Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Synthesisof2-arylbenzofuran-3-carbaldehydesviaanorganocatalytic [3+2]annulation/oxidative aromatization reaction

Huiwen Zhang, Chunmei Ma, Ziwei Zheng, Rengwei Sun, Xinhong Yu* and Jianhong Zhao*

State Key Laboratory of Bioengineering Reactors and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China

Table of Contents

1.	General Remarks	S2
2.	Synthesis of Starting Materials	S2
3.	Optimization of Reaction Conditions	S5
4.	General Synthetic Procedure and Compound Characterization	S6
5.	Gram-scale Reaction and Further Synthetic Applications	S20
6.	Mechanistic Study	S22
7.	References	S28
8.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S29
9.	Crystallographic Data for Compound 5ac	S94

1. General Remarks

Commercial reagents were used as received without further purification unless otherwise noted. Solvents, unless otherwise specified, were reagent grade and distilled once prior to use. ¹H and ¹³C NMR ¹⁹F NMR spectra were recorded on Bruke Avance-400 (400 MHz, 100 MHz, and 376 MHz, respectively). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26, dimethyl sulfoxide δ 2.50), carbon (chloroform δ 77.00, dimethyl sulfoxide δ 39.52) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets). Coupling constants (*J*) in Hertz (Hz), integration. Melting points were determined in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. High resolution mass spectrometer. Flash chromatography was carried out with silica gel (300-400 mesh) using mixtures of petroleum ether (b.p. 60-90 °C) and ethyl acetate as eluents.

2. Synthesis of Starting Materials

2-bromo-5-methoxyphenol (1a)

To a solution of 3-methoxyphenol (2.48 g, 20.0 mmol) in technical grade CH_2Cl_2 (500 mL) was added *N*-bromosuccinimide (3.56 g, 20.0 mmol) in one portion. The reaction mixture was stirred at room temperature for 2 h, and then quenched with water. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with water and brine then dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-bromo-5-methoxyphenol as a colorless oil (2.42 g, 60%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, J = 8.9 Hz, 1H), 6.60 (d, J = 2.8 Hz, 1H), 6.42 (dd, J = 8.9, 2.8 Hz, 1H), 5.50 (s, 1H), 3.77 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.6, 153.0, 131.9, 108.4, 101.7, 100.9, 55.5.

Physical and spectral data were found to be consistent with the reported literature¹

2-iodo-5-methoxyphenol (S1)

To a solution of 3-methoxyphenol (0.25 g, 2 mmol) in CHCl₃ (10 mL) was added Ag(CO₂CF₃)₂ (0.45 g, 2 mmol). A solution of I₂ (0.51 g, 2 mmol) in CHCl₃ (1 mL) was added dropwise over a

period of approximately 30 min and the mixture was stirred at room temperature overnight. Then the reaction was quenched with saturated aqueous $Na_2S_2O_3$. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with water and brine then dried over Na_2SO_4 . The solvent was removed in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-iodo-5-methoxyphenol as a white solid (0.38 g, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.8 Hz, 1H), 6.59 (d, *J* = 2.8 Hz, 1H), 6.33 (dd, *J* = 8.8, 2.8 Hz, 1H), 5.35 (s, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.6, 155.6, 138.0, 109.4, 100.9, 74.4, 55.4.

Physical and spectral data were found to be consistent with the reported literature²

5-benzyloxy-2-bromophenol (1b)

Benzyl bromide (1.71 g, 10 mmol) was added dropwise to a stirred suspension of resorcinol (2.2 g, 20 mmol) and K_2CO_3 (1.38 g, 10 mmol) in acetone (20 mL) under argon atmosphere. The mixture was heated under reflux overnight, filtered and washed with water (10 mL), dried over Na₂SO₄, subjected to filtration, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20:1) to afford 3-benzyloxyphenol as a brown oil (1.4 g, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 5H), 7.12 (t, *J* = 8.1 Hz, 1H), 6.56 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.48 (t, *J* = 2.3 Hz, 1H), 6.43 (dd, *J* = 8.1, 2.2 Hz, 1H), 5.02 (s, 2H), 4.62 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.1, 156.7, 136.8, 130.2, 128.6 (2C), 128.0, 127.5 (2C), 108.1, 107.3, 102.5, 70.0.

To a solution of 3-benzyloxyphenol (1.0 g, 5 mmol) in CH_2Cl_2 (200 mL) was added *N*-bromosuccinimide (0.89 g, 5 mmol) under ice bath. The reaction mixture was stirred at room temperature for 2 h, then washed with water (20 mL), dried over Na_2SO_4 , subjected to filtration, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-bromo-5-(benzyloxy)phenol as a yellow oil (1.13 g, 81%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 5H), 7.31 (d, *J* = 8.8 Hz, 1H), 6.67 (d, *J* = 2.8 Hz, 1H), 6.48 (dd, *J* = 8.8, 2.9 Hz, 1H), 5.39 (s, 1H), 5.01 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.7, 153.0, 136.5, 132.0, 128.7 (2C), 128.1, 127.5 (2C), 109.3, 102.7, 101.2, 70.3.

Physical and spectral data were found to be consistent with those reported literature³

2-bromo-5-dimethylaminophenol (1c)

To a solution of 3-dimethylaminophenol (0.69 g, 5 mmol) in AcOH (10 mL) was added bromine (0.80 g, 5 mmol) in AcOH (5 mL) dropwise at room temperature. The reaction mixture

was stirred at room temperature for 7 h, then quenched with saturated aqueous $Na_2S_2O_3$. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine then dried over Na_2SO_4 . The solvent was removed in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-bromo-5-dimethylaminophenol as a white solid (0.81 g, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.9 Hz, 1H), 6.42 (d, *J* = 2.9 Hz, 1H), 6.24 (dd, *J* = 8.9, 2.9 Hz, 1H), 5.52 (s, 1H), 2.92 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 152.7, 151.2, 131.8, 107.0, 100.2, 97.2, 40.8 (2C).

Physical and spectral data were found to be consistent with the reported literature⁴

2-bromo-5-tert-butylphenol (1d)

To a solution of 3-*tert*-butylphenol (0.75 g, 5 mmol) in CH_2Cl_2 (20 mL) was added bromine (0.80 g, 5 mmol) in CH_2Cl_2 (5 mL) dropwise under nitrogen atomsphere. After the addition was completed, the reaction was quenched with saturated aqueous $Na_2S_2O_3$. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with water and brine then dried over Na_2SO_4 . The solvent was removed in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-bromo-5-*tert*-butylphenol as a colorless oil (1.03 g, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.5 Hz, 1H), 7.06 (d, *J* = 2.3 Hz, 1H), 6.83 (dd, *J* = 8.5, 2.3 Hz, 1H), 5.49 (s, 1H), 1.27 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.1, 151.8, 131.4, 119.2, 113.5, 106.9, 34.7, 31.2 (3C).

Physical and spectral data were found to be consistent with those reported literature⁵

2-bromo-4,5-dimethylphenol (1f)

To a solution of 3,4-dimethylphenol (0.61 g, 5 mmol) in CH_2Cl_2 (100 mL) and Et_2O (10 mL) was added a solution of bromine (0.80 g, 5 mmol) in CH_2Cl_2 (10 mL) dropwise at 0 °C. After the addition was completed, the reaction was quenched with saturated aqueous $Na_2S_2O_3$. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with water and brine then dried over Na_2SO_4 . The solvent was removed in vacuo, and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford 2-bromo-4,5-dimethylphenol as a white solid (0.69 g, 69%).

¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 1H), 6.81 (s, 1H), 5.28 (s, 1H), 2.17 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 137.9, 132.2, 130.2, 117.1, 106.5, 19.6, 18.7.

Physical and spectral data were found to be consistent with the reported literature⁶

2-bromo-4-fluoro-5-methoxyphenol (1g)

To a solution of 4-fluoro-3-methyoxyphenol (0.43 g, 3 mmol) in CH₂Cl₂ (50 mL) was added *N*-bromosuccinimide (0.54 g, 3 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h, and then quenched with water. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with water and brine then dried over Na₂SO₄. The solvent was removed in vacuo, and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 30:1) to afford 2-bromo-4-fluoro-5-methoxyphenol as a white solid (0.49 g, 74%, mp 76-77 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (d, J = 10.2 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 5.26 (s, 1H), 3.85 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 149.0 (d, J = 2.8 Hz), 148.3 (d, J = 11.7 Hz), 146.5 (d, J = 242.5 Hz), 118.4 (d, J = 22.6 Hz), 101.3 (d, J = 1.6 Hz), 98.2 (d, J = 8.9 Hz), 56.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -143.12 (dd, J = 10.2, 7.6 Hz, 1F).

2,4-dibromo-5-methoxyphenol (1h)

To a solution of 4-bromo-3-methyoxyphenol (0.61 g, 3 mmol) in CH_2Cl_2 (50 mL) was added *N*-bromosuccinimide (0.54 g, 3 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h, and then quenched with water. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with water and brine then dried over Na₂SO₄. The solvent was removed in vacuo, and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 30:1) to afford 2,4-dibromo-5-methoxyphenol as a white solid (0.74 g, 88%, mp 70-71 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (s, 1H), 6.53 (s, 1H), 5.40 (s, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.5, 152.6, 134.5, 102.6, 100.6, 100.4, 56.5.

3. Optimization of Reaction Conditions

Table S1. Solvent optimization study^a

1	CH ₂ Cl ₂	n.r.
2	CHCl ₃	35
3	toluene	15
4	CH ₃ CN	16
5	DMF	n.r.
б	Et ₂ O	n.r.
7	DMSO	trace
8	THF	trace
9	acetone	n.r.

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), K_2CO_3 (0.5 mmol) and catalyst (0.02 mmol) in solvent (2.0 mL) at 60 °C for 5 days. ^{*b*}Determined by ¹H NMR analysis with dibromomethane as an internal standard. n.r. = no reaction.

