Supplementary Information

Two dominant self-assembly pathways to a Pd_3L_6 double-walled triangle

Tomoki Tateishi, Shumpei Kai, Yuya Sasaki, Tatsuo Kojima, Satoshi Takahashi and Shuichi Hiraoka*

> Department of Basic Science, Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan E-mail: chiraoka@mail.ecc.u-tokyo.ac.jp

Contents

General Information	····S2
• Materials	····S2
• Monitoring of the Self-Assembly of DWT by ¹ H NMR	
 Procedure for Monitoring the Self-Assembly Process of Pd₃1₆(BF₄)₆ Double-Walled Tr (DWT) 	iangle ····S2
· Determination of the Existence Ratios of Each Species	····S3
\cdot ¹ H NMR Spectra for the Self-Assembly of DWT from 1 and PdPy* ₄ (BF ₄) ₂ in CD ₃ NO ₂ (Figure S1)	····S5
• Time Variation of 1, PdPy* ₄ (BF ₄) ₂ , DWT , Py*, Int , and the ($\langle n \rangle$, $\langle k \rangle$) Values for the Self-Assembly of DWT (Tables S1–S5)	····S6
Characterization of DWT	
· ESI-TOF Mass Spectrometry (Figure S2)	····S11
· ¹ H DOSY NMR spectroscopy (Figure S3 and Table S6 and S7)	····S12
• Monitoring of the Self-Assembly of DWT by ESI-TOF Mass Spectrometry (Figure S4)	····S13
• Molecular Modeling Study of $[Pd_21_3Py^*_2]^{4+}$ (Figure S5)	····S17
• Possible Structures of (Pd, 1, Py*) = (2, 4, 3), (3, 5, 5), and (3, 6, 4) (Figure S6)	····S18
• References	····S20

General Information

¹H NMR spectra were recorded using a Bruker AV-500 (500 MHz) spectrometer. All ¹H spectra were referenced using a residual solvent peak, CD_3NO_2 (δ 4.33). Electrospray ionization time-of-flight (ESI-TOF) mass spectra were obtained using a Waters Xevo G2-S Tof mass spectrometer.

Materials

Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers (TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO Chemical Co., Inc., and Sigma-Aldrich Co.) and were used as received. CD_3NO_2 was purchased from Acros Organics and used after dehydration with Molecular Sieves 4Å. Ditopic ligand 1^{-1} and PdPy*₄(BF₄)₂⁻² were prepared according to the literature.

Monitoring of the Self-Assembly of DWT by ¹H NMR

Procedure for Monitoring the Self-Assembly Process of Pd₃1₆(BF₄)₆ Double-Walled Triangle (DWT)

A 2.4 mM solution of [2.2]paracyclophane in CHCl₃ (125 µL), which was used as an internal standard, was added to two NMR tubes (tubes I and II) and the solvent was removed in vacuo. A solution of PdPy*4(BF4)2 (12 mM) in CD₃NO₂ was prepared (solution A). Solution A (50 µL) and CD₃NO₂ (450 µL) were added to tube I. The exact concentration of $PdPy_{4}^{*}(BF_{4})_{2}$ in solution A was determined through the comparison of the signal intensity with [2.2]paracyclophane by ¹H NMR. A solution of ditopic ligand 1 (12 mM) in CHCl₃ (100 μL) was added to tube II and the solvent was removed in vacuo. Then CD₃NO₂ (500 μL) was added to tube II and the exact amount of 1 in tube II was determined through the comparison of the signal intensity with [2.2]paracyclophane by ¹H NMR. 0.50 eq. (against the amount of ligand 1 in tube II) of solution A (ca. 50 μ L; the exact amount was determined based on the exact concentration of solution A and of ligand in tube II) were added to tube II at 263 K. The self-assembly of the $Pd_31_6(BF_4)_6$ (DWT) was monitored at 298 K by ¹H NMR spectroscopy. Examples of the ¹H NMR spectra are shown in Figures 2 and S1. The exact ratio of $\mathbf{1}$ and PdPy*4(BF4)2 was unambiguously determined by the comparison of the integral value of each ¹H signal of [2.2]paracyclophane. The amounts of 1, $PdPy^*_4(BF_4)_2$, **DWT**, and Py^* were quantified by the integral value of each ¹H signal against the signal of the internal standard ([2.2]paracyclophane). In order to confirm the reproducibility, the same experiment was carried out three times (runs 1-3) in total. These data, the average values of the existence ratios and the $(\langle n \rangle, \langle k \rangle)$ values are listed in Tables S1–S5.

