ELECTRONIC SUPPLEMENTARY INFORMATION

to

A [Cr₂Ni] 1D coordination polymer: slow relaxation of magnetization in quasi onedimensional ferromagnetic chains †

Eirini Fotopoulou,^{*a*} Jose Martínez-Lillo,^{*b,c*} Milosz Siczek,^{*d*} Tadeusz Lis,^{*d*} Vassilis Tangoulis,^{*e*,*} Marco Evangelisti,^{*f*,*} Euan K. Brechin^{*b*,*} and Constantinos J. Milios^{*a*,*}

^a Department Of Chemistry, University of Crete, Voutes 71003, Herakleion, Greece. Fax: +30-2810-545001; Tel: +30-2810-545099; E-mail: <u>komil@uoc.gr</u>.

^b EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.

^c Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José
 Beltrán nº 2, 46980 Paterna (València), Spain

^d Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland.

^e Department of Chemistry, University of Patras, 265 04 Patras, Greece.

^f Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, 50009 Zaragoza, Spain.

Synthesis of 1.

 $[Cr^{III}_{3}O(OAc)_{6}(H_{2}O)_{3}]NO_{3}AcOH (0.33 mmol, 232mgs), NiCl_{2}·6H_{2}O (1.0 mmol, 237 mgs), aibH (1.0 mmol, 103 mgs), 2-OH-naphthaldehyde (1.0 mmol, 172 mgs) and NEt_{3} (2.0 mmol) were added in MeOH and the solution was then transferred to a Teflon$ $lined autoclave and kept at 120 °C for 14 hours. After slow cooling to room temperature single crystals of the {<math>[Cr^{III}_{2}Ni(L)_{4}(MeOH)_{2}]_{n}$ (1) (L = the dianion of the Schiff base between 2-hydroxynaphthaldehyde and 2-amino-isobutyric acid) formula were obtained in good yield.

C, H, N analysis: Anal. Calcd for C₆₂H₆₀Cr₂N₄NiO₁₄ (1): C, 59.67; H, 4.84; N, 4.49%. Found: C, 59.58; H, 4.71; N 4.43%.

Table S1 Dimensions of the unique weak intra-ribbon interactions (distances in Å and angles in °) for complex **1**.

D ^a -H···A ^b	$H \cdots A^b$	$D^{a}\cdots A^{b}$	<daha<sup>b</daha<sup>
01M-H1M…015A	1.94(4)	2.709(3)	157(4)
C1M-H1M1…O16A [1-x,1-y,1-z]	2.53	3.025(3)	111
C13B-H13E····O1M [1+x,y,z]	2.43	3.373(4)	161
C14B-H14E…O16A [2-x,1-y,1-z]	2.52	3.371(4)	146

 $a \overline{D = \text{donor atom}, b A = \text{acceptor atom}.}$

Table S2 Dimensions of the unique weak inter-ribbon interactions (distances in Å and angles in °) for complex **1**.

D ^a -H···A ^b	$H \cdots A^b$	$D^{a}\cdots A^{b}$	<daha<sup>b</daha<sup>
C3B-H3B····O2B [1-x,1-y,-z]	2.58	3.347(4)	139

a D = donor atom, ^b A = acceptor atom.
 ^c Cg1: π (C1B-C2B-C3B-C4B-C10B-C9B)

Fig. S1 EDS analysis of **1**, yielding a Cr : Ni ratio of 1.93, in excellent agreement with the theoretical value of 2.00 expected from the crystal structure.

Fig. S2 The intra-ribbon weak interactions in **1**. Colour code: Cr^{III} = violet, Ni^{II} = green, O=red, N= blue, C= yellow, H= cyan.

Fig. S3 The inter-ribbon weak interactions in **1**. Colour code: Cr^{III} = violet, Ni^{II} = green, O=red, N= blue, C= yellow, H= cyan.

Fig. S4 Reduced magnetization *vs. H* (upper plot) and vs. *H*/*T* for complex **1** in the 1 - 7 T and 2.0 - 7.0 K field and temperature range. The solid lines are the fitting results using the giant model for an S=4 state with D=-0.01 cm⁻¹ and g=1.93(1).

Fig. S5 Plot of the out-of-phase χ_M " signals for 1 vs. v at the indicated temperatures.

Fig. S6 Arrhenius plot using the ac data for complex **1**. The solid line is a fit of the data - see the main text for details.

Fig. S7 Cole-Cole plot for complex **1** in the 5.4-6.6 K temperature range. The solid lines correspond to a distribution of single relaxation processes.

GENERAL DETAILS FOR MONTE CARLO STUDY.

The stochastic series expansion (SSE) algorithm¹, is a generalization of Handscomb's algorithm² for the Heisenberg model. While in the original implementation¹ local MC updates were used, Sandvik later developed a cluster update, called the operator-loop update for the SSE representation³, which allows for non-local changes of MC configurations. Within this SSE approach one can efficiently simulate models for which the world line loop algorithm suffers from slowing down.

[1] (a) A. W. Sandvik and J. Kurkijarvi, *Phys. Rev.* 1991, B43, 5950 (b) A. W. Sandvik,
J. Phys. 1992, A25, 3667.

[2] D. C. Handscomb, Proc. Cambridge Phil. Soc. 1962, 58, 594; 1964,60, 115.

[3] A. W. Sandvik, Phys. Rev. 1999, B59, R14157