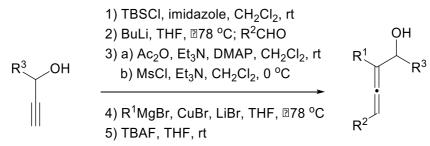
## Supporting Information

# Synthesis of multiple-substituted dihydrofurans via palladium-catalysed coupling between 2,3-alkadienols and pronucleophiles

Hirokazu Tsukamoto\*, Kazuya Ito, and Takayuki Doi Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-aza aoba 6-3, Aoba-ku, Sendai 980-8578, Japan E-mail: hirokazu@mail.pharm.tohoku.ac.jp

Contents:

| General Information     | S-1  |
|-------------------------|------|
| Experimental Procedures | S-3  |
| References              | S-32 |
| NMR spectra             | S-33 |


### **General Information**

All commercially available reagents and anhydrous solvents including tetrahydrofuran (THF), dichloromethane (DCM), 1,4-dioxane, and cyclohexane were purchased and used without further purification. Anhydrous toluene and methanol were obtained by distillation from sodium and magnesium, respectively. All reactions were monitored by thin layer chromatography (TLC) performed on 0.25 silica gel glass plates (60  $F_{254}$ ) using UV light and ethanolic mm *p*-anisaldehyde-sulfuric acid, ethanolic molybdatophosphoric acid, aqueous cerium sulfate-hexaammonium heptamolybdate-sulfuric acid, or aqueous potassium permanganate-potassium carbonate-sodium hydroxide solutions as visualizing agents. Flash column chromatography was carried out with silica gel (spherical, neutral, 100-210 µm grade). Preparative thin layer chromatography were performed on 0.75 mm Wakogel<sup>®</sup> B-5F PLC plates. Yields refer to chromatographically and spectroscopically homogenous materials. Melting points were measured on a melting point apparatus and were uncorrected. Only the strongest and/or structurally important absorptions of infrared (IR) spectra are reported in reciprocal centimeters (cm<sup>-1</sup>). <sup>1</sup>H NMR spectra (400 MHz and 600 MHz), <sup>13</sup>C{<sup>1</sup>H}NMR spectra (100 MHz and 151 MHz), and <sup>31</sup>P{<sup>1</sup>H}NMR spectra (243 MHz) were recorded in the indicated solvent. Chemical shifts (  $\delta$  ) are reported in delta (d) units, parts per million (ppm). Chemical shifts for <sup>1</sup>H NMR spectra are given relative to signals for internal tetramethylsilane (0 ppm) or residual nondeuterated solvents, i.e., chloroform (7.26 ppm). Chemical shifts for <sup>13</sup>C NMR spectra are given relative to the signal for chloroform-d (77.0 ppm). Chemical shifts for <sup>31</sup>P NMR spectra are given relative to the signal for external 85% phosphoric acid (0 ppm). Multiplicities are reported by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (double doublet), dt (double triplet), dq (double quartet), br-s (broad singlet). Coupling constants (J) are represented in hertz (Hz). <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were assigned using a combination of COSY, NOESY, HMQC, and HMBC. Low and high-resolution mass spectra were measured on TOF-MS with EI, FAB, or ESI probe.

#### **Experimental Procedures**

The allenol **1a**<sup>1</sup>, **1b**<sup>2</sup>, **1c**<sup>3</sup>, **1d**<sup>4</sup>, **1f**<sup>5</sup>, and **1i**<sup>6</sup> were prepared according to the literature procedure.

General procedure for synthesis 1e, 1g, and 1h



To a solution of 2-propyn-1-ol (for 1e and 1h) or 3-butyn-2-ol (for 1g) (1.0 equiv) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (0.5 M) were added TBSCl (1.3 equiv) and imidazole (1.3 equiv) at 0 °C under argon. The resulting mixture was warmed to room temperature and stirred at the same temperature for 4 h. Then, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl and extracted with EtOAc, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude TBS ehter, which was used for the next step without further purification.

To a solution of the crude TBS ether (1.0 equiv) in anhydrous THF (0.5 M) was added BuLi (2.6 M in hexane) (1.1 equiv) at -78 °C under argon. The mixture was stirred at the same temperature for 30 min before addition of benzaldehyde (for 1e, 1.2 equiv) or acetaldehyde (for 1g and 1h, 2 equiv) at -78 °C. The resulting mixture was warmed to 0 °C and stirred at the same temperature for 1 h. Then, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl, extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude propargyl alcohol, which was used for the next step without further purification.

To a solution of the crude propargyl alcohol (1.0 equiv) in anhydrous  $CH_2Cl_2$  (0.5 M) were added triethylamine (2.0 equiv), DMAP (0.20 equiv) and  $Ac_2O$  (2.0 equiv) (for **1e**) or triethylamine (2.0 equiv) and MsCl (1.5 equiv) (for **1g** and **1h**) at 0 °C under argon. The resulting mixture was warmed to room temperature and stirred

at the same temperature for 4 h. Then, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl and extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude acetate or mesylate, which was used for the next step without further purification.

To a solution of CuI (2.0 equiv) and LiBr (2.0 equiv) in anhydrous THF (1.0 M) was added 1.0 M MeMgBr (for 1e) or PhMgBr (for 1g and 1h) solution in THF (2.0 equiv) at -78 °C under argon. The mixture was stirred at the same temperature for 30 min before addition of a solution of acetate (for 1g and 1h) or mesylate (for 1e) (1.0 equiv) in anhydrous THF (1.0 M) at -78 °C. After being stirred at the same temperature for 1 h, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl, extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude allene, which was used for the next step without further purification.

To a solution of crude allene (1.0 equiv) in anhydrous THF (0.5 M) was added 1.0 M TBAF solution in THF (1.2 equiv) at 0 °C under argon. The resulting mixture was warmed to room temperature and stirred at the same temperature for 30 min. Then, the reaction mixture was treated with saturated aqueous  $NH_4Cl$ , extracted with EtOAc, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by silica gel column chromatography eluting with 4–10% EtOAc/hexane to give allenol.

2-Methyl-4-phenylbuta-2,3-dien-1-ol (**1e**) was obtained from 2-propyn-1-ol. Each quantity of substrates and products and yield of crude products and isolated ones are shown in Table S1. All the analytical data of **1e** were in good agreement with values reported in the literature.<sup>7</sup>

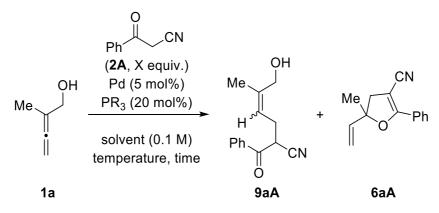
| Table S1 |                                          |                             |                         |  |  |  |
|----------|------------------------------------------|-----------------------------|-------------------------|--|--|--|
| reaction | substrate product<br>(g or mL, mmol) (g) |                             | crude yield             |  |  |  |
| 1        | 2-propyn-1-ol<br>1.77 mL, 30 mmol        | TBS ether 5.20 g            | quant                   |  |  |  |
| 2        | TBS ether<br>1.73 g, 10 mmol             | propargyl alcohol<br>2.80 g | quant                   |  |  |  |
| 3        | propargyl alcohol<br>840 mg, 3.0 mmol    | propargyl acetate<br>960 mg | quant                   |  |  |  |
| 4        | propargyl acetate<br>320 mg, 1.0 mmol    | allene<br>209 mg            | 76%                     |  |  |  |
| 5        | allene<br>318 mg, 1.1 mmol               | <b>1e</b><br>151 mg         | 90%<br>(isolated yield) |  |  |  |

3-Phenylhexa-3,4-dien-2-ol (**1g**) was obtained as an inseparable 1:1 diastereomeric mixture from 3-butyn-2-ol. Each quantity of substrates and products and yield of crude products and isolated ones are shown in Table S2.

| Table S2 |                                                                          |                              |                         |  |  |  |
|----------|--------------------------------------------------------------------------|------------------------------|-------------------------|--|--|--|
| reaction | substrate<br>(mg or μL, mmol)                                            | product<br>(mg)              | crude yield             |  |  |  |
| 1        | 3-propyn-2-ol         TBS ether           784 μL, 10 mmol         1.79 g |                              | 97%                     |  |  |  |
| 2        | TBS ether<br>550 mg, 3.0 mmol                                            | propargyl alcohol<br>686 mg  | quant                   |  |  |  |
| 3        | propargyl alcohol<br>686 mg, 3.0 mmol                                    | propargyl mesylate<br>836 mg | quant                   |  |  |  |
| 4        | propargyl mesylate<br>800 mg, 2.7 mmol                                   | allene<br>830 mg             | 99%                     |  |  |  |
| 5        | allene<br>830 mg, 2.7 mmol                                               | <b>1g</b><br>237 mg          | 50%<br>(isolated yield) |  |  |  |

Table S2

OH Me Me


Coloress oil. Rf = 0.40 (25% EtOAc/hexane). IR (neat): 3384 (br), 2976, 2925, 1948, 1597, 1495, 1448, 1370, 1081, 1026, 966, 903, 875, 761, 694 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, *J* = 7.6 Hz, 2H), 7.30 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 5.62 (q, *J* = 6.8 Hz, 1H), 4.79 (q, *J* = 6.0 Hz, 1H), 2.20–2.03 (m, 1H), 1.83–1.75 (m, 3H), 1.44–1.34 (m, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  202.7, 202.5, 135.49, 135.45, 128.4, 126.8, 126.7, 126.6, 111.2, 111.1, 91.8, 65.8, 65.7, 22.7, 22.6, 14.14, 14.06. LRMS m/z (relative intensity) 174 (M, 35), 145 (25), 129 (100), 115 (94), 183 (52), 77 (27). HRMS (EI) calcd for C<sub>12</sub>H<sub>14</sub>O 174.1045, found 174.1029 (M).

2-Phenylpenta-2,3-dien-1-ol (1h) was obtained from 2-propyn-1-ol. Each quantity of

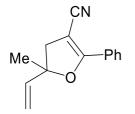
substrates and products and yield of crude products and isolated ones are shown in Table S3. All the analytical data of **1h** were in good agreement with values reported in the literature.<sup>8</sup>

|          | Table S3                               |                              |                         |  |  |  |  |
|----------|----------------------------------------|------------------------------|-------------------------|--|--|--|--|
| reaction | substrate<br>(g or mL, mmol)           | crude yield                  |                         |  |  |  |  |
| 1        | 2-propyn-1-ol<br>1.77 mL, 30 mmol      | TBS ether<br>5.20 g          | quant                   |  |  |  |  |
| 2        | TBS ether<br>2.60 g, 15 mmol           | propargyl alcohol<br>3.30 g  | quant                   |  |  |  |  |
| 3        | propargyl alcohol<br>1.71 g, 7.8 mmol  | propargyl mesylate<br>2.28 g | quant                   |  |  |  |  |
| 4        | propargyl mesylate<br>2.00 g, 6.7 mmol | allene<br>2.06 g             | quant                   |  |  |  |  |
| 5        | allene<br>2.06 g, 6.7 mmol             | <b>1h</b><br>685 mg          | 64%<br>(isolated yield) |  |  |  |  |

General procedure for optimization of reaction conditions for the coupling reaction between **1a** and **2A** (Table 1 and S4)

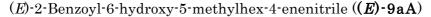


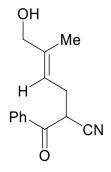
To a test tube containing allenic alcohol **1a** (1 equiv), benzoylacetonitrile (**2A**) (X


equiv), and Pd(PPh<sub>3</sub>)<sub>4</sub> (5 mol%) was added anhydrous solvent (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 65 °C (entries 1– 5), 50 °C (entry 6), or 80 °C (entries 7–10) for the time described in Table S4. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 25% EtOAc/hexane to give **6aA** and 1.2:1 (*E*)- and (*Z*)-mixture of **9aA**, the latter of which can be separated by preparative TLC eluting with 50% EtOAc/hexane.

| Table 54 |                              |                   |                            |                                            |             |                       |                       |
|----------|------------------------------|-------------------|----------------------------|--------------------------------------------|-------------|-----------------------|-----------------------|
| entry    | solvent                      | <b>1a</b><br>(mg) | <b>2A</b><br>(mg, X equiv) | Pd(PPh <sub>3</sub> ) <sub>4</sub><br>(mg) | time<br>(h) | <b>9aA</b><br>(mg, %) | <b>6aA</b><br>(mg, %) |
| 1        | toluene                      | 8.4               | 29.0, 2.0                  | 5.9                                        | 4           | 12.3, 54              | trace                 |
| 2        | THF                          | 8.4               | 29.0, 2.0                  | 5.9                                        | 2           | 16.0, 70              | trace                 |
| 3        | 1,4-dioxane                  | 8.4               | 29.0, 2.0                  | 5.9                                        | 2           | 14.7, 64              | trace                 |
| 4        | $\mathrm{CH}_2\mathrm{Cl}_2$ | 8.4               | 29.0, 2.0                  | 5.9                                        | 2           | 14.3, 63              | 1.0, 5                |
| 5        | MeOH                         | 8.4               | 29.0, 2.0                  | 5.9                                        | 4           | 4.1, 18               | 12.2, 58              |
| 6        | MeOH                         | 8.4               | 29.0, 2.0                  | 5.9                                        | 36          | 1.6, 7                | 4.6, 22               |
| 7        | MeOH                         | 8.4               | 29.0, 2.0                  | 5.9                                        | 1.5         | 2.7, 12               | 14.3, 68              |
| 8        | MeOH                         | 8.4               | 21.8, 1.5                  | 5.9                                        | 28          | 2.8, 12               | 8.0, 38               |
| 9        | MeOH                         | 8.4               | 44.0, 3.0                  | 5.9                                        | 1           | 5.7, 25               | 8.9, 42               |
| 10       | MeOH                         | 42.0              | 14.5, 0.2                  | 5.9                                        | 24          | 0, 0                  | 0, 0                  |

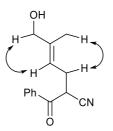
| Га | ble | $\mathbf{S4}$ |
|----|-----|---------------|
|    |     |               |


r


5-Methyl-2-phenyl-5-vinyl-4,5-dihydrofuran-3-carbonitrile (6aA)

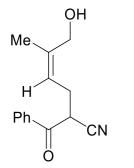


Colorless oil. Rf = 0.55 (20% EtOAc/hexane). IR (neat): 2978, 2929, 2864, 2204, 1620, 1496, 1448, 1351, 1263, 1074, 929, 771, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.97


(dd, J = 8.0, 1.6 Hz, 2H), 7.48–7.41 (m, 3H), 6.01 (dd, J = 10.8, 17.2 Hz, 1H), 5.32 (d, J = 17.2 Hz, 1H), 5.18 (d, J = 10.8 Hz, 1H), 3.05 (d, J = 14.4 Hz, 1H), 2.92 (d, J = 14.4 Hz, 1H), 1.59 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.7, 140.2, 131.3, 128.6, 128.2, 127.1, 117.8, 113.7, 88.3, 78.4, 43.4, 26.1. LRMS m/z (relative intensity) 211 (M, 64), 182 (43), 168 (26), 105 (100). HRMS (EI) calcd for C<sub>14</sub>H<sub>13</sub>NO 211.0997, found 211.0996 (M).

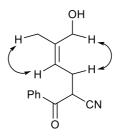





Colorless oil. Rf = 0.40 (50% EtOAc/hexane). IR (neat): 3391(br), 2922, 2251, 2209, 2179, 1693, 1597, 1448, 1261, 1226, 1002, 699 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.97 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.53 (dd, J = 7.6, 7.6 Hz, 2H), 5.52 (t, J = 7.2 Hz, 1H), 4.37 (t, J = 7.2 Hz, 1H), 4.04–4.02 (m, 2H), 2.81–2.75 (m, 2H), 1.86–1.79 (m, 1H), 1.68 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  190.3, 140.2, 134.6, 134.0, 129.1, 128.8, 118.1, 117.1, 67.9, 39.8, 27.9, 13.9. LRMS m/z (relative intensity) 211 (M–H<sub>2</sub>O, 2), 196 (2), 146 (4), 105 (100) , 105 (100), 77 (21). HRMS (EI) calcd for C<sub>14</sub>H<sub>13</sub>NO 211.0997, found 211.1011 (M–H<sub>2</sub>O).

The E-configuration of **9aA** was determined by NOESY correlation as shown below.



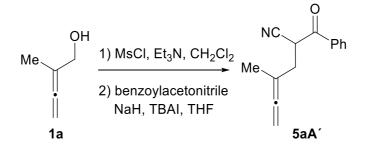

NOESY correlation of (E)-9aA

(Z)-2-Benzoyl-6-hydroxy-5-methylhex-4-enenitrile ((Z)-9aA)



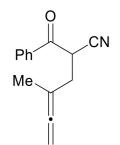
Colorless oil. Rf = 0.45 (50% EtOAc/hexane). IR (neat): 3412(br), 2921, 2250, 2207, 1692, 1597, 1449, 1002, 697 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.53 (dd, *J* = 8.0, 7.6 Hz, 2H), 5.36 (t, *J* = 8.0 Hz, 1H), 4.36 (t, *J* = 6.8 Hz, 1H), 4.16–4.12 (m, 2H), 2.90–2.75 (m, 2H), 1.84 (s, 3H), 1.69–1.64 (m, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 190.2, 140.4, 134.6, 134.0, 129.1, 128.8, 120.9, 117.4, 61.4, 40.2, 27.8, 21.6. LRMS m/z (relative intensity) 211 (M–H<sub>2</sub>O, 2), 196 (6), 149 (17), 105 (100), 77 (19). HRMS (EI) calcd for C<sub>14</sub>H<sub>13</sub>NO 211.0997, found 211.0978 (M–H<sub>2</sub>O).

The Z-configuration of 9aA was determined by NOESY correlation as shown below.

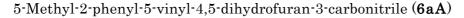


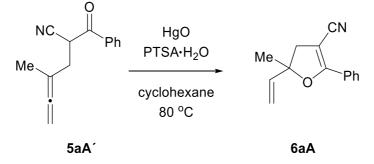

NOESY correlation of (Z)-9aA

S-10

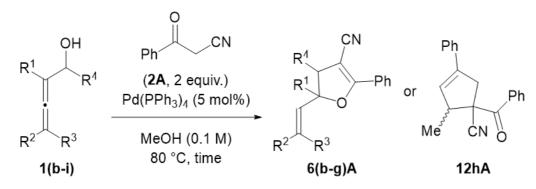

Conventional synthesis of **6aA** for the structure determination

2-Benzoyl-4-methylhexa-4,5-dienenitrile (5aA')





To a solution of 1a (42.1 mg, 0.50 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were added Et<sub>3</sub>N (210 µL, 1.5 mmol) and MsCl (145 µL, 1.5 mmol) at 0 °C. After being stirred at the same temperature for 15 min, the reaction mixture was treated with saturated aqueous NaHCO<sub>3</sub>. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude mesylate, which was used for the next reaction without further purification.