Determination of the Existence Ratios of Each Species

The relative integral value of each ¹H NMR signal against the internal standard [2.2]paracyclophane is used as the integral value in this description. We define the integral values of the signal for the substrates and the products at each time t as follows:

 $I_{\rm L}(t)$: 1/4 of the integral value of the *a* proton in free ligand **1** $I_{\rm M}(t)$: the integral value of the *h* proton of Py* in [PdPy*₄]²⁺ $I_{\rm DWT}(t)$: 1/4 of the integral value of the *a* proton in the Pd₃**1**₆ (**DWT**) $I_{\rm Py*}(t)$: the integral value of the *g* proton of free Py*

 $I_{\rm M}(0)$ was determined based on the exact concentration of solution A determined by ¹H NMR and the exact volume of solution A added into tube II.

 $I_{\rm L}(0)$ was determined by ¹H NMR measurement before the addition of solution A into tube II.

Existence ratio of $[PdPy_4^*]^{2+}$ As the total amount of $[PdPy_4^*]^{2+}$ corresponds to $I_M(0)$, the existence ratio of $[PdPy_4^*]^{2+}$ at *t* is expressed by $I_M(t)/I_M(0)$.

Existence ratio of 1

As the total amount of free ligand 1 corresponds to $I_L(0)$, the existence ratio of 1 at t is expressed by $I_L(t)/I_L(0)$.

Existence ratio of DWT

As the total amount of **DWT** is quantified based on 1, the existence ratio of the **DWT** at *t* is expressed by $I_{\text{DWT}}(t)/I_{\text{L}}(0)$.

Existence ratio of Py* As the total amount of Py* corresponds to $I_{M}(0)$, the existence ratio of Py* at t is expressed by $I_{Py*}(t)/I_{M}(0)$.

Existence ratio of the total intermediates not observed by ¹H NMR (Int)

The existence ratio of the total intermediates not observed by ¹H NMR (Int) is determined based on the amount of ligand 1 in Int. Thus the existence ratio of Int is calculated by subtracting the other species containing 1 (free 1 and DWT) from the total amount of 1 ($I_L(0)$). The existence ratio of Int at *t* is expressed by ($I_L(0) - I_L(t) - I_{DWT}(t)$)/ $I_L(0)$.

$\langle a \rangle$

The total amount of Pd^{2+} ions corresponds to $I_M(0)/4$. The amount of Pd^{2+} ions in $[PdPy_4]^{2+}$ at *t* corresponds to $I_M(t)/4$. The amount of Pd^{2+} ions in **DWT** at *t* corresponds to $I_{DWT}(t)/2$. The amount of Pd^{2+} ions in **Int** at *t* is thus expressed by $I_M(0)/4 - I_M(t)/4 - I_{DWT}(t)/2$.

$\langle b \rangle$

The total amount of ligand 1 corresponds to $I_L(0)$. The amount of free ligand 1 at *t* corresponds to $I_L(t)$. The amounts of ligand 1 in **DWT** at *t* corresponds to $I_{DWT}(t)$. The amount of ligand 1 in **Int** at *t* is thus expressed by $I_L(0) - I_L(t) - I_{DWT}(t)$.

 $\langle c \rangle$

The total amount of Py* corresponds to $I_{M}(0)$. The amount of free Py* at *t* corresponds to $I_{Py*}(t)$. The amount of Py* in [PdPy*₄]²⁺ at *t* corresponds to $I_{M}(t)$. The amount of Py* in **Int** at *t* is thus expressed by $I_{M}(0) - I_{Py*}(t) - I_{M}(t)$.

The $\langle n \rangle$ and $\langle k \rangle$ values are determined with these $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ values by eqs. (1) and (2).

$$\langle n \rangle = \frac{4 \langle a \rangle - \langle c \rangle}{\langle b \rangle}$$
 (1)

$$\langle k \rangle = \frac{\langle a \rangle}{\langle b \rangle}$$
 (2)

¹H NMR Spectra for the Self-Assembly of DWT from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂

Figure S1. ¹H NMR spectra (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of **DWT** from **1** and PdPy*₄(BF₄)₂ at 298 K ([**1**]₀ = 1.6 mM). The signals colored in blue, orange, red, and green indicate free **1**, PdPy*₄(BF₄)₂, **DWT**, and Py*, respectively.

Time Variation of 1, PdPy^{*}₄(BF₄)₂, DWT, Py^{*}, Int, and the ($\langle n \rangle$, $\langle k \rangle$) Values for the Self-Assembly of DWT

Time /	1	$[PdPy*_4]^{2+}$	DWT	Py*	Int	$\langle a \rangle$	$\langle b \rangle$	$\langle c \rangle$	$\langle n \rangle$	$\langle k \rangle$
min	/ %	/ %	/ %	/ %	/ %					
0	100	100	0.0	0.0	0.0		_	_		_
5	40.1	41.3	0.0	36.9	59.9	0.105	0.214	0.156	1.227	0.489
10	26.1	23.0	6.2	50.7	67.7	0.127	0.242	0.188	1.315	0.523
15	19.9	15.3	8.8	60.5	71.3	0.136	0.255	0.174	1.451	0.533
20	17.1	10.7	14.0	66.6	68.9	0.134	0.246	0.162	1.531	0.547
25	13.3	8.3	18.5	71.1	68.2	0.131	0.244	0.148	1.551	0.538
30	11.3	6.5	23.8	75.3	65.0	0.125	0.232	0.130	1.599	0.538
35	10.5	5.5	28.8	77.9	60.7	0.117	0.217	0.119	1.630	0.543
40	10.0	5.0	32.1	80.2	57.9	0.112	0.207	0.107	1.672	0.544
45	9.6	4.1	35.3	82.5	55.2	0.108	0.197	0.096	1.727	0.551
50	8.8	3.4	38.8	84.1	52.4	0.103	0.188	0.090	1.744	0.553
55	8.5	3.0	40.5	85.2	51.0	0.101	0.182	0.084	1.770	0.555
60	7.4	2.7	42.5	86.2	50.2	0.098	0.180	0.080	1.758	0.548
120	4.7	0.0	53.1	92.9	42.3	0.084	0.151	0.051	1.886	0.555
180	3.6	0.0	59.9	94.8	36.5	0.072	0.131	0.037	1.914	0.549
240	3.4	0.0	61.2	95.6	35.4	0.069	0.127	0.031	1.946	0.549
300	2.9	0.0	62.7	96.1	34.4	0.067	0.123	0.028	1.946	0.543
360	2.9	0.0	64.2	96.2	33.0	0.064	0.118	0.027	1.941	0.544
420	2.7	0.0	64.6	96.4	32.7	0.063	0.117	0.026	1.947	0.542
480	2.6	0.0	65.6	96.7	31.8	0.061	0.114	0.023	1.962	0.543
540	0.0	0.0	66.3	96.8	33.7	0.060	0.121	0.023	1.812	0.500
720	0.0	0.0	68.7	97.3	31.3	0.056	0.112	0.019	1.827	0.500
1440	0.0	0.0	73.4	97.6	26.6	0.048	0.095	0.017	1.819	0.500

Table S1. Average time variation of **1**, PdPy*₄(BF₄)₂, **DWT**, Py*; $\langle a \rangle - \langle c \rangle$ values of the average composition of the intermediates (Pd_(a)**1**_(b)Py*_(c)); ($\langle n \rangle$, $\langle k \rangle$) values for the self-assembly of **DWT** from **1** and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([**1**]₀ = 1.6 mM).

Time /	<u>зг₄)₂ ш 1</u>	$\frac{\text{CD}_{3}\text{NO}_{2} \text{ at } 29}{[\text{PdPv}_{4}]^{2+}}$	<u>ок ([1]</u>) - DWT	- 1.0 IIIvi Pv*). Int	$\langle a \rangle$	$\langle h \rangle$	$\langle c \rangle$	$\langle n \rangle$	$\langle k \rangle$
min	/ %	/%	/%	/ %	/ %	(4)	(0)	(0)	(11)	(11)
0	0.0	0.0	0.0	0.0	0.0					
5	0.91	4.92	0.00	4.34	0.91	0.009	0.003	0.024	0.128	0.036
10	2.24	3.73	2.18	5.20	0.20	0.002	0.003	0.012	0.100	0.014
15	2.12	3.58	3.43	5.63	1.33	0.004	0.005	0.016	0.122	0.019
20	1.28	3.04	3.80	5.11	2.58	0.005	0.010	0.016	0.120	0.021
25	0.79	2.29	3.89	5.12	3.24	0.005	0.013	0.022	0.121	0.017
30	0.27	2.33	3.60	5.08	3.35	0.004	0.013	0.021	0.125	0.018
35	0.58	1.90	4.39	4.73	3.90	0.006	0.015	0.021	0.110	0.013
40	0.85	1.64	4.34	4.68	3.59	0.006	0.014	0.023	0.108	0.009
45	0.74	1.41	4.74	4.04	4.07	0.007	0.016	0.020	0.095	0.009
50	0.82	1.40	5.37	3.85	4.62	0.008	0.018	0.019	0.090	0.010
55	0.72	1.38	4.83	3.91	4.21	0.007	0.017	0.019	0.106	0.012
60	0.64	1.18	5.13	3.50	4.52	0.008	0.018	0.018	0.091	0.010
120	0.48	0.00	2.30	1.53	1.93	0.004	0.007	0.011	0.071	0.004
180	0.83	0.00	1.66	0.81	1.57	0.003	0.007	0.006	0.047	0.012
240	0.95	0.00	1.20	0.86	0.99	0.002	0.005	0.006	0.033	0.014
300	1.10	0.00	0.95	0.72	0.60	0.001	0.003	0.005	0.024	0.017
360	1.13	0.00	0.66	0.73	0.56	0.000	0.003	0.005	0.027	0.018
420	1.17	0.00	0.76	0.73	0.62	0.001	0.003	0.005	0.028	0.019
480	1.21	0.00	0.25	0.72	0.97	0.000	0.005	0.005	0.033	0.021
540	0.00	0.00	0.51	0.73	0.51	0.000	0.001	0.005	0.040	0.000
720	0.00	0.00	0.16	0.82	0.16	0.001	0.001	0.006	0.052	0.000
1440	0.00	0.00	0.61	0.75	0.61	0.001	0.002	0.005	0.053	0.000

Table S2. Standard errors for each time point of 1, PdPy*₄(BF₄)₂, **DWT**, Py*; $\langle a \rangle - \langle c \rangle$ values of the average composition of the intermediates (Pd_(a)1_(b)Py*_(c)); ($\langle n \rangle$, $\langle k \rangle$) values for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([1]₀ = 1.6 mM).

CD_3NO_2 at 298 K ([1] ₀ = 1.6 mM). (run 1)										
Time /	1	$[PdPy_{4}^{*}]^{2+}$	DWT	Py*	Int	$\langle a \rangle$	$\langle b \rangle$	$\langle c \rangle$	$\langle n \rangle$	$\langle k \rangle$
min	/ %	/ %	/ %	/ %	/ %					
0	100	100	0.0	0.0	0.0					—
5	41.9	47.4	0.0	28.4	58.1	0.095	0.210	0.175	0.978	0.453
10	29.8	30.3	2.3	40.3	67.8	0.122	0.246	0.213	1.121	0.497
15	22.9	22.4	4.4	49.2	72.7	0.132	0.263	0.205	1.232	0.503
20	18.7	16.6	7.9	56.5	73.4	0.137	0.266	0.195	1.322	0.514
25	14.3	12.7	11.3	61.0	74.4	0.138	0.269	0.190	1.336	0.511
30	11.7	10.8	16.7	65.3	71.6	0.131	0.259	0.173	1.359	0.506
35	11.6	9.0	20.0	68.8	68.4	0.128	0.248	0.161	1.426	0.519
40	11.5	7.8	23.5	71.1	65.0	0.124	0.235	0.153	1.464	0.528
45	10.8	6.6	26.0	74.7	63.2	0.122	0.229	0.135	1.540	0.533
50	10.1	5.9	28.6	76.6	61.3	0.119	0.222	0.127	1.566	0.534
55	9.3	5.5	31.8	77.7	58.9	0.113	0.213	0.121	1.562	0.532
60	8.3	4.7	33.3	79.4	58.4	0.112	0.212	0.115	1.578	0.530
120	4.7	0.0	50.3	89.8	45.0	0.090	0.163	0.074	1.756	0.552
180	3.3	0.0	57.0	93.4	39.7	0.078	0.144	0.048	1.832	0.541
240	3.3	0.0	59.4	94.6	37.3	0.074	0.135	0.039	1.886	0.544
300	2.3	0.0	62.2	96.2	35.5	0.069	0.129	0.028	1.916	0.533
360	2.3	0.0	64.9	96.2	32.8	0.064	0.119	0.027	1.910	0.535
420	1.9	0.0	65.7	96.7	32.4	0.062	0.117	0.024	1.912	0.529
480	1.6	0.0	65.7	97.1	32.7	0.062	0.118	0.021	1.920	0.524
540	0.0	0.0	67.0	97.3	33.0	0.060	0.120	0.020	1.837	0.500
720	0.0	0.0	68.5	98.1	31.5	0.057	0.114	0.014	1.877	0.500
1440	0.0	0.0	74.6	98.3	25.4	0.046	0.092	0.012	1.870	0.500

Table S3. Time variation of 1, PdPy*₄(BF₄)₂, **DWT**, Py*; $\langle a \rangle - \langle c \rangle$ values of the average composition of the intermediates (Pd_(a)1_(b)Py*_(c)); ($\langle n \rangle$, $\langle k \rangle$) values for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([1]₀ = 1.6 mM). (run 1)

CD_3NO_2 at 298 K ([1] ₀ = 1.5 mM). (run 2)										
Time /	1	$[PdPy_{4}^{*}]^{2+}$	DWT	Py*	Int	$\langle a \rangle$	$\langle b \rangle$	$\langle c \rangle$	$\langle n \rangle$	$\langle k \rangle$
min	/ %	/ %	/ %	/ %	/ %					
0	100	100	0.0	0.0	0.0		—	—	—	—
5	39.3	45.0	0.0	39.5	60.7	0.096	0.213	0.109	1.300	0.453
10	26.3	20.3	6.4	55.3	67.4	0.128	0.236	0.171	1.452	0.544
15	21.1	11.2	6.4	66.3	72.5	0.144	0.254	0.158	1.653	0.569
20	18.1	6.4	13.0	72.9	68.8	0.141	0.241	0.145	1.740	0.585
25	14.0	4.9	19.4	77.8	66.6	0.132	0.233	0.121	1.753	0.568
30	11.3	2.8	26.1	81.8	62.6	0.124	0.219	0.108	1.780	0.568
35	9.6	2.5	32.6	84.7	57.8	0.114	0.202	0.090	1.803	0.561
40	8.5	2.1	36.9	86.7	54.6	0.107	0.191	0.078	1.824	0.559
45	8.2	1.8	41.4	88.1	50.3	0.099	0.176	0.071	1.853	0.564
50	7.3	1.0	46.9	89.4	45.9	0.091	0.161	0.067	1.856	0.568
55	7.1	0.8	48.4	91.0	44.5	0.089	0.156	0.058	1.912	0.570
60	6.1	0.6	51.0	91.1	42.9	0.085	0.150	0.058	1.871	0.564
120	5.5	0.0	51.3	94.5	43.2	0.085	0.151	0.038	1.999	0.563
180	5.1	0.0	59.9	94.8	35.0	0.070	0.123	0.037	1.995	0.573
240	5.1	0.0	60.7	94.9	34.1	0.069	0.120	0.036	2.000	0.575
300	5.0	0.0	61.4	94.9	33.5	0.068	0.117	0.036	1.994	0.575
360	5.0	0.0	62.9	94.9	32.1	0.065	0.112	0.036	1.994	0.579
420	5.0	0.0	63.1	95.0	31.8	0.065	0.111	0.035	2.003	0.579
480	5.0	0.0	65.1	95.4	29.8	0.061	0.104	0.032	2.027	0.585
540	0.0	0.0	65.3	95.4	34.7	0.061	0.122	0.032	1.734	0.500
720	0.0	0.0	68.6	95.6	31.4	0.055	0.110	0.030	1.722	0.500
1440	0.0	0.0	72.7	96.1	27.3	0.048	0.096	0.028	1.712	0.500

Table S4. Time variation of 1, PdPy*₄(BF₄)₂, **DWT**, Py*; $\langle a \rangle - \langle c \rangle$ values of the average composition of the intermediates (Pd_(a)1_(b)Py*_(c)); ($\langle n \rangle$, $\langle k \rangle$) values for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([1]₀ = 1.5 mM). (run 2)

CD_3NO_2 at 298 K ([1] ₀ = 1.6 mM). (run 3)										
Time /	1	$[PdPy_{4}^{*}]^{2+}$	DWT	Py*	Int	$\langle a \rangle$	$\langle b \rangle$	$\langle c \rangle$	$\langle n \rangle$	$\langle k \rangle$
min	/ %	/ %	/ %	/ %	/ %					
0	100	100	0.0	0.0	0.0		—	—	—	—
5	39.0	31.6	0.0	42.8	61.0	0.123	0.220	0.184	1.404	0.561
10	22.1	18.2	9.9	56.5	68.0	0.129	0.245	0.182	1.372	0.528
15	15.8	12.2	15.6	65.9	68.6	0.130	0.247	0.157	1.469	0.527
20	14.6	9.2	21.0	70.3	64.4	0.126	0.232	0.147	1.532	0.542
25	11.8	7.4	24.7	74.4	63.5	0.122	0.229	0.131	1.565	0.535
30	10.8	5.9	28.5	78.9	60.8	0.118	0.219	0.109	1.659	0.540
35	10.4	5.0	33.8	80.1	55.8	0.110	0.201	0.107	1.662	0.549
40	9.9	4.9	36.1	82.7	54.0	0.106	0.194	0.089	1.728	0.546
45	9.7	3.9	38.5	84.9	51.9	0.104	0.187	0.081	1.789	0.556
50	9.1	3.4	40.8	86.2	50.1	0.100	0.180	0.075	1.811	0.557
55	9.1	2.8	41.4	86.9	49.6	0.100	0.178	0.075	1.835	0.563
60	7.7	2.8	43.2	88.0	49.1	0.097	0.177	0.066	1.824	0.550
120	3.8	0.0	57.6	94.3	38.5	0.076	0.139	0.041	1.902	0.550
180	2.3	0.0	62.8	96.2	34.9	0.067	0.126	0.027	1.916	0.533
240	1.9	0.0	63.5	97.3	34.7	0.066	0.125	0.019	1.952	0.527
300	1.4	0.0	64.6	97.4	34.0	0.064	0.123	0.019	1.926	0.520
360	1.3	0.0	64.7	97.4	34.0	0.064	0.123	0.019	1.920	0.518
420	1.3	0.0	64.9	97.5	33.9	0.063	0.122	0.018	1.926	0.518
480	1.3	0.0	66.0	97.8	32.8	0.061	0.118	0.016	1.940	0.519
540	0.0	0.0	66.5	97.8	33.5	0.060	0.121	0.016	1.866	0.500
720	0.0	0.0	69.0	98.1	31.0	0.056	0.112	0.013	1.880	0.500
1440	0.0	0.0	72.8	98.3	27.2	0.049	0.098	0.012	1.875	0.500

Table S5. Time variation of 1, PdPy*₄(BF₄)₂, **DWT**, Py*; $\langle a \rangle - \langle c \rangle$ values of the average composition of the intermediates (Pd_(a)1_(b)Py*_(c)); ($\langle n \rangle$, $\langle k \rangle$) values for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₂NO₂ at 298 K ([1]₀ = 1.6 mM) (run 3)

Characterization of DWT

Figure S2. ESI-TOF mass spectra of the reaction mixture for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([1]₀ = 1.6 mM) recorded after convergence. Measurement condition: Capillary / 1.5 kV; Sampling Cone / 30 V; Source Offset / 80 V; Source / 80 °C; Desolvation / 150 °C; Cone Gas / 50 L h⁻¹; Desolvation Gas / 800 L h⁻¹. (a) *m/z*: 300–900, (b) $[Pd_31_6 \cdot (NO_3)]^{5+}$ and $[Pd_31_6 \cdot (BF_4)]^{5+}$, (c) $[Pd_41_8 \cdot (BF_4)(NO_3)]^{6+}$ and $[Pd_41_8 \cdot (BF_4)_2]^{6+}$, (d) $[Pd_31_6 \cdot (BF_4)(F)]^{4+}$, $[Pd_31_6 \cdot (NO_3)_2]^{4+}$, $[Pd_31_6 \cdot (BF_4)(NO_3)]^{4+}$ and $[Pd_31_6 \cdot (BF_4)_2(NO_3)]^{5+}$ and $[Pd_41_8 \cdot (BF_4)_2(NO_3)]^{5+}$ and $(f) [Pd_31_6 \cdot (BF_4)_2(F)]^{3+}$, $[Pd_31_6 \cdot (BF_4)_2(NO_3)]^{3+}$ and $[Pd_31_6 \cdot (BF_4)_3]^{5+}$ and $(f) [Pd_31_6 \cdot (BF_4)_2(F)]^{3+}$, $[Pd_31_6 \cdot (BF_4)_2(NO_3)]^{3+}$ and $[Pd_31_6 \cdot (BF_4)_3]^{3+}$. (*a*, *b*, *c*) indicates species $Pd_a1_bPy^*c$.

Figure S3. ¹H DOSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ at 298 K ([1]₀ = 1.6 mM) recorded after convergence. Signals colored in red and green indicate **DWT** and Py*, respectively.

Table S6. A list of diffusion coefficients (D), errors, logD, and errors for logD of DWT.

-				-	÷	
	Peak	F2 / ppm	$D / m^2 s^{-1}$	Error	logD	error for logD
	а	8.994	3.21×10^{-10}	1.04×10^{-11}	-9.493	0.032
	b	7.745	3.19×10^{-10}	1.15×10^{-11}	-9.496	0.036
	<i>c</i> or <i>d</i>	7.696	3.17×10^{-10}	1.12×10^{-11}	-9.499	0.035
	<i>c</i> or <i>d</i>	7.573	2.98×10^{-10}	7.74×10^{-12}	-9.526	0.026
	A	Avg.	3.14×10^{-10}	1.02×10^{-11}	-9.503	0.032

Table S7. A list of diffusion coefficients of DWT and double-walled square (DWS).

