Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Hydrogenation of Silyl Formate: Sustainable Production of Silanol and Methanol from Silane and Carbon Dioxide

Jangwoo Koo, Seung Hyo Kim, and Soon Hyeok Hong*

Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea

Table of Contents

1.	General Experimental Details	S2
2.	Turnover number (TON) test	S2
3.	Stoichiometric Reaction to Investigate the Mechanism	S 3
4.	Synthesis of Silyl Formates	S4
5.	GC-MS Spectra of Silyl Formates	S8
6.	Hydrogenation of Silyl Formates	S17
7.	Effect of Siloxane Impurity on the Reaction	S19
8.	References	S20
9.	NMR Spectra	S21

1. General Experimental Details

Unless otherwise stated, all reactions were carried out using a stainless-steel autoclave or in an argonfilled glove box. All anhydrous solvents were purchased from Aldrich and used without further purification. NMR spectroscopy experiments were conducted with a Varian 400 and 500 MHz or a Bruker 300 MHz system. NMR spectra were processed with ACD NMR Processor or MestReNova. Chemical shifts are reported in ppm and referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H, 77.16 ppm for ¹³C; C₆H₆ in C₆D₆: 7.16 ppm for ¹H, 128.06 ppm for ¹³C; CH₃CN in CD₃CN: 1.94 ppm for ¹H). Coupling constants are reported in Hertz. GC analyses were carried out with a 7980A GC system from Agilent Technologies, equipped with a DB-624UI column and FID detector, using *p*-xylene as an internal standard. Analytical TLC was performed on a Merck 60 F254 silica gel plate (0.25mm thickness). Column chromatography was performed on Merck 60 silica gel (230–400 mesh). Silyl formates were prepared in accordance with a literature procedure.¹⁻² All starting materials and reagents were purchased from Acros, Aldrich, Alfa Aesar, TCI, and Strem Chemical Inc., and used without further purification unless otherwise stated. High-resolution mass spectrometry (HRMS) analysis was performed at Korea Basic Science Institute Daegu Center using El method.

2. Turnover Number (TON) Test

Table S1. Turnover number (TON) test with decreased loading of 3.^a

0		3				
Et ₃ Si_O_H	т п ₂ —	THF (0.025 M),	150 °C			
7a	80 bar			8a		
3 (ppm)	Time (h)	yield ^b		TON		
		8a	CH₃OH	8a	CH₃OH	
1000	12	92	96	920	960	
500	24	84	95	1680	1900	
500	48	99	37	1980	740	
500	72	47	6	940	120	
200	24	50	18	2500	900	
200	48	40	12	2000	600	
	Et ₃ Si 7a 7 3 (ppm) 1000 500 500 500 200 200	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & &$	$\begin{array}{c} & & & & & & & \\ & &$	$\begin{array}{c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} Reaction conditions: **7a** (0.5 mmol, 1.0 equiv.), THF (20 mL), 150 °C, H₂ (80 bar). ^{*b*} Yields were determined by GC analysis using *p*-xylene as an internal standard.

3. Stoichiometric Reaction to Investigate the Mechanism

A 50 mL Schlenk flask containing a magnetic stirring bar was charged with **3** (1 mol%, 2.93 mg, 0.005 mmol) under Ar flow. Triethylsilyl formate **7a** (1.0 equiv, 0.5 mmol) was then added to the Schlenk flask as a solution in tetrahydrofuran (0.025 M, 20.0 mL), followed by the methanol (1.0 equiv, 0.5 mmol). The Schlenk flask was sealed, and heated to 150 °C for 4 h. Upon completion of the reaction, the mixture was cooled to 0 °C for 30 minutes. Triethyl silanol **8a**, methyl formate **9**, and triethylmethoxy silane **10a** were analyzed by GC using *p*-xylene (2.0 equiv, 123.3 μ L, 1.0 mmol) as an internal standard. Formic acid **11** could not be detected by GC. Thus, qualitative and quantitative analyses of formic acid were performed by ¹H NMR using *p*-xylene (2.0 equiv, 123.3 μ L, 1.0 mmol) as an internal standard.