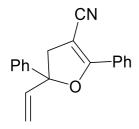
To a solution of benzoylacetonitrile (2A) (290 mg, 2.00 mmol) in anhydrous THF (5 mL) was added NaH (60% dispersion in mineral oil, 80 mg, 2.0 mmol) at 0 °C. The mixture was stirred at the same temperature for 30 min before addition of a solution of the crude mesylate in THF (1 mL) and TBAI (277 mg, 0.75 mmol) at 0 °C. The resulting mixture was warmed to room temperature and stirred for 1.5 h. Then, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl, extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*, The residue was purified by silica gel column chromatography eluting with 4–20% EtOAc/hexane to give 2-benzoyl-4-methylhexa-4,5-dienenitrile (**5aA'**) (33.8 mg, 32%).




Colorless oil. Rf = 0.55 (25% EtOAc/hexane). IR (neat): 3382, 3062, 2983, 2921, 2242, 2207, 1961, 1697, 1597, 1448, 1256, 858, 694 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.98 (d, J = 8.4 Hz, 2H), 7.65 (t, J = 6.8 Hz, 1H), 7.52 (dd, J = 8.4, 6.8 Hz, 2H), 4.85–4.77 (m, 1H), 4.74–4.66 (m, 1H), 4.46 (dd, J = 8.0, 6.0 Hz, 1H), 2.78–2.67 (m, 1H), 2.60–2.50 (m, 1H), 1.78 (t, J = 2.8 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  205.4, 189.9, 134.4, 134.2, 129.0, 128.7, 117.2, 95.3, 77.9, 37.7, 32.4, 18.8. LRMS m/z (relative intensity) 211 (M, 21), 196 (13), 145 (10), 105 (100), 77 (33). HRMS (EI) calcd for C<sub>14</sub>H<sub>13</sub>NO 211.0997, found 211.0962 (M).



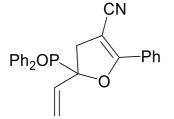



To a test tube containing **5aA'** (12.7 mg, 0.0600 mmol), HgO (1.3 mg, 10 mol%), and PTSA·H<sub>2</sub>O (1.2 mg, 12 mol%) was added anhydrous cyclohexane (0.6 mL) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 3 h. The reaction mixture was cooled to room temperature and basified with saturated aqueous NaHCO<sub>3</sub>. The mixture was extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give **6aA** (12.5 mg, 98%). General procedure for the dehydrative coupling between **1b**-i and **2A** (Table 2 and S5)



To a test tube containing allenic alcohol 1b-1i (1 equiv), benzoylacetonitrile (2A) (2 equiv), and Pd(PPh<sub>3</sub>)<sub>4</sub> (5 mol%) was added anhydrous MeOH (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for the time described in Table S5. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC to give 6(b-g)A or 12hA.

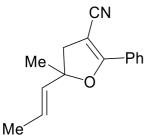
|       | Table S5         |       |                                    |      |                                  |  |  |
|-------|------------------|-------|------------------------------------|------|----------------------------------|--|--|
| ontar | 1                | 2A    | Pd(PPh <sub>3</sub> ) <sub>4</sub> | time | product                          |  |  |
| entry | (mg)             | ( mg) | (mg)                               | (h)  | (mg, %)                          |  |  |
| 1     | <b>1b</b> , 14.0 | 29.0  | 5.9                                | 1.5  | <b>6bA</b> , 19.2, 71            |  |  |
| 2     | 1c, 22.7         | 24.4  | 5.0                                | 1.5  | <b>6cA</b> , 15.7,47             |  |  |
| 3     | <b>1d</b> , 9.8  | 29.0  | 5.9                                | 1.5  | <b>6dA</b> , 10.1, 45            |  |  |
| 4     | <b>1e</b> , 16.0 | 29.0  | 5.9                                | 1.5  | <b>6eA</b> , 12.3, 43            |  |  |
| 5     | <b>1f</b> , 17.4 | 29.0  | 5.9                                | 1.5  | <b>6fA</b> , 19.5, 65            |  |  |
| 6     | <b>1g</b> , 17.4 | 29.0  | 5.8                                | 1.5  | <b>6gA</b> , 22.2, 74 (dr = 1:1) |  |  |
|       |                  |       |                                    |      | <b>12hA</b> , major : 12.8, 45   |  |  |
| 7     | <b>1h</b> , 16.0 | 29.0  | 5.9                                | 2.0  | minor : 10.2, 35                 |  |  |
| 8     | <b>1i</b> , 7.0  | 29.0  | 5.9                                | 24   | 0, 0                             |  |  |


2,5-Diphenyl-5-vinyl-4,5-dihydrofuran-3-carbonitrile (6bA)



Isolated by preparative TLC eluting with 25% EtOAc/hexane

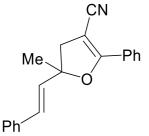
Pale yellow oil. Rf = 0.60 (20% EtOAc/hexane). IR (neat): 3060, 2925, 2204, 1624, 1495, 1448, 1350, 1261, 1151, 1076, 930, 771, 690 cm<sup>-1</sup>.<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.07 (dd, J = 8.0, 1.6 Hz, 2H), 7.53–7.45 (m, 3H), 7.45–7.30 (m, 5H), 6.19 (dd, J = 10.4, 17.6 Hz, 1H), 5.31 (d, J = 17.6 Hz, 1H), 5.27 (d, J = 10.4 Hz, 1H), 3.44 (d, J = 14.4 Hz, 1H), 3.39 (d, J = 14.4 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.4, 142.5, 139.6, 131.5, 128.8, 128.7, 128.04, 127.98, 127.1, 125.0, 117.4, 114.7, 91.2, 78.8, 44.1. LRMS m/z (relative intensity) 273 (M, 83), 244 (61), 168 (42), 105 (100). HRMS (EI) calcd for C<sub>19</sub>H<sub>15</sub>NO 273.1154, found 273.1149 (M).


5-(Diphenylphosphoryl)-2-phenyl-5-vinyl-4,5-dihydrofuran-3-carbonitrile (6cA)



Isolated by preparative TLC eluting with 50% EtOAc/hexane

Colorless oil. Rf = 0.55 (50% EtOAc/hexane). IR (neat): 3443, 3060, 2208, 1628, 1438, 1346, 1256, 1197, 1117, 931, 753, 725, 698 cm<sup>-1</sup>. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (dd, J = 10.8, 7.6 Hz, 2H), 7.87 (dd, J = 10.8, 7.6 Hz, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.56–7.45 (m, 6H), 7.38 (ddd, J = 7.6, 7.6, 3.2 Hz, 2H), 6.20 (ddd, J = 17.2, 10.8, 3.6 Hz, 1H), 5.42 (dd, J = 17.2, 3.6 Hz, 1H), 5.33 (dd, J = 10.8, 3.6 Hz, 1H), 3.68 (dd, J = 15.0, 19.2 Hz, 1H), 3.16 (dd, J = 15.0, 15.0 Hz, 1H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  165.2 (d, J = 3.2 Hz), 134.5 (d, J = 3.3 Hz), 132.7 (d, J

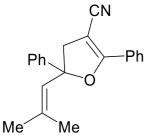

= 2.8 Hz), 132.5 (d, J = 2.8 Hz), 132.2 (d, J = 8.6 Hz), 132.0 (d, J = 8.7 Hz), 131.7, 129.0 (d, J = 91.7 Hz), 128.9, 128.7 (d, J = 11.5 Hz), 128.6 (d, J = 11.8 Hz), 128.4 (d, J = 88.5 Hz), 127.2, 126.8, 117.5 (d, J = 7.3 Hz), 116.2, 89.3 (d, J = 85.8 Hz), 80.4 (d, J = 3.9 Hz), 40.0 (d, J = 2.8 Hz). <sup>31</sup>P-NMR (243 MHz, CDCl<sub>3</sub>):  $\delta$  28.3. HRMS (ESI) calcd for C<sub>25</sub>H<sub>21</sub>NO<sub>2</sub>P 398.1304, found 398.1289 (M+H)<sup>+</sup>.



Isolated by preparative TLC eluting with 25% EtOAc/hexane

Pale yellow oil. Rf = 0.60 (20% EtOAc/hexane). IR (neat): 2974, 2929, 2861, 2204, 1620, 1496, 1448, 1353, 1260, 771, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95 (dd, J = 8.0, 2.0 Hz, 2H), 7.48–7.40 (m, 3H), 5.77 (dq, J = 15.6, 6.0 Hz, 1H), 5.67 (dq, J = 15.6, 1.2 Hz, 1H), 3.03 (d, J = 14.8 Hz, 1H), 2.88 (d, J = 14.8 Hz, 1H), 1.74 (dd, J = 6.0, 1.2 Hz, 3H), 1.56 (s, 3H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  165.7, 133.4, 131.2, 128.6, 128.4, 127.1, 125.3, 118.0, 88.3, 78.3, 43.7, 26.3, 17.7. LRMS m/z (relative intensity) 225 (M, 46), 210 (77), 105 (100). HRMS (EI) calcd for C<sub>15</sub>H<sub>15</sub>NO 225.1154, found 225.1147 (M).

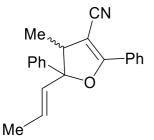
(E)-5-Methyl-2-phenyl-5-styryl-4,5-dihydrofuran-3-carbonitrile (6eA)




Isolated by preparative TLC eluting with 25% EtOAc/hexane

Pale yellow oil. Rf = 0.70 (25% EtOAc/hexane). IR (neat): 3027, 2928, 2863, 2203,

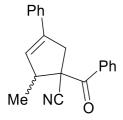
1621, 1495, 1448, 1352, 1259, 1062, 968, 770, 750, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.00 (dd, J = 8.0, 1.2 Hz, 2H), 7.51–7.43 (m, 3H), 7.39 (d, J = 7.2 Hz, 2H), 7.33 (dd, J = 7.2, 7.2 Hz, 2H), 7.26 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.36 (d, J = 16.0 Hz, 1H), 3.16 (d, J = 14.4 Hz, 1H), 3.01 (d, J = 14.4 Hz, 1H), 1.70 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.6, 135.9, 131.4, 131.3, 128.9, 128.7, 128.2, 128.1, 127.1, 126.7, 117.8, 88.4, 78.5, 43.9, 26.5. LRMS m/z (relative intensity) 287 (M, 92), 272 (16), 182 (25), 105 (100). HRMS (EI) calcd for C<sub>20</sub>H<sub>17</sub>NO 287.1310, found 287.1293 (M).


5-(2-Methylprop-1-en-1-yl)-2,5-diphenyl-4,5-dihydrofuran-3-carbonitrile (6fA)



Isolated by preparative TLC eluting with 25% EtOAc/hexane

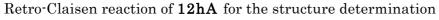
Pale yellow oil. Rf = 0.60 (20% EtOAc/hexane). IR (neat): 3060, 3027, 2914, 2864, 2203, 1624, 1494, 1447, 1349, 1259, 1149, 769, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.05 (dd, J = 8.0, 2.0 Hz, 2H), 7.52–7.42 (m, 3H), 7.42–7.27 (m, 5H), 5.76 (dd, J = 1.2, 1.2 Hz, 1H), 3.42 (d, J = 14.8 Hz, 1H), 3.33 (d, J = 14.8 Hz, 1H), 1.81 (d, J = 1.2 Hz, 3H), 1.61 (d, J = 1.2 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.5, 145.0, 140.3, 131.3, 128.7, 128.6, 128.5, 128.2, 127.6, 127.2, 124.9, 117.7, 90.7, 78.2, 48.2, 26.6, 19.8. HRMS (ESI) calcd for C<sub>21</sub>H<sub>20</sub>NO 302.1539, found 302.1533 (M+H)<sup>+</sup>.

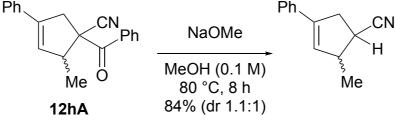

(*E*)-4-Methyl-2,5-diphenyl-5-(prop-1-en-1-yl)-4,5-dihydrofuran-3-carbonitrile (**6gA**)



Isolated as an inseparable 1:1 diastereomeric mixture by preparative TLC eluting with 25% EtOAc/hexane

Colorless oil. Rf = 0.65 (25% EtOAc/hexane). IR (neat): 3060, 3030, 2968, 2931, 2200, 1626, 1495, 1448, 1347, 1245, 1154, 970, 924, 772, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.15–8.04 (m, 2H), 7.52–7.46 (m, 3H), 7.46–7.27 (m, 5H), 5.90 (d, *J* = 15.6 Hz, 0.5H), 5.88–5.72 (m, 0.5H), 5.79 (d, *J* = 15.6 Hz, 0.5H), 5.63 (dq, *J* = 15.6, 6.4 Hz, 0.5H), 3.62 (q, *J* = 7.2 Hz, 0.5H), 3.47 (q, *J* = 7.2 Hz, 0.5H), 1.75 (d, *J* = 6.4 Hz, 1.5H), 1.73 (d, *J* = 6.4 Hz, 1.5H), 1.39 (d, *J* = 7.2 Hz, 1.5H), 0.82 (d, *J* = 7.2 Hz, 1.5H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  164.3, 164.1, 143.9, 139.1, 132.9, 131.4, 129.3, 128.7, 128.5, 128.2, 128.15, 128.13, 128.11, 127.8, 127.7, 127.6, 127.2, 127.11, 127.10, 126.0, 125.9, 124.7, 117.7, 117.4, 93.7, 93.4, 86.2, 86.0, 49.8, 47.6, 17.85, 17.81, 17.1, 16.1. HRMS (ESI) calcd for C<sub>21</sub>H<sub>20</sub>NO 302.1539, found 302.1532 (M+H)<sup>+</sup>.


1-Benzoyl-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile (12hA)



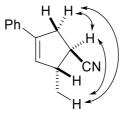

Isolated by preparative TLC eluting with 25% EtOAc/hexane

Faster-moving major diastereomer: Colorless oil. Rf = 0.60 (25% EtOAc/hexane). IR (neat): 3060, 3029, 2969, 2930, 2236, 1696, 1597, 1579, 1496, 1448, 1235, 757, 695 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.15 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.53 (dd, J = 8.4, 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.34 (dd, J = 8.0, 6.8 Hz, 2H), 7.28 (t, J = 6.8 Hz, 1H), 5.98 (s, 1H), 3.76 (q, J = 7.2 Hz, 1H), 3.72 (d, J = 16.4 Hz, 1H), 3.53 (d, J = 16.4 Hz, 1H), 1.52 (d, J = 7.2 Hz, 3H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  191.2, 138.0, 134.2, 133.9, 133.2, 129.6, 128.8, 128.5, 128.1, 127.4, 125.7, 120.4, 54.8, 47.0, 43.1, 17.8. LRMS m/z (relative intensity) 287 (M, 12), 272 (14), 246 (15), 105 (100). HRMS (EI) calcd for C<sub>20</sub>H<sub>17</sub>NO 287.1310, found 287.1302 (M).

Slower-moving minor diastereomer: Colorless oil. Rf = 0.57 (25% EtOAc/hexane). IR (neat): 3060, 3029, 2969, 2930, 2236, 1696, 1597, 1579, 1496, 1448, 1235, 757, 695 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.19 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.55 (dd, J = 8.0, 7.6 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.38 (dd, J = 8.0, 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 6.07 (s, 1H), 4.11 (d, J = 16.4 Hz, 1H), 3.89 (q, J = 6.8 Hz, 1H), 3.14 (d, J = 16.4 Hz, 1H), 0.91 (d, J = 6.8 Hz, 3H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  191.0, 139.1, 134.6, 134.4, 134.1, 129.3, 128.9, 128.6, 128.2, 126.3, 125.8, 123.5, 54.7, 50.8, 40.2, 16.0. LRMS m/z (relative intensity) 287 (M, 12), 272 (14), 246 (15), 105 (100). HRMS (EI) calcd for C<sub>20</sub>H<sub>17</sub>NO 287.1310, found 287.1302 (M).

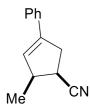





To a test tube containing a 6:5 diastereomeric mixture of **12hA** (28.7 mg, 0.0999 mmol) were added anhydrous MeOH (1.0 mL) and NaOMe (11.0 mg, 0.204 mmol) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 8 h. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with eluting with 20% EtOAc/hexane to give  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile (7.3 mg, 44%) and  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile (6.6 mg, 40%).

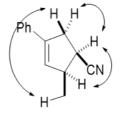
 $(1R^*, 2R^*)$ -2-Methyl-4-phenylcyclopent-3-ene-1-carbonitrile

Ph ĊN Me


Faster-moving major diastereomer: Colorless oil. Rf = 0.55 (20% EtOAc/hexane). IR (neat): 3056, 2961, 2927, 2870, 2238, 1495, 1447, 756, 693 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.39–7.25 (m, 5H), 6.02–6.00 (m, 1H), 3.31–3.26 (m, 1H), 3.26–3.17 (m, 1H), 3.16–3.02 (m, 1H), 2.78–2.67 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  139.6, 134.7, 129.1, 128.5, 127.9, 125.6, 122.3, 46.4, 37.7, 34.6, 19.7. LRMS m/z (relative intensity) 183 (M, 66), 168 (100), 141 (13). HRMS (EI) calcd for C<sub>13</sub>H<sub>13</sub>N 183.1048, found 183.1069 (M).

The *trans*-configuration of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1– carbonitrile was determined by NOESY correlation as shown below.

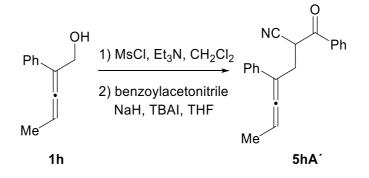



NOESY correlation of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

 $(1R^*, 2S^*)$ -2-Methyl-4-phenylcyclopent-3-ene-1-carbonitrile



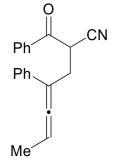
Slower-moving minor diastereomer: Colorless oil. Rf = 0.52 (20% EtOAc/hexane). IR (neat): 3057, 2964, 2929, 2871, 2239, 1495, 1447, 756, 694 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.40–7.24 (m, 5H), 6.07 (ddd, J = 2.0, 2.0, 3.6 Hz. 1H), 3.43–3.36 (m, 1H), 3.21–3.16 (m, 1H), 3.13–3.09 (m, 2H), 1.30 (d, J = 6.8 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  139.3, 134.8, 129.3, 128.5, 127.9, 155.6, 121.0, 41.6, 36.9, 32.5, 17.1. LRMS m/z (relative intensity) 183 (M, 63), 168 (100), 141 (13). HRMS (EI) calcd for C<sub>13</sub>H<sub>13</sub>N 183.1048, found 183.1069 (M).


The *cis*-configuration of  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile was determined by NOESY correlation as shown below.