Table S2. Leaving groups (C-X) optimization study^a

MeO OH	+ 0 Ph	Ph Ph H OTMS (20 mol%) K ₂ CO ₃ , CHCl ₃ , 60 °C, 48 h	CHO MeO O Ph
1a	2a		3aa
entry	Х	C-X (kal/mol) ⁷	yield ^b (%)
1	Н	96-99	n.r.
2	Cl	79	n.r.
3	Br	66	85 ^c
4	Ι	52	38

^{*a*}Reaction conditions: **1a** (0.6 mmol), **2a** (0.1 mmol), K₂CO₃ (0.5 mmol) and catalyst (0.02 mmol) in chloroform (2.0 mL) at 60 °C for 48 h. ^{*b*}Determined by ¹H NMR analysis with dibromomethane as an internal standard. ^{*c*}Isolated yield. n.r. = no reaction.

4. General Synthetic Procedure and Compound Characterization

4.1 General procedure for the synthesis of 2,3-disubstituted benzofurans

To a 10 mL tube was added 2-bromophenol derivatives (0.6 mmol), α , β -unsaturated aldehydes (0.1 mmol), potassium carbonate (69 mg, 0.5 mmol), diphenylprolinol TMS ether (7 mg, 0.02 mmol) and chloroform (2.0 mL), then the reaction mixture was stirred at 60 °C until TLC showed complete consumption of aldehydes. The mixture was cooled to ambient temperature and filtered through the Celite pad. The solvent was removed under reduced pressure and the crude

product was purified by flash chromatography (petroleum ether/ethyl acetate = 200:1) to afford the desired products.

4.2 General procedure for the synthesis of 2,3-disubstituted naphthofurans

 β -naphthols (1.2 mmol) in MeCN (10 mL) was added pyridine hydrobromide perbromide (0.38 g, 1.2 mmol) at 0 °C, after the bromination reaction was completed, a solution of α,β -unsaturated aldehydes (1.0 mmol), potassium carbonate (0.69 g, 5.0 mmol) and diphenylprolinol TMS ether (70 mg, 0.2 mmol) were added, then the reaction was stirred at 60 °C until TLC showed complete consumption of aldehydes. The mixture was cooled to ambient temperature and filtered through the Celite pad. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 200:1) to afford the desired products.

Table S3. Unreactive substrates^a

^{*a*}Reaction conditions: **1** (0.6 mmol) **2a** (0.1 mmol), K_2CO_3 (0.5 mmol) and catalyst **I** (0.02 mmol) in chloroform (2.0 mL) at 60 °C for 48 h. ^{*b*}Isolated yield. ^{*c*}Reaction was run for 7 days. ^{*d*}Determined by ¹H NMR analysis with dibromomethane as an internal standard.

4.3 Analytical data of products

6-methoxy-2-phenylbenzofuran-3-carbaldehyde (**3aa**): Yellow solid (21.4 mg, 85%); mp 117-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.13 (d, J = 8.6 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.59 – 7.53 (m, 3H), 7.08 (d, J = 2.2 Hz, 1H), 7.00 (dd, J = 8.6, 2.2 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 164.6, 159.1, 155.2, 130.8, 129.1 (2C), 128.9 (2C), 128.8, 122.9, 118.6, 117.6, 113.5, 95.8, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₂O₃ (M⁺): 252.0786; found: 252.0787.

6-methoxy-2-(*p*-tolyl)benzofuran-3-carbaldehyde (3ab): Yellow solid (22.8 mg, 86%); mp 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.67 – 7.62 (m, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 2.3 Hz, 1H), 6.91 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.80 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 165.0, 159.0, 155.1, 141.4, 129.9 (2C), 128.8 (2C), 126.0, 122.8, 118.7, 117.2, 113.3, 95.8, 55.8, 21.6. HRMS (EI) m/z Calcd for C₁₇H₁₄O₃ (M⁺): 266.0943; found: 266.0944.

6-methoxy-2-(4-methoxyphenyl)benzofuran-3-carbaldehyde (3ac): Yellow solid (26.7 mg, 95%); mp 104-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.05 – 6.96 (m, 3H), 6.92 (dd, J = 8.6, 2.3 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.6, 164.9, 161.8, 158.9, 154.9, 130.4 (2C), 122.7, 121.3, 118.8, 116.7, 114.6 (2C), 113.1, 95.8, 55.8, 55.5. HRMS (EI) m/z Calcd for C₁₇H₁₄O₄ (M⁺): 282.0892; found: 282.0894.

2-(4-fluorophenyl)-6-methoxybenzofuran-3-carbaldehyde (3ad): Yellow solid (20.5 mg, 76%); mp 126-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.25 (t, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 2.2 Hz, 1H), 7.00 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 164.2 (d, *J* = 252.8 Hz), 163.3, 159.2, 155.1, 130.9, 130.8, 125.0 (d, *J* = 3.3 Hz), 122.8, 118.5, 117.5, 116.6, 116.3, 113.5, 95.8, 55.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.24 (ddd, *J* = 13.5, 8.5, 5.1 Hz, 1F). HRMS (EI) m/z Calcd for C₁₆H₁₁FO₃ (M⁺): 270.0692; found: 270.0694.

2-(4-chlorophenyl)-6-methoxybenzofuran-3-carbaldehyde (3ae): Yellow solid (22.8 mg, 80%); mp 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.03 (d, *J* = 8.6 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.48 – 7.43 (m, 2H), 6.99 (d, *J* = 2.2 Hz, 1H), 6.93 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.81 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 162.9, 159.3, 155.2, 137.1, 129.9 (2C), 129.5 (2C), 127.2, 122.9, 118.5, 117.8, 113.7, 95.7, 55.8. **HRMS** (EI) m/z Calcd for C₁₆H₁₁ClO₃ (M⁺): 286.0397; found: 286.0400.

2-(4-bromophenyl)-6-methoxybenzofuran-3-carbaldehyde (3af): Yellow solid (26.0 mg, 79%); mp 119-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 1.1 Hz, 4H), 7.06 (d, *J* = 2.2 Hz, 1H), 7.00 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 162.9, 159.3, 155.2, 132.4 (2C), 130.1 (2C), 127.6, 125.5, 122.9, 118.5, 117.8, 113.7, 95.7, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₁BrO₃ (M⁺): 329.9892; found: 329.9890.

6-methoxy-2-(4-(trifluoromethyl)phenyl)benzofuran-3-carbaldehyde (3ag): Yellow solid (26.2 mg, 82%); mp 126-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.13 (d, J = 8.6 Hz, 1H), 7.99 – 7.95 (m, 2H), 7.84 – 7.79 (m, 2H), 7.09 (d, J = 2.2 Hz, 1H), 7.03 (dd, J = 8.6, 2.2 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.9, 161.8, 159.6, 155.4, 132.3 (q, J = 33.0 Hz), 132.1, 132.1 (q, J = 41.4 Hz), 129.0 (2C), 126.1 (q, J = 3.8 Hz), 123.7 (q, J = 272.6 Hz), 123.1, 118.6, 118.4, 114.0, 95.7, 55.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.92. HRMS (EI) m/z Calcd for C₁₇H₁₁F₃O₃ (M⁺): 320.0660; found: 320.0664.

6-methoxy-2-(4-nitrophenyl)benzofuran-3-carbaldehyde (3ah): Yellow solid (22.8 mg, 77%); mp 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 8.45 – 8.38 (m, 2H), 8.14 (d, J = 8.6 Hz, 1H), 8.09 – 8.04 (m, 2H), 7.11 (d, J = 2.2 Hz, 1H), 7.05 (dd, J = 8.6, 2.2 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 160.0, 159.9, 155.6, 148.6, 134.6, 129.3 (2C), 124.3 (2C), 123.2, 119.3, 118.5, 114.4, 95.7, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₁NO₅ (M⁺): 297.0637; found: 297.0640.

6-methoxy-2-(*m*-tolyl)benzofuran-3-carbaldehyde (3ai): Yellow solid (17.5 mg, 66%); mp 99-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.92 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.81 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 165.0, 159.1, 155.1, 139.0, 131.7, 129.4, 129.0, 128.7, 126.1, 122.9, 118.6, 117.5, 113.4, 95.8, 55.8, 21.5. HRMS (EI) m/z Calcd for C₁₇H₁₄O₃ (M⁺): 266.0943; found: 266.0944.

2-(3-chlorophenyl)-6-methoxybenzofuran-3-carbaldehyde (3aj): Yellow solid (18.0 mg, 63%); mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 8.05 (d, *J* = 8.6 Hz, 1H), 7.77 (t, *J* = 1.9 Hz, 1H), 7.64 (dt, *J* = 7.0, 1.7 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.01 (d, *J* = 2.2 Hz, 1H), 6.94 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 162.3, 159.4, 155.2, 135.3, 130.7, 130.4, 130.4, 128.6, 126.9, 123.0, 118.4, 118.2, 113.8, 95.7, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₁ClO₃ (M⁺): 286.0397; found: 286.0400.

6-methoxy-2-(*o*-tolyl)benzofuran-3-carbaldehyde (3ak): Yellow solid (13.5 mg, 51%); mp 129-130 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.13 (d, J = 8.6 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.40 – 7.31 (m, 2H), 7.07 (d, J = 2.2 Hz, 1H), 7.02 (dd, J = 8.6, 2.2 Hz, 1H), 3.88 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 166.6, 159.0, 155.4, 138.4, 131.8, 131.1, 130.8, 127.7, 125.9, 122.7, 118.9, 117.7, 113.4, 95.9, 55.8, 20.4. HRMS (EI) m/z Calcd for C₁₇H₁₄O₃ (M⁺): 266.0943; found: 266.0944.

6-methoxy-2-(2-methoxyphenyl)benzofuran-3-carbaldehyde (3al): Yellow solid (16.0 mg, 57%); mp 115-117 °C; ¹H NMR (400 MHz, CDCl3) δ 10.07 (s, 1H), 8.11 (d, J = 8.6 Hz, 1H), 7.61 (dd, J = 7.6, 1.8 Hz, 1H), 7.51 (ddd, J = 8.4, 7.5, 1.8 Hz, 1H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (dd, J = 8.4, 1.0 Hz, 1H), 7.07 (d, J = 2.3 Hz, 1H), 6.99 (dd, J = 8.6, 2.3 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 160.8, 157.7, 156.2, 154.6, 131.3, 130.7, 121.7, 119.8, 117.3, 117.2, 116.8, 112.1, 110.6, 94.8, 54.7 (2C). HRMS (EI) m/z Calcd for C₁₇H₁₄O₄ (M⁺): 282.0892; found: 282.0894.

