002519	-4.559310	
35	6	0	1.605382	-1.352319	-5.185562	
36	1	0	1.202262	0.775694	-5.333744	
37	1	0	2.053296	0.306810	-3.862392	
38	1	0	2.558210	-1.283200	-5.722513	
39	1	0	0.843401	-1.672057	-5.904459	
40	1	0	1.699198	-2.124978	-4.416570	

 $\label{eq:table state} \textbf{Table S7:} Cartesian \ Coordinates \ for \ (\textbf{1c})_2.$

	,		· · · · ·			
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
41	5	0	0.000000	-1.129002	0.000000	
42	6	0	0.000000	0.000000	1.236949	
43	6	0	0.000000	0.000000	2.493348	
44	7	0	0.000000	0.000000	3.797869	
45	6	0	-1.310126	-2.099522	-0.016905	
46	1	0	-2.250320	-1.527212	-0.028420	
47	6	0	-1.318487	-2.948109	1.277601	
48	1	0	-1.510768	-2.263690	2.115441	
49	1	0	-2.163371	-3.655031	1.268222	
50	6	0	-0.019703	-3.733721	1.569048	
51	1	0	-0.033385	-4.071175	2.615988	
52	1	0	-0.011416	-4.653095	0.974977	
53	6	0	1.310126	-2.099522	0.016905	
54	1	0	2.250320	-1.527212	0.028420	
55	6	0	1.285295	-2.946006	1.313316	
56	1	0	1.454413	-2.264350	2.158870	
57	1	0	2.130785	-3.652023	1.325779	
58	6	0	-1.285295	-2.946006	-1.313316	
59	1	0	-1.454413	-2.264350	-2.158870	
60	1	0	-2.130785	-3.652023	-1.325779	
61	6	0	0.019703	-3.733721	-1.569048	
62	1	0	0.033385	-4.071175	-2.615988	
63	1	0	0.011416	-4.653095	-0.974977	
64	6	0	1.318487	-2.948109	-1.277601	
65	1	0	1.510768	-2.263690	-2.115441	
66	1	0	2.163371	-3.655031	-1.268222	
67	6	0	-1.269728	0.002519	4.559310	
68	6	0	-1.605382	-1.352319	5.185562	
69	1	0	-2.053296	0.306810	3.862392	
70	1	0	-1.202262	0.775694	5.333744	
71	1	0	-2.558210	-1.283200	5.722513	
72	1	0	-1.699198	-2.124978	4.416570	
73	1	0	-0.843401	-1.672057	5.904459	
74	6	0	1.269728	-0.002519	4.559310	
75	6	0	1.605382	1.352319	5.185562	
76	1	0	1.202262	-0.775694	5.333744	
77	1	0	2.053296	-0.306810	3.862392	
78	1	0	2.558210	1.283200	5.722513	
79	1	0	0.843401	1.672057	5.904459	
80	1	0	1.699198	2.124978	4.416570	

Table S7 (continued): Cartesian Coordinates for (1c)₂.

4. References

- S1 (a) Himbert, G.; Regitz, M. Chem. Ber. 1972, 105, 2963-2974; (b) Himbert, G. Angew. Chem. Int. Ed. Engl. 1979, 18, 405-406.
- S2 J. C. Thomas, J. C. Peters, Inorg. Chem. 2003, 42, 5055-5073.
- S3 H. C. Brown, S. U. Kulkarni, J. Organomet. Chem. 1979, 168, 281-293.
- S4 CrystalClear: Rigaku/MSC. Inc., 9009 New Trails Drive, The Woodlands TX 77381, USA (2005).
- S5 C. Kabuto, S. Akine, E. Kwon, J. Cryst. Soc. Jpn. 2009, 51, 218-224.
- S6 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Molterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119.
- S7 (a) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- S8 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- S9 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- S10 (a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, **37**, 785-789; (b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* 1989, **157**, 200-206.
- S11 O. V. Sizova, L. V. Skripnikov, A. Y. Sokolov, THEOCHEM 2008, 870, 1-9.
- S12 A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
- S13 A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502-16513.