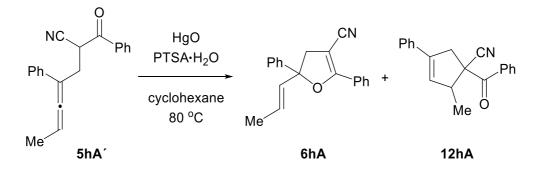
NOESY correlation of  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

Conventional synthesis of 6hA and 12hA for the structure determination


2-Benzoyl-4-phenylhepta-4,5-dienenitrile (5hA')

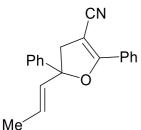


To a solution of **1h** (80.1 mg, 0.50 mmol) in anhydrous  $CH_2Cl_2$  (5 mL) were added Et<sub>3</sub>N (210 µL, 1.5 mmol) and MsCl (145 µL, 1.5 mmol) at 0 °C. After being stirred at the same temperature for 15 min, the reaction mixture was treated with saturated aqueous NaHCO<sub>3</sub>. The mixture was extracted with  $CH_2Cl_2$ , washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude mesylate, which was used for the next reaction without further purification.


To a solution of benzoylacetonitrile (2A) (290 mg, 2.00 mmol) in anhydrous THF (5 mL) was added NaH (60% dispersion in mineral oil, 80 mg, 2.0 mmol) at 0 °C. The mixture was stirred at the same temperature for 30 min before addition of a solution of the crude mesylate in THF (1 mL) and TBAI (277 mg, 0.75 mmol) at 0 °C. The resulting mixture was warmed to room temperature and stirred for 3 h. Then, the reaction mixture was treated with saturated aqueous  $NH_4Cl$ , extracted with

Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by silica gel column chromatography eluting with 3–15% EtOAc/hexane to give 2-benzoyl-4-phenylhepta-4,5-dienenitrile (**5hA'**) as an inseparable diastereomeric mixture (57.5 mg, 45%).

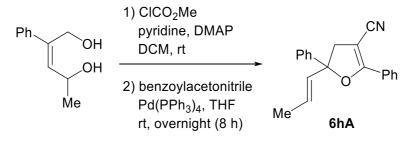



Colorless oil. Rf = 0.55 (20% EtOAc/hexane). IR (neat): 3421, 3062, 3027, 2983, 2936, 2247, 2209, 1964, 1723, 1690, 1598, 1494, 1270, 1231, 757, 699 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.02–7.97 (m, 2H), 7.69–7.61 (m, 1H), 7.55–7.51 (m, 2H), 7.40–7.28 (m, 4H), 7.28–7.21 (m, 1H), 5.66–5.52 (m, 1H), 4.62–4.55 (m, 1H), 3.35 (ddd, *J* = 15.2, 7.2, 3.6 Hz, 0.5H), 3.20 (ddd, *J* = 15.6, 9.2, 3.6 Hz, 0.5H), 3.09 (ddd, *J* = 15.6, 8.4, 2.8 Hz, 0.5H), 3.03 (ddd, *J* = 15.2, 7.2, 2.8 Hz, 0.5H), 1.79 (d, *J* = 6.8 Hz, 1.5H), 1.56 (d, *J* = 6.8 Hz, 1.5H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  204.0, 203.9, 190.1, 189.5, 135.60, 135.55, 134.5, 134.4, 134.2, 129.09, 129.08, 128.8, 128.61, 128.60, 127.3, 125.9, 125.8, 117.1, 101.8, 101.7, 93.1, 92.7, 37.9, 37.3, 29.8, 29.7, 14.1, 14.0. LRMS m/z (relative intensity) 287 (M, 20), 272 (13), 182 (10), 105 (100). HRMS (EI) calcd for C<sub>20</sub>H<sub>17</sub>NO 287.1310, found 287.1307 (M).

(*E*)-2,5-Diphenyl-5-(prop-1-en-1-yl)-4,5-dihydrofuran-3-carbonitrile (**6hA**) and 1-benzoyl-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile (**12hA**)



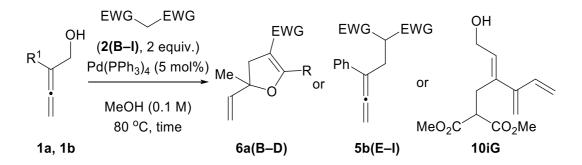
To a test tube containing **5hA'** (14.4 mg, 0.0500 mmol), HgO (1.1 mg, 10 mol%), and PTSA·H<sub>2</sub>O (1.0 mg, 12 mol%) was added anhydrous cyclohexane (0.5 mL) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 3 h. The reaction mixture was cooled to room temperature and basified with saturated aqueous NaHCO<sub>3</sub>. The mixture was extracted with Et<sub>2</sub>O, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 25% EtOAc/hexane to give dihydrofurane **6hA** (1.9 mg, 13%) and cyclopentene **12hA** (9.5 mg, 66%) as fasterand slower-moving components, respectively.


#### (E)-2,5-Diphenyl-5-(prop-1-en-1-yl)-4,5-dihydrofuran-3-carbonitrile (6hA)



Pale yellow oil. Rf = 0.68 (25% EtOAc/hexane). IR (neat): 3060, 3030, 2916, 2855, 2203, 1625, 1495, 1447, 1350, 1258, 1152, 965, 771, 691 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.06 (dd, J = 7.6, 2.0 Hz, 2H), 7.55 – 7.42 (m, 3H), 7.42 – 7.25 (m, 5H), 5.85 (dq, J = 15.2, 1.6 Hz, 1H), 5.68 (dq, J = 6.4, 15.2 Hz, 1H), 3.42 (d, J = 14.6 Hz, 1H), 3.35 (d, J = 14.6 Hz, 1H), 1.74 (dd, J = 6.4, 1.6 Hz, 3H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  165.4, 143.3, 133.1, 131.4, 128.7, 128.6, 128.1, 127.9, 127.2, 126.9, 125.1, 117.6, 91.3, 78.7, 44.5, 17.7. LRMS m/z (relative intensity) 287 (M, 61), 272 (40), 258 (25), 182(21), 130(16), 105 (100). HRMS (EI) calcd for C<sub>20</sub>H<sub>17</sub>NO 287.1310, found

287.1307 (M).

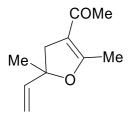

Alternative Synthesis of 6hA



To a solution of  $(\mathbb{Z})$ -2-phenylpent-2-ene-1,4-diol<sup>9</sup> (28.0 mg, 0.157 mmol) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (0.45 mL) were added ClCO<sub>2</sub>Me (60.7 µL, 0.785 mmol), pyridine (79.0 µL, 0.983 mmol), and DMAP (2.0 mg, 0.016 mmol) successively at 0 °C. The resulting mixture was warmed to room temperature and stirred for 3 h. Then, the reaction mixture was treated with saturated aqueous NH<sub>4</sub>Cl, extracted with EtOAc, washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in *vacuo* to give crude dicarbonate (47.1 mg, quant.), which was used for the next reaction without further purification.

To a test tube containing the crude dicarbonate (15.7 mg, 0.0534 mmol), benzoylacetonitrile (**2A**) (8.5 mg, 0.059 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (3.0 mg, 5 mol%) was added anhydrous MeOH (0.5 mL) under argon. The resulting mixture was sealed with a screw cap and stirred at room temperature for 8 h. The mixture was concentrated in *vacuo* and the residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give dihydrofurane **6hA** (8.2 mg, 54% from ( $\mathbb{Z}$ )-2-phenylpent-2-ene-1,4-diol over 2 steps).

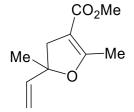
General procedure for the dehydrative coupling between **1a-b** and **2B-I** (Table 3 and S6)




To a test tube containing allenic alcohol **1a** or **1b** (1 equiv), pronucleophile **2B–I** (2 equiv), and  $Pd(PPh_3)_4$  (5 mol%) was added anhydrous MeOH (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for the time described in Table S6. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC to give **6a(B–D)**, **5b(E–I)**, or **10iG**.

| Table S6 |                  |                     |                                    |      |                        |  |  |
|----------|------------------|---------------------|------------------------------------|------|------------------------|--|--|
| entry    | 1                | 2                   | Pd(PPh <sub>3</sub> ) <sub>4</sub> | time | product                |  |  |
| entry    | (mg)             | (mg or µL)          | (mg)                               | (h)  | (mg, %)                |  |  |
| 1        | <b>1a</b> , 16.8 | <b>2Β</b> , 41.2 μL | 11.7                               | 1.5  | <b>6aB</b> , 16.2, 49  |  |  |
| 2        | <b>1a</b> , 16.8 | <b>2C</b> , 43.2 μL | 11.6                               | 1.5  | <b>6aC</b> , 20.7, 57  |  |  |
| 3        | <b>1a</b> , 16.8 | <b>2D</b> , 56.1 mg | 11.8                               | 1.5  | <b>6aD</b> , 17.7, 43  |  |  |
| 4        | <b>1b</b> , 14.7 | <b>2E</b> , 25.2 mg | 5.8                                | 1.5  | <b>5bE</b> , 13.0, 51  |  |  |
| 5        | <b>1b</b> , 14.9 | <b>2F</b> , 25.3 μL | 6.0                                | 1.5  | <b>5bF</b> , 14.8, 53  |  |  |
| 6        | <b>1b</b> , 14.6 | <b>2G</b> , 22.8 μL | 5.9                                | 2.0  | <b>5bG</b> , 15.5, 60  |  |  |
| 7        | <b>1b</b> , 14.6 | <b>2Η</b> , 12.6 μL | 5.9                                | 2.0  | <b>5bH</b> , 12.3, 58  |  |  |
| 8        | <b>1b</b> , 14.6 | <b>2I</b> , 59.2 mg | 5.9                                | 1.5  | <b>5bI</b> , 20.4, 48  |  |  |
| 9        | <b>1i</b> , 7.0  | <b>2G</b> , 22.8 μL | 5.9                                | 2.0  | <b>10iG</b> , 14.7, 58 |  |  |

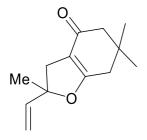
Table S6


1-(2,5-Dimethyl-5-vinyl-4,5-dihydrofuran-3-yl)ethan-1-one (6aB)<sup>10</sup>



Isolated by preparative TLC eluting with 33% EtOAc/hexane

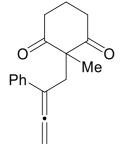
Colorless oil. Rf = 0.65 (25% EtOAc/hexane). IR (neat): 3438 (br), 3061, 3028, 2935, 1715, 1600, 1494, 1448, 1361, 1233, 937, 761, 701 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.95 (dd, J = 10.8, 17.2 Hz, 1H), 5.22 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 10.8 Hz, 1H), 2.92 (dq, J = 14.0, 1.2 Hz, 1H), 2.78 (dq, J = 14.0, 1.2 Hz, 1H), 2.24 (dd, J = 1.2, 1.2 Hz, 3H), 2.18 (s, 3H), 1.47 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 166.4, 141.1, 112.8, 111.5, 87.1, 42.5, 29.3, 26.3, 15.2. HRMS (ESI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>2</sub> 166.0994, found 166.0992 (M).


Methyl 2,5-dimethyl-5-vinyl-4,5-dihydrofuran-3-carboxylate (6aC)<sup>11</sup>



Isolated by preparative TLC eluting with 33% EtOAc/hexane

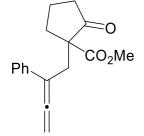
Colorless oil. Rf = 0.55 (20% EtOAc/hexane). IR (neat): 2977, 2950, 2928, 2868, 1705, 1646, 1438, 1384, 1243, 1190, 1135, 1072, 984, 926, 762 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.95 (dd, J = 10.4, 17.6 Hz, 1H), 5.22 (d, J = 17.6 Hz, 1H), 5.09 (d, J = 10.4 Hz, 1H), 3.69 (s, 3H), 2.86 (d, J = 14.4 Hz, 1H), 2.71 (d, J = 14.4 Hz, 1H), 2.21 (s, 3H), 1.46 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.9, 166.7, 141.2, 112.6, 100.8, 87.0, 50.8, 41.6, 26.3, 14.2. LRMS m/z (relative intensity) 182 (M, 80), 139 (100), 135 (96), 198 (100), 123 (30), 107 (56). HRMS (EI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub> 182.0943, found 182.0954 (M).


2,6,6-Trimethyl-2-vinyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (6aD)<sup>12</sup>



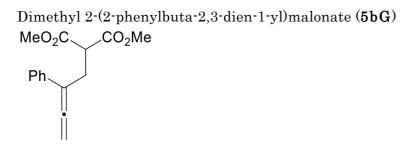
Isolated by preparative TLC eluting with 25% EtOAc/hexane

Colorless oil. Rf = 0.45 (25% EtOAc/hexane). IR (neat): 3423 (br), 2961, 2934, 2873, 1726, 1620, 1406, 1242, 1034, 928, 755 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.97 (dd, J = 11.2, 17.2 Hz, 1H), 5.23 (d, J = 17.2 Hz, 1H), 5.12 (d, J = 11.2 Hz, 1H), 2.82 (d, J = 14.4 Hz, 1H), 2.67 (d, J = 14.4 Hz, 1H), 2.29 (s, 2H), 2.23 (s, 2H), 1.51 (s, 3H), 1.11 (s, 3H), 1.10 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  195.0, 175.0, 140.7, 113.1, 110.9, 91.4, 50.9, 37.9, 37.8, 34.1, 28.7, 28.6, 26.4. HRMS (ESI) calcd for C<sub>13</sub>H<sub>19</sub>O<sub>2</sub> 207.1380, found 207.1377 (M+H)<sup>+</sup>.


2-Methyl-2-(2-phenylbuta-2,3-dien-1-yl)cyclohexane-1,3-dione (5bE)



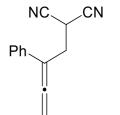
Isolated by preparative TLC eluting with 33% EtOAc/hexane


Pale yellow oil. Rf = 0.45 (25% EtOAc/hexane). IR (neat): 2959, 2910, 1943, 1726, 1697, 1596, 1493, 1453, 1318, 1283, 1132, 1022, 860, 765, 697 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 (d, J = 8.0 Hz, 2H), 7.29 (dd, J = 8.0, 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 5.00 (t, J = 4.0 Hz, 2H), 3.02 (t, J = 4.0 Hz, 2H), 2.74 (dt, J = 16.8, 7.6 Hz, 2H), 2.63 (dt, J = 16.8, 6.0 Hz, 2H), 2.12–2.02 (m, 2H), 1.40 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  209.8, 208.7, 135.9, 128.3, 126.9, 126.1, 102.5, 81.2, 63.8, 37.7, 34.4, 25.6, 17.5. LRMS m/z (relative intensity) 254 (M, 24), 239 (12), 126 (18), 198 (100), 183 (52), 128 (23). HRMS (EI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub> 254.1307, found 254.1273 (M).

Methyl 2-oxo-1-(2-phenylbuta-2,3-dien-1-yl)cyclopentane-1-carboxylate (5bF)



Isolated by preparative TLC eluting with 33% EtOAc/hexane


Pale yellow oil. Rf = 0.60 (25% EtOAc/hexane). IR (neat): 2952, 1942, 1752, 1725, 1596, 1494, 1449, 1217, 1164, 1108, 854, 766, 697 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.36 (d, J = 8.4 Hz, 2H), 7.31 (dd, J = 8.4, 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 5.11– 5.02 (m, 2H), 3.63 (s, 3H), 3.28 (dt, J = 15.2, 3.2 Hz, 1H), 2.72–2.64 (m, 1H), 2.60 (dt, J = 15.2, 3.2 Hz, 1H), 2.47–2.37 (m, 1H), 2.32–2.22 (m, 1H), 2.10–1.99 (m, 2H), 1.99– 1.87 (m, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  214.2, 208.9, 170.4, 136.0, 128.4, 127.0, 126.1, 101.4, 79.6, 60.4, 52.5, 37.9, 33.8, 32.4, 19.6. HRMS (ESI) calcd for C<sub>17</sub>H<sub>18</sub>NaO<sub>3</sub> 293.1148, found 293.1140 (M+Na)<sup>+</sup>.



Isolated by preparative TLC eluting with 25% EtOAc/hexane

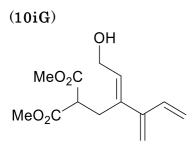
Pale yellow oil. Rf = 0.60 (25% EtOAc/hexane). IR (neat): 2954, 1943, 1736, 1687, 1437, 1276, 1155, 1029, 764, 700 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 7.39 (d, J = 7.6 Hz, 2H), 7.33 (dd, J = 7.6, 7.2 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 5.13 (t, J = 3.2 Hz, 1H), 3.74 (s, 6H), 3.71 (t, J = 7.6 Hz, 1H), 3.05 (dt, J = 7.6, 3.2 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 207.6, 169.4, 135.2, 128.5, 127.1, 125.9, 102.6, 80.2, 52.6, 50.4, 28.4. HRMS (ESI) calcd for C<sub>15</sub>H<sub>16</sub>NaO<sub>4</sub> 283.0941, found 283.0935 (M+Na)<sup>+</sup>.

2-(2-Phenylbuta-2,3-dien-1-yl)malononitrile (5bH)



Isolated by preparative TLC eluting with 25% EtOAc/hexane

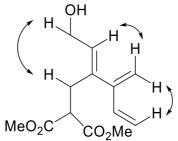
Pale yellow oil. Rf = 0.45 (25% EtOAc/hexane). IR (neat): 3059, 2359, 1943, 1597, 1495, 1453, 1028, 869, 766, 695 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42–7.27 (m, 5H), 5.44 (t, *J* = 3.6 Hz, 2H), 3.94 (t, *J* = 7.2 Hz, 1H), 3.15 (dt, *J* = 7.2, 3.6 Hz, 2H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  207.4, 133.3, 129.0, 128.0, 125.7, 112.3, 100.1, 82.9, 31.1, 21.5. LRMS m/z (relative intensity) 194 (M, 36), 167 (62), 154 (29), 140 (27), 128 (100), 115 (27). HRMS (EI) calcd for C<sub>13</sub>H<sub>10</sub>N<sub>2</sub> 194.0844, found 194.0868 (M).


(3-Phenylpenta-3,4-diene-1,1-diyldisulfonyl)dibenzene (5bI)  

$$PhO_2S$$
  $SO_2Ph$   
 $Ph$ 

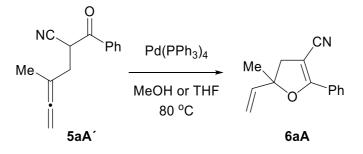
Isolated by preparative TLC eluting with 25% EtOAc/hexane

Colorless oil. Rf = 0.50 (25% EtOAc/hexane). IR (neat): 3056, 2923, 1670, 1594, 1446, 1287, 1251, 1147, 1082, 1004, 779, 747, 716, 685 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (d, J = 8.4 Hz, 4H), 7.68 (t, J = 6.8 Hz, 2H), 7.54 (dd, J = 8.4, 6.8 Hz, 4H), 7.31–7.21 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 5.06 (t, J = 2.8 Hz, 2H), 4.79 (t, J = 5.4 Hz, 1H), 3.37 (dt, J = 5.4, 2.8 Hz, 2H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  208.0, 138.3, 134.5, 133.9, 129.5, 129.0, 128.6, 127.5, 126.1, 101.8, 81.2, 81.1, 26.0. HRMS (ESI) calcd for C<sub>23</sub>H<sub>20</sub>NaO<sub>4</sub>S<sub>2</sub> 447.0695, found 447.0687 (M+Na)<sup>+</sup>.