2-(2-chlorophenyl)-6-methoxybenzofuran-3-carbaldehyde (3am): Yellow solid (12.6 mg, 45%); mp 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.44 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37 (td, *J* = 7.5, 1.4 Hz, 1H), 7.02 (d, *J* = 2.3 Hz, 1H), 6.96 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 162.1, 159.3, 155.8, 134.3, 132.8, 132.0, 130.7, 127.7, 127.0, 122.9, 119.3, 117.6, 113.8, 95.8, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₁ClO₃ (M⁺): 286.0397; found: 286.0400.

2-(2-bromophenyl)-6-methoxybenzofuran-3-carbaldehyde (3an): Yellow solid (13.0 mg, 40%); mp 91-93 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.13 (d, *J* = 8.6 Hz, 1H), 7.79 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.57 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.49 (td, *J* = 7.5, 1.3 Hz, 1H), 7.43 (td, *J* = 7.9, 1.9 Hz, 1H), 7.10 (d, *J* = 2.2 Hz, 1H), 7.04 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 163.6, 159.3, 155.7, 133.9, 133.0, 132.1, 129.8, 127.5, 123.8, 122.9, 119.2, 117.5, 113.8, 95.8, 55.8. HRMS (EI) m/z Calcd for C₁₆H₁₁BrO₃ (M⁺): 329.9892; found: 329.9890.

2-(furan-2-yl)-6-methoxybenzofuran-3-carbaldehyde (3ao): Yellow solid (20.0 mg, 83%); mp 163-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.68 (s, 1H), 8.10 (d, J = 8.6 Hz, 1H), 7.67 (dd, J = 1.7, 0.7 Hz, 1H), 7.12 (dd, J = 3.5, 0.7 Hz, 1H), 7.03 (d, J = 2.2 Hz, 1H), 6.98 (dd, J = 8.6, 2.2 Hz, 1H), 6.64 (dd, J = 3.5, 1.7 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 159.2, 155.2, 153.6, 145.7, 145.5, 123.1, 118.2, 116.5, 113.4, 112.8, 112.3, 95.7, 55.8. HRMS (EI) m/z Calcd for C₁₄H₁₀O₄ (M⁺): 242.0579; found: 242.0577.

6-methoxy-2-(thiophen-2-yl)benzofuran-3-carbaldehyde (3ap): Yellow solid (20.0 mg, 78%); mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 8.00 (d, *J* = 8.6 Hz, 1H), 7.69 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.53 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.16 (dd, *J* = 5.1, 3.8 Hz, 1H), 6.98 (d, *J* = 2.2 Hz, 1H), 6.91 (dd, *J* = 8.6, 2.2 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 159.2, 158.2, 154.9, 130.5, 129.9, 129.5, 128.3, 122.6, 118.6, 116.5, 113.5, 95.7, 55.8. HRMS (EI) m/z Calcd for C₁₄H₁₀SO₃ (M⁺): 258.0351; found: 258.0352.

6-(benzyloxy)-2-phenylbenzofuran-3-carbaldehyde (3ba): Yellow solid (22.5 mg, 69%); mp 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.58 – 7.53 (m, 3H), 7.50 – 7.44 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.31 (m, 1H), 7.14 (d, *J* = 2.2 Hz, 1H), 7.09 (dd, *J* = 8.6, 2.2 Hz, 1H), 5.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 164.7, 158.2, 155.0, 136.6, 130.8, 129.1 (2C), 128.9 (2C), 128.7, 128.7 (2C), 128.1, 127.5 (2C), 123.0, 118.9, 117.6, 114.2, 97.0, 70.6. HRMS (EI) m/z Calcd for C₂₂H₁₆O₃ (M⁺): 328.1099; found: 328.1102.

6-(dimethylamino)-2-phenylbenzofuran-3-carbaldehyde (3ca): Yellow solid (12.4 mg, 47%); mp 100-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.08 (d, *J* = 8.6 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.54 (m, 3H), 6.90 (d, *J* = 9.1 Hz, 2H), 3.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 163.7, 155.9, 149.5, 130.5, 130.4, 129.1 (2C), 129.0, 128.8 (2C), 122.8, 117.8, 111.9, 94.9, 41.5 (2C). HRMS (EI) m/z Calcd for C₁₇H₁₅NO₂ (M⁺): 265.1103; found: 265.1104.

6-(*tert*-butyl)-2-phenylbenzofuran-3-carbaldehyde (3da): Yellow oil (10.4 mg, 38%); ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.21 – 8.14 (m, 1H), 7.85 (ddd, J = 5.6, 3.0, 1.7 Hz, 2H), 7.60 – 7.58 (m, 1H), 7.58 – 7.54 (m, 3H)., 7.46 (dd, J = 8.3, 1.6 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 165.2, 154.5, 150.3, 130.9, 129.1 (2C), 129.0 (2C), 128.8, 122.7, 122.7, 122.0, 117.5, 107.8, 35.2, 31.6 (3C). **HRMS** (EI) m/z Calcd for C₁₉H₁₈O₂ (M⁺): 278.1307; found: 278.1308.

6-methyl-2-phenylbenzofuran-3-carbaldehyde (3ea): Yellow solid (7.3 mg, 31%); mp 87-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.90 – 7.80 (m, 2H), 7.61 – 7.52 (m, 3H), 7.37 (s, 1H), 7.22 (dd, J = 7.9, 1.3 Hz, 1H), 2.5JZ1 (Fs, 3H). ¹³C NMR (100 MHz, CDCl₃) δ186.8, 164.9, 154.5, 136.6, 130.9, 129.1 (2C), 129.1 (2C), 128.8, 126.2, 122.9, 122.1, 117.6, 111.3, 21.8. HRMS (EI) m/z Calcd for C₁₆H₁₂O₂ (M⁺): 236.0837; found: 236.0836.

5,6-dimethyl-2-phenylbenzofuran-3-carbaldehyde (3fa): Yellow solid (10.5 mg, 42%); mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.02 (s, 1H), 7.85 – 7.80 (m, 2H), 7.57 – 7.52 (m, 3H), 7.32 (s, 1H), 2.38 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 164.8, 153.0, 135.4, 133.7, 130.8, 129.1 (2C), 129.0 (2C), 128.9, 123.1, 122.6, 117.5, 111.5, 20.6, 20.0. **HRMS** (EI) m/z Calcd for C₁₇H₁₄O₂ (M⁺): 250.0994; found: 250.0992.

5-fluoro-6-methoxy-2-phenylbenzofuran-3-carbaldehyde (3ga): Yellow solid (19.9 mg, 74%); mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 7.94 (d, *J* = 10.6 Hz, 1H), 7.86 – 7.76 (m, 2H), 7.61 – 7.52FZ (m, 3H), 7.15 (d, *J* = 6.7 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 165.0, 151.1 (d, *J* = 242.8 Hz), 150.3 (d, *J* = 1.4 Hz), 147.5 (d, *J* = 13.6 Hz), 131.0, 129.2 (2C),

128.8 (2C), 128.5, 117.7 (d, J = 3.6 Hz), 117.4 (d, J = 10.3 Hz), 108.7 (d, J = 23.0 Hz), 96.2 (d, J = 2.1 Hz), 56.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -137.52 (dd, J = 10.6, 6.6 Hz, 1F). **HRMS** (EI) m/z Calcd for C₁₆H₁₁FO₃ (M⁺): 270.0692; found: 270.0694.

5-bromo-6-methoxy-2-phenylbenzofuran-3-carbaldehyde (3ha): White solid (29.6 mg, 45%); mp 176-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.45 (s, 1H), 7.85 – 7.80 (m, 2H), 7.60 – 7.55 (m, 3H), 7.11 (s, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 164.9, 154.8, 154.1, 131.1, 129.2 (2C), 128.8 (2C), 128.4, 126.3, 119.4, 116.9, 109.3, 95.2, 56.6. HRMS (EI) m/z Calcd for C₁₆H₁₁BrO₃ (M⁺): 329.9892; found: 329.9891.

2-(5-bromo-4-hydroxy-2-methoxyphenyl)-3-phenylacrylaldehyde (3ha'): E/Z = 10:1, Yellow solid (20.0 mg, 30%); mp 153-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.45 (s, 1H), 7.35 – 7.24 (m, 5H), 7.12 (s, 1H), 6.66 (s, 1H), 5.82 (s, 1H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 157.9, 153.6, 151.0, 137.1, 134.3, 132.8, 130.4, 130.3 (2C), 128.6 (2C), 116.4, 100.8, 100.1, 55.8. **HRMS** (EI) m/z Calcd for C₁₆H₁₃BrO₃ (M⁺): 332.0048; found: 332.0046.

5,6-dimethoxy-2-phenylbenzofuran-3-carbaldehyde (3ia): Yellow solid (26.1 mg, 93%); mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 7.79 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.70 (s, 1H), 7.55 (dt, *J* = 4.8, 3.0 Hz, 3H), 7.08 (s, 1H), 3.98 (s, 3H), 3.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 164.3, 149.1, 148.8, 147.9, 130.6, 129.1 (2C), 128.9, 128.7 (2C), 117.8, 117.4, 103.2, 94.8, 56.4, 56.3. HRMS (EI) m/z Calcd for C₁₇H₁₄O₄ (M⁺): 282.0892; found: 282.0891.

2-phenylnaphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5aa):** Yellow solid (204 mg, 75%); mp 126-127 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.30 (s, 1H), 9.54 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.93 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.83 (d, *J* = 8.9 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.70 – 7.64 (m, 2H), 7.59 – 7.52 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 166.2, 151.6, 130.4, 129.8, 128.9 (2C), 128.0 (2C), 127.7, 127.6, 127.4, 127.2, 126.8, 125.9, 124.5, 119.4, 119.2, 110.7. **HRMS** (EI) *m/z* Calcd. for C₁₉H₁₂O₂ (M⁺): 272.0837; found: 272.0838.

