## **Electronic Supplementary Information**

## **Experimental Section**

*Materials:* Potassium chromate (K<sub>2</sub>CrO<sub>4</sub>) was purchased from Sinopharm Chemical Reagent Co.,Ltd. The FeCl<sub>2</sub>·6H<sub>2</sub>O was purchased from Beijing Chemical Corp (China). Nafion (5 wt%) solution, RuCl<sub>3</sub>·3H<sub>2</sub>O was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Hydrochloric acid (HCl), ethanol was purchased from Aladdin Ltd. (Shanghai, China). All reagents were used as received. The water used throughout all experiments was purified through a Millipore system. NF was purchased from Suzhou Taili New Energy Co., Ltd. The NF was cleaned according to the method described in a previous study.<sup>1</sup> Briefly, the NF (3 cm  $\times$  2 cm  $\times$  0.1 cm) was washed ultrasonically in acetone (15 mL) for 10 min and then aqueous HCl (3 M, 15 mL) for 10 min, followed by rinsing with water and ethanol and then air drying at 60 °C for 24 h.

Preparation of Fe-doped NiCr<sub>2</sub>O<sub>4</sub> nanoparticle film on Ni foam (Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF): Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF was synthesized using an in situ hydrothermal method. Typically, K<sub>2</sub>CrO<sub>4</sub> and FeCl<sub>2</sub>·6H<sub>2</sub>O were dissolved in 40 mL deionized water under mechanical stirring. Then, the resulting solution was transferred to a 50-mL Teflon-lined autoclave containing a piece of clean NF (2 cm × 3 cm). The autoclave was then heated at 180 °C for 24 h. After cooling to room temperature naturally, the Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF precursor product was washed with distilled water and ethanol several times, and then dried in air at 60 °C for 24 h. Finally, the Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF precursor products were annealed at 300 °C in air for 2 h for Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF. As a contrast, Fe<sub>0.05</sub>-NiCr<sub>2</sub>O<sub>4</sub>/NF and Fe<sub>0.15</sub>-NiCr<sub>2</sub>O<sub>4</sub>/NF were prepared by varying the molar amount of FeCl<sub>2</sub> in solutions, under otherwise identical experimental conditions used for preparing Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF. The actual Fe:Ni ratios in the products were determined by ICP-MS. The synthesis method of NiCr<sub>2</sub>O<sub>4</sub>/NF is the same as that of Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF, except that there is no FeCl<sub>2</sub> in solutions.

*Preparation of RuO*<sub>2</sub> *electrode:* RuO<sub>2</sub> catalyst was prepared according to reported method.<sup>1</sup> In brief, 0.01 mol of RuCl<sub>3</sub>·3H<sub>2</sub>O was dissolved in 100 mL water and stirred

for 10 min at 100 °C. Then 1 mL KOH solution (1.0 M) was added to the solution and stirring for 45 min at 100 °C. After that, the solution was centrifuged for 10 minutes and filtered. The precipitate was washed several times with water and then dried for 5 h at 80 °C. The dry product was calcined in air at 300 °C for 3 h to obtain RuO<sub>2</sub>. To prepare RuO<sub>2</sub> loaded electrodes, 20 mg RuO<sub>2</sub> and 10  $\mu$ L 5 wt% Nafion solution were dispersed in 1 mL 1:1 v water/ethanol solvent by 30 min sonication to form an ink finally.

## Characterizations

Powder XRD data were acquired on a RigakuD/MAX 2550 diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =1.5418 Å). SEM measurements were carried out on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. TEM measurements were performed on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. XPS data were acquired on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the excitation source. *Electrochemical measurements:* Electrochemical measurements were performed with a CHI 660D electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system using Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF (0.5 cm  $\times$  0.5 cm  $\times$ 0.1 cm) as the working electrode, a graphite plate as the counter electrode and an Hg/HgO electrode as the reference electrode. Electrochemical characterization of the Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF catalysts was carried out in 1.0 M KOH electrolytes. Optical photographs of the equipment shows in Fig. S. All potentials measured were calibrated to RHE using the following equation:

$$E (RHE) = E (Hg/HgO) + 0.098 V + 0.059 \times pH$$
 (E-1)

All electrolytes were saturated by oxygen bubbles before and during the experiments. The long-term durability test was performed using chronopotentiometric measurements. Electrochemical data were corrected for the uncompensated series resistance  $R_s$ , which was determined through fitting of AC impedance data to a modified Randles circuit. The value of  $R_s$  was 2.7 in 1.0 M KOH. The potential was determined by the following equation:

$$E_{\text{corrected}} = E_{\text{uncorrected}} - i \times R_{\text{s}}$$
(E-2)

Where i is the current.