Dimethyl (E)-2-(2-(2-hydroxyethylidene)-3-methylenepent-4-en-1-yl)malonate



Isolated by preparative TLC eluting with 50% EtOAc/hexane

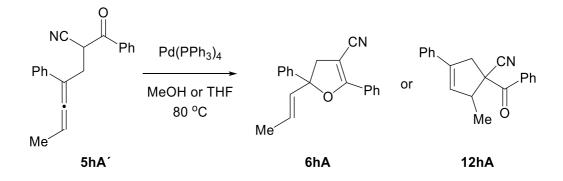

Pale yellow oil. Rf = 0.50 (50% EtOAc/hexane). IR (neat): 3437 (br), 2955, 1732, 1437, 1241, 1159, 1159, 1027, 772 cm<sup>-1</sup>. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.35 (dd, J = 17.2, 10.4 Hz, 1H), 5.79 (t, J = 6.8 Hz, 1H), 5.22 (d, J = 17.2 Hz, 1H), 5.17 (s, 1H), 5.16 (d, J = 10.4 Hz, 1H), 5.00 (s, 1H), 4.31–4.24 (m, 2H), 3.72 (s, 6H), 3.55 (t, J = 8.0 Hz, 1H), 2.91 (d, J = 8.0 Hz, 2H), 2.20–2.12 (m, 1H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  169.6, 147.4, 137.3, 137.0, 131.1, 116.9, 116.3, 58.5, 52.7, 50.1, 28.4. HRMS (ESI) calcd for C<sub>13</sub>H<sub>18</sub>NaO<sub>5</sub> 277.1046, found 277.1042 (M+Na)<sup>+</sup>.

The E-configuration of **10iG** was determined by NOESY correlation as shown below.



NOESY correlation of 10iG

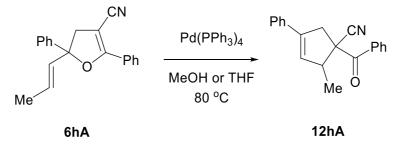
Pd-catalyzed cyclisation of 5aA' (Scheme 3 and Table S7)




To a test tube containing **5aA'** (1 equiv) and  $Pd(PPh_3)_4$  (5 mol% for entries 1, 2, 0

mol% for entry 3) was added anhydrous solvent (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 1.5 h. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give **6aA**.

|       | Table S7   |      |               |         |             |  |  |  |
|-------|------------|------|---------------|---------|-------------|--|--|--|
| entry | conditions | 5aA' | $Pd(PPh_3)_4$ | solvent | 6aA         |  |  |  |
| entry | conutions  | (mg) | (mg)          | Solvent | (mg, %)     |  |  |  |
| 1     | А          | 9.8  | 2.6           | THF     | 9.5, 97     |  |  |  |
| 2     | В          | 10.5 | 2.9           | MeOH    | 10.5, quant |  |  |  |
| 3     | С          | 10.2 | 0             | MeOH    | <1, trace   |  |  |  |


Pd-catalyzed cyclisation of 5hA' (Scheme 3 and Table S8)

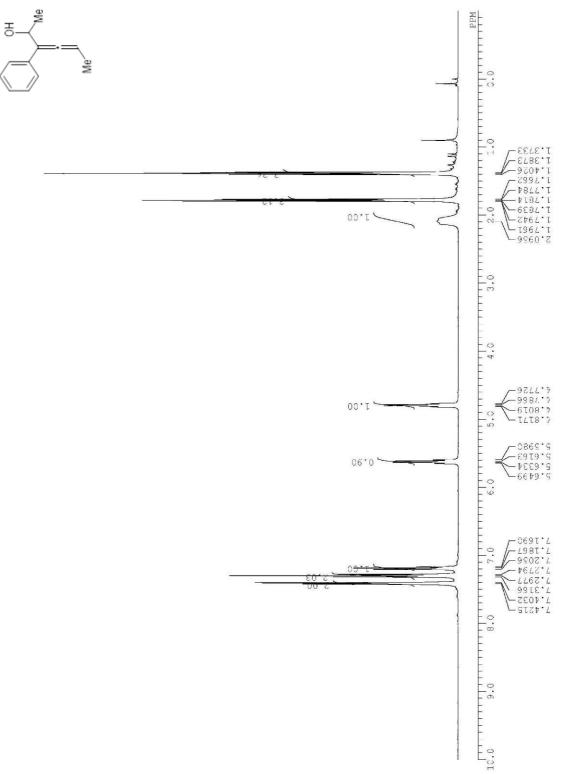


To a test tube containing **5hA'** (1 equiv) and  $Pd(PPh_3)_4$  (5 mol% for entries 1, 2, 0 mol% for entry 3) was added anhydrous solvent (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 1.5 h. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give **6hA** (for entry 1) or **12hA** (for entry 2).

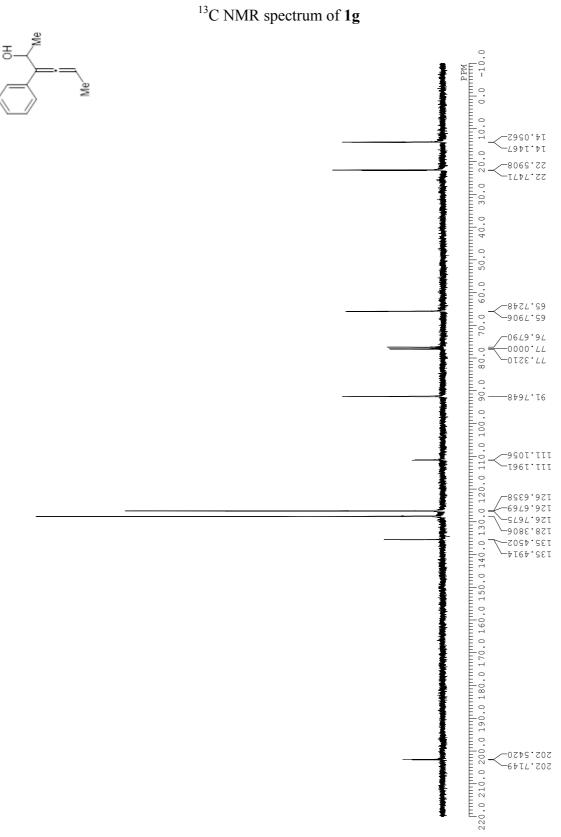
|       | Table S8   |      |                                    |         |                           |  |  |
|-------|------------|------|------------------------------------|---------|---------------------------|--|--|
| entry | conditions | 5hA' | Pd(PPh <sub>3</sub> ) <sub>4</sub> | solvent | product                   |  |  |
| entry | conunions  | (mg) | (mg)                               | sorvent | (mg, %)                   |  |  |
| 1     | А          | 8.8  | 2.0                                | THF     | <b>6hA</b> , 6.9, 78      |  |  |
| 2     | В          | 14.4 | 2.9                                | MeOH    | <b>12hA</b> , 14.4, quant |  |  |
| 3     | С          | 9.2  | 0                                  | MeOH    | 0 mg, 0                   |  |  |

Rearrangement of 6hA to 12hA (Scheme 3 and Table S9)




To a test tube containing **6hA** (1 equiv) and  $Pd(PPh_3)_4$  (5 mol% for entries 1, 2, 0 mol% for entry 3) was added anhydrous solvent (0.10 M) under argon. The resulting mixture was sealed with a screw cap and stirred at 80 °C for 2 h. The reaction mixture was cooled to room temperature and concentrated in *vacuo*. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give **12hA** (for entry 1).

|       | Table S9   |      |                                    |         |                       |  |  |
|-------|------------|------|------------------------------------|---------|-----------------------|--|--|
| entry | conditions | 6hA  | Pd(PPh <sub>3</sub> ) <sub>4</sub> | solvent | product               |  |  |
| U U   |            | (mg) | (mg)                               |         | (mg, %)               |  |  |
| 1     | А          | 9.8  | 2.0                                | MeOH    | <b>12hA</b> , 6.8, 70 |  |  |
| 2     | В          | 9.6  | 2.0                                | THF     | 0 mg, 0               |  |  |
| 3     | С          | 7.6  | 0                                  | MeOH    | 0 mg, 0               |  |  |


### References

- <sup>1</sup>S. P. Cook and S. J. Danisefsky, Org. Lett., 2006, 8, 5693.
- <sup>2</sup> J. Li, W. Kong, C. Fu and S. Ma, J. Org. Chem., 2009, 74, 5104.
- <sup>3</sup> T. Liu, J. Dong, S.-J. Cao, L.-C. Guo and L. Wu, RSC Advances, 2014, 4, 61722.
- <sup>4</sup> I. Alonso, H. Faustino, F. López and J. L. Mascareñas, Angew. Chem. Int. Ed.,
- 2011, 50, 11496; L.-I. Olsson and A. Clafesson, Acta Chem. Scand. B, 1979, 33, 679.
- <sup>5</sup> I. Diaf, G. Lemiére and E. Duñach, Angew. Chem. Int. Ed., 2014, 53, 4177.
- <sup>6</sup> H. Luo and S. Ma, Eur. J. Org. Chem., 2013, 3041.
- <sup>7</sup>X. Tang, S. Woodward and N. Krause, Eur. J. Org. Chem., 2009, 2836.
- <sup>8</sup> M. Yang, N. Yokokawa, H.Ohmiya and M. Sawamura, Org. Lett., 2012, 14, 816.
- <sup>9</sup> W. Guo, L. Martínez-Rodríguez, E. Martin, E. C. Escudero-Adán, and A. W. Kleij, *Angew. Chem. Int. Ed.*, 2016, **55**, 11037.
- <sup>10</sup> T. Delair, A. Doutheau and J. Gore, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1981, **30**, 125.
- <sup>11</sup> T. Delair, A. Doutheau and J. Gore, Bull. Soc. Chim. Fr., 1988, 125.
- <sup>12</sup> S. Fernandes, S. V. Bhat, Synth. Commun., 2014, 19, 2892.

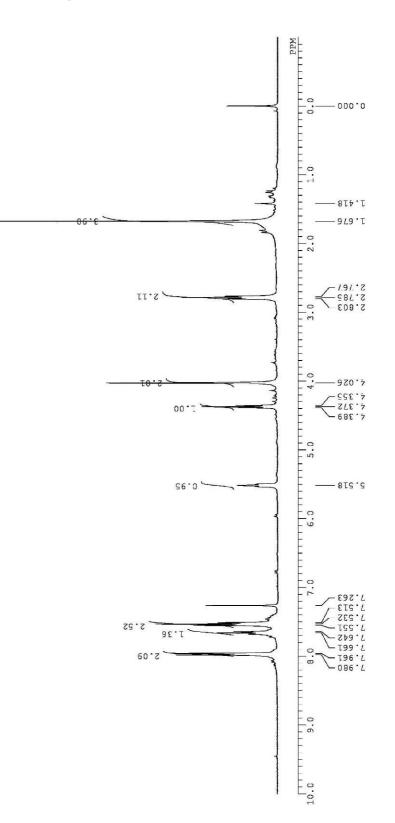
### NMR spectra

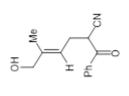


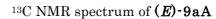
<sup>1</sup>H NMR spectrum of 1g

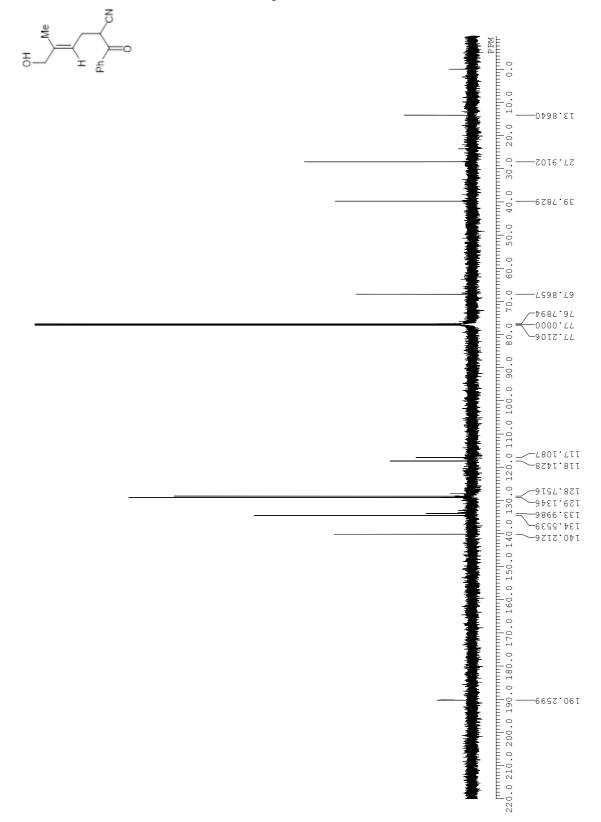


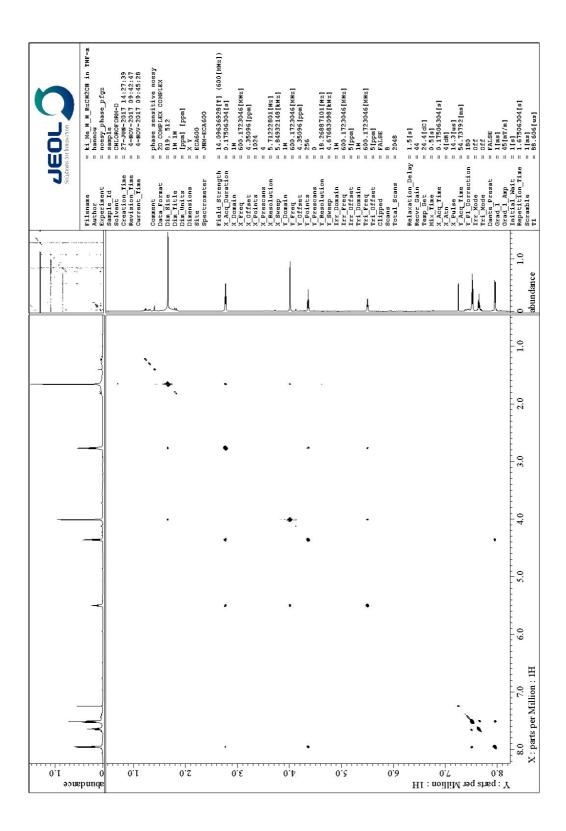
 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{6aA}$ 





년 100.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10 Me مفحقع يستاقف يتفحان بالناكن كناكر ونومون وأناقد ويتنار لتعقيق والأعطر وبالنشري والتريي مالتل أمزارته الشرياب بالمنقار ومتعلقتهما يستناهم يترويهم محطمهما ويشتم يترونهم بالإ الطيبيهميل إوالهما الميلة فكالاستغلطت والمميطني وال ومقتفة فخماء أدلوان الكوكاع وخريقا فاحتماني وتلوما معانيس أمالي مقروعاتها ومسراقي يشانان متعامر وفأراجا كمرينا فراونا وتعالمكما -التلمية للقارية بالفا الطللسي


### $^{13}C$ NMR spectrum of **6aA**

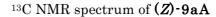

S.

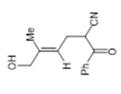

<sup>1</sup>H NMR spectrum of (*E*)-9aA

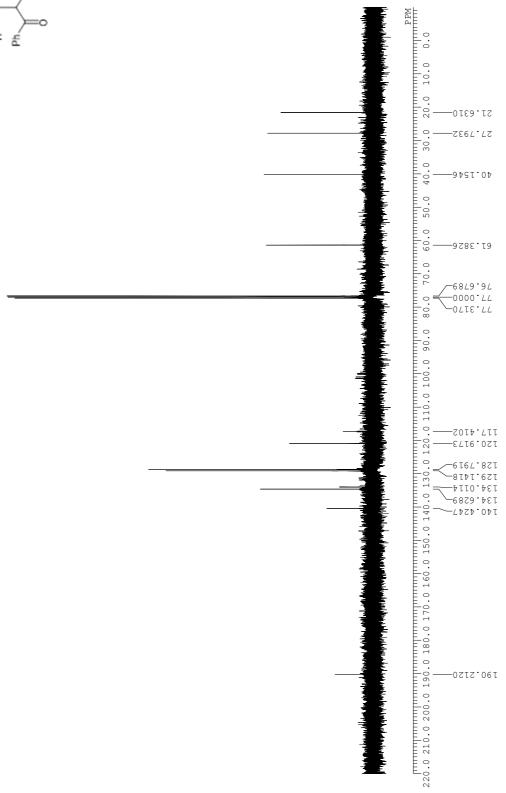


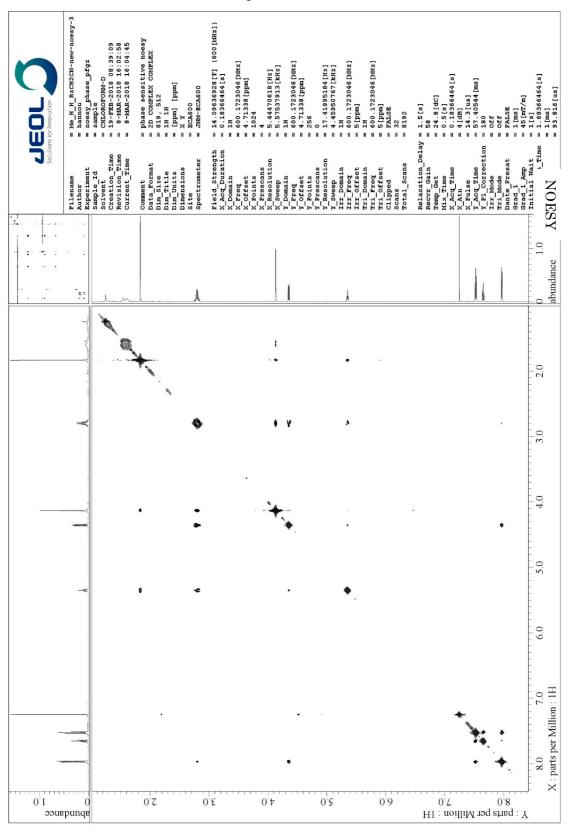






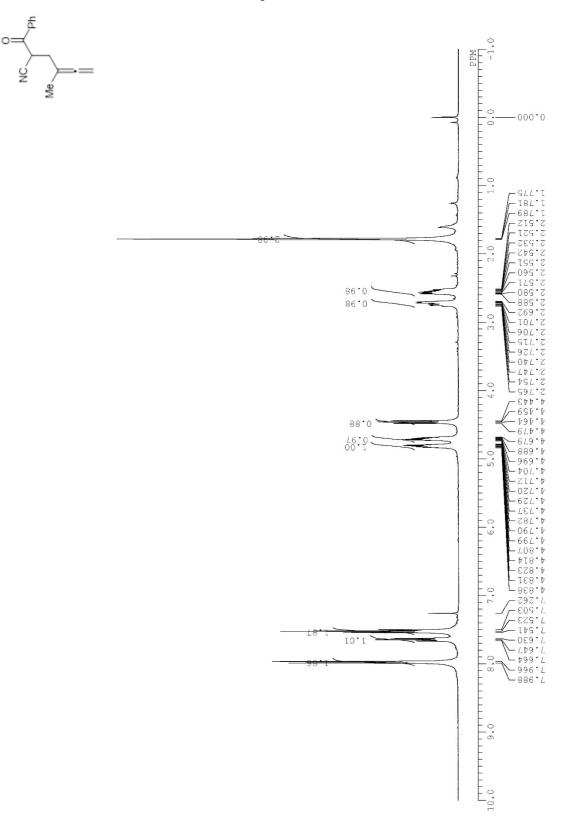



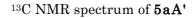


# NOESY spectrum of (E)-9aA

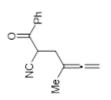

HO-Mdd Me ΞÉ 0 0 -99SZ •T 7.87 T.2463-7.8422-3.08 5.1679. -078.5 -2.8035 -2.8169 80.S F 0 é -0\$68.S 7.0 6.0 5.0 4.0 4.1437-4-3437 4-3595 4-3785 т<u>о • г</u> 00.т 2:3432~ 2:3624 6:3813~ 00**.**T /-S6SZ.L /-ГЗТЗ.Г 10.0 9.0 8.0 ... -2319 2 -2319 2 -2979 2 -2979 2 -2979 2 £0.5 zo.t \_ -0789.7 86°T -ET76.7 ٤