2-(*p***-tolyl)naphtho[2,1-***b***]furan-1-carbaldehyde (5ab): Yellow solid (217 mg, 76%); mp 154-155 °C; ¹H NMR (400 MHz, CDCl₃) \delta 10.27 (s, 1H), 9.54 (d,** *J* **= 8.5 Hz, 1H), 7.92 (d,** *J* **= 7.5 Hz, 1H), 7.81 (d,** *J* **= 8.9 Hz, 1H), 7.66 (td,** *J* **= 7.4, 6.7, 1.7 Hz, 4H), 7.53 (ddd,** *J* **= 8.1, 6.8, 1.3 Hz, 1H), 7.34 (d,** *J* **= 7.9 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 186.8, 167.5, 152.4, 141.4, 131.4, 129.8 (2C), 129.7 (2C), 128.6, 128.5, 128.0, 127.9, 126.8, 125.8, 125.4, 120.2, 120.0, 111.7, 21.6. HRMS (EI)** *m***/***z* **Calcd. for C₂₀H₁₄O₂ (M⁺): 286.0994; found: 286.0995.**

2-(4-methoxyphenyl)naphtho[**2**,**1**-*b*]**furan-1-carbaldehyde** (**5ac**)**:** Yellow solid (241 mg, 80%); mp 132-134 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.30 (s, 1H), 9.56 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 8.9 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.69 (dd, *J* = 11.0, 8.3 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.10 (d, *J* = 8.6 Hz, 2H), 3.92 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.7, 167.4, 161.8, 152.3, 131.5 (2C), 131.4, 128.6, 128.5, 127.9, 127.9, 126.8, 125.4, 121.1, 120.3, 119.6, 114.5 (2C), 111.6, 55.5. **HRMS** (EI) *m*/*z* Calcd. for C₂₀H₁₄O₃ (M⁺): 302.0943; found: 302.0942.

2-(4-fluorophenyl)naphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5ad):** Yellow solid (208 mg, 72%); mp 157-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 9.51 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.69 (dd, *J* = 8.0, 6.4 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 165.9, 164.3 (d, *J* = 253.0 Hz), 152.5, 132.0, 131.9, 131.5, 128.7, 128.4, 128.4, 127.7, 127.0, 125.6, 124.9 (d, *J* = 3.5 Hz), 120.4, 120.1, 116.5, 116.3, 111.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.17 (ddd, *J* = 13.4, 8.4, 5.1 Hz, 1F). HRMS (EI) *m*/*z* Calcd. for C₁₉H₁₁FO₂ (M⁺): 290.0743; found: 290.0745.

2-(4-chlorophenyl)naphtho[**2,1-***b*]**furan-1-carbaldehyde (5ae):** Yellow solid (226 mg, 74%); mp 165-166 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 9.49 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.71 – 7.66 (m, 2H), 7.59 – 7.53 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 165.4, 152.7, 137.3, 131.5, 131.0 (2C), 129.4 (2C), 128.7, 128.5, 128.4, 127.7, 127.1, 127.0, 125.6, 120.7, 120.1, 111.6. HRMS (EI) *m/z* Calcd. for C₁₉H₁₁ClO₂ (M⁺): 306.0448; found: 306.0450.

2-(4-bromophenyl)naphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5af):** Yellow solid (254 mg, 73%); mp 170-171 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.50 (d, *J* = 8.3 Hz, 1H), 7.99 – 7.94 (m, 1H), 7.88 (dd, *J* = 9.1, 3.0 Hz, 1H), 7.70 (q, *J* = 5.5, 5.0 Hz, 6H), 7.59 (d, *J* = 8.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.2, 165.4, 152.7, 132.3 (2C), 131.5, 131.1 (2C), 128.7, 128.5, 128.4, 127.7, 127.6, 127.0, 125.7, 125.6, 120.7, 120.2, 111.6. HRMS (EI) *m*/*z* Calcd. for C₁₉H₁₁BrO₂ (M⁺): 349.9942; found: 349.9943.

2-(4-(trifluoromethyl)phenyl)naphtho[2,1-*b***]furan-1-carbaldehyde (5ag): Yellow solid (244 mg, 72%); mp 153-154 °C; ¹H NMR (400 MHz, CDCl₃) \delta 10.28 (s, 1H), 9.41 (dd,** *J* **= 8.5, 1.2 Hz, 1H), 7.91 (dd,** *J* **= 8.3, 1.3 Hz, 1H), 7.88 (d,** *J* **= 8.2 Hz, 2H), 7.82 (d,** *J* **= 8.9 Hz, 1H), 7.79 (d,** *J* **= 8.2 Hz, 2H), 7.68 – 7.61 (m, 2H), 7.54 (ddd,** *J* **= 8.1, 6.8, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 186.0, 164.2, 152.9, 132.4 (q,** *J* **= 32.9 Hz), 132.2 (q,** *J* **= 41.4 Hz), 131.5, 130.0 (2C), 128.8, 128.7, 128.3, 128.3, 127.6, 127.1, 125.9 (q,** *J* **= 3.7 Hz), 125.7, 123.7 (q,** *J* **= 272.6 Hz), 121.3, 120.0, 111.6. ¹⁹F NMR (376 MHz, CDCl₃) \delta -62.86. HRMS (EI)** *m***/***z* **Calcd. for C₂₀H₁₁F₃O₂ (M⁺): 340.0711; found: 340.0712.**

2-(4-nitrophenyl)naphtho[2,1-*b***]furan-1-carbaldehyde (5ah):** Yellow solid (212 mg, 67%); mp 210-211 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 9.41 (d, *J* = 8.5 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 2H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 8.9 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.60 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 162.5, 153.3, 148.8, 134.5, 131.6, 130.4 (2C), 129.4, 128.9, 128.3, 127.4 (2C), 125.9, 124.2 (2C), 122.1, 120.2, 111.6. HRMS (EI) *m/z* Calcd. for C₁₉H₁₁NO₄ (M⁺): 317.0688; found: 317.0687.

2-(*m***-tolyl)naphtho[2,1-***b***]furan-1-carbaldehyde (5ai): Yellow solid (185 mg, 65%); mp 122-124 °C; ¹H NMR (400 MHz, CDCl₃) \delta 10.31 (s, 1H), 9.56 (d, J = 8.4 Hz, 1H), 7.99 – 7.91 (m, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.65 – 7.57 (m, 2H), 7.56 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.43 – 7.35 (m, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 186.9, 167.5, 152.5, 138.9, 131.7, 131.4, 130.4, 128.9, 128.6, 128.6, 128.4, 128.1, 127.8, 127.2, 126.8, 125.4, 120.3, 120.2, 111.7, 21.4. HRMS (EI)** *m/z* **Calcd. for C₂₀H₁₄O₂ (M⁺): 286.0994; found: 286.0995.**

2-(3-chlorophenyl)naphtho[**2,1-***b*]**furan-1-carbaldehyde (5aj):** Yellow solid (183 mg, 60%); mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 9.48 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.90 – 7.79 (m, 2H), 7.72 – 7.65 (m, 3H), 7.59 – 7.47 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 164.8, 152.7, 135.2, 131.5, 130.8, 130.3, 130.2, 129.6, 128.7, 128.7, 128.4, 128.0, 127.7, 127.1, 125.6, 120.9, 120.1, 111.6. HRMS (EI) *m*/*z* Calcd. for C₁₉H₁₁ClO₂ (M⁺): 306.0448; found: 306.0450.

2-(o-tolyl)naphtho[2,1-b]furan-1-carbaldehyde (5ak): Yellow solid (163 mg, 57%); mp

139-141 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 9.59 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.71 – 7.61 (m, 2H), 7.53 (t, J = 7.8 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.37 – 7.27 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 168.7, 152.8, 138.7, 132.2, 131.5, 131.0, 131.0, 128.7, 128.5, 128.1, 128.0, 128.0, 127.0, 125.9, 125.6, 121.7, 119.6, 111.8, 20.4. . **HRMS** (EI) m/z Calcd. for C₂₀H₁₄O₂ (M⁺): 286.0994; found: 286.0995.

2-(2-methoxyphenyl)naphtho[2,1-*b*]furan-1-carbaldehyde (5al): Yellow solid (184 mg, 61%); mp 132-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 9.57 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.69 (dd, *J* = 10.9, 8.2 Hz, 2H), 7.61 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 164.6, 157.7, 153.1, 132.5, 132.2, 131.4, 128.5, 128.4, 127.9, 127.7, 126.8, 125.3, 121.1, 120.8, 120.0, 117.8, 111.8, 111.6, 55.8. HRMS (EI) *m*/*z* Calcd. for C₂₀H₁₄O₃ (M⁺): 302.0943; found: 302.0942.

2-(2-chlorophenyl)naphtho[2,1-*b*]furan-1-carbaldehyde (5am): Yellow solid (159 mg, 52%); mp 144-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 9.54 (d, *J* = 8.4 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.63 – 7.53 (m, 3H), 7.50 (td, *J* = 7.8, 1.8 Hz, 1H), 7.43 (td, *J* = 7.5, 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 164.6, 153.2, 134.8, 133.1, 132.2, 131.5, 130.5, 128.6, 128.4, 128.4, 127.9, 127.9, 127.1, 126.9, 125.6, 122.1, 119.5, 111.8. HRMS (EI) *m*/*z* Calcd. for C₁₉H₁₁ClO₂ (M⁺): 306.0448; found:306.0450.

2-(2-bromophenyl)naphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5an):** Yellow solid (164 mg, 47%); mp 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 9.55 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.34 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 166.0, 153.1, 133.6, 133.3, 132.3, 131.5, 130.0, 128.7, 128.5, 128.5, 127.9, 127.5, 127.1, 125.6, 124.4, 122.0, 119.4, 111.8. **HRMS** (EI) *m*/*z* Calcd. for C₁₉H₁₁BrO₂ (M⁺): 349.9942; found: 349.9943.

2-(furan-2-yl)naphtho[**2**,1-*b*]**furan-1-carbaldehyde (5ao):** Yellow solid (183 mg, 70%); mp 172-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 9.51 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 8.9 Hz, 1H), 7.70 – 7.68 (m, 1H), 7.65 (ddd, *J* = 8.4, 7.0, 1.5 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 1H), 7.53 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.17 (d, *J* = 3.5 Hz, 1H), 6.64 (dd, *J* = 3.5, 1.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 155.5, 152.5, 145.9, 145.2, 131.5, 128.6, 128.5, 128.3, 127.9, 126.9, 125.5, 120.0, 119.9, 113.8, 112.4, 111.5. **HRMS** (EI) *m/z* Calcd. for C₁₇H₁₀O₃ (M⁺): 262.0630; found: 262.0631.