retention time (min)	compound	area	yield (mmol)
1.029	methyl formate 9	37.5	0.210
10.978	<i>p</i> -xylene	936.4	(internal standard)
11.224	triethylmethoxy silane 10a	195.6	0.126
12.668	triethyl silanol 8a	294.4	0.231

Figure S1. Formic acid 11 analysis by ¹H NMR

4. Synthesis of Silyl Formates

General Procedure A: 7a, 7c-7f, 7h and 7i

The silyl formates were prepared according to a literature procedure.¹ K₂CO₃ was dried at 120 °C in an oven overnight. Inside a glove box, a 50 mL Schlenk flask containing a magnetic stirring bar was charged with K₂CO₃ (0.5 mol%, 3.5 mg, 0.025 mmol) and Rh₂(OAc)₄ (0.25 mol%, 5.5 mg, 0.0125 mmol). Hydrosilane (5.0 mmol) was then added to the Schlenk flask as a solution in acetonitrile (0.50 M, 10.0 mL). The Schlenk flask was sealed, replaced with 1 bar of CO₂, and heated to 50 °C for 2 h. Upon completion of the reaction, the mixture was cooled to room temperature. The solution was filtered by syringe filter, and the solvent was removed using a rotary evaporator. The product was purified by vacuum distillation. The purity of the product was determined by ¹H NMR analysis. Silyl formates need

to be purified by vacuum distillation,³⁻⁵ due to rapid hydrolysis by water in air.⁶ The observed impurity was only siloxane (checked by GC-MS and ¹H NMR). The purity of the reported compounds could not be improved even with multiple times (five or more) of vacuum distillations.

General Procedure B: 7b and 7g

Scheme S2

The silyl formates were prepared according to a literature procedure.² Inside a glove box, a 67 mL stainless-steel autoclave containing a magnetic stirring bar was charged with RuCl₃·H₂O (1 mol%, 10.4 mg, 0.05 mmol). Hydrosilane (5.0 mmol) was then added to the reactor as a solution in acetonitrile (0.50 M, 10.0 mL). The reactor was sealed, pressurized with 70~88 bar of CO₂, and heated to 100 °C for 20 h. Upon completion of the reaction, the mixture was cooled to room temperature. Unreacted CO₂ was carefully released in a fume hood. The solution was filtered by a syringe filter, and all the solvent was removed using a rotary evaporator. The product was purified by vacuum distillation. The purity of the product was determined by ¹H NMR analysis. Silyl formates need to be purified by vacuum distillation, ³⁻ due to rapid hydrolysis by water in air.⁶ The observed impurity was only siloxane (checked by GC-MS and ¹H NMR). The purity of the reported compounds could not be improved even with multiple times (five or more) of vacuum distillations.

Triethylsilyl formate (7a)

Colorless liquid (99% purity was calculated by ¹H NMR). Reaction was conducted at 70 °C for 12 h. ¹H NMR (300 MHz, C₆D₆) δ = 7.74 (s, 1H), 0.91 (t, *J*=7.8, 9H), 0.68 (q, *J*=7.8, 6H). The identity of the compound was confirmed by comparison with reported data.⁷

Tri-n-propylsilyl formate (7b)

Redish brown liquid (90% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, C₆D₆) δ = 7.77 (s, 1H), 1.35 (dq, *J*=15.2, 7.7, 6H), 0.93 (t, *J*=7.2, 9H), 0.72 (t, 6H). ¹³C NMR (75 MHz, C₆D₆) δ = 160.41, 18.28, 16.80, 16.47. HRMS (EI): m/z [M]⁺ calcd for C₁₀H₂₂O₂Si: 202.1384, found: 202.1386.

