SUPPORTING INFORMATION

Alkene protection against acid using a bromide substituent: application in a total synthesis of (–)-6,7-dideoxysqualestatin H5

Hasanain A. A. Almohseni, Hamad H. Al Mamari, Anne Valade, Herman O. Sintim and David M. Hodgson*

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom <u>david.hodgson@chem.ox.ac.uk</u>

Table of Contents

1. General techniques	S4
2. Experimental procedures	
(a) Model studies and methylation cross-coupling optimisation	
- alkene 10	S5
- tetralin 11	S5
- bistrifluoroacetate 25	S6
- TBS ether 23	S6
- <i>E</i> -alkene 27	S7
- bis-TBS ether 24	S8
- bis-TBS <i>E</i> -alkene 28	S8
- <i>E</i> -alkene tartrate SI-1	S9
Table S1: Optimisation of the conditions for methylation cross-coupl	ing with alkylated tartrate
14	S10
(b) Total synthesis of (-)-6,7-dideoxysqualestatin H5	
- <i>E</i> -enoate 18	S10
- <i>Z</i> -α-bromoenoate 19	S11
- allylic alcohol SI-2	S11
- allylic bromide 20	S12
- β-ketoester 21	S12
- 1,3-diol 8 <i>R</i> - 22	
- iodo alcohol SI-3	S14
- iodide 16	
- alkylated tartrate 8' <i>R</i> -14	
- hydroxy acetonide 29	S16
- bis-TES ether 30	S17
- Z-hydrazone SI-4	S18
- diazo alcohol SI-5	S19
- ketone 13	
- cycloadduct 12	
- alkenyl bromide 32 (and cycloadduct alcohol 31)	
- 6,7–dideoxysqualestatin H5 trimethylester 33	
- 6,7–dideoxysqualestatin H5 5	
3. Tabular comparison of synthetic 6,7-dideoxysqualestatin H5 with r	natural isolate S24

4. References	S25
5. ¹ H and ¹³ C NMR Spectra	
- alkene 10	S26–27
- tetralin 11	S28–29
- bistrifluoroacetate 25	S30–31
- TBS ether 23	S32–33
- <i>E</i> -alkene 27	S34–35
- bis-TBS ether 24	S36–37
- bis-TBS <i>E</i> -alkene 28	S38–39
- alkylated tartrate 14	S40–41
- <i>E</i> -alkene tartrate SI-1	S42–43
- <i>E</i> -enoate 18	S44–45
- <i>Z</i> -α-bromoenoate 19	S46–47
- allylic alcohol SI-2	S48–49
- allylic bromide 20	
- β-ketoester 21	
- 1,3-diol 8 <i>R</i> - 22	S54–55
- iodo alcohol SI-3	S56–57
- iodide 16	S58–59
- alkylated tartrate 8' <i>R</i> -14	
- hydroxy acetonide 29	S62–63
- bis-TES ether 30	S64–65
- Z-hydrazone SI-4	S66–67
- diazo alcohol SI-5	S68–69
- ketone 13	S70–71
- cycloadduct 12	S72–73
- cycloadduct alcohol 31	S74–75
- alkenyl bromide 32	S76–77
- 6,7–dideoxysqualestatin H5 trimethyl ester 33	S78–79
- 6,7–dideoxysqualestatin H5 5	

1. General techniques

All reactions requiring anhydrous conditions were carried out in flame-dried glassware under an atmosphere of nitrogen (or argon), the later having been passed through a column of calcium chloride and silica gel. THF, CH₂Cl₂ and DMF were obtained from drying stills.¹ Methanol was dried over activated 4 Å MS under argon. Diisopropylamine, triethylamine and 2,6-lutidine were distilled under nitrogen from CaH₂. A fresh batch of MoOPH was prepared following a slightly modified procedure using molybdic acid² instead of molybdenum(VI) oxide,³ and dried overnight under high vacuum prior use. n-BuLi in hexanes was titrated by adding a solution of 2-propanol (1.0 M in toluene with 0.2% of 1,10-phenanthroline) slowly to a solution of *n*-BuLi in toluene until the end-point: a change of colour from clear to red then yellow. MeLi in ether was titrated by adding slowly MeLi to a solution of N-benzylbenzamide (100 mg in 5 ml THF) at -20 °C; the end-point was marked by a colour change from clear to blue. Commercial starting materials were used without further purification, unless otherwise stated. Petrol (petroleum ether) 40-60 °C was used in flash column chromatography, which was carried out using silica gel (VWR chemicals, BDH), and monitored by TLC (Merck 60 F254) plates. TLC plates were viewed using ultraviolet light ($\lambda max = 254/365 \text{ nm}$) and by immersion in KMnO₄ or anisaldehyde stains, followed by heating. Infrared spectra were obtained using a PerkinElmer FT-IR spectrometer (Universal ATR Sampling Accessory) with absorption maxima quoted in wavenumbers (cm⁻¹). Peaks are described as broad (br), weak (w), medium (m) and strong (s). Nuclear magnetic resonance (¹H NMR, ¹³C NMR and ¹⁹F NMR) spectra were recorded on Bruker Avance UltraShield AVC 500, AVX 500 and AVF 400, in CDCl₃ and CD₃OD, referenced to solvent peaks. Chemical shifts are quoted in parts per million (ppm). The splittings are quoted as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m) and pseudo (p). Proton coupling constants (J) are reported to the nearest 0.5 Hz. E/Z Assignments and stereochemistry of cycloadduct 12 were based on NOE studies. $[\alpha]_D^{25} =$ values are given in 10⁻¹ deg cm² g⁻¹. Concentrations (c) are given in g/cm³. Low resolution mass spectra were obtained using electrospray ionisation (ESI). High resolution mass spectra were obtained by ESI using tetraoctylammonium bromide or sodium dodecyl sulfate as the lock mass; values are quoted as ratio of mass to charge (m/z) in Daltons.

2. Experimental procedures

(a) Model studies and methylation cross-coupling optimisation

2,4-Dimethyl-5-phenyl-2-pentene (10)

n-BuLi (1.3 mL, 2.5 M in hexanes, 3.3 mmol) was added dropwise to a solution of isopropyltriphenylphosphonium iodide (1.6 g, 3.7 mmol) in THF (8 mL) at -78 °C. The mixture was warmed to rt, stirred for 30 min, then the dark red solution was re-cooled to -78 °C and a solution of aldehyde *rac*-**17**⁴ (0.25 g, 1.69 mmol) in THF (4 mL) was added dropwise. After stirring at rt for 4 h, the mixture was quenched with water (30 mL), extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO4), and evaporated under reduced pressure. Purification of the residue by column chromatography (20% Et₂O in petrol) gave alkene **10**⁵ (175 mg, 60%), as a colourless liquid; $R_f = 0.71$ (20% Et₂O in petrol). ¹H NMR (400 MHz; CDCl₃) δ 7.30–7.13 (5H, m, ArH), 4.99 (1H, dquint, J = 9, 1.5, $CH=C(CH_3)_2$), 2.69–2.48 (3H, m, CHCH₂Ph), 1.67 (3H, d, J = 1.5, one CH₃ of $=C(CH_3)_2$), 1.46 (3H, d, J = 1.5, second CH₃ of $=C(CH_3)_2$), 0.95 (3H, d, J = 6.5, CHCH₃); ¹³C NMR (100 MHz; CDCl₃) δ 141.4 (ArC), 130.6 (C=CH), 130.5 (C=CH), 129.4 (ArCH) 128.1 (ArCH), 125.7 (ArCH), 44.2 (CH₂Ph), 34.8 (CHCH₃), 25.9 (CH₃), 20.9 (CHCH₃), 17.9 (CH₃).

1,1,3-Trimethyl-1,2,3,4-tetrahydronaphthalene (11)

To a solution of alkene **10** (100 mg, 0.57 mmol) in CH₂Cl₂ (4.2 mL) was added TFA (2.1 mL) and H₂O (210 μ L). The reaction mixture was heated at 40 °C for 48 h, then cooled to rt, sat. aq. NaHCO₃ (5 mL) added and extracted with Et₂O (2 x 15 mL). The combined organic layers were washed with brine (10 mL), dried (K₂CO₃) and evaporated under reduced pressure to give tetralin **11**⁶ (94 mg, 95%) as a colourless liquid; R_f = 0.71 (0.5% Et₂O in petrol); ¹H NMR (400 MHz; CDCl₃) δ 7.33 (1H, d, *J* = 7.5, ArH), 7.19–7.02 (3H, m, ArH), 2.84–2.74 (1H, m, CHHAr), 2.44–2.34 (1H, m, CHHAr), 2.04–1.91 (1H, m, CHCH₃), 1.67–1.59 (1H, m, C(CH₃)₂CH*H*), 1.42–1.32 (4H, m, C(CH₃)₂CH*H* and CH₃), 1.25 (3H, s, CH₃), 1.05 (3H, d, *J* = 6.5, CHC*H*₃); ¹³C NMR (100 MHz; CDCl₃) δ 145.6 (ArC), 136.3 (ArC), 129.0 (ArCH) 126.7

(ArCH), 126.0 (ArCH), 125.4 (ArCH), 48.5 (C(CH₃)₂CH₂), 39.9 (CH₂Ar), 35.1 (C(CH₃)₂), 32.9 (CH₃), 31.9 (CH₃), 25.9 (CHCH₃), 22.6 (CHCH₃).

(Z)-6-Bromo-8-methyl-9-phenylnon-6-ene-1,3-diyl bis(2,2,2-trifluoroacetate) (25)

To a solution of 1,3-diol **22** (100 mg, 0.30 mmol) in CH₂Cl₂ (2.20 mL) were added TFA (1.10 mL) and H₂O (110 µL). The reaction mixture was heated at 40 °C for 48 h. The mixture was then concentrated under reduced pressure to give bistrifluoroacetate **25** (156 mg, quant), as a yellow oil, a 1:1 diastereomeric mixture; $R_f = 0.35$ (4% EtOAc in petrol); v_{max} /cm⁻¹(film) 3027 w, 1784 s, 1454 w, 1220 s, 1148 s, 775 m, 731 m, 700 m; ¹H NMR (400 MHz; CDCl₃) δ 7.30–7.14 (5H, m, ArH), 5.54–5.49 (1H, m, CH=CBr), 5.15–5.04 (1H, m, CHOCOCF₃), 4.41–4.33 (2H, m, CH₂OCOCF₃), 2.94–2.83 (1H, m, CHCH₃), 2.71–2.64 (1H, m, CH*H*Ph), 2.59–2.51 (1H, m, C*H*HPh), 2.50–2.40 (2H, m, CH₂CBr), 2.12 (2H, q, *J* = 6, OCH₂C*H*₂CH0), 2.01–1.89 (2H, m, *CH*₂CH₂CBr), 0.97 (3H, d, *J* = 6.5, CHC*H*₃); ¹³C NMR (100 MHz; CDCl₃) δ 157.3 (2 x q, *J*_{C-F} = 42, C=O), 140.0, 140.0 (Ar*C*), 136.2, 136.1 (*C*=CBr), 129.4, 129.3 (Ar*C*H) 128.3, 128.3 (Ar*C*H), 126.2, 126.1 (Ar*C*H), 124.5, 124.4 (C=CBr), 114.7 (2 x Q, *J*_{C-F} = 286, CF₃), 74.9, 74.7 (*C*HOCOCF₃), 61.6 (*C*H₂OCOCF₃), 42.5 (*C*H₂Ph), 38.1, 38.0 (*C*HCH₃), 37.0, 36.9 (*C*H₂CH₂CBr), 32.5, 32.3, 32.2 (CH₂*C*H₂CBr and OCH₂*C*H₂CHO), 19.1 (CH*C*H₃); ¹⁹F NMR (377 MHz) δ –75.1; HRMS *m*/*z* (M+Na⁺) found: 541.0421. C₂₀H₂₁O4⁷⁹BrF6²³Na requires 541.0419.