2-(thiophen-2-yl)naphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5ap):** Yellow solid (189 mg, 68%); mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.59 (s, 1H), 9.41 (d, *J* = 8.5 Hz, 1H), 7.97 – 7.90 (m, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.74 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.72 – 7.61 (m, 3H), 7.55 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.28 – 7.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.5, 160.1, 152.3, 131.5, 130.8, 130.4, 130.2, 128.7, 128.4, 128.3, 128.2, 127.5, 127.0, 125.5, 120.3, 119.7, 111.5. **HRMS** (EI) *m/z* Calcd. for C₁₇H₁₀SO₂ (M⁺): 278.0402; found: 278.0403.

4-methoxy-2-phenylnaphtho[2,1-*b*]furan-1-carbaldehyde (5ba): Yellow solid (220 mg, 73%); mp 206-207 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 9.44 (d, *J* = 7.4 Hz, 1H), 7.82 (dd, *J* = 6.8, 2.9 Hz, 3H), 7.60 – 7.48 (m, 5H), 7.15 (s, 1H), 4.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 167.4, 144.9, 144.3, 132.5, 130.9, 130.1 (2C), 129.0 (2C), 128.5, 127.5, 127.3, 125.9, 124.6, 123.9, 122.0, 120.5, 105.5, 56.0. **HRMS** (EI) *m*/*z* Calcd. for C₂₀H₁₄O₃ (M⁺): 302.0943; found: 302.0942.

4-ethoxy-2-phenylnaphtho[**2**,**1**-*b*]**furan-1-carbaldehyde (5ca):** Yellow solid (224 mg, 71%); mp 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 9.43 (d, *J* = 7.2, 1H), 7.82 – 7.76 (m, 3H), 7.57 – 7.47 (m, 5H), 7.13 (s, 1H), 4.33 (q, *J* = 7.0 Hz, 2H), 1.57 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 167.3, 144.5, 144.2, 132.5, 130.9, 130.1 (2C), 128.9 (2C), 128.6, 127.5, 127.3,

125.8, 124.5, 123.8, 122.0, 120.5, 106.3, 64.5, 14.8. **HRMS** (EI) m/z Calcd. for C₂₁H₁₆O₃ (M⁺): 316.1099; found: 316.1100.

7-bromo-2-phenylnaphtho[**2**,**1**-*b*]**furan-1-carbaldehyde** (**5da**): Yellow solid (147 mg, 42%); mp 179-180 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.27 (s, 1H), 9.45 (d, *J* = 9.0 Hz, 1H), 8.08 (d, *J* = 2.1 Hz, 1H), 7.84 – 7.76 (m, 2H), 7.78 – 7.67 (m, 3H), 7.59 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.7, 167.6, 152.5, 132.7, 131.1, 130.5, 130.0, 129.9 (2C), 129.8, 129.1 (2C), 128.4, 127.2, 126.9, 120.3, 120.1, 119.4, 112.8. **HRMS** (EI) *m*/*z* Calcd. for C₁₉H₁₁BrO₂ (M⁺): 349.9942; found: 349.9943.

1-formyl-2-phenylnaphtho[**2,1-***b*]**furan-7-carbonitrile (5ea):** Yellow solid (118 mg, 40%); mp 218-220 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.74 (d, J = 8.8 Hz, 1H), 8.35 (d, J = 2.1 Hz, 1H), 7.95 – 7.85 (m, 2H), 7.85 – 7.79 (m, 3H), 7.63 (dd, J = 5.3, 1.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 168.1, 153.8, 134.3, 131.4, 130.4, 130.3, 130.0 (2C), 129.3, 129.2 (2C), 128.3, 128.1, 127.5, 120.5, 120.0, 119.2, 113.7, 109.0. HRMS (EI) *m*/*z* Calcd. for C₂₀H₁₁NO₂ (M⁺): 297.0790; found: 297.0791.

8-bromo-2-phenylnaphtho[**2,1-***b*]**furan-1-carbaldehyde** (**5fa**): Yellow solid (136 mg, 39%); mp 209-211 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.29 (s, 1H), 9.79 (d, *J* = 1.9 Hz, 1H), 7.85 – 7.76 (m, 4H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.66 – 7.57 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.6, 167.4, 153.0, 131.1, 130.2, 130.1, 129.9 (2C), 129.9, 129.5, 129.1 (2C), 128.9, 128.5, 128.0, 121.3, 120.1, 119.7, 112.1. **HRMS** (EI) *m*/*z* Calcd. for C₁₉H₁₁BrO₂ (M⁺): 349.9942; found: 349.9944.

2-phenylfuro[**3**,**2**-*f*]**quinoline-1-carbaldehyde (5ga):** Yellow solid (131 mg, 24%); mp 192-194 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 9.77 (d, J = 8.5 Hz, 1H), 8.87 (dd, J = 4.3, 1.6 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H), 7.79 (d, J = 9.1 Hz, 1H), 7.73 (dd, J = 6.6, 2.8 Hz, 2H), 7.53 (dd, J = 5.2, 1.8 Hz, 3H), 7.45 (dd, J = 8.6, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 181.2, 162.6, 146.6, 144.0, 141.3, 130.9, 125.9, 124.6 (2C), 124.0, 123.8 (2C), 123.0, 118.5, 116.0, 115.1, 114.6, 109.7. **HRMS** (EI) m/z Calcd. for C₁₈H₁₁NO₂ (M⁺): 273.0790; found: 273.0787.

5. Gram-scale Reaction and Further Synthetic Applications

5.1 Gram-scale Reaction

 β -naphthol **4a** (1.38 g, 9.6 mmol) in MeCN (30 mL) was added pyridine hydrobromide perbromide (3.07 g, 9.6 mmol) at 0 °C, after the bromination reaction was completed, **2a** (1.06 g, 8 mmol), K₂CO₃ (5.52 g, 40 mmol) and pyrrolidine (0.12 g, 1.6 mmol) were added, then the reaction was stirred at 60 °C for 48 h. The mixture was cooled to ambient temperature and filtered through the Celite pad. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 200:1) to afford **5aa** in a yellow solid (1.09 g, 50% yield).

5.2 Further synthetic applications

(E)-3-(2-(benzyloxy)phenyl)acrylaldehyde (2s)

Reagents and conditions: a) aldehyde (5 mmol), $Ph_3P=CHCHO$ (1.2 equiv), toluene, 60 °C, 8 h, N₂; b) BnCl (1.1 equiv), K₂CO₃ (1.1 equiv), KI (0.05 equiv), EtOH, reflux, 5 h.

A mixture of 2-hydroxybenzaldehyde (0.61 g, 5 mmol) with $Ph_3P=CHCHO$ (1.83 g, 6 mmol) in toluene (10 mL) was stirred at 60 °C for 8 h under nitrogen. The solvent was removed in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20:1 to 5:1) to afford (*E*)-3-(2-hydroxyphenyl)acrylaldehyde as a yellow solid. (0.37 g, 50%)

¹**H NMR** (400 MHz, CDCl₃) δ 9.68 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 16.0 Hz, 1H), 7.50 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.32 (ddd, *J* = 8.2, 7.4, 1.7 Hz, 1H), 7.06 (dd, *J* = 16.0, 8.1 Hz, 1H), 6.98 (td, *J* = 7.6, 1.1 Hz, 1H), 6.91 (dd, *J* = 8.1, 1.1 Hz, 1H), 6.86 (s, 1H).

The data for this compound matched that reported in the literature⁸

Benzyl chloride (0.28)g, 2.2 mmol) was added to а mixture of (E)-3-(2-hydroxyphenyl)acrylaldehyde (0.30 g, 2 mmol), and K₂CO₃ (0.30 g, 2.2 mmol) and KI (17 mg, 0.1 mmol) in ethanol (10 mL). The reaction mixture was heated at reflux and stirred for 5 h. After the completion of reaction monitored by TLC analysis, the mixture was filtered and the solid filter cake was washed with CH₂Cl₂ (10 mL). The combined organic fractions were evaporated in vacuo. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 5:1) to afford **2s** as a yellow solid.

2-(2-(benzyloxy)phenyl)naphtho[2,1-b]furan-1-carbaldehyde (5as)

 β -naphthol **4a** (0.17 g, 1.2 mmol) in MeCN (10 mL) was added pyridine hydrobromide perbromide (0.38 g, 1.2 mmol) at 0 °C, after the bromination reaction was completed, **2s** (0.24 g, 1 mmol), K₂CO₃ (0.69 g, 5 mmol) and diphenylprolinol TMS ether (70 mg, 0.2 mmol) were added, then the reaction was stirred at 60 °C for 48 h. The mixture was cooled to ambient temperature and filtered through the Celite pad. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 200:1) to afford **5as** in a yellow solid (0.21 g, 56% yield, mp 133-135 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 9.57 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.61 (dd, J = 7.6, 1.7 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.28 (tdd, J = 9.4, 7.6, 5.9 Hz, 5H), 7.18 – 7.11 (m, 2H), 5.16 (s, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 187.1, 164.9, 157.0, 153.1, 136.1, 132.5, 132.5, 131.4, 128.6 (2C), 128.5, 128.4, 128.0, 128.0, 127.8, 127.0 (2C), 126.8, 125.4, 121.3, 121.2, 119.9, 118.4, 113.6, 111.8, 70.8. **HRMS** (EI) *m*/*z* Calcd. for C₂₆H₁₈O₃ (M⁺): 378.1256; found: 378.1258.

6H-naphtho[1',2':4,5]furo[3,2-c]chromene (6)

To a solution of **5as** (76 mg, 0.2 mmol) in CH₃OH (4 mL) was added sodium borohydride (12 mg, 0.3 mmol), and the reaction mixture stirred at ambient temperature for 8 h. The solvent was reduced in vacuo and the crude product was used directly in the next reaction. To a solution of the crude alcohol in CH₃OH (4 mL) was added 10% Pd/C (10 mg), and the reaction was stirred under atmosphere of H₂ for 12 h. The reaction mixture was filtered through Celite then concentrated under reduced pressure to give the crude product that was used in the next step without further purification.