*Tafel plots calculation*: The Tafel plots are employed to evaluate the OER catalytic kinetics and fitted with the following equation:

$$\eta = b \log j + a \tag{E-3}$$

Where *j* is the current density and b is the Tafel slope.

*TOF calculation*: The TOF is quantified the concentration of active site and calculated by the following equation:

$$TOF = \frac{jA}{4Fm}$$
(E-4)

Where *j* is current density (A cm<sup>-2</sup>) at defined overpotential; A is the geometric area of the testing electrode; 4 indicates the mole of electrons consumed for evolving one mole  $O_2$  from water; F is the Faradic constant (96485 C mol<sup>-1</sup>); m is the number of active sites (mol), which can be extracted from the linear relationship between the oxidation peak currents and scan rates by the following equation:

slope = 
$$\frac{n^2 F^2 m}{4RT}$$
 (E-5)

Where n is the numbers of electron transferred; R and T are the ideal gas constant and the absolute temperature, respectively.

*Determination of FE:* The oxygen generated at anode was confirmed by gas chromatography (GC) analysis and measured quantitatively by using a calibratedpressure sensor to monitor the pressure change in the anode compartment of a H-type electrolytic cell. The FE was calculated by comparing the amount of experimentally measured oxygen generated by potentiostatic anodic electrolysis with theoretically calculated oxygen (assuming 100% FE). GC analysis was carried out on GC-2014C (Shimadzu Co.) with thermal conductivity detector and nitrogen carrier gas. Pressure data during electrolysis were recorded using a CEM DT-8890 Differential Air Pressure Gauge Manometer Data Logger Meter Tester with a sampling interval of one point per second.



**Fig. S1.** XRD patterns of the sample after  $K_2CrO_4$  and  $FeCl_2$  mixing (raw material), Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF precursor.



**Fig. S2.** EDX spectrum for Fe-NiCr<sub>2</sub>O<sub>4</sub>.



Fig. S3. SEM image of bare NF.



**Fig. S4.** SEM image of Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF.



Fig. S5. XPS survey spectrum for Fe-NiCr<sub>2</sub>O<sub>4</sub>.





Optical

photograph of OER catalyzed by Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF.



Fig. S7. (a) XRD patterns and (b) SEM image of  $RuO_2$ .



**Fig. S8.** SEM images of (a)  $Fe_{0.05}$ -NiCr<sub>2</sub>O<sub>4</sub>/NF, (b) Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF, and (c)  $Fe_{0.15}$ -NiCr<sub>2</sub>O<sub>4</sub>/NF. (d) Corresponding LSV curves. HRTEM images of (e)  $Fe_{0.05}$ -NiCr<sub>2</sub>O<sub>4</sub>, (f) Fe-NiCr<sub>2</sub>O<sub>4</sub>, and (g)  $Fe_{0.15}$ -NiCr<sub>2</sub>O<sub>4</sub>. (h) Corresponding XRD patterns.



Fig. S9. LSV curves for Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF in 30% KOH, 1.0 M KOH and 1.0 PBS.



Fig. S10. TEM image of Fe-Ni $Cr_2O_4$  after water oxidation.



**Fig. S11.** (a) CVs for Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF under different scan rates from 10 to 50 mV s<sup>-1</sup> in 1.0 M KOH. (b) Linear relationship of the peak currents *vs.* scan rates. (c) TOF values for Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF at different fixed overpotentials.



Fig. S12. The amount of oxygen theoretically calculated and experimentally measured versus time for Fe-NiCr<sub>2</sub>O<sub>4</sub>/NF in 1.0 M KOH.