(Z)-6-Bromo-1-((tert-butyldimethylsilyl)oxy)-8-methyl-9-phenylnon-6-en-3-ol (23)

To a solution of 1,3-diol **22** (0.97 mg, 3.05 mmol) and imidazole (477 mg, 7.01 mmol) in DMF (8 mL) at 0 °C was added a solution of TBSCl (480 mg, 3.2 mmol) in DMF (8 mL). The mixture was stirred for 6 h at 0 °C, then water (5 mL) was added, extracted with Et₂O (2 × 10 mL), washed with brine (5 mL), and dried (Na₂SO₄). Evaporation under reduced pressure followed by column chromatography (20% Et₂O in petrol) gave TBS ether **23** (1.15 g, 86%), as a colourless oil, a 1:1 diastereomeric mixture; $R_f = 0.34$ (20% Et₂O in petrol); v_{max}/cm^{-1} (film) 3448 br, 2967 m, 2928 m, 2856 m, 1466 m, 1079 s, 885 m, 625 s; ¹H NMR (400 MHz; CDCl₃)

δ 7.29–7.13 (5H, m, ArH), 5.53 (1H, d, J = 8.5, CH=CBr), 3.92–3.85 (1H, m, CHOH), 3.83– 3.66 (2H, m, CH₂OTBS), 3.47 and 3.42 (1H, 2 x s, CHO*H*), 2.95–2.82 (1H, m, CHCH₃), 2.73– 2.64 (1H, m, CH*H*Ph), 2.61–2.42 (3H, m, C*H*₂ and CH*H*Ph), 1.71–1.56 (4H, m, 2 x CH₂), 0.96 (3H, pdd, J = 6.5, 4, CHC*H*₃), 0.89 (9H, s, OSiCMe₃), 0.08 (6H, s, OSi(CH₃)₂); ¹³C NMR (100 MHz; CDCl₃) δ 140.3, 140.2 (ArC), 134.2, 134.1 (*C*=CBr), 129.4, 129.3 (ArCH) 128.2 (ArCH), 127.2 (C=CBr), 126.0 (ArCH) 71.1, 70.9 (CHOH), 63.0 (*C*H₂OTBS), 42.7, 42.6 (*C*H₂Ph), 38.4, 38.3, 38.0, 37.9, 37.8, 37.7, (all CH₂), 36.1, 35.9 (*C*HCH₃), 26.0 (SiC*Me*₃) 19.3, 19.2 (CHCH₃), 18.2 (SiCMe₃), -5.4 (OSi(CH₃)₂), -5.4 (OSi(CH₃)₂); HRMS *m/z* (M+H⁺) found: 441.1822. C₂₂H₃₈ O₂⁷⁹Br²⁸Si requires 441.1819.

(E)-1-((tert-Butyldimethylsilyl)oxy)-6,8-dimethyl-9-phenylnon-6-en-3-ol (27)

MeLi (112 µL, 1.6 M in Et₂O, 0.18 mmol) was added to a solution of 9-OMe-9BBN (180 µL, 1 M in hexanes, 0.18 mmol) in THF (1 mL). After 10 min, PdCl₂(dppf) (11 mg, 10 mol%) and NaOMe (12 mg, 0.22 mmol) were added, followed by a solution of TBS ether 23 (66 mg, 0.15 mmol) in THF (0.5 mL) dropwise. After refluxing for 48 h, the mixture was cooled to rt, added water (1 mL), extracted with Et_2O (2 × 5 mL), washed with brine (2 mL) and dried (MgSO₄). Evaporation under reduced pressure followed by column chromatography (5% EtOAc in petrol) gave *E*-alkene **27** (42 mg, 75%), as a colourless oil, a 1:1 diastereomeric mixture; $R_f =$ 0.33 (5% EtOAc in petrol); v_{max}/cm⁻¹(film) 3386 br, 2955 m, 2925 m, 2856 s, 1495 m, 1254 m, 1083 s, 834 s, 776 s, 698 m, 663 s; ¹H NMR (400 MHz; CDCl₃) δ 7.28–7.10 (5H, m, ArH), 5.00 (1H, d, J = 9, CH=CCH₃), 3.92–3.85 (1H, m, CHOH), 3.83–3.69 (2H, m, CH₂OTBS), 3.37 and 3.35 (1H, 2 x d, J = 2.5, CHOH), 2.67–2.56 (1H, m, CHCH₃), 2.55–2.49 (2H, m, CH₂Ph), 2.13–1.91 (2H, m, CH₂), 1.67–1.44 (4H, m, 2 x CH₂), 1.42 (3H, s, =CCH₃), 0.94 (3H, $2 \text{ x d}, J = 6.5, \text{CHC}H_3$, 0.90 (9H, s, OSiCMe₃), 0.08 (6H, s, OSi(CH₃)₂); ¹³C NMR (100 MHz; CDCl₃) δ 141.3, 141.3 (ArC), 134.1 (C=CCH₃), 130.5, 130.5 (C=CCH₃), 129.4 (ArCH) 128.1, 128.1 (ArCH), 125.7 (ArCH) 72.0, 71.9 (CHOH), 63.0 (CH₂OTBS), 42.1 (CH₂Ph), 38.4, 38.3, 35.9, 35.8, 35.6, (all CH₂), 34.7 (CHCH₃), 26.0 (SiCMe₃), 21.0, 20.9 (CHCH₃), 18.2 (SiCMe₃), 16.2, 16.2 (=CCH₃), -5.4 (one CH₃ of OSi(CH₃)₂), -5.4 (another CH₃ of OSi(CH₃)₂). HRMS m/z (M+H⁺) found: 377.2876. C₂₃H₄₁O₂Si requires 377.2873.

(*Z*)-5-(3-Bromo-5-methyl-6-phenylhex-3-en-1-yl)-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (24)

To a solution of TBS ether 23 (50.0 mg, 0.11 mmol) in CH₂Cl₂ (1.5 mL) at 0 °C was added 2,6-lutidine (40 µL, 0.3 mmol) followed by TBSOTf (47 µL, 0.20 mmol). The mixture was stirred for 2 h at 0 °C, then sat. aq. NaHCO₃ (2 mL) added, extracted with EtOAc (2×5 mL) and the combined organic layers dried (MgSO₄) and evaporated under reduced pressure. Purification the residue by column chromatography (5% Et₂O in petrol) gave bis-TBS ether 24 (59 mg, 94%) as a colourless oil, a 1:1 diastereomeric mixture; $R_f = 0.65$ (5% Et₂O in petrol); v_{max}/cm^{-1} (film) 3064 w, 2955 s, 2359 w, 1658 w, 1603 w, 1496 m, 1472 m, 1361 m, 1256 s, 1036 m, 1006 m, 836 s, 775 s; ¹H NMR (400 MHz; CDCl₃) δ 7.31–7.16 (5H, m, ArH), 5.49 (1H, d, J = 8.5, CH=CBr), 3.87–3.79 (1H, m, CHOTBS), 3.71–3.64 (2H, m, CH₂OTBS), 2.95– 2.84 (1H, m, CHCH₃), 2.72 (1H, dd, J = 13.5, J = 6, CHHPh), 2.25 (1H, dd, J = 13.5, J = 8 ,CHHPh), 2.48–1.41 (2H, m, CH₂CBr), 1.76–1.59 (4H, m, CH₂CH(OTBS)CH₂), 0.97 (3H, d, J = 6.5, CHCH₃), 0.91 (18H, s, 2 x OSiCMe₃), 0.06 (12H, s, 2 x OSi(CH₃)₂); ¹³C NMR (100 MHz; CDCl₃) δ 140.2 (ArC), 133.7, (C=CBr), 129.4 (ArCH) 128.3 (ArCH), 127.7, 127.6 (C=CBr), 126.1 (ArCH) 68.5 (CHOTBS), 60.0, 60.0 (CH₂OTBS), 42.7 (CH₂Ph), 40.1, 38.0 (2 x CH₂), 37.5, 37.5 (CHCH₃), 26.3, 36.2 (CH₂), 26.1, 26.1 (SiCMe₃), 19.2 (CHCH₃), 18.4, 18.3 (SiCMe₃), -4.3, -4.4 (one CH₃ of OSi(CH₃)₂), -5.1, -4.4 (another CH₃ of OSi(CH₃)₂); HRMS m/z (M+H⁺) found: 555.2672. C₂₈H₅₂⁷⁹BrO₂²⁸Si₂ requires 555.2684.

(*E*)-5-(3,5-Dimethyl-6-phenylhex-3-en-1-yl)-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9disilaundecane (28)

Following the procedure to **27** above, but using bis-TBS ether **24** (55 mg, 0.1 mmol), gave after column chromatography (petrol) bis-TBS *E*-alkene **28** (37 mg, 76%), as a colourless oil, a 1:1 diastereomeric mixture; $R_f = 0.63$ (0.5% Et₂O in petrol); v_{max} /cm⁻¹(film) 2977s, 2931s, 2861s, 1644 m, 1444 s, 1382s , 1350 s, 1298 m, 1257 m, 1125 br, 1043 m, 837 s, 775 m; ¹H NMR

(400 MHz; CDCl₃) δ 7.28–7.11 (5H, m, ArH), 4.98 (1H, d, *J* = 9, C*H*=CCH₃), 3.82–3.74 (1H, m, CHOTBS), 3.72–3.63 (2H, m, CH₂OTBS), 2.67–2.56 (1H, m, C*H*CH₃), 2.55–2.48 (2H, m, CH₂Ph), 2.04–1.87 (2H, m, C*H*₂CCH₃), 1.66 (2H, q, *J* = 6.5, C*H*₂CH₂OTBS), 1.55–1.46 (2H, m, C*H*₂CH₂CCH₃), 1.42 (3H, d, *J* = 1, =CCH₃), 0.95 (3H, d, *J* = 6.5, CHC*H*₃), 0.91 (18H, s, 2 x OSiCMe₃), 0.06 (12H, s, 2 x OSi(CH₃)₂); ¹³C NMR (100 MHz; CDCl₃) δ 141.3 (Ar*C*), 134.4, 134.4 (*C*=CCH₃), 130.2, 130.2 (C=CCH₃), 129.4, 129.4 (Ar*C*H) 128.1 (Ar*C*H), 125.7 (Ar*C*H) 69.4 (CHOTBS), 60.2, 60.2 (*C*H₂OTBS), 44.2, 44.2 (*C*H₂Ph), 40.2, 40.2, 36.2, 36.1, 35.4, 35.4 (all CH₂), 34.7 (CHCH₃), 26.1, 26.1 (SiC*Me*₃), 20.9, 20.9 (CHCH₃), 18.5, 18.3 (SiCMe₃), 16.3 (=CCH₃), -4.2, -4.4 (one CH₃ of OSi(CH₃)₂), -5.1 (another CH₃ of OSi(CH₃)₂); HRMS *m/z* (M+H⁺) found: 491.3734. C₂₉H₅₅O₂²⁸Si₂ requires 491.3735.

Dimethyl (4*R*,5*R*)-4-((*E*)-6,8-dimethyl-9-phenyl-3-((triethylsilyl)oxy)non-6-en-1-yl)-2,2dimethyl-1,3-dioxolane-4,5-dicarboxylate (SI-1)

To a solution of B-OMe-9BBN (93 µL, 1 M in hexane, 0.093 mmol) in THF (400 µL) was added MeLi (78 µL, 1.2 M in Et₂O, 0.093 mmol). Meanwhile, a mixture of PdCl₂(dppf) (3 mg, 10 mol%), aq. Cs₂CO₃ (45 mg, 3 M, 0.138 mmol), AsPh₃ (4 mg, 30 mol%) and alkylated tartrate 14 (from rac-17) (30 mg, 0.046 mmol) was prepared in DMF (400 µL) at rt. To the mixture containing 14 and the catalyst system, the borinate complex solution was added dropwise and then the mixture stirred at rt for 40 h. The reaction mixture was then quenched with water (1 mL), extracted with Et₂O (3×2 mL), washed with brine (2 mL) and dried (MgSO₄). Evaporation under reduced pressure followed by column chromatography (10-30% EtOAc in petrol) gave E-alkene tartrate SI-1 (20 mg, 75%), as a colourless oil, a mixture of 4 diastereoisomers. $R_f = 0.53$ (20% EtOAc in petrol); v_{max}/cm^{-1} (film) 3019 s, 2956 s, 2876 m, 1750 m, 1453 m, 1384 m; ¹H NMR (500 MHz; CDCl₃) δ 7.27–7.10 (5H, m, ArH), 4.93 (2H, d, J = 8, CH=CCH₃ and CHCO₂Me), 3.81 (3H, s, OMe), 3.79 (3H, s, OMe), 3.62–3.53 (1H, m, CHOTES), 2.63–2.54 (1H, m, CHCH₃), 2.51 (1H, pd, J = 7, CH₂Ph), 2.00–1.74 (4H, m, 2 x CH₂), 1.68–1.59 (5H, m, CH₂ and one Me of CMe₂), 1.47–1.41 (5H, m, CH₂ and second Me of CMe₂), 1.38 (3H, s, =CCH₃), 0.94 (12H, pq, J = 7.5, OSi(CH₂CH₃)₃ and CHCH₃), 0.57 (6H, $q, J = 7.5, OSi(CH_2CH_3)_3$; ¹³C NMR (125 MHz; CDCl₃) δ 172.6, 172.5 (CO₂Me), 169.0, 168.8 (CO₂Me), 141.3 (ArC), 134.0, 134.0 (*C*=CCH₃), 130.4, 130.4 (C=CCH₃), 129.4 (ArCH) 128.1, 128.1 (ArCH), 125.7 (ArCH), 112.8, 112.7 (CMe₂), 86.1, 85.8 (*quat.* C), 80.3, 80.2 (CHCO₂Me), 71.9, 71.9 (CHOTES), 53.0 (OMe), 52.5, 52.4 (OMe), 44.2, 42.1 (CH₂Ph), 36.0, 35.9, 35.5, 35.4 (all CH₂), 34.7, 34.7 (CHCH₃), 31.4, 31.1, 30.7, 30.2 (all CH₂), 27.9, 27.8, 26.2, 26.1 (C(CH₃)₂), 20.9, 20.9 (CHCH₃), 16.2, 16.2 (=CCH₃), 7.1 (OSi(CH₂CH₃)₃), 5.2, 5.2 (OSi(CH₂CH₃)₃); HRMS m/z (M+Na⁺) found: 599.3371. C₃₂H₅₂O₇²⁸Si requires 599.3374. [¹H and ¹³C NMR spectra of alkylated tartrate **14** (from *rac*-**17**) are also provided in Section 5 below.]

Table S1: Optimisation of the conditions for methylation cross-coupling with alkylated tartrate14.^{*a*}

Entry	Base	Ligand	Solvent	Temp.	Time	14:SI-1 ^b	Yield
		(Pd:L; 1:4)	(5:5:1)	(°C)	(h)		(%) ^c
1	-	-	THF	50	48	80:20	-
2	NaOMe	-	THF	rt	48	75:25	-
3	NaOMe	-	THF	50	48	70:30	-
4	Cs ₂ CO ₃	-	THF/DMF	rt	48	25:75	-
5	Cs ₂ CO ₃	-	THF/DMF/H ₂ O	rt	48	Trace 14	54
6	Cs ₂ CO ₃	-	THF/DMF/H ₂ O	50	48	0	45
7	Cs ₂ CO ₃	Ph ₃ As	THF/DMF/H ₂ O	rt	40	0	75
8	Cs ₂ CO ₃	Ph ₃ As	THF/DMF/MeOH	40	8	0	68

^a Reaction conditions: alkylated tartrate 14 (1 equiv.), B-MeO-9BBN (2 equiv.), MeLi (2 equiv.), PdCl₂(dppf) (10 mol%).
^b Ratio by integration of crude ¹H NMR spectra. ^c Isolated yield of SI-1.

(b) Total synthesis of (-)-6,7-dideoxysqualestatin H5

(-)-(*R*,*E*)-Ethyl 4-methyl-5-phenylpent-2-enoate (18)

A mixture of ethyl (triphenylphosphoranylidene)acetate (9.5 g, 27 mmol) and (*R*)-2-methyl-3-phenylpropanal **17**⁷ (3.7 g, 25 mmol) in CH₂Cl₂ (23 mL) was stirred for 48 h at rt. The solution was then diluted with hexane (15 mL), filtered through Celite[®] and evaporated under reduced pressure. The residue was purified by column chromatography (10% EtOAc in petrol) to give *E*-enoate **18**⁸ (5.23 g, 96%) as a colourless oil; $R_{\rm f} = 0.78$ (10% EtOAc in petrol); $[\alpha]_{\rm D}^{25} = -52$ (*c*=1.0, CHCl₃); $v_{\rm max}$ /cm⁻¹(film) 3027 w, 2976 s, 2928 m, 1715 s, 1650 m, 1454 m, 1367 w, 1267 m, 1204 w, 1174 s, 1040 m, 745 m, 699 m; ¹H NMR (400 MHz; CDCl₃) δ 7.25–7.03 (5H,

m, ArH), 6.88 (1H, dd, J = 15.5, 6.5, $CH=CHCO_2$), 5.68 (1H, d, J = 15.5, $CH=CHCO_2$), 4.10 (2H, q, J = 7, OCH_2CH_3), 2.69 (1H, dd, J = 12, 5, CHHPh), 2.60–2.46 (2H, m, CHHPh and $CHCH_3$), 1.20 (3H, t, J = 7, OCH_2CH_3), 0.97 (3H, d, J = 6.5, $CHCH_3$); ¹³C NMR (100 MHz; $CDCl_3$) δ 166.9 (CO_2Et), 153.6 ($CH=CHCO_2$), 139.7 (ArC), 129.2 (ArCH), 128.4 (ArCH), 126.3 (ArCH), 120.0 (= $CHCO_2$), 60.3 ($CO_2CH_2CH_3$), 42.5 (CH_2Ph), 38.3 ($CHCH_3$), 18.8 ($CHCH_3$), 14.4 ($CO_2CH_2CH_3$); HRMS m/z (M+H⁺) found: 219.1380. $C_{14}H_{19}O_2$ requires 219.1379.

(-)-(*R*,*Z*)-Ethyl 2-bromo-4-methyl-5-phenylpent-2-enoate (19)

Bromine (1.65 mL, 32.2 mmol) was added dropwise to a stirred solution of *E*-enoate **18** (5.20 g, 23.8 mmol) in CH₂Cl₂ (46 mL) at 0 °C. After 2 h, the solution was diluted with sat. aq. Na₂S₂O₃ (20 mL), extracted with Et₂O (2×30 mL), dried (MgSO₄) and concentrated under reduced pressure. Et₃N (16.5 mL, 119 mmol) was added to a stirred solution of the residue in CH₂Cl₂ (46 mL) at rt. After 12 h, the heterogeneous mixture was concentrated under reduced pressure followed by column chromatography (5% EtOAc in petrol) to give *Z*-a-bromoenoate **19** (6.43 g, 91%) as a pale yellow oil; $R_f = 0.48$ (5% EtOAc in petrol); $[\alpha]_D^{25} = -7.6$ (*c*=1.0, CHCl₃); v_{max} /cm⁻¹(film) 3028 w, 2961 s, 2872 m, 2360 w, 1731 s, 1625 m, 1454 m, 1367 w, 1249 s, 1094 w, 1035 m, 749 m, 700 m; ¹H NMR (400 MHz; CDCl₃) δ 7.32–7.14 (6H, m, ArH and CH=CBr), 4.27 (2H, q, *J* = 7, OCH₂CH₃), 3.11–3.00 (1H, m, CHCH₃), 2.81 (1H, dd, *J* = 13.5, 6.5, CH*H*Ph), 2.62 (1H, dd, *J* = 13.5, 8, C*H*HPh), 1.33 (3H, t, *J* = 7, OCH₂CH₃), 1.06 (3H, d, *J* = 6.5, CHCH₃), ¹³C NMR (100 MHz; CDCl₃) δ 162.6 (CO₂Et), 150.4 (CH=CBr), 139.1 (ArC), 129.2 (ArCH), 128.5 (ArCH), 126.4 (ArCH), 115.5 (CH=CBr), 62.6 (OCH₂CH₃), 41.7 (CH₂Ph), 38.7 (CHCH₃), 18.3 (CHCH₃), 14.3 (OCH₂CH₃); HRMS *m*/*z* (M+NH₄⁺) found: 314.0752. C₁₄H₂₁⁷⁹BrNO₂ requires 314.0750.