Dimethylphenylsilyl formate (7c)

Colorless liquid (94% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, C₆D₆) δ = 7.71 (s, 1H), 7.52 – 7.54 (m, 2H), 7.20 – 7.18 (m, 3H), 0.43 (s, 6H). The identity of the compound was confirmed by comparison with reported data.⁷

Dimethyl(2-methylphenyl)silyl formate (7d)

Colorless liquid (90% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, C₆D₆) δ = 7.72 (s, 1H), 7.50 (dd, *J*=7.3, 1.5, 1H), 7.13 (d, *J*=1.6, 1H), 7.06 (td, *J*=7.4, 0.7, 1H), 7.00 – 6.97 (m, 1H), 2.26 (s, 3H), 0.46 (s, 6H). ¹³C NMR (75 MHz, C₆D₆) δ = 160.21, 143.41, 134.68, 134.02, 130.74, 130.38, 125.48, 22.74, -0.33. HRMS (EI): m/z [M]⁺ calcd for C₁₀H₁₄O₂Si: 194.0758, found: 194.0760.

Dimethyl(4-methoxyphenyl)silyl formate (7e)

Yellow liquid (90% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, CD₃CN) δ = 8.10 (s, 1H), 7.61 – 7.56 (m, 2H), 7.00 – 6.96 (m, 2H), 3.81 (s, 3H), 0.54 (s, 6H). The identity of the compound was confirmed by comparison with reported data.¹

Dimethyl(4-methylphenyl)silyl formate (7f)

Colorless liquid (90% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, C₆D₆) δ = 7.71 (s, 1H), 7.51 (d, *J*=7.9, 2H), 7.04 (d, *J*=7.5, 2H), 2.09 (s, 3H), 0.45 (s, 6H). ¹³C NMR (75 MHz, C₆D₆) δ = 160.48, 140.42, 134.06, 131.86, 129.09, 21.49, -1.53. HRMS (EI): m/z [M]⁺ calcd for C₁₀H₁₄O₂Si: 194.0758, found: 194.0765.

Diphenylmethylsilyl formate (7g)

Yellow liquid (94% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, CD₃CN) δ = 8.22 (s, 1H), 7.66 – 7.63 (m, 4H), 7.49 – 7.40 (m, 6H), 0.87 (s, 3H). The identity of the compound was confirmed by comparison with reported data.¹

Dimethyl(4-trifluoromethylphenyl)silyl formate (7h)

Colorless liquid (86% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, CD₃CN) δ = 8.12 (s, 1H), 7.85 (d, *J*=8.2, 2H), 7.73 (d, *J*=8.1, 2H), 0.60 (s, 6H). The identity of the compound was confirmed by comparison with reported data.¹

Dimethyl(4-chlorophenyl)silyl formate (7i)

Yellow liquid (86% purity was calculated by ¹H NMR). ¹H NMR (300 MHz, CD₃CN) δ = 8.10 (s, 1H), 7.66 – 7.62 (m, 2H), 7.46 – 7.42 (m, 2H), 0.56 (s, 6H). The identity of the compound was confirmed by comparison with reported data.¹

5. GC-MS Spectra of Silyl Formates

m/z-> 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225

S11

S12

m/z-->

6. Hydrogenation of Silyl Formates

Inside a glove box, a 67mL stainless steel autoclave containing a magnetic stirring bar was charged with complex **3** (1 mol%, 2.93 mg, 0.005 mmol). Silyl formate 7 (1.0 equiv, 0.5 mmol) was then added to the reactor as a solution in tetrahydrofuran (0.025 M, 20.0 mL). The reactor was sealed, pressurized with H₂ (10 bar), and heated to 150 °C for 12 h. Upon completion of the reaction, the mixture was cooled to 0 °C for 30 minutes. Unreacted H₂ was carefully released in a fumehood. Methanol was analyzed by GC using *p*-xylene (1.0 equiv, 61.6 μ L, 0.5 mmol) as an internal standard, and silanol was isolated by silica column chromatography with hexane/ethyl acetate (20:1).

Triethylsilanol (8a)

Colorless liquid (60.8 mg, 0.460 mmol, 92%). Reaction was conducted with 0.1 mol% of **3**. ¹H NMR (300 MHz, CDCl₃) δ = 1.40 (s, 1H), 0.97 (t, *J*=7.9, 9H), 0.60 (q, *J*=7.9, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 6.69, 5.89. The identity of the compound was confirmed by comparison with reported data.⁸

Tri-n-propylsilanol (8b)

Colorless liquid (80.2 mg, 0.460 mmol, 92%). Reaction was conducted with 2.0 mol% of **3**. ¹H NMR (300 MHz, CDCl₃) δ = 2.89 (s, 1H), 1.45 – 1.33 (m, 6H), 0.97 (t, *J*=7.3, 9H), 0.61 – 0.55 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 18.29, 17.80, 16.63. The identity of the compound was confirmed by comparison with reported data.⁹

Dimethylphenylsilanol (8c)

Colorless liquid (70.0 mg, 0.460 mmol, 92%). ¹H NMR (300 MHz, CDCl₃) δ = 7.62 – 7.59 (m, 2H), 7.41 – 7.36 (m, 3H), 2.70 (s, 1H), 0.40 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 139.23, 133.18, 129.71, 127.99, 0.06. The identity of the compound was confirmed by comparison with reported data.⁸

Dimethyl(2-methylphenyl)silanol (8d)

Colorless liquid (68.2 mg, 0.410 mmol, 82%). Reaction was conducted with 2 mol% of **3**. ¹H NMR (300 MHz, CDCl₃) δ = 7.57 (d, *J*=7.1, 1H), 7.34 (t, *J*=7.4, 1H), 7.21 (t, *J*=7.1, 2H), 2.77 (s, 1H), 2.53 (s, 3H), 0.45 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 143.37, 137.47, 134.22, 129.98, 129.91, 125.03, 22.86, 1.10. The identity of the compound was confirmed by comparison with reported data.¹⁰

Dimethyl(4-methoxyphenyl)silanol (8e)

Colorless liquid (69.3 mg, 0.380 mmol, 76%). Reaction was conducted with 80 bar of H₂ pressure. ¹H NMR (300 MHz, CDCl₃) δ = 7.53 (d, *J*=8.6, 2H), 6.93 (d, *J*=8.5, 2H), 3.82 (s, 3H), 2.12 (s, 1H), 0.39 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 160.93, 134.76, 130.33, 113.73, 55.17, 0.20. The identity of the compound was confirmed by comparison with reported data.¹¹

Dimethyl(4-methylphenyl)silanol (8f)

Colorless liquid (62.4 mg, 0.375 mmol, 75%). Reaction was conducted with 80 bar of H₂ pressure. ¹H NMR (300 MHz, CDCl₃) δ = 7.51 (d, *J*=7.9, 2H), 7.22 (d, *J*=7.7, 2H), 2.38 (s, 3H), 2.16 (s, 1H), 0.40 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 139.70, 135.66, 133.25, 128.83, 21.63, 0.14. The identity of the compound was confirmed by comparison with reported data.¹¹

Diphenylmethylsilanol (8g)

Colorless liquid (30.0 mg, 0.140 mmol, 28%). ¹H NMR (300 MHz, CDCl₃) δ = 7.65 (dd, *J*=7.8, 1.5, 4H), 7.51 – 7.39 (m, 6H), 3.43 (s, 1H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 137.12, 134.09, 129.90, 127.96, - 1.25. The identity of the compound was confirmed by comparison with reported data.⁸

Dimethyl(4-trifluoromethylphenyl)silanol (8h)

Colorless liquid (74.9 mg, 0.340 mmol, 68%). ¹H NMR (300 MHz, CDCl₃) δ = 7.71 (d, *J*=7.9, 2H), 7.62 (d, *J*=8.2, 2H), 1.97 (s, 1H), 0.43 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 143.97, 133.50, 132.29, 131.87, 131.44, 131.01, 129.70, 126.09, 124.65, 124.60, 124.55, 124.50, 122.49, 118.88, 0.13. The identity of the compound was confirmed by comparison with reported data.¹⁰

Dimethyl(4-chlorophenyl)silanol (8i)