Substance	Solvent	$D / m^2 s^{-1}$	$\log D$	Error	Hydrodynamic
					radius / Å
$Pd_31_6 DWT^{1}$	CD ₃ CN	$5.0 imes 10^{-10}$	-9.3		12.8
$Pd_41_8 DWS^{1}$	DMSO- d_6	6.3×10^{-11}	-10.2		17.3
Pd_31_6 DWT	CD ₃ NO ₂	3.14×10^{-10}	-9.50	1.02×10^{-11}	11.4

Monitoring of the Self-Assembly of DWT by ESI-TOF Mass Spectrometry

A 1.76 mM solution of **1** in CD₃NO₂ (500 μ L, 0.88 μ mol) and a 8.8 mM solution of PdPy*₄(BF₄)₂ in CD₃NO₂ (50 μ L, 0.44 μ mol) were mixed. At each time point, 50 μ L of the reaction mixture was taken, diluted with CH₃NO₂ (450 μ L), filtered through a membrane filter (pore size: 0.20 μ m) and injected in the mass spectrometer with 5.0 μ L/min flow rate to obtain ESI-TOF mass spectra (Figure S4). A list of predominantly observed species is shown in Table 1.

Figure S4. ESI-TOF mass spectra of the reaction mixture for the self-assembly of **DWT** from 1 and PdPy*₄(BF₄)₂ in CD₃NO₂ at 298 K ([1]₀ = 1.6 mM), measured at 10 min, 30 min, 1 h, 2 h, 6 h, and 24 h. Measurement condition: Capillary / 1.5 kV; Sampling Cone / 30 V; Source Offset / 80 V; Source / 40 °C; Desolvation / 40 °C; Cone Gas / 50 L h⁻¹; Desolvation Gas / 800 L h⁻¹. (a) *m/z*: 300–900, (b) *m/z*: 300–600, (c) $[Pd1Py*_2]^{2+}$ and $[Pd_21_2Py*_4]^{4+}$, (d) $[Pd_31_5Py*_2 \cdot (BF_4)]^{5+}$, (e) $[Pd_31_6 \cdot (NO_3)]^{5+}$ and $[Pd_31_6 \cdot (BF_4)]^{5+}$, (f) $[Pd_21_2Py*_4 \cdot (BF_4)]^{3+}$ and (g) $[Pd_41_8 \cdot (BF_4)_2 (NO_3)]^{5+}$ and $[Pd_41_8 \cdot (BF_4)_3]^{5+}$. (*a*, *b*, *c*) indicates species Pd₄1_bPy*_c.

Molecular Modeling Study of $[Pd_21_3Py^*_2]^{4+}$

Geometry optimization for $[Pd_2l_3Py^*_2]^{4+}$ was performed by molecular mechanics (*MM*) calculation with Universal Force field (BIOVIA Material Studio 2017 R2, Accelrys Software Inc.).

Figure S5. Optimized structures of $[Pd_2\mathbf{1}_3Py^*_2]^{4+}$ by *MM* calculation. Hydrogen atoms are omitted for clarity. Color labels: yellow, Pd; grey, C; blue, N; and light green, Cl. (a) and (b) indicate different views.

Possible Structures of (Pd, 1, Py*) = (2, 4, 3), (3, 5, 5), and (3, 6, 4)

Figure S6. Possible structures of (a) (2, 4, 3), (b) (3, 5, 5), and (c) (3, 6, 4). (*a*, *b*, *c*) indicates species $Pd_a \mathbf{1}_b Py^*_c$. *cis* and *trans* colored in black indicate *cis* and *trans* configuration of Pd(II) centers possessing two Py* molecules, respectively and those in red indicate *cis* and *trans* configuration of Pd(II) centers possessing one or zero Py* molecule.

References

(1) K. Suzuki, M. Kawano and M. Fujita, Angew. Chem. Int. Ed., 2007, 46, 2819–2822.

(2) T. Tateishi, W. Zhu, L. H. Foianesi-Takeshige, T. Kojima, K. Ogata and S. Hiraoka, *Eur. J. Inorg. Chem.*, 2018, 1192–1197.