(-)-(*R*,*Z*)-2-Bromo-4-methyl-5-phenylpent-2-en-1-ol (SI-2)

DIBAL–H (60 mL, 1.0 M in hexanes, 62.2 mmol) was added dropwise to a solution of Z- α -bromoenoate **19** (6.16 g, 20.7 mmol) in CH₂Cl₂ (180 mL) at -78 °C. After stirring at -78 °C for 2 h, the mixture was diluted with ether and warmed to 0 °C. Water (2.4 mL) was added dropwise, followed by 15% aq. NaOH (2.4 mL), and then further of water (6 mL). The mixture

was stirred for 15 min, dried (MgSO₄), and filtered. Evaporation under reduced pressure followed by column chromatography (10% EtOAc in petrol) gave allylic alcohol **SI-2** (4.29 g, 81%), as a yellow oil; $R_f = 0.16$ (10% EtOAc in petrol); $[\alpha]_D^{23} = -8.0$ (*c*=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3605 s, 3480 br, 3028 s, 2927 s, 2253 s, 1494 m, 1453 s, 1378 s, 1262 m, 1100 m, 907 s; ¹H NMR (400 MHz; CDCl₃) δ 7.30–7.20 (5H, m, ArH), 5.86 (1H, d, *J* = 9, CH=CBr), 4.13 (2H, s, CH₂OH), 2.92–2.80 (1H, m, CHCH₃), 2.66 (1H, dd, *J* = 13.5, 6.5, CHHPh), 2.49 (1H, dd, *J* = 13.5, 8, CHHPh), 1.79 (1H, br, OH), 0.93 (3H, d, *J* = 6.5, CHCH₃); ¹³C NMR (100 MHz; CDCl₃) δ 139.8 (ArC), 135.3 (C=CBr), 129.3 (ArCH) 128.3 (ArCH), 126.2 (ArCH), 125.8 (C=CBr), 68.5 (CH₂OH), 42.4 (CH₂Ph), 37.5 (CHCH₃), 19.0 (CH₃); HRMS *m*/*z* (M+NH₄⁺) found: 272.0642. C₁₂H₁₈⁷⁹BrNO requires 272.0645.

(-)-(*R*,*Z*)-(4,5-Dibromo-2-methylpent-3-enyl)benzene (20)

To a stirred solution of allylic alcohol **SI-2** (6.32 g, 24.8 mmol) and Ph₃P (24.3 g, 92.6 mmol) in MeCN (400 mL) was added CBr₄ (30.9 g, 93.2 mmol) at 0 °C. After 1 h at 0 °C, the reaction mixture was allowed to warm to rt, and then passed through a short silica gel column using 20% ether in petrol. Evaporation under reduced pressure followed by column chromatography (petrol) gave allylic bromide **20** (8.98 g, quant), as a yellow oil; $R_f = 0.47$ (petrol); $[\alpha]_D^{23} = -3.8$ (*c*=1.0, CHCl₃); v_{max} /cm⁻¹(film) 3028 m, 2964 m, 2252 s, 1495 m, 1453 s, 1214 s, 908 s; ¹H NMR (400 MHz; CDCl₃) δ 7.31–7.15 (5H, m, ArH), 5.96 (1H, d, *J* = 9, CH=CBr), 4.21 (2H, s, CH₂Br), 2.95–2.83 (1H, m, CHCH₃), 2.73 (1H, dd, *J* = 13.5, 6.5, CH*H*Ph), 2.57 (1H, dd, *J* = 13.5, 7.5, C*H*HPh), 1.00 (3H, d, *J* = 6.5, CHCH₃); ¹³C NMR (100 MHz; CDCl₃) δ 139.6 (ArC), 139.4 (*C*=CBr), 129.4 (ArCH) 128.4 (ArCH), 126.3 (ArCH), 121.6 (C=CBr), 41.1 (CH₂Ph), 39.0 (CH₂Br), 38.2 (CHCH₃), 18.7 (CH₃); HRMS *m*/*z* (M⁺) found: 315.9465. C₁₂H₁₄⁷⁹Br₂ requires 315.9457.

(-)-(*R*,*Z*)-Ethyl 6-bromo-8-methyl-3-oxo-9-phenylnon-6-enoate (21)

The procedure of Huckin and Weiler⁹ was followed with slight modifications. Ethyl acetoacetate (4.20 mL, 33.4 mmol) was added dropwise to a suspension of NaH (1.48 g, 60%

in mineral oil, 37.0 mmol) in THF (250 mL) at 0 °C. The resulting mixture was stirred for 10 min until the solution became clear. n-BuLi (13.8 mL, 2.5 M in hexanes, 34.6 mmol) was added dropwise over 30 min and the reaction mixture was stirred at 0 °C for 10 min. A solution of allylic bromide 20 (3.8 g, 11.9 mmol) in THF (20 mL) at 0 °C was then added via cannula over 5 min. The reaction mixture was then stirred at 0 °C for 30 min, then at rt for 10 min and quenched with HCl (20 mL, 2M). The mixture was extracted with Et₂O (2 x 100 mL). The combined organic layers were washed with water until pH was neutralised (2 x 50 mL), dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (0–20% Et₂O in petrol) gave β-ketoester **21** (3.44 g, 79%), as a pale yellow oil; $R_f = 0.2$ (10% Et₂O in petrol); $[\alpha]_D^{23} = -11.4$ (*c*=1.0, CHCl₃); v_{max}/cm^{-1} (film) 2962 m, 2927 m, 1746 s, 1716 s, 1651 m, 1495 m, 1454 m, 1368 m, 1317 s, 1033 s, 746 s, 700 s; ¹H NMR (400 MHz; CDCl₃) δ (discernable) of major keto-tautomer: 7.22-7.06 (5H, m, ArH), 5.49 (1H, d, J = 8.5, CH=CBr), 4.13 (2H, q, J = 7, OCH₂CH₃), 3.34 (2H, s, CH₂(CO)₂), 2.83–2.72 (1H, m, CHCH₃), 2.71–2.56 (5H, m, CH₂CH₂CO and CHHPh), 2.46 (1H, dd, J = 13.5, 7.5, CHHPh), 1.29 (3H, t, *J* = 7, OCH₂CH₃), 0.89 (3H, d, *J* = 6.5, CHCH₃); ¹³C NMR (100 MHz; CDCl₃) δ (discernable) of major keto-tautomer: 201.3 (CH₂COCH₂), 167.1 (CO₂Et), 140.0 (ArC), 135.4 (C=CBr), 129.4 (ArCH) 128.2 (ArCH), 126.1 (ArCH), 125.0 (C=CBr), 61.6 (OCH₂CH₃), 49.6 (COCH₂CO), 42.5 (CH₂Ph), 41.8 and 38.0 (CH₂CH₂CO), 35.5 (CHCH₃), 19.2 (CHCH₃), 14.3 (OCH₂CH₃); ¹H NMR (400 MHz; CDCl₃) δ (discernable) of minor enoltautomer: 12.00 (0.1 H, s, CH=COH), 4.91 (0.1 H, s, CH=COH); ¹³C NMR (100 MHz; CDCl₃) δ (discernable) of minor enol-tautomer: 135.45 (C=CBr), 129.3 (ArCH), 90.2 (CH=COH), 60.2 (OCH₂CH₃), 42.5 (CH₂Ph), 39.0 and 38.3 (CH₂CH₂CO), 34.1 (CHCH₃), 19.1 (CHCH₃), 14.4 (OCH₂CH₃); HRMS *m*/*z* (M+NH₄⁺) found: 384.1168. C₁₈H₂₇⁷⁹BrNO₃ requires 384.1169.

(-)-(8*R*,*Z*)-6-Bromo-8-methyl-9-phenylnon-6-ene-1,3-diol (8*R*-22)

A solution of β -ketoester **21** (3.20 g, 8.71 mmol) in THF (30 mL) was added to a suspension of NaBH₄ (1.21 g, 32.0 mmol) in THF (100 mL). The reaction mixture was heated to reflux. MeOH (12 mL) was added dropwise to the refluxing mixture over 10 min and then reflux continued for 1 h. The mixture was then allowed to cool to rt and water (50 mL) was added. The mixture was extracted with Et₂O (3 x 100 mL) and the combined organic layers dried (MgSO₄). Evaporation under reduced pressure followed by column chromatography (20%)

petrol in Et₂O) gave 1,3-diol 8*R*-**22** (2.60 g, 91%), as a yellow oil, a 1:1 epimeric mixture at C–3; R_f = 0.19 (20% petrol in Et₂O); $[\alpha]_D^{23}$ = -8.1 (*c*=1.0, CHCl₃); v_{max} /cm⁻¹(film) 3351 br, 3027 m, 2925 s, 1654 w, 1602 w, 1495 m, 1453 s, 1059 s, 744 s, 700 s; ¹H NMR (400 MHz; CDCl₃) δ 7.30–7.15 (5H, m, ArH), 5.53 (1H, d, *J* = 8.5, CH=CBr), 3.89–3.60 (3H, m, *CH*₂OH and CHOH), 3.01–2.84 (3H, m, *CH*CH₃ and 2 x OH), 2.72–2.41 (4H, m, CH₂CH₂CBr and CH₂Ph), 1.73–1.58 (4H, m, *CH*₂CH(OH)*CH*₂), 0.98 (3H, pt, *J* = 6.5, CHC*H*₃); ¹³C NMR (100 MHz; CDCl₃) δ 140.3, 140.1 (Ar*C*), 134.4, 134.3 (*C*=CBr), 129.3, 129.2 (Ar*C*H) 128.2 (Ar*C*H), 126.8 (C=*C*Br), 126.1, 126.0 (Ar*C*H) 70.9, 70.5 (CHOH), 61.6 (*C*H₂OH), 42.6, 42.5 (*C*H₂Ph), 38.4, 38.3, 37.9, 37.8, 37.6 (*C*H₂CH₂CH(OH)*C*H₂), 36.2, 35.8 (*C*HCH₃), 19.4, 19.2 (CH₃); HRMS *m/z* (M+NH₄⁺) found: 344.1222. C₁₆H₂₇⁷⁹BrNO₂ requires 344.1220.

(-)-(8R,Z)-6-Bromo-1-iodo-8-methyl-9-phenylnon-6-en-3-ol (SI-3)

A solution of Ph₃P (2.0 g, 7.6 mmol), imidazole (0.9 g, 13 mmol) and I₂ (1.0 g, 3.9 mmol) in CH₂Cl₂ (75 mL) was added dropwise via cannula over 30 min to a stirred solution of 1,3-diol 8R-22 (2.2 g, 6.7 mmol) in CH₂Cl₂ (25 mL) at 0 °C. After a further 1 h at 0 °C, the solution was warmed to rt and stirred overnight. The solution was then re-cooled to 0 °C, and I₂ (1.0 g, 3.9 mmol) was added portionwise over 5 min. The suspension was then stirred for 30 min at 0 °C, then filtered through Celite[®], washed through with CH₂Cl₂ (30 mL) and concentrated under reduced pressure. Purification of the residue by column chromatography (3% acetone in petrol) gave iodo alcohol SI-3 (2.04 g, 70%), as a yellow oil, a 1:1 epimeric mixture at C-3; $R_f = 0.24$ (3% acetone in petrol); $[\alpha]_D^{23} = -32.2$ (*c*=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3424 br, 2925 w, 1651 m, 1494 w, 1453 w; ¹H NMR (400 MHz; CDCl₃) & 7.31-7.15 (5H, m, ArH), 5.56-5.50 (1H, m, CH=CBr), 3.71-3.63 (0.5H, m, CHOH), 3.47-3.39 (0.5H, m, CHOH), 3.33-3.16 (2H, m, CH₂I), 2.99–2.85 (1H, m, CHCH₃), 2.72–2.47 (4H, m, CH₂ and CH₂Ph), 1.99–1.82 (2H, m, CH₂), 1.75–1.59 (2H, m, CH₂), 1.41 (0.5H, d, *J* = 5.5, CHO*H*), 1.28 (0.5H, d, *J* = 5.5, CHO*H*), 1.03–0.97 (3H, m, CHCH₃); ¹³C NMR (100 MHz; CDCl₃) δ 140.4, 140.1 (ArC), 134.8, 134.6 (C=CBr), 129.3, 129.3 (ArCH) 128.3, 128.3 (ArCH), 126.6, 126.6 (C=CBr), 126.1, 126.1 (ArCH), 70.6, 70.2 (CHOH), 42.7, 42.6 (CH₂Ph), 41.2, 40.7, 38.0, 37.9, 37.9, 37.5 (all CH₂), 35.6, 34.9 (CHCH₃), 19.6, 19.3 (CH₃), 2.6, 3.0 (CH₂I); HRMS *m*/*z* (M+NH₄⁺) found: 454.0240. C₁₆H₂₆⁷⁹BrINO requires 454.0237.

(-)-(((8R,Z)-6-Bromo-1-iodo-8-methyl-9-phenylnon-6-en-3-yl)oxy)triethylsilane (16)

2,6-Lutidine (1.8 mL, 16 mmol) and TESOTf (1.8 mL, 8.2 mmol) were added to a stirred solution of iodo alcohol SI-3 (2.0 g, 4.5 mmol) in CH₂Cl₂ (140 mL) at -78 °C. After 2 h, the mixture was diluted with sat. aq. NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (2×100 mL). The combined organic layers were washed with HCl (50 mL, 0.1 M), water (2×50 mL), brine $(2 \times 50 \text{ mL})$, dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (10% Et₂O in petrol) gave iodide 16 (2.3 g, 93%), as a colourless oil, a 1:1 epimeric mixture at C-3; $R_f = 0.69 (10\% \text{ Et}_2 \text{O in petrol}); [\alpha]_D^{23} = -26.1 (c=1.0, \text{CHCl}_3);$ v_{max}/cm^{-1} (film) 2952 w, 2866 w, 1495 w, 1451 w; $^1{\rm H}$ NMR (400 MHz; CDCl₃) δ 7.30–7.15 (5H, m, ArH), 5.50 (1H, d, J = 8.5, CH=CBr), 3.78–3.69 (1H, m, CHOTES), 3.24–3.14 (2H, m, CH₂I), 2.93–2.83 (1H, m, CHCH₃), 2.71 (1H, dd, J = 13.5, 6.5, CHHPh), 2.53 (1H, dd, J = 13.5, 8, CHHPh), 2.41 (2H, t, J = 7.5, CH₂CBr), 1.98–1.91 (2H, m, CH₂), 1.76–1.59 (2H, m, CH₂), 1.01–0.94 (12H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.63 (6H, q, J = 7.5, OSi(CH₂CH₃)₃); ¹³C NMR (100 MHz; CDCl₃) δ 140.1 (ArC), 134.2 (C=CBr), 129.4 (ArCH) 128.3, 128.3 (ArCH), 126.9 (C=CBr), 126.0 (ArCH), 71.2, 71.2 (CHOTES), 42.6, 42.6 (CH₂Ph), 40.9, 40.8 (CH₂), 38.0 (CHCH₃), 37.3, 35.6, 35.5 (all CH₂), 19.2, 19.2 (CHCH₃), 7.1 (OSi(CH₂CH₃)₃), 5.3 (OSi(CH_2CH_3)₃), 3.0, 2.9 (CH_2I); HRMS m/z (M+NH₄⁺) found: 568.1097. C₂₂H₄₀⁷⁹BrINOSi requires 568.1102.

(-)-Dimethyl (4*R*,5*R*)-4-((8*R*,*Z*)-6-bromo-8-methyl-9-phenyl-3-((triethylsilyl)oxy)non-6en-1-yl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (8'*R*-14)

A solution of LDA [prepared from *i*-Pr₂NH (300 μ L, 2.14 mmol) and *n*-BuLi (1.10 mL, 1.6 M in hexanes, 1.76 mmol)] in THF (10 mL) at -78 °C, was added dropwise over 3 h to a mixture of dimethyl-2,3-*O*-isopropylidine-*L*-tartrate (**13**) (0.25 mL, 1.36 mmol) and iodide **16** (645 mg, 1.17 mmol) in THF (20 mL) and HMPA (4 mL) at -78 °C. After 72 h at -78 °C, the mixture was quenched with sat. aq. NH₄Cl (10 mL) and extracted with Et₂O (3 × 10 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Purification of

the residue by column chromatography (10% Et₂O in petrol) gave alkylated tartrate 8'R-14 (531 mg, 71%), as a yellow oil, an ~1:1 epimeric mixture at C-3'; $R_f = 0.18$ (5% Et₂O in petrol); [α] $^{23}_{D} = -42.1$ (c=1.0, CHCl₃); v_{max} /cm⁻¹(film) 3059 s, 2956 s, 1756 s, 1655 m, 1495 m, 1455 m, 1375 m, 1265 s, 1104 m, 807 s, 743 s, 739 s; ¹H NMR (500 MHz; CDCl₃) δ 7.29–7.14 (5H, m, ArH), 5.47 (1H, d, J = 8.5, CH=CBr), 4.94 and 4.92 (1H, 2 x s, CH(CO₂Me)), 3.82 (3H, s, OMe), 3.80 (3H, s, OMe), 3.65-3.57 (1H, m, CHOTES), 2.91-2.82 (1H, m, CHCH₃), 2.72-2.67 (1H, m, CHHPh), 2.54-2.48 (1H, m, CHHPh), 2.42-2.34 (2H, m, CH₂CBr), 1.97-1.89 (1H, m, C(CO₂Me)CHHCH₂CHOTES), 1.81–1.70 (1H, m, C(CO₂Me)CHHCH₂CHOTES), 1.64–1.58 (7H, m, C(CO₂Me)CH₂CH₂CHOTES, CH₂CH₂CBr and one Me of CMe₂), 1.44 (3H, s, one Me of CMe₂), 0.97-0.92 (12H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.60-0.54 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (125 MHz; CDCl₃) δ 172.6, 172.4 (CO₂Me), 169.0, 168.7 (CO₂Me), 140.2, 140.2 (ArC), 134.0, 133.9 (C=CBr), 129.4 (ArCH) 128.3, 128.3 (ArCH), 127.2 (C=CBr), 126.1 (ArCH), 112.9, 112.7 (CMe₂), 86.1, 85.7 (quat. C), 80.3, 80.3 (CHCO₂Me), 71.0, 70.9 (CHOTES), 53.0 (OMe), 52.47, 52.45 (OMe), 42.6, 42.6 (CH₂Ph), 38.0, 37.5 (CHCH₃), 36.1, 36.0, 31.2, 30.9, 30.5, 30.2, 27.9, 27.8 (all CH₂), 26.2, 26.1 (C(CH₃)₂), 19.2 (CHCH₃), 7.1 (OSi(CH₂CH₃)₃), 5.2 (OSi(CH₂CH₃)₃); HRMS *m*/*z* (M+NH₄⁺) found: 658.2766, C₃₁H₅₃⁷⁹BrNO₇Si requires 658.2769.

(-)-Dimethyl (4*R*)-4-((8*R*,*Z*)-6-bromo-8-methyl-9-phenyl-3-((triethylsilyl)oxy)non-6-en-1-yl)-5-hydroxy-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (29)

Alkylated tartrate 8'*R*-14 (1.0 g, 1.55 mmol) in THF (8 mL) at -78 °C was added over 30 min to a stirred solution of LDA [prepared from *i*-Pr₂NH (0.3 mL, 2.0 mmol) and *n*-BuLi (0.8 mL, 2.5 M in hexanes, 2.0 mmol)] in THF (6 mL) at -78 °C. After 15 min, MoOPH^{2,3} (1.6 g, 3.8 mmol) was added *via* a solid addition tube over 5 min at -78 °C. The reaction mixture was stirred for additional 30 min, then warmed to -40 °C. The mixture was stirred at -40 °C overnight, then warmed to -20 °C for 1 h before sat. aq. Na₂SO₃ (10 mL) was added. The mixture was then allowed to warm to rt over 1 h, extracted with Et₂O (3 × 20 mL), and the combined organic layers washed with sat. aq. CuSO₄ (10 mL), dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (0–50% Et₂O

in petrol) gave hydroxy acetonide 29 (726 mg, 71%), as a yellow oil, a mixture of 4 diastereomers; $R_f = 0.13$ (40% Et₂O in petrol); $[\alpha]_D^{23} = -20.1$ (*c*=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3426 br, 2963 s, 2086 w, 1752 s, 1644 m, 1421 m, 1264 s, 806 s, 738 s; ¹H NMR (500 MHz; CDCl₃) & 7.29–7.14 (5H, m, ArH), 5.48–5.43 (1H, m, CH=CBr), 4.06, 4.58, 4.51 and 4.50 (1H, 4 x s, OH), 3.89, 3.80, 3.78 and 3.70 (6H, 4 x s, 2 x OMe), 3.69–3.58 (1H, m, CHOTES), 2.90– 2.81 (1H, m, CHCH₃), 2.72–2.66 (1H, m, CHHPh), 2.54–2.47 (1H, m, CHHPh), 2.43–2.35 (2H, m, CH₂CBr), 2.15–1.81 (2H, m, C(CO₂Me)CH₂CH₂), 1.78–1.53 (10H, m, CH₂CH₂CBr, C(CO₂Me)CH₂CH₂ and CMe₂), 0.98–0.92 (12H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.61–0.53 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (125 MHz; CDCl₃) δ 171.7, 170.3, 170.2, 170.1, 169.3, 169.2 (CO₂Me), 140.1, 140.1 (ArC), 134.0, 133.9, 133.8, 133.7 (C=CBr), 129.3, 129.3 (ArCH) 128.2, 128.2 (ArCH), 127.3, 127.2, 127.2, 127.1 (C=CBr), 126.0, 126.0, 126.0 (ArCH), 114.3, 114.3, 113.6, 113.5 (CMe₂), 102.2, 102.0, 101.9, 101.8 (COH), 92.9, 92.7, 91.7, 91.1 (quat. C), 70.9, 70.8, 70.7, 70.6 (CHOTES), 54.1, 54.1, 54.0, 52.7, 52.5 (OMe), 42.6, 42.6, 42.6, 42.6 (CH₂Ph), 38.0, 38.0, 37.9, 37.9, 37.9, 37.7, 37.5, 37.4, 37.2, 36.0, 35.9, 35.7, 31.9, 31.9, 31.4, 31.3, 31.3, 31.2, 31.2, 30.9 29.3, 29.2, 28.7, 28.6, 28.4, 28.3, 27.5, 27.5, then 19.1, 19.1 (CHCH₃), 7.1 (OSi(CH₂CH₃)₃), 5.2, 5.2, 5.2, 5.1 (OSi(CH₂CH₃)₃); HRMS m/z (M+H⁺) found: 657.2454. C₃₁H₅₀⁷⁹BrO₈Si requires 657.2453.

