Electronic Supplementary Information

Synthesis of copper oxide nanowires and nanoporous copper via environmentally friendly transformation of bulk copper-calcium alloys

X. Zhang,^{a,b}[†] K. Turcheniuk,^a[†] B. Zusmann,^a J. Benson,^a S. Nelson,^a S. Luo,^a A. Magasinski^a and G. Yushin^{a,d}

^a School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. ^b Huaihai Institute of Technology, People's Republic of China.

^o Chongqing University, 55 Daxuecheng S Rd, Shapingba Qu, Chongqing Shi, China.

^d Sila Nanotechnologies Inc, Alameda, California, 94501, United States.

[†] These authors contributed equally.

Fig. S1 X-ray diffraction of (A) CuCa; (B) CuCa₂; (C) NPCu.

Fig. S2 SEM micrograph of NPCu obtained via CuCa2 de-alloying

Fig. S3 Ligament length model: JMP model was shown to be highly predictive with an R-squared value of 0.98, root mean squared error (RMSE) of 2.212, and a statistically significant whole model p-value as shown in the actual by predicted plot.

Term	Estimate	Std Err.	t Ratio	Prob> t
Intercept	23.9436	1.2130	19.74	<.0001*
Temp. (25,60)	-1.7306	0.5938	-2.91	0.0195*
Time h(12,72)	2.31430	0.6332	3.65	0.0064*
pH(1,14)	5.61624	0.7721	7.27	<.0001*
Alloy [CuCa]	-4.2687	0.5697	-7.49	<.0001*
Temp. *pH	-4.0735	0.8326	-4.89	0.0012*
pH*pH	-23.368	1.6785	-13.92	<.0001*
Temp. *Alloy [CuCa]	5.42335	0.7866	6.89	0.0001*

Table S1, Parameter estimates for ligament length model of NPCu.

Fig. S4 (A)-(B) SEM micrographs and (C) mapping of Cu nanostructure obtained after dealloying of CuCa alloy at pH 1 at 25 °C

Fig. S5 SEM micrograph (A) and FIB cut EDS mapping (B) of CuO nanoneedles; (C) elemental composition of the CuO nanoneedles: Si and Ga signal are due to the contamination of the specimen. (D) SEM micrographs and (E) EDS of copper oxide nanoneedles obtained by CuCa de-alloying at pH 7 in O₂/Ar.

^{a.} Fig. S6 TEM (transmission electron microscopy) micrograph (A) and STEM (Scanning transmission electron microscopy) of Cu₂O nanowires; (C) the elemental composition of the line scan of the Cu₂O nanowires (D) EDS of copper (I) oxide nanowire.

Fig. S7 XRD (X-ray diffraction) of as-synthesized (A) CuO NWs and (B) Cu₂O NWs.

Fig. S8 (A) CV (cyclic voltammogram) and (B) charge capacity of the NPCu-LTO battery electrode.