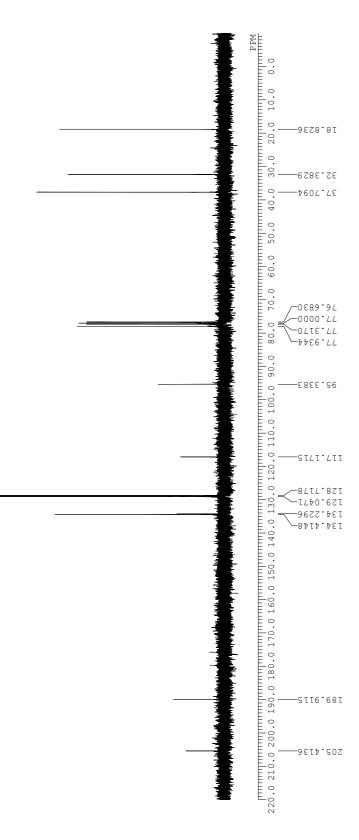
<sup>1</sup>H NMR spectrum of (*Z*)-9aA





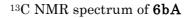





NOESY spectrum of (*Z*)-9aA

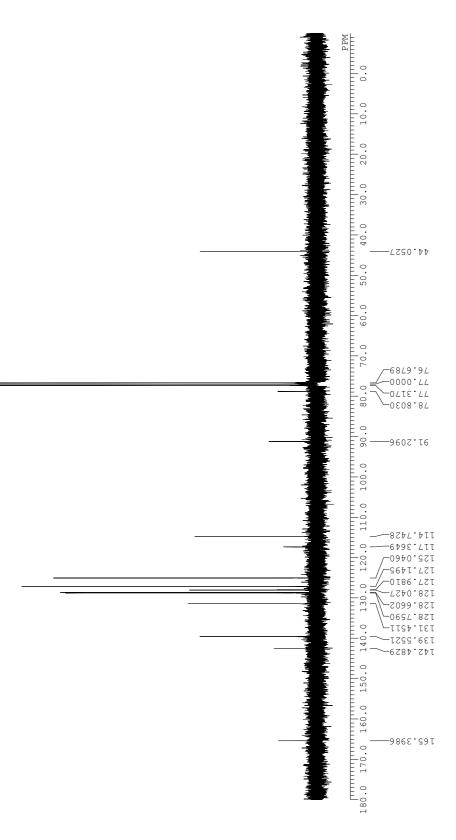
<sup>1</sup>H NMR spectrum of 5aA'



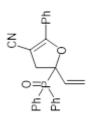




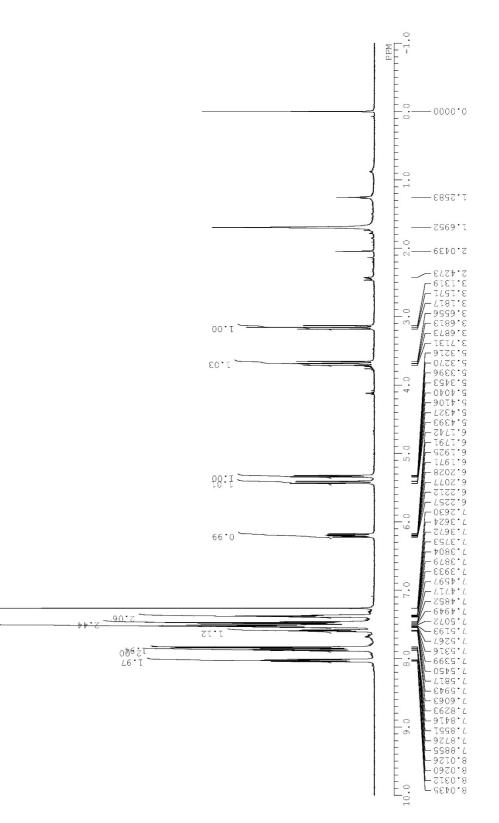


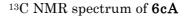


ę Mdd Æ 2.0 1.0 -000.0 -029'l 4.0 3.0 3.457 -3.408 -3.408 -3.420 -1,022 897 99 787 10.2 = 891 9 8 87 00°T 87 078 10.1 - 07.8 4.20 068 82.8 601 5°01 89 791 1.95 SL - 570.8 - 250.8 - 670.8 - 670.8

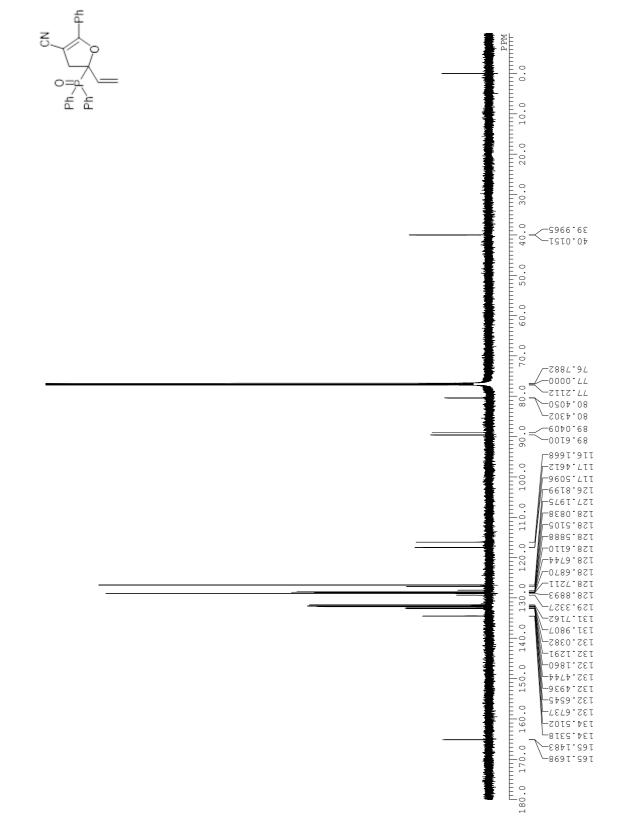
# $^1\mathrm{H}$ NMR spectrum of $\mathbf{6bA}$