(-)-Dimethyl (2*R*)-2-((8*R*,*Z*)-6-bromo-8-methyl-9-phenyl-3-((triethylsilyl)oxy)non-6-en-1-yl)-3-oxo-2-((triethylsilyl)oxy)succinate (30)

A mixture of hydroxy acetonide **29** (302 mg, 0.46 mmol) and H₂SO₄ (40 mL, 0.1 M in MeOH) was stirred at rt. After 24 h, pyridine (1.0 mL, 12.4 mmol) was added, the mixture was concentrated under reduced pressure and the residue was diluted with Et₂O (30 mL) and filtered. The filtrate was concentrated under reduced pressure to give the corresponding lactol which was used in the next step without further purification. To the crude lactol in dry DMF (2 mL) at -10 °C was added TESCI (0.50 mL, 2.98 mmol) and imidazole (272 mg, 4.0 mmol). The reaction mixture was stirred at -10 °C for 24 h, and then at rt for 24 h. The mixture was then concentrated under reduced pressured and purified by chromatography (florisil[®], 0–20% Et₂O in petrol) to give bis-TES ether **30** (313 mg, 95%), as a colourless oil, an ~1:1 epimeric

mixture at C–3'; $R_f = 0.7$ (60% Et₂O in petrol); $[\alpha]_D^{23} = -18.6$ (c=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3055 m, 2957 s, 2877 m, 1741 s, 1455 m, 1266 s, 1092 m, 1015 m, 739 s; ¹H NMR (400 MHz; CDCl₃) δ 7.29–7.15 (5H, m, ArH), 5.49 (1H, d, J = 8.5, CH=CBr), 3.84 (3H, s, OMe), 3.77 (3H, s, OMe), 3.70–3.63 (1H, m, CHOTES), 2.94–2.83 (1H, m, CHCH₃), 2.75–2.66 (1H, m, CHHPh), 2.57–2.49 (1H, m, CHHPh), 2.41 (2H, t, J = 7.5, CH₂CBr), 2.24–1.92 (2H, m, C(CO₂Me)CH₂CH₂), 1.72–1.45 (4H, m, CH₂CH₂CBr and C(CO₂Me)CH₂CH₂), 1.00–0.91 (21H, m, 2 × OSi(CH₂CH₃)₃ and CHCH₃), 0.73–0.56 (12H, m, 2 × OSi(CH₂CH₃)₃); ¹³C NMR (100 MHz; CDCl₃) δ 190.8 (C=O), 170.0 (CO₂Me), 162.9 (CO₂Me), 140.0 (ArC), 133.8 (C=CBr), 129.2 (ArCH), 128.1 (ArCH), 127.1 (C=CBr), 125.9 (ArCH), 84.0, 84.0 (*quat* C), 77.6, 70.5 (CHOTES), 52.8, 52.6, 52.6 (2 x OMe), 42.5, 42.5 (CH₂Ph), 37.9, 37.8 (CHCH₃), 37.4, 37.2, 35.5, 35.3, 32.5, 32.2, 30.1, 29.7 (all CH₂), 19.0, 19.0 (CHCH₃), 6.9, 6.8, 6.7, 6.6 (OSi(CH₂CH₃)₃), 5.8, 5.7, 5.1, 5.0 (OSi(CH₂CH₃)₃); HRMS *m/z* (M+NH₄⁺) found: 730.3168. C₃₄H₆₁⁷⁹BrNO₇Si₂ requires 730.3164.

(-)-Dimethyl (*Z*)-2-((8*R*,*Z*)-6-bromo-8-methyl-9-phenyl-3-((triethylsilyl)oxy)non-6-en-1yl)-3-(2-(*p*-tolyl)hydrazineylidene)-2-((triethylsilyl)oxy)succinate (SI-4)

A mixture of bis-TES ether **30** (90 mg, 0.126 mmol) and TsNHNH₂ (35 mg, 0.19 mmol) in THF (1.5 mL) was refluxed for 20 h. The mixture was concentrated under reduced pressure and purified by column chromatography (0–60% Et₂O in petrol) to give Z^{10} -hydrazone **SI-4** (52 mg, 47% (58% brsm)), as a pale yellow oil, an ~1:1 epimeric mixture at C–3'; R_f = 0.61 (60% Et₂O in petrol); [α]_D²³ = -21.5 (*c*=1.0, CHCl₃); v_{max} /cm⁻¹(film) 3180 br, 2956 m, 2932 m, 1752 s, 1704 s, 1496 m, 1053 m; ¹H NMR (400 MHz; CDCl₃) δ 11.72 , 11.69 (1H, 2 x s, NH), 7.84 (2H, d, *J* = 8.5, 2 x ArCH), 7.32–7.23 (4H, m, 4 x ArCH), 7.30–7.14 (3H, m, 3 x ArCH), 5.52 (1H, d, *J* = 8.5, CH=CBr), 3.75 (3H, s, OMe), 3.67 (3H, s, OMe), 3.65–3.59 (1H, m, CHOTES), 2.94–2.83 (1H, m, CHCH₃), 2.72 (1H, dd, *J* = 13.5, 6, CH*H*Ph), 2.54–2.47 (1H, m, CH*H*Ph), 2.45–2.36 (3H, s, Ar–*Me* and 2H, m, CH₂CBr), 2.08–1.82 (2H, m, C(CO₂Me) CH₂CH₂CHOTES), 1.71–1.59 (2H, m, CH₂), 1.50–1.37 (1H, m, CH*H*), 1.35–1.24 (1H, m, CHH), 1.00–0.93 (12H, m, OSi(CH₂CH₃)₃) and CHCH₃), 0.80–0.74 (9H, m, OSi(CH₂CH₃)₃), 0.64–0.56 (6H, m, OSi(CH₂CH₃)₃), 0.42–0.33 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (100 MHz; CDCl₃) δ 172.4, 172.4 (CO₂Me), 162.0 (NCCO₂Me), 144.6, 140.1 (ArC), 137.1, 137.0

(C=CBr), 135.6 (ArCMe), 133.9, 133.9 (NCCO₂Me), 129.8, 129.3, 128.2, 128.2, 128.1 128.1(ArCH), 127.5, 127.4 (C=CBr), 126.0 (ArCH), 80.9, 80.7 (*quat. C*), 71.3, 71.1 (CHOTES), 52.4, 52.3 (OMe), 42.6, 42.6 (CH₂Ph), 38.0, 38.0, 37.6, 37.3, 36.2, 35.9, 33.7, 33.1, 31.1, 31.0, then 21.7 (Ar–*Me*), 19.1, 19.1 (CHCH₃), 7.1, 7.1, (OSi(CH₂CH₃)₃), 7.0 (OSi(CH₂CH₃)₃), 6.3 (OSi(CH₂CH₃)₃), 5.3, 5.2 (OSi(CH₂CH₃)₃); HRMS *m/z* (M+NH₄⁺) found: 898.3526. C₄₁H₆₉⁷⁹BrN₃O₈SSi₂ requires 898.3522.

(-)-Dimethyl 2-((8*R*,*Z*)-6-bromo-3-hydroxy-8-methyl-9-phenylnon-6-en-1-yl)-3-diazo-2-((triethylsilyl)oxy)succinate (SI-5)

To the Z-hydrazone SI-4 (66 mg, 0.075 mmol) in CH₂Cl₂ (200 µL) was added Et₃N (50 µL, 0.36 mmol) dropwise at rt. After 2 h, the mixture was concentrated to give a (6:4) mixture of diazo bis-TES ether and diazo alcohol SI-5; to this mixture in THF (300 µL) was added AcOH (150 μ L) and water (150 μ L). After 5 h stirring at rt, the mixture was quenched with aq. sat. NaHCO₃ (2 mL), extracted with EtOAc (2 x 5 mL), dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (10-30% Et₂O in petrol) gave diazo alcohol SI-5 (42 mg, 92%, from SI-4), as a yellow oil, an ~1:1 epimeric mixture at C-3'; $R_f = 0.34$ (30% Et₂O in petrol); $[\alpha]_D^{23} = -23.4$ (*c*=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3518 m, 3027 w, 2955 s, 2877 s, 2098 s, 1747 s, 1707 s, 1495 m, 1437 s, 1315 s, 1141 m, 742 s; ¹H NMR (400 MHz; CDCl₃) δ 7.29–7.14 (5H, m, ArH), 5.53–5.45 (1H, m, CH=CBr), 3.77-3.71 (6H, m, 2 x OMe), 3.70-3.61 and 3.57-3.49 (1H, m, CHOH), 2.98-2.82 (1H, m, CHCH₃), 2.73–2.34 (4H, m, CH₂Ph, and CH₂CBr), 2.18–1.84 (2H, m, C(CO₂Me)CH₂CH₂), 1.73-1.34 (4H, m, CH₂CH(OH)CH₂), 1.02-0.91 (12 H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.66–0.55 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (100 MHz; CDCl₃) δ 171.9, 171.8 (CO₂Me), 165.3 (NCCO₂Me), 140.4, 140.1 (ArC), 134.5, 134.3 (C=CBr), 129.3, 129.3 (ArCH) 128.3, 128.2 (ArCH), 126.9, 126.8 (C=CBr), 126.2, 126.0 (ArCH), 76.2, 176.0 (quat. C), 70.4, 69.6 (CHOH), 64.9 (C=N₂), 52.9, 52.8 (OMe), 52.0, 51.9 (OMe), 42.8, 42.6 (CH₂Ph), 37.9, 37.6 (CHCH₃), 63.1, 35.3, 34.6, 31.5, 29.8 (all CH₂), then 19.5, 19.3 (CHCH₃), 7.0, 6.7 $(OSi(CH_2CH_3)_3)$, 5.9, 5.2 $(OSi(CH_2CH_3)_3)$; HRMS m/z $(M+NH_4^+)$ found: 628.2414. C₂₈H₄₇⁷⁹BrN₃O₆Si requires 628.2412.