To a solution of the crude phenol derivative in CH₃CN (2 mL), and Et₂O (3 mL) was added PPh₃ (79 mg, 0.3 mmol), I₂ (152 mg, 0.6 mmol), and imidazole (20 mg, 0.3 mmol) at 0 °C, and the residue was stirred at the same temperature for 10 min. Then the mixture was stirred at room temperature for 24 h. The reaction was quenched with saturated aqueous Na₂S₂O₃. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine then dried over Na₂SO₄. The solvent was removed in vacuo and the crude product was purified by

flash chromatography (petroleum ether/ethyl acetate = 20:1) to afford the corresponding product **6** as a white solid (41 mg, 75% over three steps, mp 168-170 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (dt, J = 8.1, 0.9 Hz, 1H), 7.80 (dq, J = 8.2, 0.8 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.57 – 7.51 (m, 2H), 7.46 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.17 (ddd, J = 8.1, 7.5, 1.7 Hz, 1H), 6.98 (td, J = 7.5, 1.1 Hz, 1H), 6.91 (dd, J = 8.1, 1.1 Hz, 1H), 5.99 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.5, 153.0, 146.8, 130.8, 129.5, 129.0, 127.6, 126.5, 125.3, 124.7, 123.8, 121.6, 120.6, 120.4, 116.2, 116.1, 112.4, 110.0, 66.5. **HRMS** (EI) m/z Calcd. for C₁₉H₁₂O₂ (M⁺): 272.0837; found: 272.0834.

6H-naphtho[1',2':4,5]furo[3,2-c]chromen-6-one (7)

The aldehyde **5as** (76 mg, 0.2 mmol) was dissolved in 4 mL of *tert*-butyl alcohol:THF (1:1) and 2-methylbutene (0.2 mL, 2 mmol). A solution of sodium chlorite (55 mg, 0.6 mmol) and sodium dihydrogenphosphate (156 mg, 1 mmol) in 1 mL of water was added dropwise over a 10 minute period. The reaction mixture was stirred at ambient temperature for 12 h, then diluted with water and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄. The solvent was removed in vacuo and the crude acid was used in the next step without further purification.

To a solution of the crude acid in EtOAc (6 mL) was added 10% Pd/C (10 mg), and the reaction was stirred under atmosphere of H₂ for 12 h. The reaction mixture was filtered through Celite then concentrated under reduced pressure to give the crude product that was used directly in the next step without further purification. This mixture product was dissolved in THF (4 mL), added TsOH·H₂O (57 mg, 0.3 mmol). The reaction was stirred at 60 °C for 8 h. The solvent was reduced in vacuo and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 50:1) to afford the corresponding product **7** as a white solid (40 mg, 69% over three steps, mp >250 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 9.68 (d, J = 8.4 Hz, 1H), 8.04 (dd, J = 7.8, 1.5 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 9.0 Hz, 1H), 7.71 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.63 – 7.52 (m, 2H), 7.50 (d, J = 8.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.2, 158.4, 153.4, 153.3, 131.5, 131.4, 128.8, 128.5, 127.9, 127.4, 127.3, 125.8, 124.6, 121.6, 119.2, 117.1, 112.6, 111.7, 107.8.. **HRMS** (EI) m/z Calcd. for C₁₉H₁₀O₃ (M⁺): 286.0630; found: 286.0627.

6. Mechanistic Study

Table S4. Capturing the proposed intermediate 3aa'^a

MeO OH	+ 0 Ph	Cat. I (2 Additive, C⊢	0 mol%) ICl ₃ , 60 °C MeO OH	+ MeO [^]	CHO Ph
1a	2a		3aa'		3aa
ontry	additive	timo	ratio $(3aa^3 \cdot 3aa)^b$	у	ield
entry	(5.0 equiv.)	ume	Tatio (Jaa . Jaa)	3aa'	3aa
1	Na ₂ CO ₃	24 h	1.25:1	_c	_d
2	K_2CO_3	24 h	0.10:1	_d	$74\%^e$

^{*a*}Reaction conditions: **1a** (0.6 mmol), **2a** (0.1 mmol), additive (0.5 mmol) and diphenylprolinol TMS ether (0.02 mmol) in chloroform (2.0 mL) at 60 °C for 24 h. ^{*b*}Determined by ¹H NMR analysis of crude reaction mixtures. ^{*c*}Failed to obtain a pure sample, crude ¹H NMR is offered. ^{*d*}Not isolated. ^{*e*}Isolated yield.

To a 10 mL tube was added 2-bromo-5-methyoxyphenol **1a** (6.0 equiv.), α , β -unsaturated aldehydes **2a** (0.5 mmol, 1.0 equiv.), Na₂CO₃ (5.0 equiv.), diphenylprolinol TMS ether (0.2 equiv.) and chloroform (5.0 mL), then the reaction mixture was stirred at 60 °C for 24 h. The mixture was cooled to ambient temperature and filtered through the Celite pad. The solvent was removed under

reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1 to 2:1) to afford the intermediate **3aa'** (failed to obtain a pure sample, crude ¹H NMR is offered).

¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.54 (s, 1H), 7.47 – 7.31 (m, 5H), 6.92 (d, *J* = 8.5 Hz, 1H), 6.56 (d, *J* = 2.5 Hz, 1H), 6.50 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.89 (s, 1H), 3.81 (s, 3H).

¹H NMR Spectrum of 3aa'

MS (EI)

m/z Calcd. for C₁₆H₁₄O₃ (M+): 254.0943; found: 254.

Table S5. Capturing the proposed intermediate 5aa'a

^{*a*}Reaction conditions: 0 °C, **4a** (1.2 mmol) in acetonitrile (10 mL) was added pyridine hydrobromide perbromide (1.2 mmol), followed by addition of **2a** (1.0 mmol), additive (5.0 mmol) and diphenylprolinol TMS ether (0.2 mmol), then the reaction was stirred at 60 °C for 24 h... ^{*b*}Isolated yields.

The intermediate 5aa'

 β -naphthol **4a** (0.17 g, 1.2 mmol) in MeCN (10 mL) was added pyridine hydrobromide perbromide (0.38 g, 1.2 mmol) at 0 °C, after the bromination reaction was completed, **2a** (0.13 g, 1.0 mmol), Na₂CO₃ (0.53 g, 5.0 mmol) and diphenylprolinol TMS ether (70 mg, 0.2 mmol) were added, then the reaction mixture was stirred at 60 °C for 24 h. After cooling to ambient temperature, the mixture was filtered through the Celite pad. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 10:1 to 2:1) to afford the intermediate **5aa'** as a yellow solid (88 mg, 32 %, mp 181-182 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.86 – 7.74 (m, 3H), 7.47 – 7.37 (m, 1H), 7.37 – 7.27 (m, 2H), 7.27 – 7.27 (m, 1H), 7.19 – 7.08 (m, 5H), 5.75 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.5, 153.4, 150.7, 135.1, 133.6, 132.1, 131.1, 130.7, 130.6 (2C), 129.2, 128.8 (2C), 128.5, 127.1, 123.8 (2C), 118.1, 113.2. **HRMS** (EI) *m*/*z* Calcd. for C₁₉H₁₄O₂ (M⁺): 274.0994; found: 274.0995.

¹H NMR Spectrum of Compound 5aa'

¹³C NMR Spectrum of Compound 5aa'

To a solution of **5aa'** (18 mg) in MeCN (1 mL) was added potassium carbonate (46 mg) and diphenylprolinol TMS ether (5 mg), then the reaction mixture was stirred at 60 °C for 2 h. After cooling to ambient temperature, the mixture was filtered through the Celite pad. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 200:1) to afford the desired product **5aa** as a yellow solid (17 mg, 97%).

7. References

- 1. M. O. Kitching, T. E. Hurst and V. Snieckus, Angew. Chem. Int. Ed., 2012, **51**, 2925.
- 2. M. W. Carson, M. W. Giese and M. J. Coghlan, Org. Lett., 2008, **10**, 2701.
- (a) R. Frlan, S. Gobec and D. Kikelj, *Tetrahedron*, 2007, **63**, 10698; (b) S. Balamurugan, P. Kannan, M. T. Chuang and S. L. Wu, *Ind. Eng. Chem. Res.*, 2010, **49**, 7121; (c) V. Sandgren, M. Back, I. Kvarnstrom and A. Dahlgren, *Open Med. Chem. J.*, 2013, **7**, 1.
- 4. H. Kajita and A. Togni, *ChemistrySelect*, 2017, **2**, 1117.
- (a) G. Hermann, M. Annis, P. Edwards, M. Corrales, L. Díaz and R. Goodnow, *Synthesis*, 2008, 2008, 221; (b) L. Shu, P. Wang, W. Liu and C. Gu, *Org. Process Res. Dev.*, 2012, 16, 1866.
- 6. Y. Ueta, K. Mikami and S. Ito, *Angew. Chem. Int. Ed.*, 2016, **55**, 7525.
- 7. E. G. Lovering and K. J. Laidler, *Can. J. Chem.*, 1960, **38**, 2367.
- 8. L. Zu, S. Zhang, H. Xie and W. Wang, *Org. Lett.*, 2009, **11**, 1627.

8. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

¹H NMR Spectrum of Compound 1a

¹³C NMR Spectrum of Compound 1a

¹H NMR Spectrum of Compound S1

¹³C NMR Spectrum of Compound S1

¹H NMR Spectrum of Compound S2

¹³C NMR Spectrum of Compound S2

¹H NMR Spectrum of Compound 1b

¹³C NMR Spectrum of Compound 1b

¹H NMR Spectrum of Compound 1c

¹³C NMR Spectrum of Compound 1c

¹H NMR Spectrum of Compound 1d

¹³C NMR Spectrum of Compound 1d

¹H NMR Spectrum of Compound 1f

¹³C NMR Spectrum of Compound 1f

¹H NMR Spectrum of Compound 1g

¹³C NMR Spectrum of Compound 1g

¹⁹F NMR Spectrum of Compound 1g

¹H NMR Spectrum of Compound 1h

¹³C NMR Spectrum of Compound 1h

¹H NMR Spectrum of Compound 3aa

¹³C NMR Spectrum of Compound 3aa

¹H NMR Spectrum of Compound 3ab

¹³C NMR Spectrum of Compound 3ab

¹H NMR Spectrum of Compound 3ac

¹³C NMR Spectrum of Compound 3ac

¹H NMR Spectrum of Compound 3ad

¹³C NMR Spectrum of Compound 3ad

¹⁹F NMR Spectrum of Compound 3ad

¹H NMR Spectrum of Compound 3ae

¹³C NMR Spectrum of Compound 3ae

¹H NMR Spectrum of Compound 3af

¹³C NMR Spectrum of Compound 3af

¹H NMR Spectrum of Compound 3ag

¹³C NMR Spectrum of Compound 3ag

¹⁹F NMR Spectrum of Compound 3ag

¹H NMR Spectrum of Compound 3ah

¹³C NMR Spectrum of Compound 3ah

¹H NMR Spectrum of Compound 3ai

¹³C NMR Spectrum of Compound 3ai

¹H NMR Spectrum of Compound 3aj

¹³C NMR Spectrum of Compound 3aj

¹H NMR Spectrum of Compound 3ak

¹³C NMR Spectrum of Compound 3ak

¹H NMR Spectrum of Compound 3al

¹³C NMR Spectrum of Compound 3al

¹H NMR Spectrum of Compound 3am

¹³C NMR Spectrum of Compound 3am

¹H NMR Spectrum of Compound 3an

¹³C NMR Spectrum of Compound 3an

¹H NMR Spectrum of Compound 3ao

¹³C NMR Spectrum of Compound 3ao

¹H NMR Spectrum of Compound 3ap

¹³C NMR Spectrum of Compound 3ap

¹H NMR Spectrum of Compound 3ba

¹³C NMR Spectrum of Compound 3ba

¹H NMR Spectrum of Compound 3ca

¹H NMR Spectrum of Compound 3da

¹³C NMR Spectrum of Compound 3da

¹H NMR Spectrum of Compound 3ea

¹H NMR Spectrum of Compound 3fa

¹³C NMR Spectrum of Compound 3fa

¹H NMR Spectrum of Compound 3ga

¹³C NMR Spectrum of Compound 3ga

¹⁹F NMR Spectrum of Compound 3ga

¹H NMR Spectrum of Compound 3ha

¹³C NMR Spectrum of Compound 3ha

¹H NMR Spectrum of Compound 3ha'

¹H NMR Spectrum of Compound 3ia

¹³C NMR Spectrum of Compound 3ia

¹H NMR Spectrum of Compound 5aa

¹H NMR Spectrum of Compound 5ab

¹³C NMR Spectrum of Compound 5ab

¹H NMR Spectrum of Compound 5ac

¹H NMR Spectrum of Compound 5ad

¹³C NMR Spectrum of Compound 5ad

¹⁹F NMR Spectrum of Compound 5ad

¹H NMR Spectrum of Compound 5ae

¹³C NMR Spectrum of Compound 5ae

¹H NMR Spectrum of Compound 5af

¹³C NMR Spectrum of Compound 5af

¹H NMR Spectrum of Compound 5ag

¹³C NMR Spectrum of Compound 5ag

¹⁹F NMR Spectrum of Compound 5ag

¹H NMR Spectrum of Compound 5ah

¹³C NMR Spectrum of Compound 5ah

¹H NMR Spectrum of Compound 5ai

¹H NMR Spectrum of Compound 5aj

¹³C NMR Spectrum of Compound 5aj

¹H NMR Spectrum of Compound 5ak

¹³C NMR Spectrum of Compound 5ak

¹H NMR Spectrum of Compound 5al

¹³C NMR Spectrum of Compound 5al

¹H NMR Spectrum of Compound 5am

¹³C NMR Spectrum of Compound 5am

¹H NMR Spectrum of Compound 5an

¹³C NMR Spectrum of Compound 5an

¹H NMR Spectrum of Compound 5ao

¹H NMR Spectrum of Compound 5ap

¹³C NMR Spectrum of Compound 5ap

¹H NMR Spectrum of Compound 5ba

¹³C NMR Spectrum of Compound 5ba

¹H NMR Spectrum of Compound 5ca

¹³C NMR Spectrum of Compound 5ca

¹H NMR Spectrum of Compound 5da

¹³C NMR Spectrum of Compound 5da

¹H NMR Spectrum of Compound 5ea

¹³C NMR Spectrum of Compound 5ea

¹H NMR Spectrum of Compound 5fa

¹³C NMR Spectrum of Compound 5fa

¹H NMR Spectrum of Compound 5ga

¹³C NMR Spectrum of Compound 5ga

¹H NMR Spectrum of Compound 5as

¹³C NMR Spectrum of Compound 5as

¹H NMR Spectrum of Compound 6

¹³C NMR Spectrum of Compound 6

¹H NMR Spectrum of Compound 7

¹³C NMR Spectrum of Compound 7

9. Crystallographic Data for Compound 5ac

The crystallographic data are provided free of charge by The Cambridge Crystallographic Data Centre with CCDC deposition number 1557770.

Table 1. Crystal data and structure refinement for	cu10100.	
Identification code	cd16106	
Empirical formula	C20 H14 O3	
Formula weight	302.31	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	$a = 7.2027(13) \text{ Å}$ $\alpha =$	= 90 °.
	$b = 18.296(3) \text{ Å}$ β =	= 90 °.
	$c = 22.189(4) \text{ Å}$ $\gamma =$	= 90 °.
Volume	2924.1(9) Å ³	
Z	8	
Density (calculated)	1.373 Mg/m ³	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	1264	
Crystal size	0.200 x 0.160 x 0.130 mm ³	
Theta range for data collection	1.836 to 25.999 °.	
Index ranges	-8<=h<=8, -21<=k<=22, -27<=l<=25	
Reflections collected	16358	
Independent reflections	2868 [R(int) = 0.0416]	
Completeness to theta = 25.242 $^\circ$	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6522	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2868 / 0 / 210	
Goodness-of-fit on F ²	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1150	
R indices (all data)	R1 = 0.0614, $wR2 = 0.1256$	
Extinction coefficient	0.0048(10)	
Largest diff. peak and hole	0.169 and -0.160 e.Å ⁻³	

Table 1. Crystal data and structure refinement for cd16106.

	Х	у	Z	U(eq)
O(1)	452(2)	10123(1)	3595(1)	49(1)
O(2)	-738(2)	8323(1)	2186(1)	78(1)
O(3)	-1(2)	7872(1)	5687(1)	55(1)
C(1)	840(3)	11202(1)	1293(1)	70(1)
C(2)	492(3)	10760(1)	816(1)	78(1)
C(3)	40(3)	10035(1)	906(1)	70(1)
C(4)	-29(3)	9751(1)	1471(1)	56(1)
C(5)	315(2)	10189(1)	1979(1)	44(1)
C(6)	749(3)	10939(1)	1887(1)	53(1)
C(7)	1046(3)	11412(1)	2383(1)	60(1)
C(8)	934(3)	11178(1)	2958(1)	57(1)
C(9)	545(2)	10441(1)	3037(1)	45(1)
C(10)	256(2)	9940(1)	2589(1)	41(1)
C(11)	-48(2)	9254(1)	2901(1)	42(1)
C(12)	127(2)	9401(1)	3503(1)	44(1)
C(13)	93(2)	8966(1)	4055(1)	44(1)
C(14)	919(2)	8285(1)	4098(1)	48(1)
C(15)	910(3)	7899(1)	4632(1)	49(1)
C(16)	99(2)	8198(1)	5137(1)	43(1)
C(17)	-714(3)	8884(1)	5102(1)	49(1)
C(18)	-709(3)	9260(1)	4572(1)	48(1)
C(19)	-595(3)	8535(1)	2696(1)	54(1)
C(20)	787(3)	7170(1)	5758(1)	62(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for cd16106. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(12)	1.3570(18)
O(1)-C(9)	1.3689(19)
O(2)-C(19)	1.2022(19)
O(3)-C(16)	1.3598(18)
O(3)-C(20)	1.414(2)
C(1)-C(2)	1.355(3)
C(1)-C(6)	1.405(2)
C(1)-H(1)	0.9300
C(2)-C(3)	1.381(3)
C(2)-H(2)	0.9300
C(3)-C(4)	1.358(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.405(2)
C(4)-H(4)	0.9300
C(5)-C(6)	1.421(2)
C(5)-C(10)	1.429(2)
C(6)-C(7)	1.415(3)
C(7)-C(8)	1.348(2)
C(7)-H(7)	0.9300
C(7)-H(7) C(8)-C(9)	0.9300 1.389(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8)	0.9300 1.389(2) 0.9300
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10)	0.9300 1.389(2) 0.9300 1.368(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(19)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(19) C(12)-C(13)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.461(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(13)-C(14)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.461(2) 1.384(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(13)-C(14) C(13)-C(18)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.461(2) 1.384(2) 1.392(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(18) C(14)-C(15)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.446(2) 1.384(2) 1.392(2) 1.380(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(13)-C(14) C(13)-C(18) C(14)-C(15) C(14)-H(14)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.446(2) 1.384(2) 1.392(2) 1.380(2) 0.9300
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(14) C(14)-H(14) C(15)-C(16)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.461(2) 1.384(2) 1.392(2) 1.380(2) 0.9300 1.379(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(14) C(14)-H(14) C(15)-C(16) C(15)-H(15)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.461(2) 1.384(2) 1.392(2) 1.380(2) 0.9300 1.379(2) 0.9300
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(14) C(13)-C(15) C(14)-H(14) C(15)-C(16) C(15)-H(15) C(16)-C(17)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.446(2) 1.384(2) 1.382(2) 1.380(2) 0.9300 1.379(2) 0.9300 1.386(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(14) C(13)-C(18) C(14)-H(14) C(15)-C(16) C(15)-H(15) C(16)-C(17) C(17)-C(18)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.446(2) 1.384(2) 1.392(2) 1.380(2) 0.9300 1.379(2) 0.9300 1.386(2) 1.364(2)
C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(11)-C(12) C(11)-C(19) C(12)-C(13) C(12)-C(13) C(13)-C(14) C(13)-C(14) C(13)-C(14) C(14)-H(14) C(15)-C(16) C(15)-H(15) C(16)-C(17) C(17)-C(18) C(17)-H(17)	0.9300 1.389(2) 0.9300 1.368(2) 1.450(2) 1.367(2) 1.446(2) 1.461(2) 1.384(2) 1.392(2) 1.380(2) 0.9300 1.379(2) 0.9300 1.386(2) 1.364(2) 0.9300

Table 3. Bond lengths [Å] and angles [^o] for cd16106.

