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Supplementary Information

Methods

Synthetic conditions
For a typical preparation of ammonia-intercalated FeCh via the in situ forma-
tion route (from 1 to 2 in Fig. 1), about 10 mmol Fe powder, 12 mmol of
chalcogen sources (thiourea, (NH4)2S, and selenourea), and 25-50 mmol of free
guanidine base were mixed with 10 mL de-ionized (DI) water or deuterated wa-
ter (D2O) in a Teflon-lined stainless steel autoclave at 125 ◦C for 3-4 days. In
order to assure complete intercalation, additional 3 mL of saturated ammonia
water (∼30%) can be added to the autoclave, but this is not necessary as pure
products can be prepared without additional ammonia water. Afterwards, the
content in the autoclave was washed and centrifuged several times until the
supernatant was clear. The remaining product was collected, vacuumed dried,
and stored in a nitrogen-filled glove box.

To prepare the guanidine base, stoichiometric amount of Na metal and guani-
dinium hydrochloride (1:1 molar ratio) were separately dissolved in anhydrous
ethanol in a nitrogen filled glove box. The two solutions were mixed and filtered
to yield a colourless ethanol solution of guanidine. Solid guanidine was obtained
by evaporating ethanol under vacuum, and the yield for the product was about
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80%. Since the guanidine precursor is difficult to make, we have tested reactions
using KOH to replace guanidine. For the sulfide, replacing guanidine with KOH
afforded the same product. However, for the selenide, the product is sensitive to
the KOH concentration, as too much KOH afforded K1−xFe2−ySe2 impurities.
This impurity can be suppressed by using D2O and reducing the KOH concen-
tration. However, reduced KOH concentration often led to incomplete digestion
of Fe. Therefore, KOH route is sufficient for the sulfide, whereas the guanidine
route is optimal for the selenide.

Characterizations
Powder X-ray diffraction (XRD) data were collected using a Bruker D8 X-ray
diffractometer with Cu Kα radiation, λ = 1.5418 Å. Neutron powder diffrac-
tion data were collected on the BT-1 high-resolution neutron powder diffraction
(NPD) with the Cu(311) monochromator (λ = 1.540 Å) at the NIST Center for
Neutron Research. Electron diffraction patterns were obtained using a JEOL
2100 LaB6 transmission electron microscope (TEM) at an acceleration volt-
age of 200 keV. Magnetic susceptibility measurements were performed using a
Quantum Design Magnetic Properties Measurement System (MPMS). Thermo-
gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
performed using Mettler Toledo TGA/DSC 2 under high-purity Ar. TGA/DSC
samples were placed in alumina crucibles covered with alumina lids and heated
from room temperature to 600 ◦C at the rate of 10 ◦C/min.

Computational methods
All density functional theory (DFT) [1, 2] calculations were performed by using
the Vienna Ab-initio Simulation Package (VASP)[3–6] software package with po-
tentials using the projector augmented wave (PAW)[7] method. The exchange
and correlation functional were treated by the generalized gradient approxima-
tion (PBE-GGA).[8] The cut-off energy, 450 eV, was applied to the valance elec-
tronic wave functions expanded in a plane-wave basis set for all chalcogenides.
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Figure S1: Powder X-ray diffraction of ammonia-intercalated FeCh.

Table S1: Rietveld refinement of neutron powder diffraction (NPD) data col-
lected at 5 K using a Cu(311) monochromator (λ = 1.540 Å) for a partially
deuterated ammonia-intercalated FeS compound. The atomic displacement of
N, H and D atoms was set to equal and the tetrahedral angles α1 and α2 rep-
resent the S-Fe-S angles in and out of the basal plane, respectively.
Formula = NH1.59(7)D1.93(4)Fe1.94(2)S2, I4/mmm, a = 3.6852(2) Å, c = 15.0467(9) Å, Rwp = 4.37%
Atom Wyckoff x y z Occ. Uiso (Å2)

site
Fe 4d 0 1/2 1/4 0.97(1) 0.0040(5)
S 4e 0 0 0.3382(5) 1 0.0051(11)
N 2a 0 0 0 1 0.0672(15)
D1 2b 0 0 1/2 0.482(16) =UN

D2/H1 8i 0.271 0 0 0.066(6)/0.111(10) =UN

D3/H2 16m 0.124 0.124 0.0505 0.149(4)/0.144(7) =UN

α1 (◦) α2 (◦) Fe-Fe (Å) Fe-S (Å) D1-S (Å) D3(H2)-S (Å)
109.96(14) 108.49(28) 2.6058(2) 2.2271(4) 2.4353(7) 2.5766(5)
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Figure S2: Thermogravimetric analysis /differential scanning calorimetry
(TGA/DSC) at a heating rate of 10 ◦C/min under an Ar flow for ammonia-
intercalated a) FeS and b) FeSe, respectively. The solid and dotted lines rep-
resent TGA and DSC curves, respectively. For both samples, the weight loss
above 400 ◦C is negligible, and the changes thereafter are mainly caused to
buoyancy.
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Figure S3: Curie-Weiss fit of magnetic susceptibility of ammonia-intercalated
FeS as a function of temperature. The fit temperature region is 40-300 K. The
molar susceptibility is calculated based on per mole iron.
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Figure S4: Band structure and density of state (DOS) of ammonia-intercalated
(a) FeS and (b) FeSe.
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Figure S5: Magnetic susceptibility of FeSe deintercalated using NH3.5Fe2Se2.
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Figure S6: Powder X-ray diffraction of Li/ammonia Co-intercalated FeS.
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Figure S7: Magnetic susceptibility of Li/ammonia Co-intercalated FeS.
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Figure S8: Rietveld refinement of powder X-ray diffraction data of LiOH
intercalated (a) FeS and (b) FeSe prepared by topochemical conversion of
NH3.5Fe2Ch2.

8