(-)-Dimethyl 2-((*R*,*Z*)-6-bromo-8-methyl-3-oxo-9-phenylnon-6-en-1-yl)-3-diazo-2-((triethylsilyl)oxy)succinate (13)

To diazo alcohol **SI-5** (54 mg, 0.088 mmol) in CH₂Cl₂ (2 mL) at rt was added Dess–Martin periodinane (88 mg, 0.21 mmol). After 3 h, the mixture was filtered through Celite[®] and then purified by column chromatography (10–40% Et₂O in petrol) to give ketone **13** (51 mg, 95%), as a yellow oil; $R_f = 0.57$ (60% Et₂O in petrol); $[\alpha]_D^{23} = -24.9$ (*c*=1.0, CHCl₃); v_{max} /cm⁻¹(film) 2956 s, 2877 s, 2098 s, 1711 s, 1437 s, 1260 s, 1138 m, 738 s; ¹H NMR (500 MHz; CDCl₃) δ 7.28–7.12 (5H, m, ArH), 5.53 (1H, d, *J* = 8.5, CH=CBr), 3.75 (3H, s, OMe), 3.73 (3H, s, OMe), 2.89–2.79 (1H, m, CHCH₃), 2.70–2.49 (7H, m, CH₂Ph, CH*H* and 2 x CH₂), 2.44–2.37 (1H, m, CH*H*) 2.29–2.18 (2H, m, CH₂), 0.97–0.90 (12H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.65–0.55 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (125 MHz; CDCl₃) δ 207.7 (C=O), 171.5 (CO₂Me), 165.2 (NCCO₂Me), 140.0 (ArC), 135.1 (*C*=CBr), 129.4 (ArCH) 128.2 (ArCH), 126.1 (ArCH), 125.5 (C=CBr), 75.5 (*quat.* C), 64.8 (C=N₂), 53.0 (OMe), 52.1 (OMe), 42.5 (CH₂Ph), 41.7 (CH₂), 38.0 (CHCH₃), 37.4 (CH₂), 35.7 (CH₂), 32.3 (CH₂), 19.1 (CHCH₃), 7.0 (OSi(CH₂CH₃)₃); HRMS *m/z* (M+NH₄⁺) found: 626.2246. C₂₈H₄₅⁷⁹BrN₃O₆Si requires 626.2256.

(-)-Trimethyl (1*S*,2*R*,5*R*,7*S*)-5-((*R*,*Z*)-3-bromo-5-methyl-6-phenylhex-3-en-1-yl)-2-((triethylsilyl)oxy)-6,8-dioxabicyclo[3.2.1]octane-1,2,7-tricarboxylate (12)

A mixture of ketone **13** (26 mg, 0.043 mmol), freshly distilled methyl glyoxylate¹¹ (25 mg, 0.28 mmol) and Rh₂(OAc)₄ (~1 mg, cat) in toluene (1.5 mL) was refluxed at 110 °C for 2 h. The mixture was then concentrated under reduced pressure and purified by column chromatography (0–20% EtOAc in petrol) to give cycloadduct **12** (19 mg, 66%), as a colourless oil; $R_f = 0.39$ (60% Et₂O in petrol); $[\alpha]_D^{23} = -13.7$ (c=1.0, CHCl₃); v_{max} /cm⁻¹(film) 2955 s, 2876 s, 1840 s, 1755 s, 1495 s, 1438 s, 1375 m, 1264 s, 1197 m, 1013 s, 738 s; ¹H NMR (500 MHz; CDCl₃) δ 7.26–7.15 (5H, m, ArH), 5.59 (1H, d, J = 8.5, CH=CBr), 5.55 (1H, s, CHCO₂Me), 3.81 (3H, s, OMe), 3.70 (3H, s, OMe), 3.69 (3H, s, OMe), 2.92–2.83 (1H, m, CHCH₃), 2.75–2.65 (3H, m, CH₂CH₂CBr and CH*H*Ph), 2.5 (1H, ddd, J = 13.5, 8, C*H*HPh), 2.40 (1H,

ddd, $J = 14, 12.5, 6, 1H_{endo}$ of TESOC(CO₂Me)CH*H*CH₂), 2.17–2.06 (2H, m, CH₂CBr), 1.87 (1H, td, $J = 13, 5.5, 1H_{endo}$ of TESOC(CO₂Me)CH₂CH*H*), 1.76 (1H, pdd, J = 14, 5, TESOC(CO₂Me)CH*H*CH₂), 1.66 (1H, pdd, J = 13, 5.5, TESOC(CO₂Me)CH₂CH*H*), 0.97–0.91 (12H, m, OSi(CH₂CH₃)₃ and CHCH₃), 0.69–0.59 (6H, m, OSi(CH₂CH₃)₃); ¹³C NMR (125 MHz; CDCl₃) δ 173.4 (CO₂Me), 169.4 (CO₂Me), 166.8 (CO₂Me), 140.2 (ArC), 134.1 (*C*=CBr), 129.4 (ArCH) 128.2 (ArCH), 126.7 (C=CBr), 126.0 (ArCH), 111.1 (O–C–O), 90.3 (TESOCCCO₂Me), 77.5 (CHCO₂Me), 77.3 (TESOCCO₂Me), 52.7 (OMe), 52.6 (OMe), 52.5 (OMe), 42.6 (CH₂Ph), 38.0 (CHCH₃), 35.9, 35.1, 29.9, 29.8 (4 x CH₂), 19.1 (CHCH₃), 7.2 (OSi(CH₂CH₃)₃), 6.7 (OSi(CH₂CH₃)₃); HRMS m/z (M+NH₄⁺) found: 686.2351. C₃₁H₄₉⁷⁹BrNO₉Si requires 686.2354.

(-)-Trimethyl (1*S*,2*R*,5*R*,7*S*)-5-((*R*,*Z*)-3-bromo-5-methyl-6-phenylhex-3-en-1-yl)-2hydroxy-6,8-dioxabicyclo[3.2.1] octane-1,2,7-tricarboxylate (31) and (-)-Trimethyl (1*R*,3*S*,4*S*,5*R*)-1-((*R*,*Z*)-3-bromo-5-methyl-6-phenylhex-3-en-1-yl)-4-hydroxy-2,8dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (32)

To a solution of cycloadduct **12** (19 mg, 0.028 mmol) in CH₂Cl₂ (210 µL) were added TFA (105 µL) and H₂O (10.5 µL). The reaction mixture was heated at 40 °C for 48 h. The mixture was then concentrated under reduced pressure and purified by column chromatography (5–30% EtOAc in petrol). First eluted, cycloadduct alcohol **31** (3 mg, 19%), as a colourless oil; $R_f = 0.48$ (100% Et₂O in petrol); $[\alpha]_D^{23} = -8.2$ (*c*=1.0, CHCl₃); ν_{max} /cm⁻¹(film) 3462 br, 2925 s, 1736 s, 1456 s, 1260 s, 1092 m, 796 s, 737 s; ¹H NMR (500 MHz; CDCl₃) δ 7.26–7.14 (5H, m, ArH), 5.58 (1H, d, *J* = 8.5, CH=CBr), 5.47 (1H, s, CHCO₂Me), 3.92 (3H, s, OMe), 3.75 (3H, s, OMe), 3.71 (3H, s, OMe), 2.94–2.83 (1H, m, CHCH₃), 2.82–2.55 (3H, m, CH₂CH₂CBr and CHHPh), 2.51 (1H, dd, *J* = 13.5, 8, CHHPh), 2.36–2.27 (1H, m, TESOC(CO₂Me)CHHCH₂), 2.25–1.92 (4H, m, CH₂CBr, TESOC(CO₂Me)CHHCH₂ and TESOC(CO₂Me)CH₂CHH), 1.81–1.73 (1H, m, TESOC(CO₂Me)CH₂CHH), 0.95 (3H, d, *J* = 6.5, CHCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 173.8 (CO₂Me), 169.1 (CO₂Me), 166.9 (CO₂Me), 140.2 (ArC), 134.3 (C=CBr), 129.4 (ArCH) 128.3 (ArCH), 126.7 (C=CBr), 126.0 (ArCH), 111.8 (O–C–O), 89.4 (TESOCCCO₂Me), 77.7 (CHCO₂Me), 74.1 (TESOCCO₂Me), 52.7 (OMe), 42.6 (CH₂Ph), 38.0 (CHCH₃), 35.8, 34.9, 29.9, 29.5 (4 x

CH₂), 19.1 (CH*C*H₃); HRMS m/z (M+NH₄⁺) found: 572.1491. C₂₅H₃₅⁷⁹BrNO₉ requires 572.1490.

Second eluted, alkenyl bromide **32** (5.5 mg, 35%) as a colourless oil; $R_f = 0.40$ (100% Et₂O in petrol); $[\alpha]_D^{23} = -7.3$ (c=1.0, CHCl₃); v_{max}/cm^{-1} (film) 3452 br, 2923 s, 1731 s, 1456 s, 1261 s, 1093 m, 795 s, 731 s; ¹H NMR (500 MHz; CDCl₃) δ 7.29–7.14 (5H, m, ArH), 5.58 (1H, d, J = 8.5, CH=CBr), 4.79 (1H, s, CHCO₂Me), 3.89 (3H, s, OMe), 3.77 (6H, s, 2 x OMe), 3.65 (1H, s, OH), 3.06–2.98 (1H, m, H_{endo} of C(CO₂Me)CHHCH₂), 2.95–2.85 (1H, m, CHCH₃), 2.71–2.55 (4H, m, CH₂Ph and CH₂), 2.26–2.14 (2H, m, CH₂), 2.05–1.93 (2H, m, CH₂), 1.90–1.82 (1H, m, H_{exo} of C(CO₂Me)CHHCH₂), 0.98 (3H, d, J = 6.5, CHCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 170.0 (CO₂Me), 168.8 (CO₂Me), 167.5 (CO₂Me), 140.3 (ArC), 134.8 (C=CBr), 129.3 (ArCH) 128.3 (ArCH), 126.4 (C=CBr), 126.2 (ArCH), 108.5 (O–C–O), 88.0 (CCO₂Me), 75.2 (COH), 74.9 (CHCO₂Me), 53.5 (OMe), 53.0 (OMe), 52.8 (OMe), 42.7 (CH₂Ph), 38.0 (CHCH₃), 36.0, 35.4, 31.4, 29.3 (4 x CH₂), 19.5 (CHCH₃); HRMS m/z (M + NH₄⁺) found: 572.1490. C₂₅H₃₅⁷⁹BrNO₉ requires 572.1490.