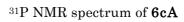

S

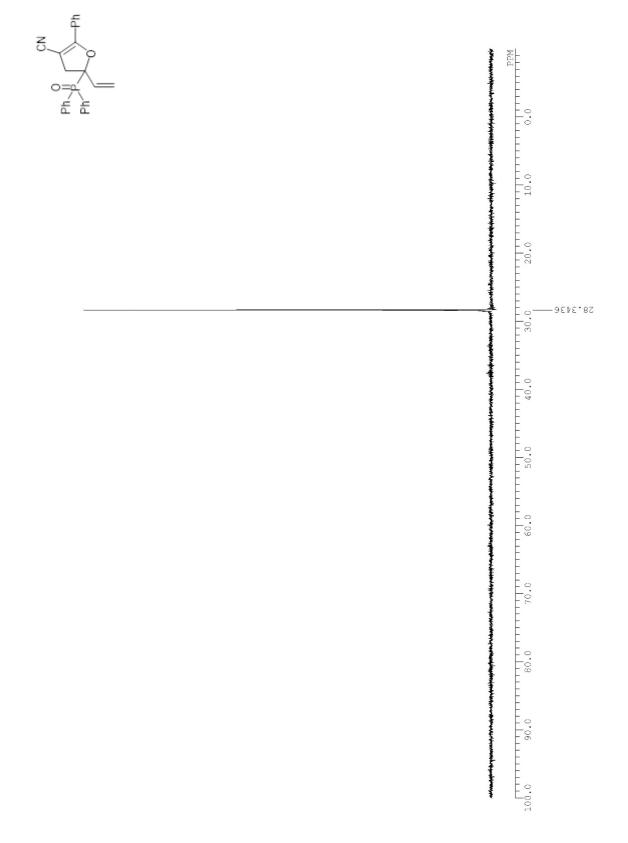




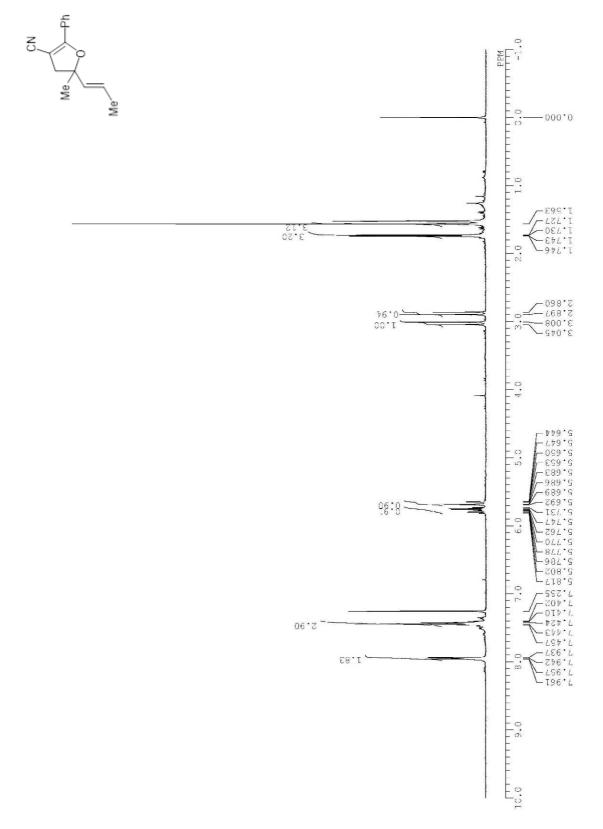



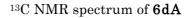


## $^{1}H$ NMR spectrum of **6cA**

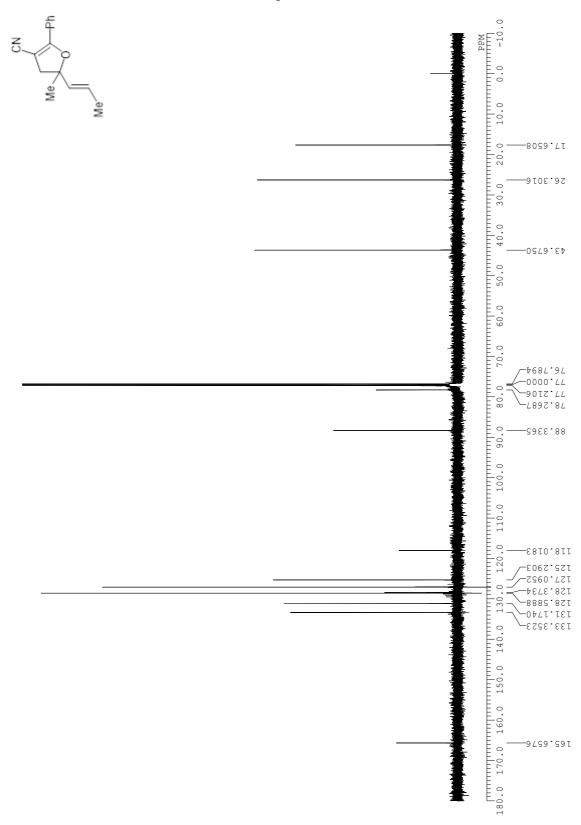


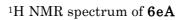


₽*L*•€

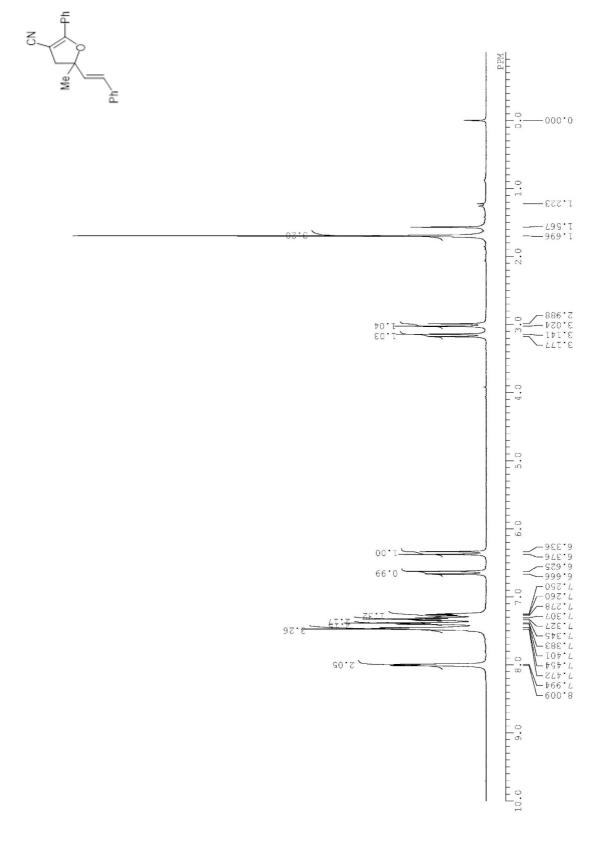




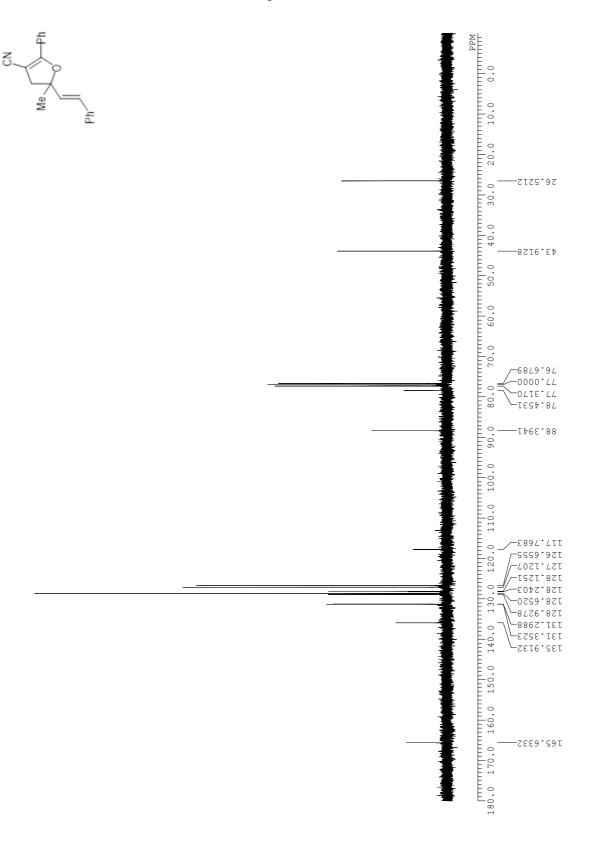



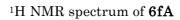



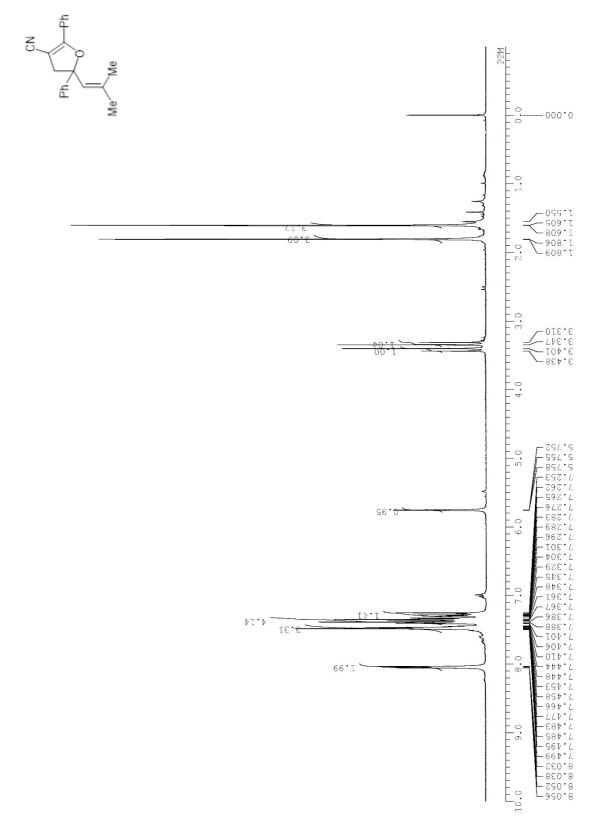



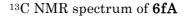



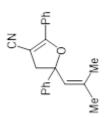


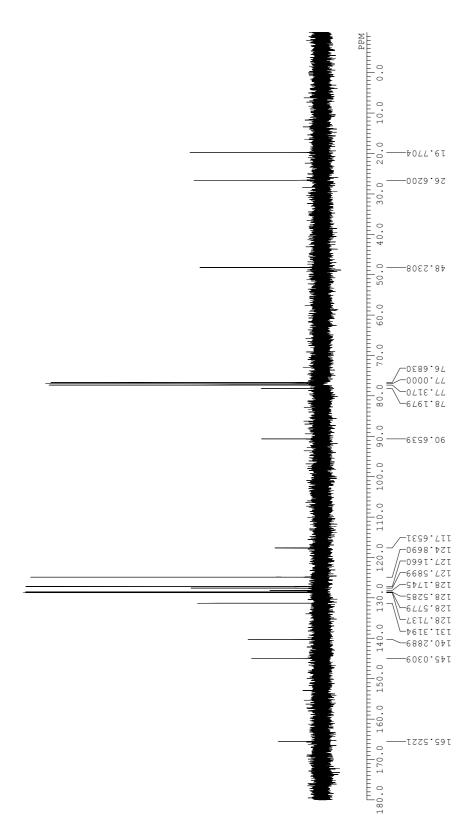



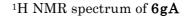



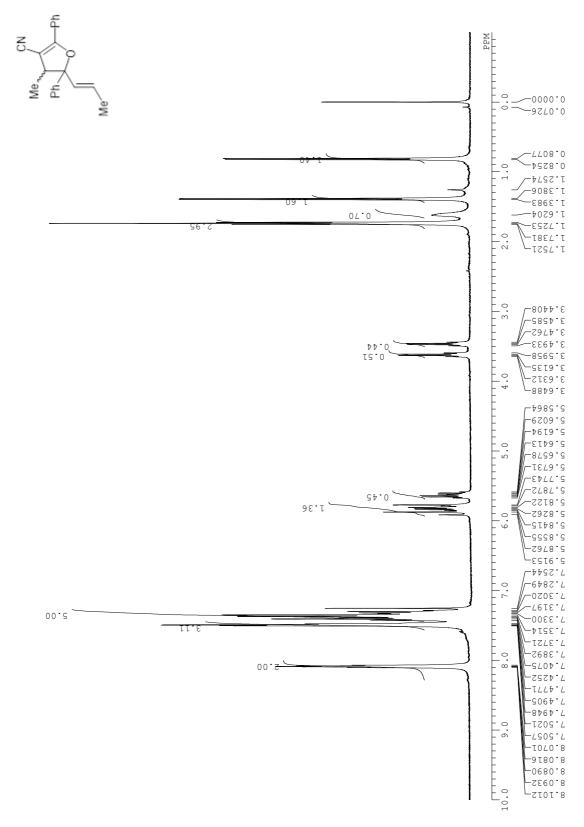





 $^{13}\mathrm{C}$  NMR spectrum of  $\mathbf{6eA}$ 



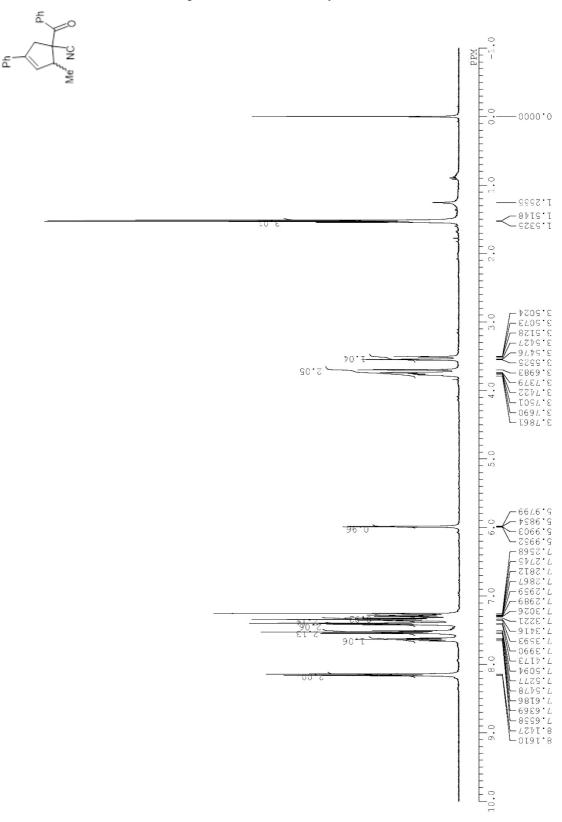



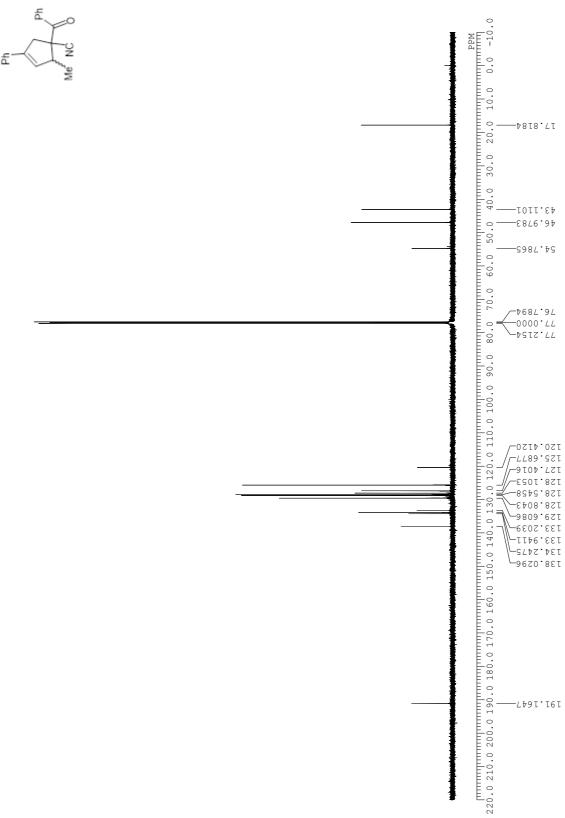




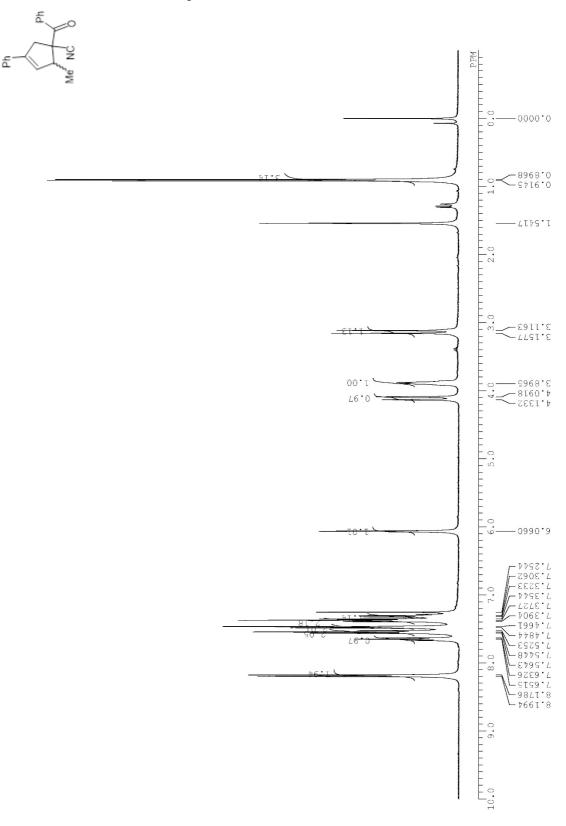




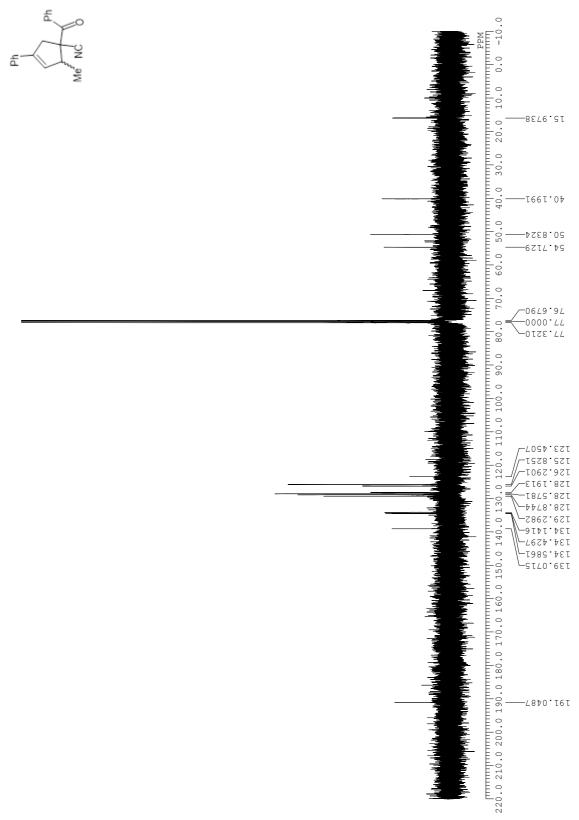


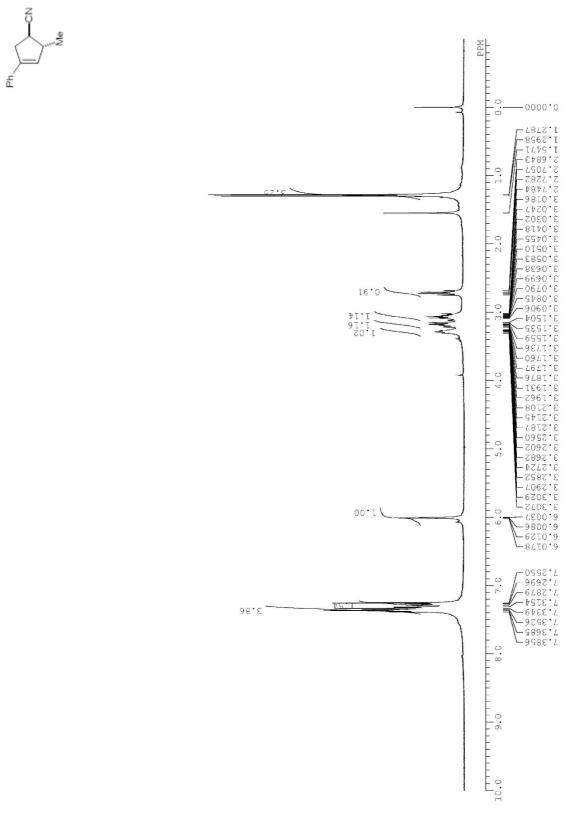

<sup>13</sup>C NMR spectrum of **6gA** 



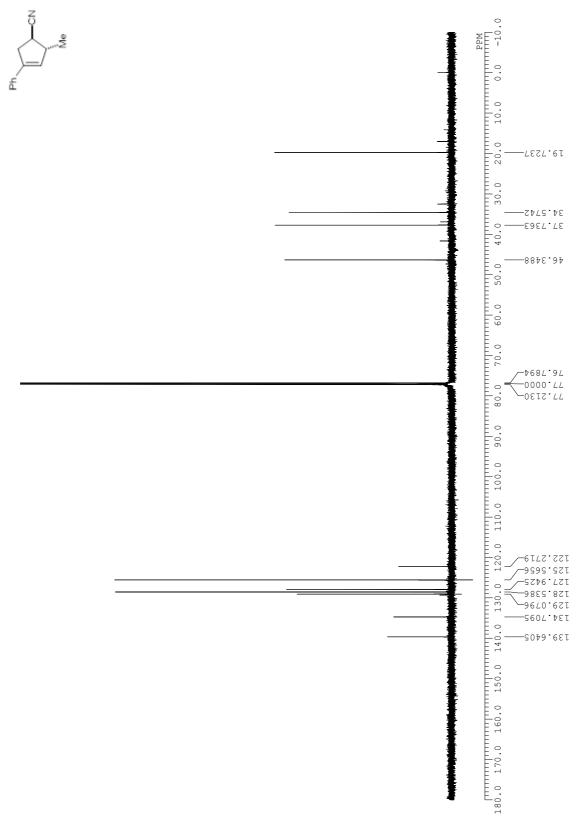




 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{12hA}$  (major diastereomer)

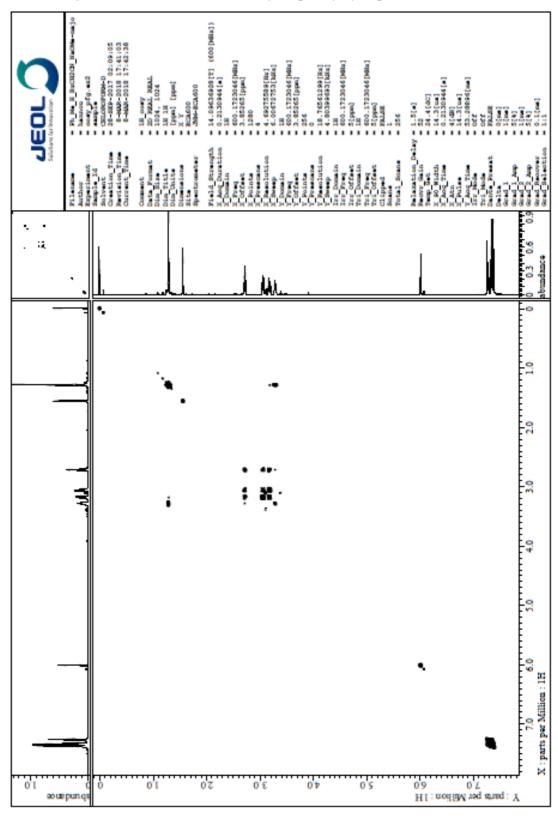



<sup>13</sup>C NMR spectrum of **12hA** (major diastereomer)

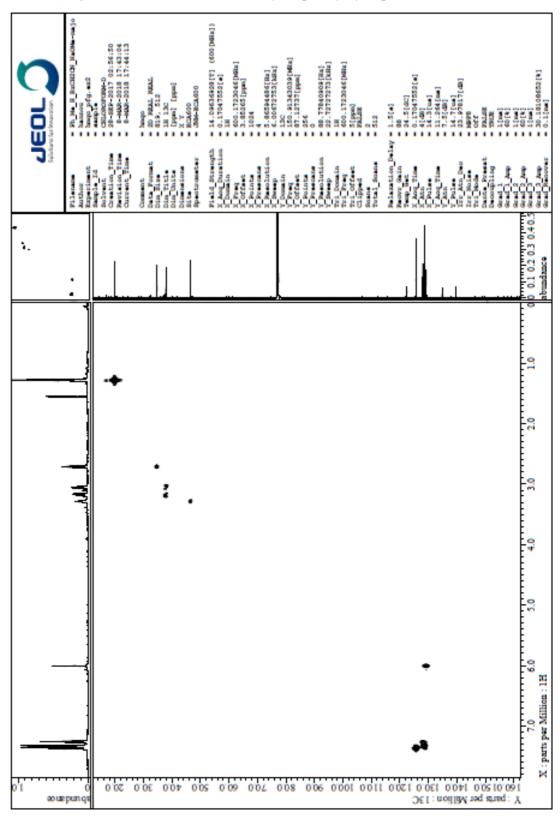



# $^1\mathrm{H}$ NMR spectrum of $\mathbf{12hA}$ (minor diastereomer)

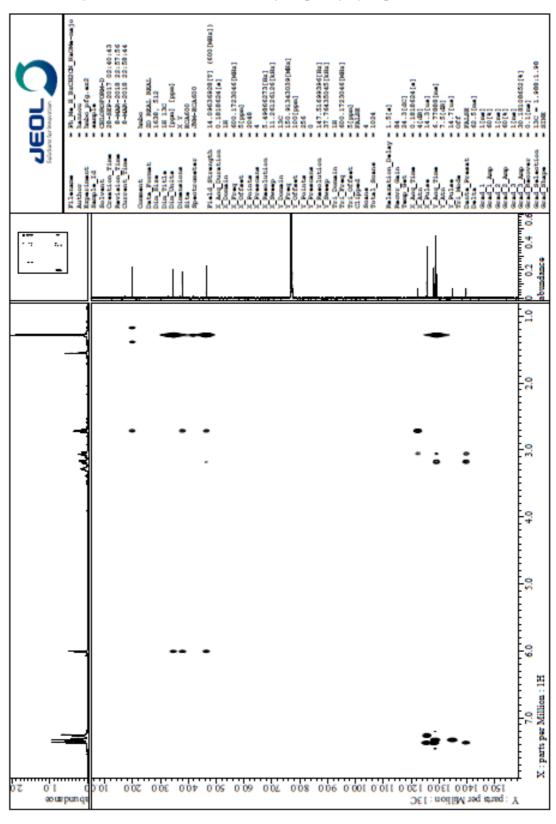



### <sup>13</sup> C NMR spectrum of **12hA** (minor diastereomer)

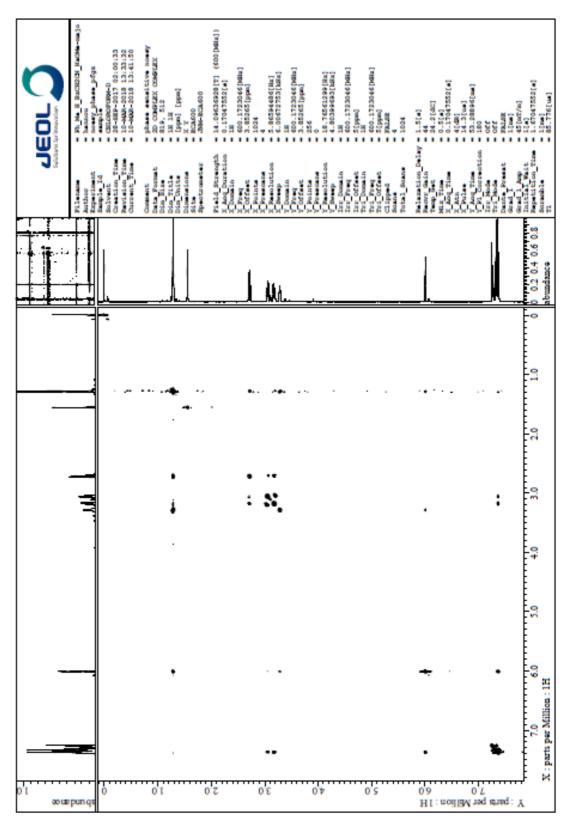



<sup>1</sup>H NMR spectrum of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

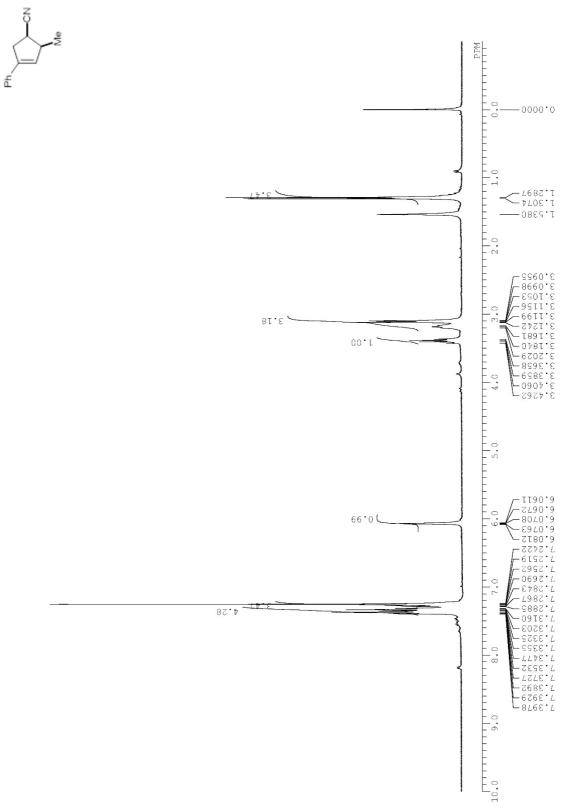



 $^{13}\mathrm{C}$  NMR spectrum of (1R \*,2R \*)-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