Colorless liquid (49.5 mg, 0.265 mmol, 53%). ¹H NMR (300 MHz, CDCl₃) δ = 7.48 (d, *J*=8.2, 2H), 7.34 (d, *J*=8.2, 2H), 2.84 (s, 1H), 0.36 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 137.42, 136.02, 134.58, 128.22, 0.10. The identity of the compound was confirmed by comparison with reported data.¹²

7. Effect of Siloxane Impurity on the Reaction.

Table S3. Effect of Siloxane Impurity on the Reaction.^a

^{*a*} Reaction conditions: **7c** (0.5 mmol, 1.0 equiv.), **3** (1 mol%), THF (20 mL), 150 °C, H₂ (10 bar). ^{*b*} Purity was checked by ¹H NMR. ^{*c*} Yields were determined by GC analysis using *p*-xylene as an internal standard.

8. References

- 1. S. Itagaki, K. Yamaguchi and N. Mizuno, J. Mol. Catal. A: Chem., 2013, 366, 347-352.
- 2. A. Jansen and S. Pitter, J. Mol. Catal. A: Chem., 2004, 217, 41-45.
- 3. G. Süss-Fink and J. Reiner, J. Organomet. Chem., 1981, 221, C36-C38.
- H. Koinuma, F. Kawakami, H. Kato and H. Hirai, J. Chem. Soc., Chem. Commun., 1981, 0, 213-214.
 (DOI: 10.1039/C39810000213)
- 5. L. Zhang, J. Cheng and Z. Hou, *Chem. Commun.*, 2013, **49**, 4782-4784.
- 6. K. Motokura, D. Kashiwame, A. Miyaji and T. Baba, Org. Lett., 2012, 14, 2642-2645.
- A. Julián, J. Guzmán, E. A. Jaseer, F. J. Fernández-Alvarez, R. Royo, V. Polo, P. García-Orduña, F. J. Lahoz and L. A. Oro, *Chem. Eur. J.*, 2017, 23, 11898-11907.
- J. John, E. Gravel, A. Hagège, H. Li, T. Gacoin and E. Doris, Angew. Chem. Int. Ed., 2011, 50, 7533-7536.
- T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa and K. Kaneda, *Chem. Commun.*, 2009, **0**, 5302-5304. (DOI: 10.1039/B910208F)
- H. Kazunori, A. Jun-ichi, K. Jun, N. Yasushi, M. Atsunori and H. Tamejiro, *Bull. Chem. Soc. Jpn.*, 2000, 73, 1409-1417.
- 11. S. E. Denmark and J. M. Kallemeyn, Org. Lett., 2003, 5, 3483-3486.
- 12. T. Mitsudome, S. Arita, H. Mori, T. Mizugaki, K. Jitsukawa and K. Kaneda, *Angew. Chem. Int. Ed.*, 2008, **47**, 7938-7940.

9. NMR Spectra

¹H NMR (**7a**) (C₆D₆)

¹H NMR (**7b**) (C₆D₆)

¹³C NMR (**7b**) (C₆D₆)

¹H NMR (**7c**) (C₆D₆)

¹H NMR (**7d**) (C₆D₆)

¹³C NMR (**7d**) (C₆D₆)

¹H NMR (**7e**) (CD₃CN)

¹H NMR (**7f**) (C₆D₆)

¹³C NMR (**7f**) (C₆D₆)

¹H NMR (**7g**) (CD₃CN)

¹H NMR (**7h**) (CD₃CN)

¹H NMR (8a) (CDCl₃)

¹³C NMR (8a) (CDCl₃)

2008 2008 2008

¹H NMR (**8b**) (CDCl₃)

¹³C NMR (**8b**) (CDCl₃)

¹H NMR (8c) (CDCl₃)

100 90 f1 (ppm)

¹H NMR (8d) (CDCl₃)

100 90 f1 (ppm)

¹H NMR (8f) (CDCl₃)

¹³C NMR (8f) (CDCl₃)

¹H NMR (8g) (CDCl₃)

¹H NMR (**8h**) (CDCl₃)

S34

¹H NMR (**8i**) (CDCl₃)

¹³C NMR (8i) (CDCl₃)