**Table S1.** Comparison of OER performance for Fe-Ni $Cr_2O_4$ /NF with other Nibased OER catalysts in alkaline media.

| Catalyst                                                           | Electrolyte | Tafel slope     | j (mA              | $\eta$ at the   | Ref. |
|--------------------------------------------------------------------|-------------|-----------------|--------------------|-----------------|------|
|                                                                    |             | $(mV dec^{-1})$ | cm <sup>-2</sup> ) | corresponding j |      |
|                                                                    |             |                 |                    | (mV)            |      |
| Ni-NiO                                                             | 1.0 M KOH   | 90              | 10                 | 370             | 2    |
| Ni-NiO-CNT                                                         | 1.0 M KOH   | 80              | 10                 | 320             | 2    |
| NiO <sub>x</sub>                                                   | 1.0 M NaOH  | -               | 10                 | 420             | 3    |
| NiFeO <sub>x</sub>                                                 | 1.0 M NaOH  | -               | 10                 | 350             | 3    |
| NiCo@NiCoO <sub>x</sub>                                            | 1.0 M KOH   | 31              | 10                 | 295             | 4    |
| Fe <sub>0.5</sub> Ni <sub>0.5</sub> Co <sub>2</sub> O <sub>4</sub> | 1.0 M KOH   | 27              | 10                 | 350             | 5    |
| Ni <sup>2+</sup> /MnO <sub>2</sub>                                 | 1.0 M KOH   | 60              | 10                 | 400             | 6    |
| MnNi <sub>x</sub> O <sub>x</sub>                                   | 0.1 M KOH   | -               | 10                 | 430             | 7    |
| Ni <sub>3</sub> FeN-NPs                                            | 1.0 M KOH   | 46              | 10                 | 280             | 8    |
| Fe-CoP/Ti                                                          | 1.0 M KOH   | 67              | 10                 | 230             | 9    |
| NiFe/NF                                                            | 1 M KOH     | 28              | 80                 | 270             | 10   |
|                                                                    | 0.1 M KOH   | 33              | 20                 | 270             | 10   |
| Fe-NiSe/FeNi                                                       |             | 65              | 50                 | 245             | 11   |
| foam                                                               |             | 03              | 100                | 264             | 11   |
| <sup>s</sup> Au/NiFe LDH                                           | 1.0 M KOH   | -               | 10                 | 237             | 12   |
| Fe-NiCr <sub>2</sub> O <sub>4</sub> /NF                            | 1.0 M KOH   | 57              | 20                 | 228             | This |
|                                                                    |             |                 | 500                | 318             | work |

## References

- C. Tang, L. Xie, K. Wang, G. Du, A. M. Asiri, Y. Luo and X. Sun, J. Mater. Chem. A, 2016, 4, 12407–12410.
- I. Elizabeth, A. K. Nair, B. P. Singh and S. Gopukumar, *Electrochim. Acta*, 2017, 230, 98–105.
- 3 C. C. L. Mccrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977–16987.
- 4 L. Wu, W. Wu, J. Xia, H. Cao, G. Hou, Y. Tang and G. Zheng, *Electrochem. Acta*, 2017, **254**, 337–347.
- 5 K. Yan, X. Shang, Z. Li, B. Dong, X. Li, W. Gao, J. Chi, Y. Chai and C. Liu, *Appl. Surf. Sci.*, 2017, **416**, 371–378.
- A. C. Thenuwara, E. B. Cerkez, S. L. Shumlas, N. H. Attanayake, I. G. McKendry, L. Frazer, E. Borguet, Q. Kang, R. C. Remsing, M. L. Klein, M. J. Zdilla and D. R. Strongin, *Angew. Chem. Int. Ed.*, 2016, 55, 10381–13385.
- M. Ledendecker, G. Clavel, M. Antonietti and M. Shalom, *Adv. Funct. Mater.* 2015, 25,393–399.
- X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L. Wu,
  C. Tung and T. Zhang, *Adv. Energy Mater.*, 2016, 6, 1502585.
- 9 C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, *Adv. Mater.*, 2017, **29**, 1602441.
- 10 X. Lu and C. Zhao, Nat. Commun., 2015, 6, 6616.
- 11 C. Tang, A. M. Asirib and X. Sun, Chem. Commun., 2016, 52, 4529–4532.
- 12 J. Zhang, J. Liu, L. Xi, Y. Yu, N, Chen, S. Sun, W. Wang, K. M. Lange and B. Zhang, J. Am. Chem. Soc., 2018, 140, 3876–3879.