C(19)-H(19)	0.9300
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(12)-O(1)-C(9)	106.61(12)
C(16)-O(3)-C(20)	118.56(13)
C(2)-C(1)-C(6)	121.36(19)
C(2)-C(1)-H(1)	119.3
C(6)-C(1)-H(1)	119.3
C(1)-C(2)-C(3)	120.23(19)
C(1)-C(2)-H(2)	119.9
C(3)-C(2)-H(2)	119.9
C(4)-C(3)-C(2)	120.6(2)
C(4)-C(3)-H(3)	119.7
C(2)-C(3)-H(3)	119.7
C(3)-C(4)-C(5)	121.08(18)
C(3)-C(4)-H(4)	119.5
C(5)-C(4)-H(4)	119.5
C(4)-C(5)-C(6)	118.29(15)
C(4)-C(5)-C(10)	124.88(15)
C(6)-C(5)-C(10)	116.83(15)
C(1)-C(6)-C(7)	120.88(17)
C(1)-C(6)-C(5)	118.38(17)
C(7)-C(6)-C(5)	120.73(15)
C(8)-C(7)-C(6)	122.20(16)
C(8)-C(7)-H(7)	118.9
C(6)-C(7)-H(7)	118.9
C(7)-C(8)-C(9)	116.07(16)
C(7)-C(8)-H(8)	122.0
C(9)-C(8)-H(8)	122.0
C(10)-C(9)-O(1)	111.40(13)
C(10)-C(9)-C(8)	126.13(15)
O(1)-C(9)-C(8)	122.45(14)
C(9)-C(10)-C(5)	118.00(14)
C(9)-C(10)-C(11)	104.81(14)
C(5)-C(10)-C(11)	137.20(14)
C(12)-C(11)-C(19)	120.73(14)

C(12)-C(11)-C(10)	106.40(13)
C(19)-C(11)-C(10)	132.66(15)
O(1)-C(12)-C(11)	110.74(13)
O(1)-C(12)-C(13)	113.97(13)
C(11)-C(12)-C(13)	135.26(14)
C(14)-C(13)-C(18)	117.99(15)
C(14)-C(13)-C(12)	122.71(14)
C(18)-C(13)-C(12)	119.21(14)
C(15)-C(14)-C(13)	121.20(15)
C(15)-C(14)-H(14)	119.4
C(13)-C(14)-H(14)	119.4
C(16)-C(15)-C(14)	119.84(15)
C(16)-C(15)-H(15)	120.1
C(14)-C(15)-H(15)	120.1
O(3)-C(16)-C(15)	125.34(15)
O(3)-C(16)-C(17)	115.10(14)
C(15)-C(16)-C(17)	119.56(14)
C(18)-C(17)-C(16)	120.20(15)
C(18)-C(17)-H(17)	119.9
C(16)-C(17)-H(17)	119.9
C(17)-C(18)-C(13)	121.21(15)
C(17)-C(18)-H(18)	119.4
C(13)-C(18)-H(18)	119.4
O(2)-C(19)-C(11)	127.87(16)
O(2)-C(19)-H(19)	116.1
C(11)-C(19)-H(19)	116.1
O(3)-C(20)-H(20A)	109.5
O(3)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(3)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	66(1)	41(1)	40(1)	-4(1)	-2(1)	-2(1)
O(2)	138(2)	52(1)	45(1)	-9(1)	-5(1)	-9(1)
O(3)	73(1)	53(1)	38(1)	4(1)	2(1)	1(1)
C(1)	83(2)	61(1)	66(1)	24(1)	4(1)	3(1)
C(2)	102(2)	84(2)	48(1)	21(1)	5(1)	15(1)
C(3)	93(2)	74(1)	43(1)	3(1)	0(1)	14(1)
C(4)	68(1)	56(1)	43(1)	3(1)	2(1)	10(1)
C(5)	43(1)	46(1)	43(1)	4(1)	3(1)	9(1)
C(6)	54(1)	49(1)	54(1)	12(1)	1(1)	6(1)
C(7)	71(1)	40(1)	71(1)	11(1)	0(1)	-5(1)
C(8)	70(1)	41(1)	59(1)	-4(1)	-4(1)	-3(1)
C(9)	51(1)	41(1)	43(1)	2(1)	0(1)	2(1)
C(10)	42(1)	40(1)	42(1)	1(1)	1(1)	4(1)
C(11)	51(1)	39(1)	37(1)	-1(1)	1(1)	3(1)
C(12)	50(1)	39(1)	42(1)	-2(1)	1(1)	-1(1)
C(13)	53(1)	43(1)	36(1)	-3(1)	-1(1)	-3(1)
C(14)	55(1)	50(1)	39(1)	-2(1)	6(1)	7(1)
C(15)	56(1)	46(1)	44(1)	-1(1)	0(1)	7(1)
C(16)	50(1)	45(1)	35(1)	1(1)	-3(1)	-6(1)
C(17)	64(1)	47(1)	37(1)	-9(1)	4(1)	-2(1)
C(18)	65(1)	37(1)	44(1)	-4(1)	0(1)	1(1)
C(19)	79(1)	42(1)	41(1)	0(1)	-2(1)	-2(1)
C(20)	72(1)	63(1)	51(1)	16(1)	2(1)	8(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cd16106. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	Х	У	Z	U(eq)
H(1)	1146	11689	1225	84
H(2)	557	10946	426	93
H(3)	-219	9737	577	84
H(4)	-309	9259	1523	67
H(7)	1328	11900	2309	73
H(8)	1108	11492	3283	68
H(14)	1491	8085	3760	58
H(15)	1449	7438	4650	58
H(17)	-1265	9088	5442	59
H(18)	-1252	9720	4555	58
H(19)	-869	8196	2995	65
H(20A)	181	6832	5492	94
H(20B)	627	7011	6168	94
H(20C)	2087	7189	5664	94

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for cd16106.

Table 6.Torsion angles [] for cd16106.

C(6)-C(1)-C(2)-C(3)	-0.2(3)
C(1)-C(2)-C(3)-C(4)	-1.2(4)
C(2)-C(3)-C(4)-C(5)	1.4(3)
C(3)-C(4)-C(5)-C(6)	-0.3(3)
C(3)-C(4)-C(5)-C(10)	179.40(17)
C(2)-C(1)-C(6)-C(7)	-177.6(2)
C(2)-C(1)-C(6)-C(5)	1.2(3)
C(4)-C(5)-C(6)-C(1)	-1.0(2)
C(10)-C(5)-C(6)-C(1)	179.29(16)
C(4)-C(5)-C(6)-C(7)	177.83(17)
C(10)-C(5)-C(6)-C(7)	-1.9(2)
C(1)-C(6)-C(7)-C(8)	178.78(19)
C(5)-C(6)-C(7)-C(8)	0.0(3)
C(6)-C(7)-C(8)-C(9)	1.2(3)
C(12)-O(1)-C(9)-C(10)	0.97(18)
C(12)-O(1)-C(9)-C(8)	-177.52(16)
C(7)-C(8)-C(9)-C(10)	-0.5(3)
C(7)-C(8)-C(9)-O(1)	177.75(17)
O(1)-C(9)-C(10)-C(5)	-179.83(13)
C(8)-C(9)-C(10)-C(5)	-1.4(3)
O(1)-C(9)-C(10)-C(11)	0.23(18)
C(8)-C(9)-C(10)-C(11)	178.65(17)
C(4)-C(5)-C(10)-C(9)	-177.20(16)
C(6)-C(5)-C(10)-C(9)	2.5(2)
C(4)-C(5)-C(10)-C(11)	2.7(3)
C(6)-C(5)-C(10)-C(11)	-177.57(18)
C(9)-C(10)-C(11)-C(12)	-1.33(17)
C(5)-C(10)-C(11)-C(12)	178.74(18)
C(9)-C(10)-C(11)-C(19)	173.30(19)
C(5)-C(10)-C(11)-C(19)	-6.6(3)
C(9)-O(1)-C(12)-C(11)	-1.87(18)
C(9)-O(1)-C(12)-C(13)	176.61(13)
C(19)-C(11)-C(12)-O(1)	-173.40(15)
C(10)-C(11)-C(12)-O(1)	2.01(18)
C(19)-C(11)-C(12)-C(13)	8.6(3)
C(10)-C(11)-C(12)-C(13)	-176.02(17)

O(1)-C(12)-C(13)-C(14)	-138.08(16)
C(11)-C(12)-C(13)-C(14)	39.9(3)
O(1)-C(12)-C(13)-C(18)	38.3(2)
C(11)-C(12)-C(13)-C(18)	-143.7(2)
C(18)-C(13)-C(14)-C(15)	1.6(2)
C(12)-C(13)-C(14)-C(15)	178.04(16)
C(13)-C(14)-C(15)-C(16)	-1.3(3)
C(20)-O(3)-C(16)-C(15)	0.3(2)
C(20)-O(3)-C(16)-C(17)	179.63(16)
C(14)-C(15)-C(16)-O(3)	179.89(15)
C(14)-C(15)-C(16)-C(17)	0.5(3)
O(3)-C(16)-C(17)-C(18)	-179.51(15)
C(15)-C(16)-C(17)-C(18)	-0.1(3)
C(16)-C(17)-C(18)-C(13)	0.4(3)
C(14)-C(13)-C(18)-C(17)	-1.2(3)
C(12)-C(13)-C(18)-C(17)	-177.72(16)
C(12)-C(11)-C(19)-O(2)	-177.11(19)
C(10)-C(11)-C(19)-O(2)	8.9(3)

Symmetry transformations used to generate equivalent atoms: