Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Foldamer-based Helicate Displaying Reversible Switching between Two Distinct Conformers

Hae-Geun Jeon, Hyun Kyung Lee, Seungwon Lee and Kyu-Sung Jeong*

*Department of Chemistry, Yonsei University, Seoul 03722, Korea

Fax: +82-2-364-7050

Tel: +82-2123-2643

E-mail: <u>ksjeong@yonsei.ac.kr</u>;

Contents

- 1. Syntheses and characterisation of new compounds
- 2. NMR studies
- 3. X-ray crystallographic analyses
- 4. ESI-MS Spectra
- 5. NMR Spectra

1. Syntheses and characterisation of new compounds

1.1 General: All chemicals were purchased from commercial suppliers and used without further purification unless otherwise specified. Dichloromethane (CH₂Cl₂) was purified by drying over calcium hydride (CaH₂), followed by distillation. Hexane and ethyl acetate (EtOAc) were distilled. Water-saturated deuterated solvents were prepared by sonicating the organic solvent containing a few drops of distilled water for 10 min. After 1 h standing, organic layer was carefully separated out for use. Thin layer chromatography (TLC) was performed on Merck (silica gel 60, F-254, 0.25 mm). Silica gel 60 (230-400 mesh, Merck) was used for column chromatography. Melting points were determined with a Barnstead Electrothermal (IA9100) apparatus. FT-IR spectra were measured by using a Vertex70 FT-IR spectrometer. 1D and 2D NMR spectra were measured by using Bruker Avance II DRX 400 and Avance III HD 300 instruments. Chemical shifts were reported using residual protonated solvent peaks (for ¹H NMR spectra, acetone- d_6 2.05 ppm; CD₂Cl₂ 5.32 ppm; (CD₂Cl)₂ 3.72 ppm; DMSO-d₆ 2.50 ppm; dioxane-d₈ 3.53 ppm; toluene-d₈ 7.09 ppm; and for ¹³C NMR spectra, acetone- d_6 206.26 ppm; CD₂Cl₂ 53.84 ppm; DMSO- d_6 39.52 ppm), and tetramethylsilane (TMS) peak as an internal standard for ethyl acetate- d_8 . The ESI-HRMS spectrometric measurements were obtained from the Organic Chemistry Research Center at Sogang University.

General procedure of Sonogashira coupling reaction: A Schlenk flask containing two coupling compounds, CuI and Pd(PPh₃)₂Cl₂ was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed tetrahydrofuran (THF) and triethylamine (Et₃N) were added sequentially and the solution was stirred under the given conditions. The mixture was filtered through Celite and concentrated, and the residue was dissolved in CH₂Cl₂. The solution was washed with NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (silica gel).

1.2 Synthesis of compound 1

S3: Compound **S3** was synthesised according to the general procedure using **S1**^[S1] (322 mg, 0.52 mmol), **S2**^[S2] (33 mg, 0.17 mmol), CuI (2.5 mg, 0.013 mmol), Pd(PPh₃)₂Cl₂ (6.0 mg, 0.009 mmol), THF (1.5 mL) and Et₃N (1.0 mL). Reaction time 4.5 h; eluent: EtOAc/*n*-hexane = 1:2 (v/v); green solid; 83% yield (88 mg); mp > 235 °C (dec); ¹H NMR (400 MHz, acetone- d_6 , 25 °C) δ ppm 10.63 (s, 1H, NH), 9.91 (s, 1H, NH), 8.68 (s, 1H), 8.50 (s, 1H), 8.37 (s, 1H), 8.29 (s, 1H), 8.07 (d, *J* = 8.29, 1H), 8.02 (d, *J* = 8.36, 1H), 7.88 (s, 2H), 7.73 (s, 1H), 2.44 (s, 3H), 1.50 (s, 9H, *t*-Bu), 1.47 (s, 9H, *t*-Bu) ¹³C NMR (100 MHz, acetone- d_6 , 25 °C) δ ppm 150.4, 150.0, 145.6, 143.5, 140.4, 139.3, 139.2, 134.0, 132.2, 127.0, 126.7, 126.6, 125.4, 125.2, 123.1, 122.5, 120.6, 118.7, 117.3, 113.5, 105.5, 90.7, 89.9, 76.4, 35.3, 35.3, 32.2, 18.2;

^[S1](*a*) K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, *Angew. Chem. Int. Ed.*, 2005, **44**, 7926; (*b*) N.-K. Kim, K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, *Chem. Commun.*, 2007, 3401.

^[S2] B. Song, Z. Zhang, K. Wang, C.-H. Hsu, O. Bolarinwa, J. Wang, Y. Li, G.-Q. Yin, E. Rivera, H.-B. Yang, C. Liu, B. Xu and X. Li, *Angew. Chem. Int. Ed.*, 2017, **56**, 5258.

MALDI-TOF m/z calcd for C₃₄H₃₂IN₃ 609, found 610; ESI-HRMS m/z calcd for C₃₄H₃₃IN₃ [M+H]⁺ 610.1719, found [M+H]⁺ 610.1717; IR (KBr) v 3585 (O–H), 3413 (N–H), 2208 (C=C) cm⁻¹.

S6: Compound **S6** was synthesised according to the general procedure using **S4**^[S3] (420 mg, 0.729 mmol), **S5**^[S4] (176 mg, 0.883 mmol), CuI (5.0 mg, 0.026 mmol), Pd(PPh₃)₂Cl₂ (12 mg, 0.017 mmol), THF (4.2 mL) and Et₃N (3.5 mL). Reaction time 3 h; eluent: diethyl ether/*n*-hexane = 1:2 (v/v); yellow solid; 89% yield (422 mg); mp > 227 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ ppm 11.38 (s, 1H, NH), 10.95 (s, 1H, NH), 8.35 (s, 1H), 8.23 (s, 1H), 8.03 (s, 2H), 7.96 (t, *J* = 7.75, 1H), 7.84 (d, *J* = 7.53, 1H), 7.74 (s, 1H), 7.61 (d, *J* = 7.33, 1H), 7.48 (s, 1H), 5.65 (s, 1H, OH), 1.65 (s, 6H, Me), 1.46 (s, 9H, *t*-Bu), 1.42 (s, 9H, *t*-Bu), 0.29 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C) δ ppm 143.0, 142.4, 142.1, 141.9, 137.8, 137.6, 137.3, 127.4, 126.8, 126.3, 126.0, 125.8, 125.6, 124.1, 123.7, 120.8, 120.5, 118.6, 116.9, 112.3, 112.2, 104.9, 103.5, 103.0, 99.7, 94.8, 91.8, 86.9, 77.5, 64.0, 34.5, 34.4, 31.9, 31.7, -0.41; MALDI-TOF *m*/*z* calcd for C₄₃H₄₅N₃OSi 647, found 648; ESI-HRMS *m*/*z* calcd for C₄₃H₄₆N₃OSi [M+H]⁺ 648.3410, found [M+H]⁺ 648.3407; IR (KBr) v 3420 (N–H), 2207 (C=C), 1279 (Si–CH₃), 1127 (C–O) cm⁻¹.

1: A Schlenk flask containing **S6** (120 mg, 0.185 mmol), **S3** (115 mg, 0.189 mmol), CuI (2.0 mg, 0.011 mmol) and Pd(PPh₃)₂Cl₂ (5.0 mg, 0.007 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed THF (1.1 mL), Et₃N (1.0 mL) and *n*-tetrabutylammonium fluoride (0.23 mL, 1.0 M solution in THF) were added in order and the solution was stirred at room temperature for 3 hours. The mixture was filtered through Celite and concentrated. The residue was dissolved in CH₂Cl₂, washed with water and brine, and dried over anhydrous Na₂SO₄. After concentration under reduced pressure, the residue was purified by flash column chromatography (silica gel, EtOAc/*n*-hexane = 2:3 (v/v)) to give **1** (178 mg, 91%) as a yellow solid; mp > 212 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) δ ppm 11.40 (s, 1H, NH), 11.20 (s, 2H, NH), 10.89 (s, 1H, NH), 8.68 (s, 1H), 8.39 (s, 2H), 8.33 (s, 1H), 8.22 (s, 1H), 8.17 (s, 1H), 8.08 (m, 5H), 7.95 (d, 2H), 7.90 (s, 1H), 7.76 (s, 1H),

^[S3] J. I. Kim, H. Juwarker, X. Liu, M. S. Lah and K.-S. Jeong, *Chem. Commun.*, 2010, 46, 764.

^[54] A. Orita, T. Nakano, D. L. An, K. Tanikawa, K. Wakamatsu and J. Otera, *J. Am. Chem. Soc.*, 2004, **126**, 10389.

7.73 (s, 1H), 7.66 (s, 1H), 7.45 (s, 1H), 5.53 (s, 1H, OH), 2.12 (s, 3H, Me), 1.50 (s, 6H, Me), 1.49 (s, 9H, *t*-Bu), 1.46 (s, 9H, *t*-Bu), 1.44 (s, 9H, *t*-Bu), 1.41 (s, 9H, *t*-Bu); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C) δ ppm 149.4, 148.8, 143.2, 143.2, 142.2,142.1, 142.1, 141.8,138.6, 137.9, 137.7, 137.7, 137.7, 137.3, 132.9, 127.3, 126.1, 126.0, 126.0, 125.8, 125.8, 125.6, 125.4, 124.1, 124.1, 123.8, 123.8, 123.7, 120.8, 120.8, 120.6, 120.5, 119.0, 118.6,118.6, 118.0, 116.8,112.5, 112.4, 112.2,104.8, 103.9, 103.1, 103.0, 99.7, 91.9, 91.8, 89.8, 89.2, 87.1, 86.9, 77.4, 63.9, 34.6, 34.6, 34.4, 32.7

1.3 Synthesis of compound 2

2: Ligand (1) (620 mg, 0.586 mmol) was dissolved in 1,2-dichloroethane (147 mL) and Pd(CH₃CN)₂Cl₂ solution (29.3 mL, 10 mM in acetone) were slowly added to the solution. The mixture were heated at 60 °C for 6 days and then cooled to ambient temperature. The residue was filtered off with a small amount of silica. The product was recrystallised from EtOAc/pentane, filtered, washed with pentane to give **2** (97 mg, 27%) as an orange solid; mp > 253 °C (dec); ¹H NMR (400 MHz, CD₂Cl₂, 25 °C) δ ppm 11.10 (s, 1H, NH), 9.81 (s, 1H, NH), 9.32 (s, 1H, CH), 9.27 (s, 1H, NH), 9.22 (s, 1H, NH), 8.46 (s, 1H), 8.25 (s, 1H), 8.17 (s, 1H), 8.02 (m, 5H), 7.69 (d, *J* = 8.46 Hz, 1H), 7.64 (d, *J* = 8.05 Hz, 1H), 7.56 (s, 1H), 7.51 (d, *J* = 7.43 Hz, 1H), 7.41 (s, 1H), 7.36 (s, 1H), 7.34 (s, 1H), 7.15 (d, *J* = 8.17 Hz, 1H), 6.53 (s, 1H), 5.20 (s, 1H, OH), 1.89 (s, 3H, Me), 1.62 (s, 9H, *t*-Bu), 1.54 (s, 9H, *t*-Bu), 1.44 (s, 9H, *t*-Bu), 0.85 (s, 9H, *t*-Bu), 0.80 (s, 3H, Me); ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C) δ ppm 153.8, 150.4, 146.4, 145.2, 143.9, 143.2, 143.1, 142.9, 141.2, 139.4, 139.3, 139.0, 138.6, 137.5,

137.2, 128.6, 127.2, 126.5, 126.1, 125.9, 125.8, 125.6, 124.9, 124.6, 124.5, 122.9, 122.6, 121.9, 121.7, 121.4, 121.3, 120.6, 120.4, 118.7, 117.3, 113.2, 112.8, 112.4, 105.0, 104.2, 103.3, 101.4, 98.4, 97.8, 96.0, 94.1, 91.9, 91.0, 89.7, 79.8, 68.5, 35.4, 35.1, 35.1, 34.6, 34.0, 32.2, 32.2, 32.2, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 31.2, 31.2, 31.2, 28.6, 16.8; ESI-HRMS m/z calcd for C₁₄₈H₁₃₆Cl₄N₁₂O₂Pd₂ [M]⁺ 2468.7757, found [M]⁺ 2468.7794; IR (KBr) v 3352 (N–H), 2199 (C=C), 1132 (C–O) cm⁻¹.

2. NMR studies

Fig. S1 Partial ¹H NMR spectra (300 MHz, 25 °C) of S3 and 1 (1.0 mM in 1% (v/v) CD_3OH /water-saturated CD_2Cl_2). The blue-coloured peaks correspond to CH signals of terminal pyridine.

Fig. S2 Partial ¹H NMR spectra (400 MHz) of **1** during complex formation with $Pd(CH_3CN)_2Cl_2$ in 1,2-dichloroethane- d_4 at 60 °C.

Fig. S3 Partial ¹H NMR spectra (300 MHz, 25 °C) of **2** (1.0 mM) in various solvents. Signals corresponding to 2(syn-anti) and 2(syn-syn) were marked by blue triangles and red circles, respectively.

Fig. S4 ¹H NMR spectra (300 MHz) of **2** (1.0 mM) in CD₂Cl₂ at 25 °C (lower) and in ethyl acetate- d_8 at 60 °C (upper).

		2 (<i>syn-anti</i>) (δ in CD ₂ Cl ₂ , 25 °C)	2 (<i>syn-syn</i>) (δ in ethyl acetate- d_8 , 60 °C)	difference $(\delta(CD_2Cl_2)-\delta(ethyl acetate-d_8))$
OF	ł	5.19	3.13	2.06
NH —	1	9.22	8.71	0.51
	2	11.1	11.23	-0.13
	3	9.81	11.27	-1.46
	4	9.27	7.16	2.11
<i>t</i> -Bu –	1	1.45	1.28	0.17
	2	1.62	0.86	0.76
	3	0.85	1.73	-0.88
	4	1.54	1.41	0.13

Table S1. ¹H NMR chemical shifts (ppm) of **2** (4.0 mM) in CD₂Cl₂ (25 °C, *syn-anti* conformation) and ethyl acetate- d_8 (60 °C, *syn-syn* conformation) and their differences.

Fig. S5 Partial ROESY spectrum (CD₂Cl₂, 25 °C, mixing time: 400 ms) of 2 (2.0 mM).

Fig. S6 Partial ROESY spectrum (dioxane- d_8 , 80 °C, mixing time: 150 ms) of **2** (4.0 mM).

Fig. S7 Partial EXSY spectrum (dioxane- d_8 , 80 °C, mixing time: 150 ms) of **2** (4.0 mM).

Fig. S8 Partial ¹H NMR spectra (300 MHz) of **2** (1.0 mM) in ethyl acetate- d_8 at various temperatures. Signals corresponding to **2**(*syn-anti*) and **2**(*syn-syn*) were marked by blue triangles and red circles, respectively.

Table S2. Relative populations of 2(syn-anti) and 2(syn-syn), determined by the	he integrations
of ¹ H NMR spectra at various temperatures in ethyl acetate- d_8 .	

Temperature (°C)	I _{2(syn-anti)}	I _{2(syn-syn)}
70	1	7.6493
60	1	6.5592
40	1	3.8506
25	1	2.1378
20	1	1.8083
0	1	0.806
-20	1	0.2897
-30	1	0.2302
-40	1	0.1176

Fig. S9 A van't Hoff plot for the equilibriums of 2(syn-anti) and 2(syn-syn) between -40 and 70 °C in ethyl acetate- d_8 . ΔH° and ΔS° were calculated employing equations (1) and (2) to be +26 kJ·mol⁻¹ and +92 J·K⁻¹·mol⁻¹, respectively.

Fig. S10 Partial ¹H NMR spectra (300 MHz) of **2** (1.0 mM) in ethyl acetate- d_8 upon cycling temperature from -30 °C to 60 °C. Signals corresponding to **2**(*syn-anti*) and **2**(*syn-syn*) were marked by blue triangles and red circles, respectively.

3. X-ray crystallographic analyses

3.1. Crystal growing

Single crystals of **1** and **2**(*syn-syn*) were obtained by the vapor diffusion of pentane into EtOAc/pentane (1:5, v/v) solutions of **1** and **2**(*syn-syn*), respectively. On the other hand, single crystals of **2**(*syn-anti*) were obtained by slow evaporation of a CH₂Cl₂/hexane (1:1, v/v) solution containing **2**.

3.2 Data collection

The diffraction data were collected at 100 K on an ADSC Quantum 210 CCD diffractometer with synchrotron radiation at Supramolecular Crystallography 2D, Pohang Accelerator Laboratory (PAL), Pohang, Korea. The ADSC Q210 ADX program^[S5] was used for data collection (detector distance: 63 mm, omega scan: $\Delta \omega = 1^{\circ}$, exposure time is 1 sec/frame) and HKL3000sm (Ver. 703r)^[S6] was used for cell refinement, reduction and absorption correction.

3.3 Structure solution and refinement

The crystal structures were solved by the direct method with SHELX-XT^[S7] and refined by full-matrix least-squares calculations with the SHELX-XL^[S8] in the Olex2^[S9] program package. The structure solutions of crystals were obtained by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were included in the structure factor calculation at idealised positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

For $1 \supset 2H_2O$, a *t*-butyl group bonded to an indolocarbazole was observed as disordered and modeled using ISOR restraint. The final least-squares refinement of 770 parameters against 13561 data resulted in residuals R (based on F² for $I \ge 2\sigma$) and wR (based on F² for all data)

^[S5] A. J. Arvai and C. Nielsen, *ADSC Quantum-210 ADX Program, Area Detector System Corporation*, Poway, CA, USA, 1983.

^[S6] Z. Otwinowski and W. Minor, *Methods in Enzymology*, ed. C. W. Carter Jr. and R. M. Sweet, Academic Press, New York, 1997, Vol. 276, part A, pp. 307–326.

^[S7] G. M. Sheldrick, *Acta Cryst.* 2015, *A71*, 3–8.

^[S8] G. M. Sheldrick, Acta. Cryst. 2015, C71, 3-8.

^[S9] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

of 0.0818 and 0.2451, respectively. The final difference Fourier map was featureless.

For the 2(syn-anti), the final least-squares refinement of 774 parameters against 20422 data resulted in residuals R (based on F² for $I \ge 2\sigma$) and wR (based on F² for all data) of 0.0581 and 0.1753, respectively. The final difference Fourier map was featureless.

For the 2(syn-syn), two different *t*-butyl groups bonded to indolocarbazoles were observed as disordered and modeled using DFIX, SADI, FLAT, RIGU and ISOR restraint. The final least-squares refinement of 3181 parameters against 42189 data resulted in residuals R (based on F² for $I \ge 2\sigma$) and wR (based on F² for all data) of 0.0925 and 0.2703, respectively. The final difference Fourier map was featureless.

3.4 Summary

1⊃2H₂O: Crystal Data for C₇₄H₇₂N₆O₃ (*M* =1093.37 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 35.034(7) Å, b = 10.393(2) Å, c = 17.979(4) Å, V = 6546(2) Å³, Z = 4, T = 100 K, µ(synchrotron) = 0.066 mm⁻¹, *Dcalc* = 1.109 g/cm³, 13561 reflections measured (3.198° ≤ 2Θ ≤ 52.998°), 13561 unique (R_{int} = 0.0000, R_{sigma} = 0.0569) which were used in all calculations. The final R1 was 0.0818 (*I* > 2σ(*I*)) and wR2 was 0.2451 (all data).

Identification code	1⊃2H ₂ O
Empirical formula	$C_{74}H_{72}N_6O_3$
Formula weight	1093.37
Temperature/K	100
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	35.034(7)
b/Å	10.393(2)
c/Å	17.979(4)
$\alpha^{\prime \circ}$	90

Table S3. Crystal data and structure refinement for $1 \supset 2H_2O$

β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	6546(2)
Ζ	4
Dcalc g/cm ³	1.109
μ/mm^{-1}	0.066
F(000)	2328.0
Crystal size/mm ³	$0.45 \times 0.315 \times 0.22$
Radiation	synchrotron ($\lambda = 0.70000$)
2@ range for data collection/°	3.198 to 52.998
Index ranges	$-46 \le h \le 46, -13 \le k \le 12, -23 \le l \le 24$
Index ranges Reflections collected	$-46 \le h \le 46, -13 \le k \le 12, -23 \le l \le 24$ 13561
Index ranges Reflections collected Independent reflections	$-46 \le h \le 46, -13 \le k \le 12, -23 \le 1 \le 24$ 13561 13561 [R _{int} = 0.0000, R _{sigma} = 0.0569]
Index ranges Reflections collected Independent reflections Data/restraints/parameters	$-46 \le h \le 46, -13 \le k \le 12, -23 \le 1 \le 24$ 13561 13561 [R _{int} = 0.0000, R _{sigma} = 0.0569] 13561/12/770
Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	$-46 \le h \le 46, -13 \le k \le 12, -23 \le 1 \le 24$ 13561 13561 [R _{int} = 0.0000, R _{sigma} = 0.0569] 13561/12/770 0.953
Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [$I > 2\sigma(I)$]	$-46 \le h \le 46, -13 \le k \le 12, -23 \le 1 \le 24$ 13561 13561 [R _{int} = 0.0000, R _{sigma} = 0.0569] 13561/12/770 0.953 R1 = 0.0818, wR2 = 0.2256
Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [$I > 2\sigma(I)$] Final R indexes [all data]	$-46 \le h \le 46, -13 \le k \le 12, -23 \le 1 \le 24$ 13561 13561 [R _{int} = 0.0000, R _{sigma} = 0.0569] 13561/12/770 0.953 R1 = 0.0818, wR2 = 0.2256 R1 = 0.1161, wR2 = 0.2451

2(*syn-anti*): Crystal Data for C₇₄H₆₈Cl₂N₆OPd (M = 1234.64 g/mol): monoclinic, space group C2/c (no. 15), a = 31.021(6) Å, b = 22.132(4) Å, c = 29.199(6) Å, $\beta = 119.15(3)^{\circ}$, $V = 17508(8) Å^3$, Z = 8, T = 100 K, μ (synchrotron) = 0.298 mm⁻¹, *Dcalc* = 0.937 g/cm³, 39408 reflections measured ($3.096^{\circ} \le 2\Theta \le 56^{\circ}$), 20422 unique ($R_{int} = 0.0275$, $R_{sigma} = 0.0513$) which were used in all calculations. The final R1 was 0.0581 ($I > 2\sigma(I)$) and wR2 was 0.1753 (all data).

 Table S4. Crystal data and structure refinement for 2(syn-anti)

Identification code	2(syn-anti)
Empirical formula	$C_{74}H_{68}Cl_2N_6OPd$
Formula weight	1234.64
Temperature/K	100
Crystal system	monoclinic
Space group	C2/c
a/Å	31.021(6)
b/Å	22.132(4)
c/Å	29.199(6)
α'°	90
β/°	119.15(3)
$\gamma/^{\circ}$	90
Volume/Å ³	17508(8)
Z	8
<i>Dcalc</i> g/cm ³	0.937
μ/mm^{-1}	0.298
F(000)	5136.0
Crystal size/mm ³	$0.045\times0.033\times0.032$
Radiation	Synchrotron ($\lambda = 0.70000$)
2Θ range for data collection/°	3.096 to 56
Index ranges	$-39 \le h \le 39, -29 \le k \le 29, -39 \le l \le 39$
Reflections collected	39408
Independent reflections	20422 [$R_{int} = 0.0275, R_{sigma} = 0.0513$]
Data/restraints/parameters	20422/0/774
Goodness-of-fit on F ²	1.034