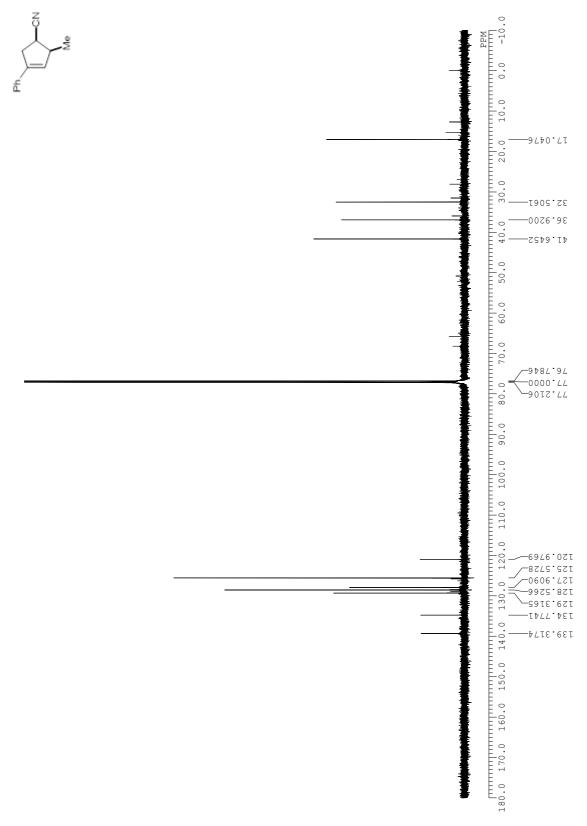



COSY spectrum of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

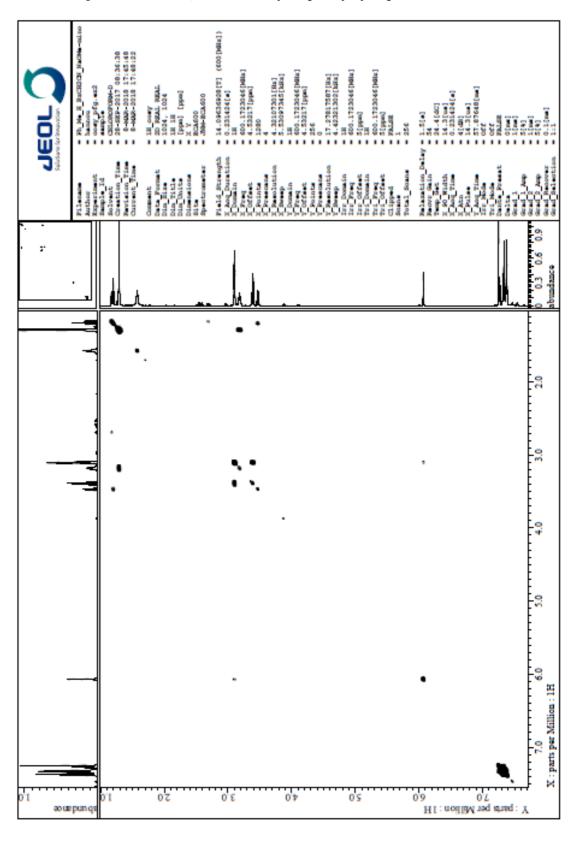



HMQC spectrum of (1R\*,2R\*)-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

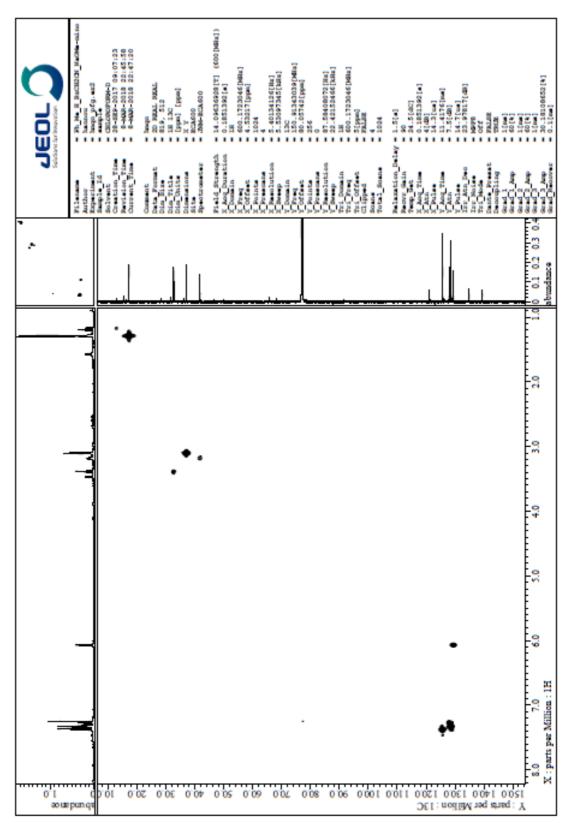



HMBC spectrum of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

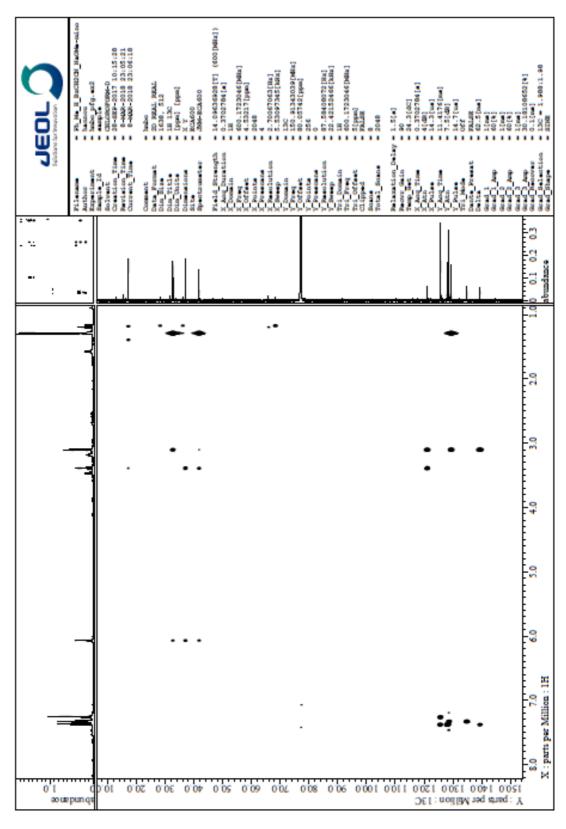



NOESY spectrum of  $(1R^*, 2R^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

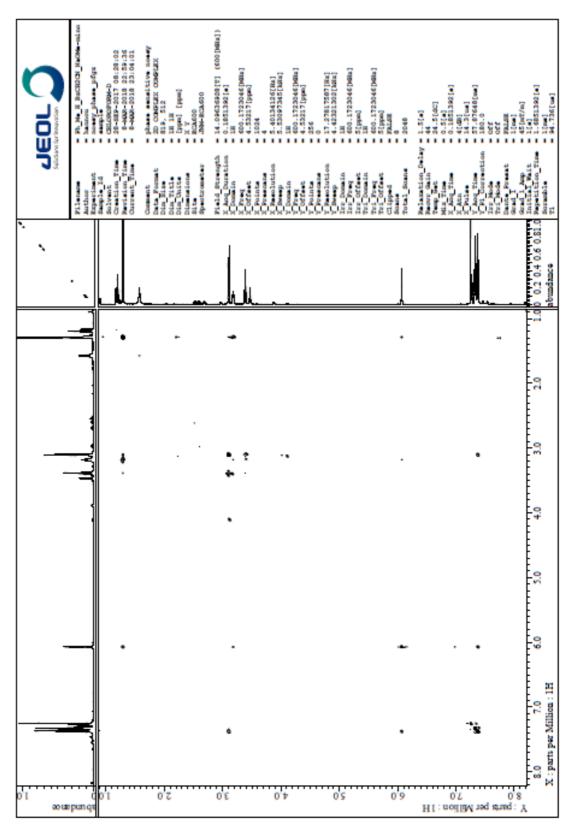



<sup>1</sup>H NMR spectrum of  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile



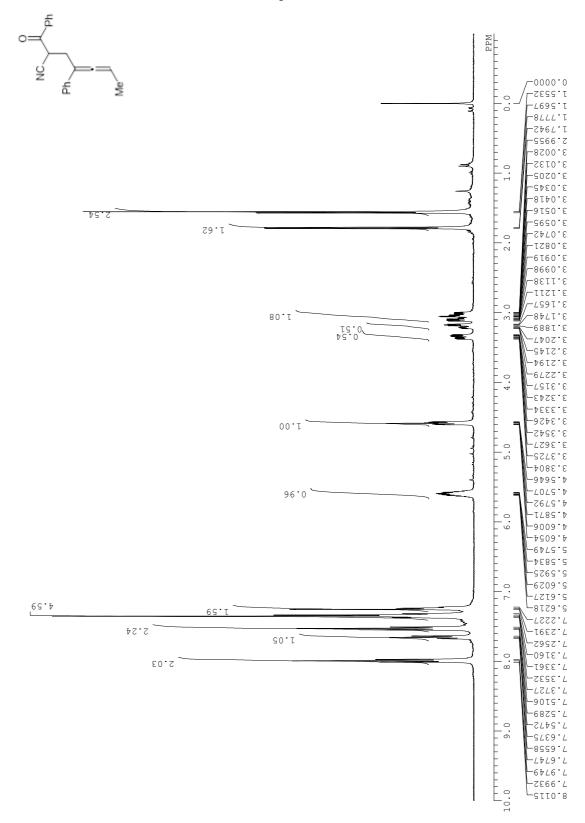

 $^{13}\mathrm{C}$  NMR spectrum of (1  $\!R$  \*,2  $\!S$  \*)-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile



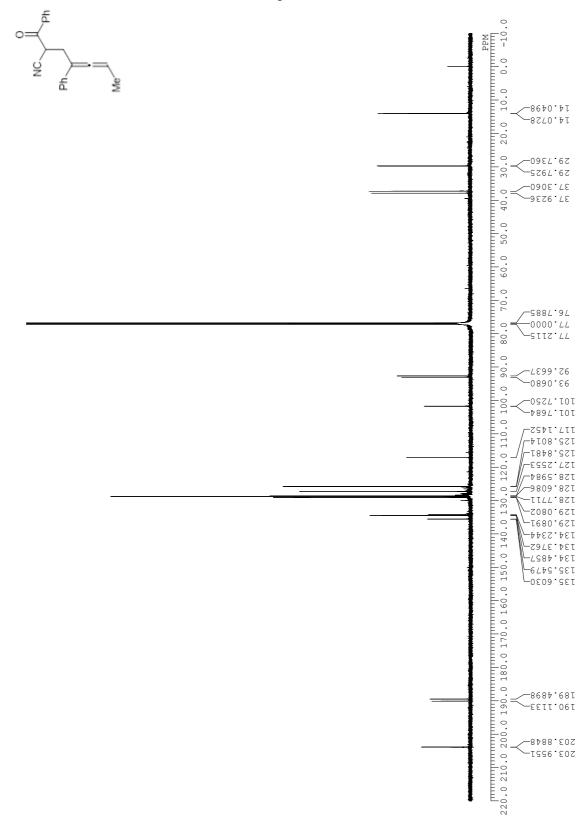

 $\label{eq:cosyspectrum} \text{COSY spectrum of } (1R \ \ 2S \ \ ) \ \ 2 \ \ \text{methyl-4-phenylcyclopent-3-ene-1-carbonitrile}$ 



HMQC spectrum of  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile




HMBC spectrum of (1 $R^*$ ,2 $S^*$ )-2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

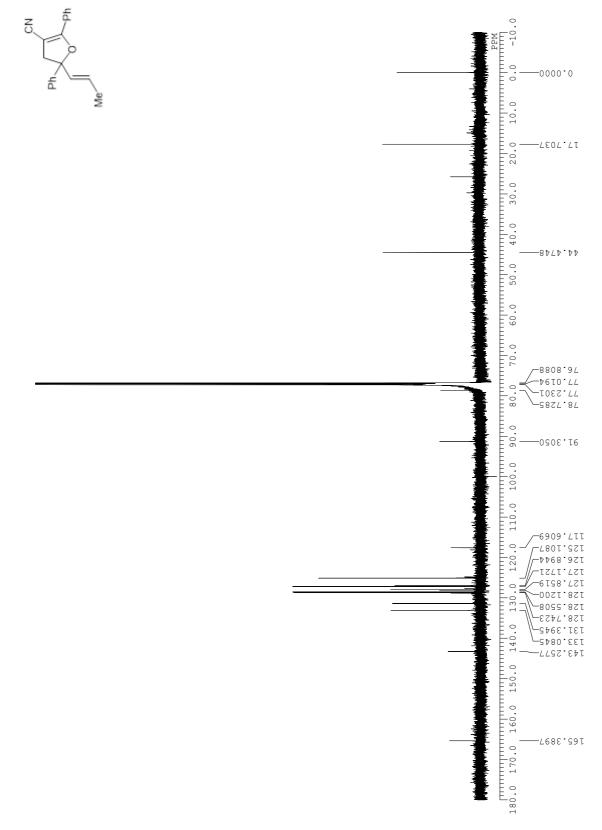



NOESY spectrum of  $(1R^*, 2S^*)$ -2-methyl-4-phenylcyclopent-3-ene-1-carbonitrile

<sup>1</sup>H NMR spectrum of **5hA'** 








쉽 Wdd £ Me 0.0 -0000.0 4.0 ... 3.0 2.0 . L.0 т.5423-2.7283--0282 T -1.7320 -1.7448 -2.7479 1111 3-3347-3-3713-3-4030-9654-5 66 4 2.6574 -6659 -6659 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -8269 -826 5.0 5.6822-10.0 9.0 8.0 ..... 7.0 6.0 .... 5.6883-5.7042-\$6.0 -7207ų 6628.8 96.0. -2768.8 5.8335-2.8408-5.8683--0278.8 -9578.2 -2605.7 -2525.7 -2678.2 -2678.2 1 Ξ -8828.7 7.3288-3° 18 -8876.7 -8876.7 96-1 -7225 -0727.7 -0725.7 -6685.7 -7850.8 8,0548 -8890.8 1 TE70.8

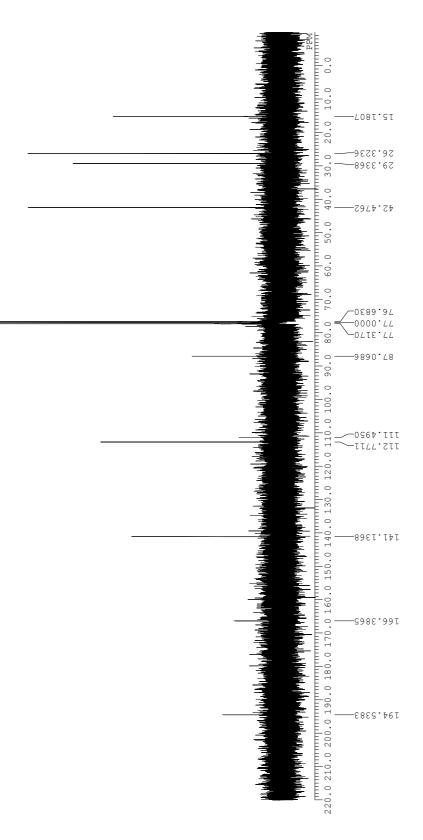
<sup>1</sup>H NMR spectrum of **6hA** 

S

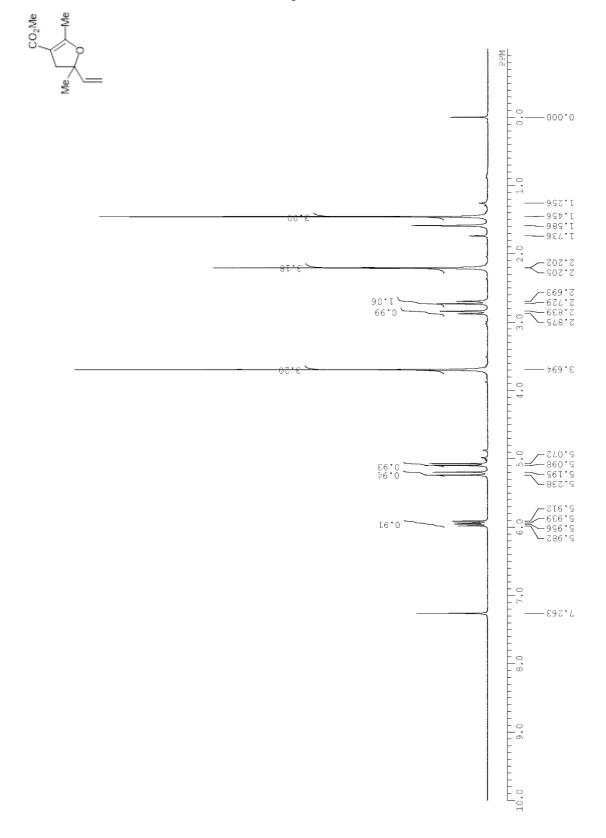


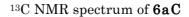


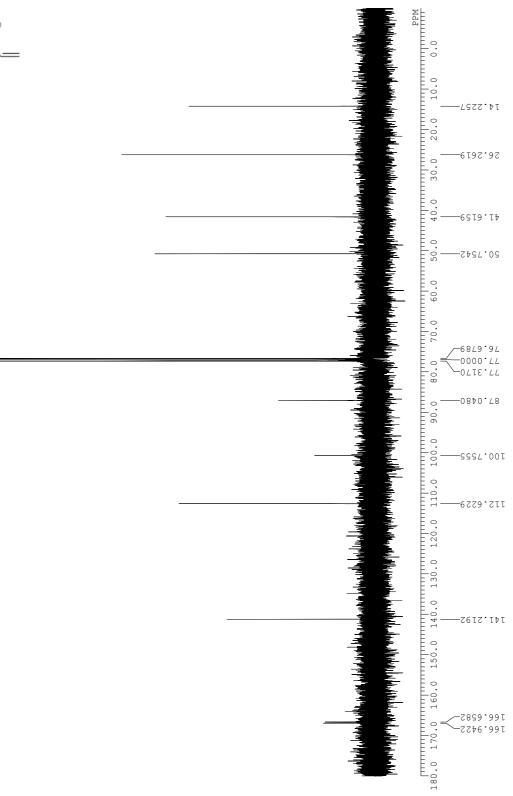
-Ne 0'0 Wdd 1.0 T + 4999 T + 4999 T + 4999 T + 50 T 2.0 00-C 66'0 ) 00'T ) о.е 4.0 2,0862-5,1130-5,2021-5,2454-5.0 56:0 C 0; ₽6'0 ώ 10.0 9.0 8.0 7.0 -0692.7


# <sup>1</sup>H NMR spectrum of 6aB

COMe


S-79

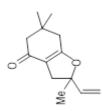

### $^{13}C$ NMR spectrum of **6aB**

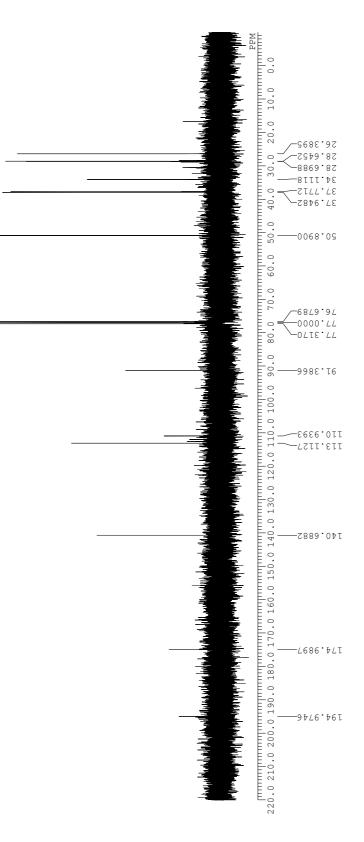





<sup>1</sup>H NMR spectrum of 6aC





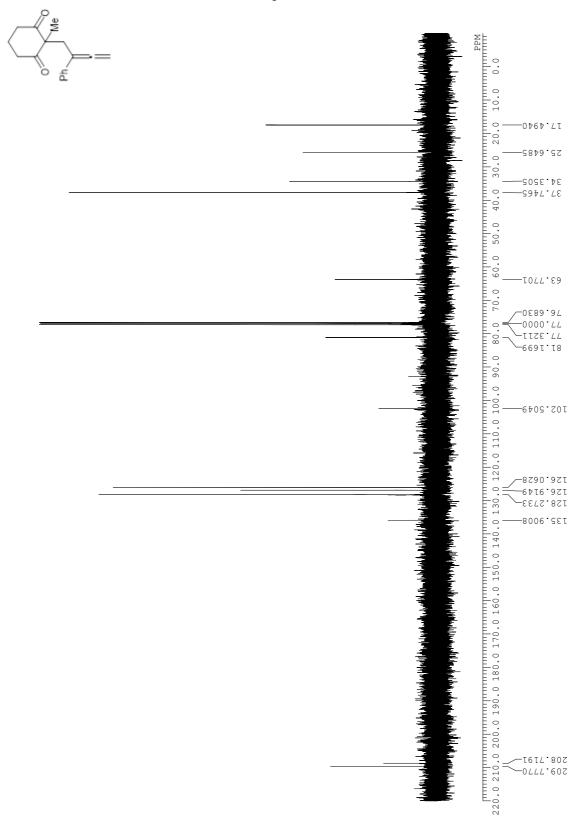





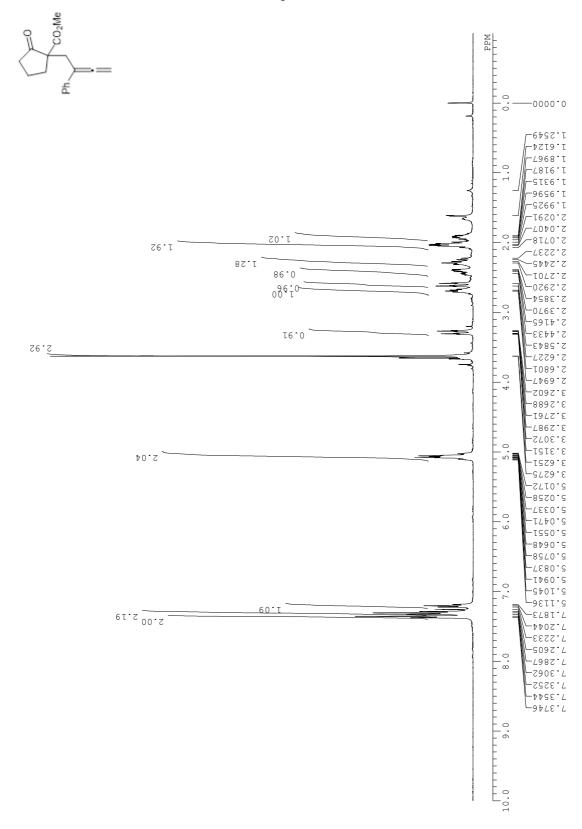

C

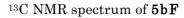
### <sup>13</sup>C NMR spectrum of **6aD**

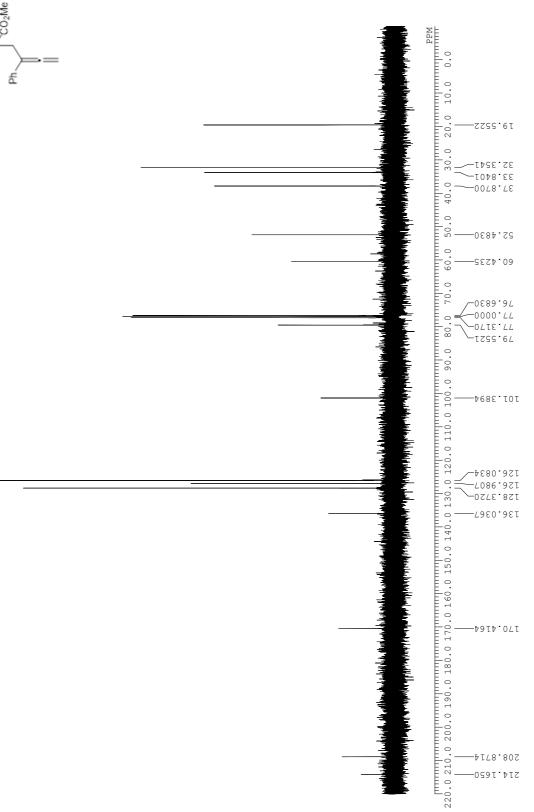





4.0 3.0 2.0 1.1.0 0.0 É -0000.0 66'T 2.6483-2.6483-2.6483-10:22 2.6483 2.7449 2.70260 2.7026 2.7028 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7449 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.6649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2.7649 2 96**-**T 7.92 -860Z'L -8602 \$000 L 46.4 <u>- 26.0</u>

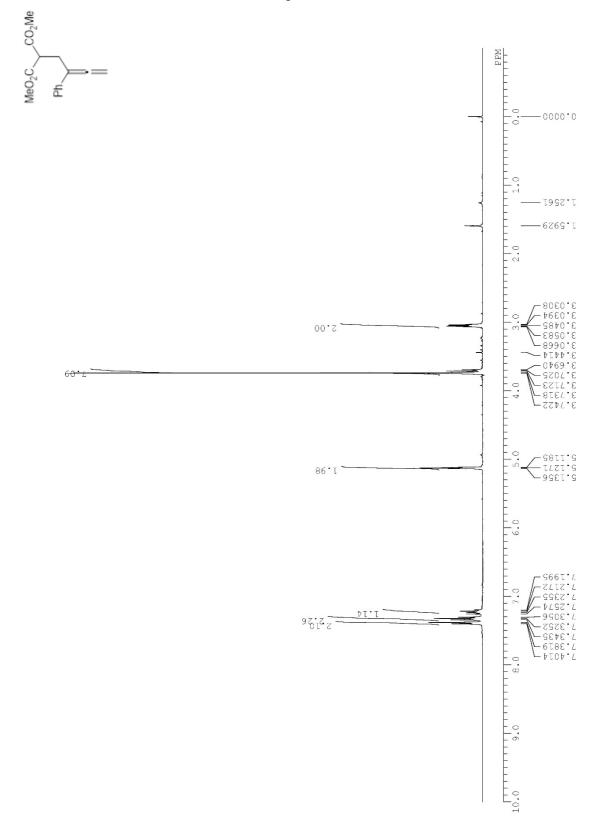

# <sup>1</sup>H NMR spectrum of 5bE


€





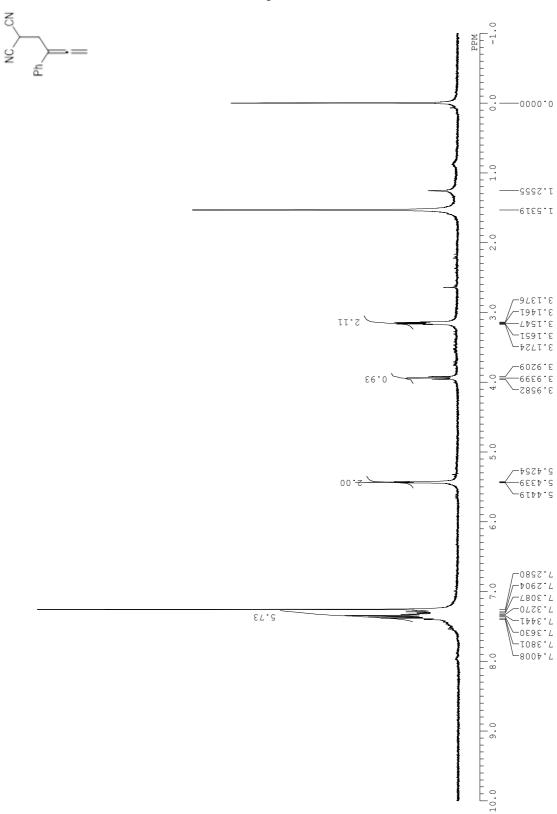

 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{5bF}$ 





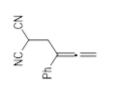


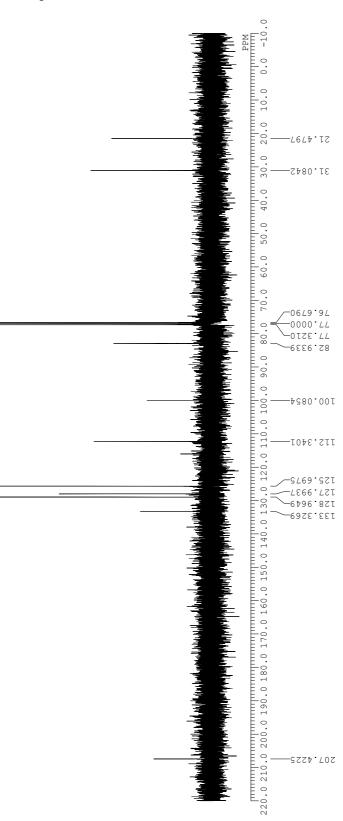


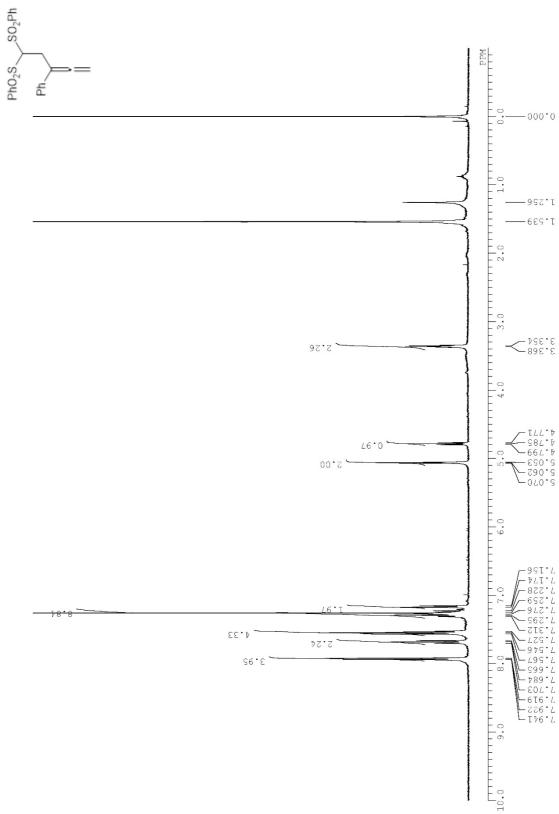



 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{5bG}$ 

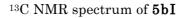


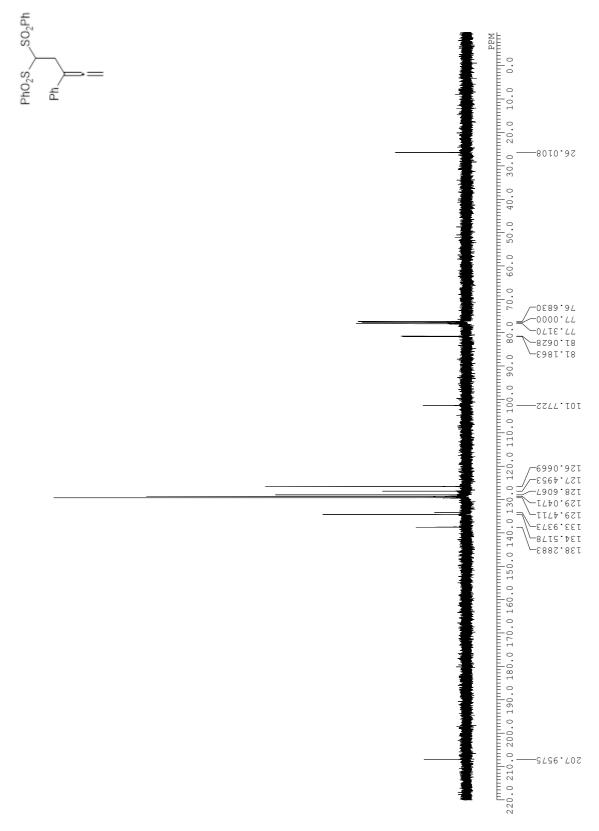

 $^{13}C$  NMR spectrum of 5bG



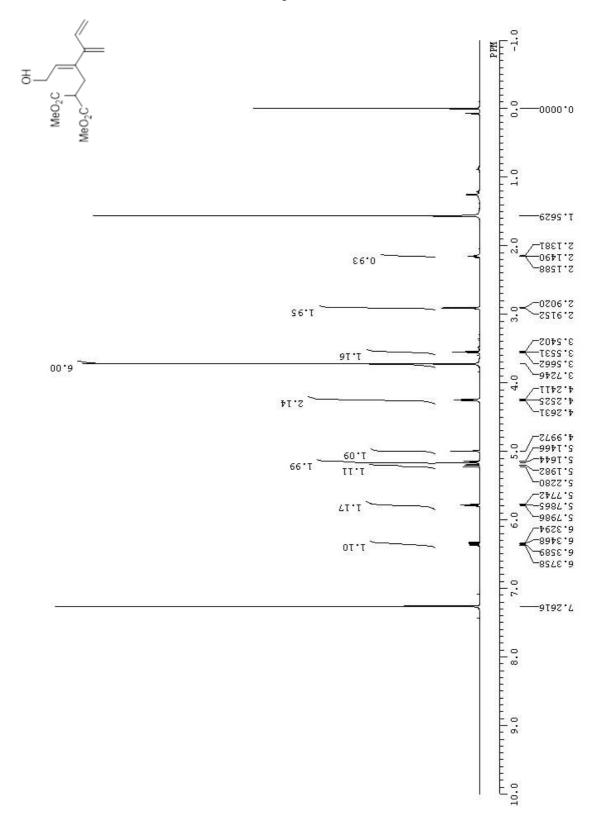



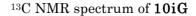

 $^1\mathrm{H}$  NMR spectrum of  $\mathbf{5bH}$ 

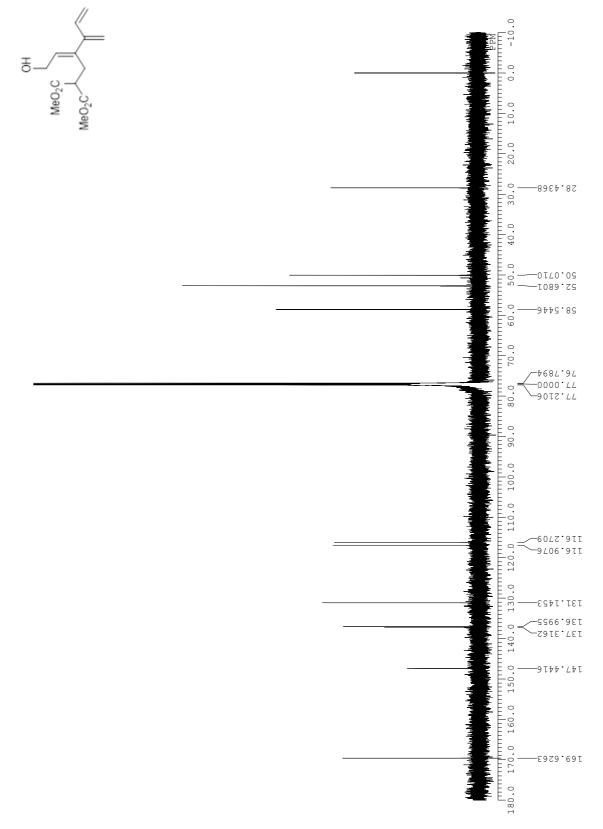

 $^{13}\mathrm{C}$  NMR spectrum of  $\mathbf{5bH}$ 

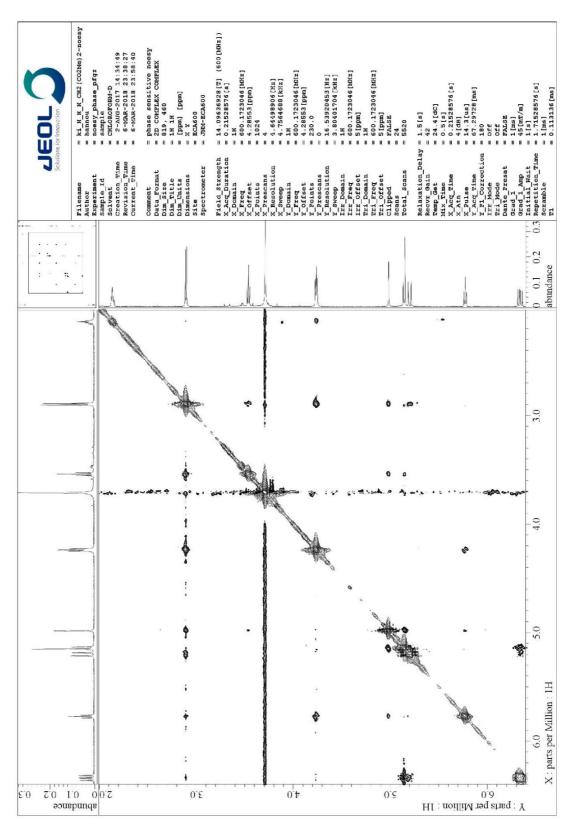






# $^1\mathrm{H}$ NMR spectrum of $\mathbf{5bI}$




 $^1\mathrm{H}$  NMR spectrum of 10iG









NOESY spectrum of  ${\bf 10iG}$