(-)-Trimethyl (1*S*,3*S*,4*S*,5*R*)-1-((*R*,*E*)-3,5-dimethyl-6-phenylhex-3-en-1-yl)-4-hydroxy-2,8-Dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (33)

To a solution of 9-MeO-9-BBN (7 µL, 1.0 M in hexane, 0.007 mmol) in THF (30 µL) was added MeLi (6 µL, 1.2 M in Et₂O, 0.007 mmol) and stirred for 5 min at rt. Meanwhile, a mixture of PdCl₂(dppf) (0.4 mg, 15 mol%), Cs₂CO₃ (3.5 µL, 3 M in MeOH), Ph₃As (0.4 mg, 40 mol%) and alkenyl bromide **32** (3 mg, 0.0036 mmol) in DMF (30 µL) was prepared at rt. To the mixture containing **32** and the catalyst system, the borinate complex solution was added dropwise and then the reaction mixture was stirred at 40 °C for 6 h. The reaction mixture was then quenched with water (1 mL), extracted with EtOAc (3 × 4 mL), and the combined organic layers washed with brine (2 mL) and dried (MgSO₄). Evaporation under reduced pressured followed by column chromatography (0–40% EtOAc in petrol) gave 6,7-dideoxysqualestatin H5 trimethyl ester **33** (0.8 mg, 45%) as a colourless oil, R_f = 0.15 (40% EtOAc in petrol); [α] $_{D}^{25}$ = –37.9 (*c*= 0.53, CHCl₃); v_{max}/cm⁻¹ (film) 3078 br, 2956 s, 2925 s, 2854 s, 1768 s, 1739 s, 1439 s, 1266 s; ¹H NMR (500 MHz; CDCl₃) δ 7.24–7.11 (5H, m, ArCH), 5.02 (1H, d, *J* = 9, C*H*=CCH₃), 4.86 (1H, s, C*H*CO₂Me), 3.89 (3H, s, OMe), 3.77 (3H, s, OMe), 3.76 (3H, s, OMe), 3.16–3.05 (1H, m, H_{endo} of C(CO₂Me)CH*H*CH₂), 2.67–2.58 (1H, m, C*H*CH₃), 2.54–

2.48 (2H, m, CH₂Ph), 2.21–1.95 (8H, m, H_{exo} of C(CO₂Me)CH*H*CH₂, C(CO₂Me)CH₂CH₂, CH₂CH₂CMe and OH), 1.46 (3H, d, J = 1.5, =CCH₃), 0.93 (3H, d, J = 6.5, CHCH₃); ¹³C NMR (125 MHz; CDCl₃) δ 170.1 (CO₂Me), 168.9 (CO₂Me), 167.7 (CO₂Me), 141.3 (C=CH), 133.2 (ArC), 130.8 (C=CH), 129.4 (ArCH), 128.2 (ArCH), 125.8 (ArCH), 109.3 (O-C-O), 88.2 (CCO₂Me), 75.3 (COH), 75.0 (CHCO₂Me), 53.5 (OMe), 53.0 (OMe), 52.8 (OMe), 44.1 (CH₂Ph), 35.2 (CHCH₃), 34.7, 33.5, 31.3, 29.3 (4 x CH₂), 21.0 (CHCH₃), 16.3 (=CCH₃); HRMS *m/z* (M+Na⁺) found 513.2094, C₂₆H₃₄O₉Na requires 513.2095.

(-)-(1*S*,3*S*,4*S*,5*R*)-1-((*R*,*E*)-3,5-Dimethyl-6-phenylhex-3-en-1-yl)-4-hydroxy-2,8dioxabicyclo [3.2.1]octane-3,4,5-tricarboxylic acid (6,7-dideoxysqualestatin H5) (5)

To a mixture of 6,7-dideoxysqualestatin H5 trimethyl ester 33 (2.0 mg, 0.0041 mmol) and KOt-Bu (5.0 mg, 0.045 mmol) was added 1,4-dioxane (0.25 mL) and H₂O (0.36 mL) at 0 °C, and then slowly warmed to rt over 1 h and left to stir for 2 h. The reaction mixture was then refluxed at 110 °C overnight. The solvent was evaporated, and H₂O (2.5 mL) added. The mixture was washed with Et₂O (2 x 2.5 mL), acidified with HCl (1 mL, 0.1 M), extracted with EtOAc (3 x 5 mL) and the combined organic layers washed with brine (2.5 mL). The combined organic layers were evaporated under reduced pressure to give 1.6 mg of material that was redissolved in MeOH (0.5 mL). The solution was extracted with *n*-hexane (2 x 0.5 mL), and the methanolic layer was concentrated under reduced pressure to give 6,7-dideoxysqualestatin H5 (5) (1.4 mg 78%); $[\alpha]_D^{25} = -12.9$ (*c*= 0.09, MeOH); v_{max}/cm^{-1} (film) 3437 br, 2956 w, 2530 br, 1730 s, 1452 w, 1050 s, 880 s; ¹H NMR (500 MHz; CD₃OD) δ 7.23 (2H, t, *J* = 7.5, ArCH), 7.16–7.11 (3H, m, ArCH), 5.04 (1H, d, J = 9, CH=CCH₃), 4.84 (1H, s, CHCO₂Me), 3.79 (1H, s, OH), 3.23-3.15 (1H, m, Hendo of C(CO2Me)CHHCH2), 2.70-2.62 (1H, m, CHCH3), 2.59 (1H, dd, J = 13, 6, CHHPh), 2.48 (1H, dd, J = 13, 8, CHHPh), 2.22–2.10 (2H, m, C(CO₂Me)CH₂CH₂), 2.08–1.94 (4H, m, CH₂CH₂CCH₃), 1.90–1.84 (1H, m, 1Hexo of $C(CO_2Me)CHHCH_2)$, 1.43 (3H, d, J = 1, CCH_3), 0.96 (3H, d, J = 6.5, $CHCH_3$); ¹³C NMR (125) MHz; CD₃OD) δ 173.5 (CO₂H), 172.5 (CO₂H), 171.2 (CO₂H), 142.4 (ArC), 135.0 (C=CH), 131.7 (C=CH), 130.3 (ArCH), 129.0 (ArCH), 126.7 (ArCH), 109.8 (O-C-O), 89.5 (CCO₂Me), 76.2 (COH), 75.9 (CHCO₂Me), 45.1 (CH₂Ph), 36.5 (CHCH₃), 35.9 (C(CO₂Me)CH₂CH₂), 34.7 (C(CO₂Me)CH₂CH₂), 32.2 (CH₂CH₂CCH₃), 30.3 (CH₂CH₂CCH₃), 21.4 (CHCH₃), 16.1 (CCH_3) ; HRMS m/z (M+Na⁺) found: 471.1625, C₂₃H₂₈O₉Na requires 471.1626.

3. NMR data comparison of synthetic 6,7-dideoxysqualestatin H5 (5) with natural isolate¹²

19 5		$\stackrel{9}{\sim}$ 10 $\stackrel{12}{\sim}$	$13 \stackrel{15}{\frown} 16$
HO_2C_{18} HO_2C	4 3 0 4 3 0 CO ₂ 17 20	H II	T ₁₄ Ph

Position*	Natural Isolate	12	Synthetic		
	$^{1}HNMR$	$^{I3}CNMR$	$^{1}HNMR$	$^{13}C NMR$	
1		109.8		109.8	
3		75.7	4.84 (1H, s, CHCO ₂ Me)	75.9	
4		76.0		76.2	
4-OH			3.79 (1H, s, OH)		
5		89.3		89.5	
6	3.18 (1H, m)	35.8	3.22–3.15 (1H, m)	35.9	
	1.87 (1H, m)		1.90–1.84 (1H, m)		
7	2.23–2.09 (2H, m)	34.6	2.22–2.10 (2H, m)	34.7	
8	2.0–1.90 (4H, m)	30.3	2 08–1 94 (4H m)	30.3	
9	,)	32.0		32.2	
10		142.3		142.4	
11	1.44 (3H, d, <i>J</i> 1)	21.3	1.43 (3H, d, <i>J</i> 1)	21.4	
12	5.04 (1H, m)	131.7	5.04 (1H, d, <i>J</i> 9)	131.7	
13	2.66 (1H, m)	36.3	2.70–2.62 (1H, m)	36.5	
14	0.96 (3H, d, <i>J</i> 7)	16.0	0.96 (3H, d, <i>J</i> 6.5)	16.1	
15	2.59 (1H, dd, <i>J</i> 13, 6)	45.0	2.59 (1H, dd, <i>J</i> 13, 6)	45.1	
	2.47 (1H, dd, <i>J</i> 13, 8)		2.48 (1H, dd, <i>J</i> 13, 8)		
16		134.9		135.0	
Aromatia	7.23 (2H, t, J7)	130.2	7.24–7.20 (2H, m)	130.3	
Alomatic	7.17–7.10 (3H, m)	128.9	7.15–7.12 (3H, m)	129.0	
ring		126.6	(011, 11)	126.7	
17-19		173.1		173.5	
COOLI		172.1		172.5	
COOH		170.8		171.2	

*NMR spectra of the natural isolate were recorded on a Bruker AM500, while the synthetic spectra were recorded on a Bruker AVC500 (¹H NMR–500 MHz and ¹³C NMR–125 MHz, CD₃OD).

4. References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- 2. A. R. Daniewski and W. Wojciechowska, Synth. Comm., 1986, 16, 535.
- 3. E. Vedejs, D. A. Engler and J. E. Telschow, J. Org. Chem., 1978, 43, 188.
- Aldehyde *rac*-15 was prepared from LiAlH₄-induced reduction (A. I. Meyers and R. D. Walkup, *Tetrahedron*, 1985, 41, 5089) of commercially available α-methyl-*trans*-cinnamaldehyde, followed by Swern oxidation.
- 5. (a) S.-I. Tau and M.-C. P. Yeh, J. Chin. Chem. Soc., 1992, 39, 401. (b) for the Wittig olefination procedure followed, see: T. Anderl, L. Nicolas, J. Münkemer, A. Baro, F. Sasse, H. Steinmetz, R. Jansen, G. Höfle, R. E. Taylor and S. Laschat, Angew. Chem., Int. Ed., 2011, 50, 942.
- 6. (a) F. G. Morin, W. J. Horton, D. M. Grant, D. K. Dalling and R. J. Pugmire, J. Am. Chem. Soc., 1983, 105, 3992; (b) I. Fleming and M. Rowley, *Tetrahedron*, 1986, 42, 3181.
- 7. A. G. Myers, B. H. Yang and H. Chen, Org. Synth., 2004, Coll. Vol. X, 509.
- (a) J. Bach, C. Blachère, S. D. Bull, S. G. Davies, R. L. Nicholson, P. D. Price, H. J.
 Sanganee and A. D. Smith, *Org. Biomol. Chem.*, 2003, 1, 2001; (b) D. Chen, J. C. K. Chu and T. Rovis, *J. Am. Chem. Soc.*, 2017, 139, 14897.
- 9. S. N. Huckin and L. Weiler, J. Am. Chem. Soc., 1974, 96, 1082.
- ¹H NMR data for NH (δ 11.72) is indicative of Z-hydrazone configuration, see: P. Vinczer, L. Novak and C. Szántay, *Synth. Commun.*, 1984, 14, 281.
- 11. J. M. Hook, Synth. Commun., 1984, 14, 83.
- 12. (a) W. M. Blows, G. Foster, S. J. Lane, D. Noble, J. E. Piercey, P. J. Sidebottom and G. Webb, *J. Antibiot.*, 1994, 47, 740. (b) M. J. Dawson. A. Baxter, R. M. Tait, N. S. Watson, D. Noble, A. Shuttleworth, H. G. Wildman and M. V. Hayes, *PCT Int. Appl.* WO 92/1215.

5. ¹H and ¹³C NMR Spectra