Final R indexes $[I > 2\sigma(I)]$	R1 = 0.0581, wR2 = 0.1639
Final R indexes [all data]	R1 = 0.0835, wR2 = 0.1753
Largest diff. peak/hole / $e.Å^{-3}$	0.54/-1.18

2(*syn-syn*) : Crystal Data for C₁₄₈H₁₃₆Cl₄N₁₂O₂Pd₂ (M =2469.28 g/mol): triclinic, space group P-1 (no. 2), a = 16.792(2) Å, b = 23.687(2) Å, c = 39.551(3) Å, α = 73.077(2)°, β = 84.189(3)°, γ = 81.240(4)°, V = 14848(2) Å³, Z = 4, T = 100.0 K, µ(synchrotron) = 0.471 mm⁻¹, *Dcalc* = 1.105 g/cm³, 82338 reflections measured (2.768° ≤ 2 Θ ≤ 52.998°), 42189 unique (R_{int} = 0.1003, R_{sigma} = 0.1322) which were used in all calculations. The final R1 was 0.0925 ($I > 2\sigma(I)$) and wR2 was 0.2703 (all data).

Identification code	2 (<i>syn-syn</i>)
Empirical formula	$C_{148}H_{136}Cl_4N_{12}O_2Pd_2\\$
Formula weight	2469.28
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	16.792(2)
b/Å	23.687(2)
c/Å	39.551(3)
α/°	73.077(2)
β/°	84.189(3)
$\gamma/^{\circ}$	81.240(4)
Volume/Å ³	14848(2)
Z	4

 Table S5. Crystal data and structure refinement for 2(syn-syn)

Dcalc g/cm ³	1.105
μ/mm^{-1}	0.471
F(000)	5136.0
Crystal size/mm ³	$0.02\times0.005\times0.005$
Radiation	Synchrotron ($\lambda = 0.80000$)
2Θ range for data collection/°	2.768 to 52.998
Index ranges	$-18 \le h \le 18, -26 \le k \le 26, -44 \le l \le 44$
Reflections collected	82338
Reflections collected Independent reflections	82338 42189 [R _{int} = 0.1003, R _{sigma} = 0.1322]
Reflections collected Independent reflections Data/restraints/parameters	82338 42189 [R _{int} = 0.1003, R _{sigma} = 0.1322] 42189/291/3181
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	82338 42189 [R _{int} = 0.1003, R _{sigma} = 0.1322] 42189/291/3181 1.052
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [$I > 2\sigma(I)$]	82338 42189 [R _{int} = 0.1003, R _{sigma} = 0.1322] 42189/291/3181 1.052 R1 = 0.0925, wR2 = 0.2418
Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [$I > 2\sigma(I)$] Final R indexes [all data]	82338 42189 [$R_{int} = 0.1003$, $R_{sigma} = 0.1322$] 42189/291/3181 1.052 R1 = 0.0925, $wR2 = 0.2418R1 = 0.1448$, $wR2 = 0.2703$

Fig. S11 (a), (b) Schematic representation of the hydrogen bonding network observed in the crystal structure of $1 \supset 2H_2O$, and (c) thermal ellipsoid representation of $1 \supset 2H_2O$.

Table S6. Hydrogen-bonding distances (Å) in the crystal structure of $1 \supset 2H_2O$.

Fig. S12 Several different views of the X-ray crystal structures of 2(syn-anti) and 2(syn-syn).

Fig. S13 Hydrogen-bonding networks observed in the crystal structures of (a) **2**(*syn-anti*) and (b) **2**(*syn-syn*).

Table S7.	. Hydrogen-bondi	ng distances (Å) and angle (°) in the crysta	al structure	of 2 (<i>syn-anti</i>)
and 2(syn	e-syn).					

	Donor…Acceptor	Distance	Angle (DHA)
	NH1…Cl	2.565	158.14
	NH2…Cl	2.563	158.96
2(syn-anti)	OH…Cl	2.586	166.33
	NH3…O	2.273	137.76
	NH4…O	2.307	139.12
	NH1…Cl1	2.528	156.07
2 (<i>syn-syn</i>)	NH2…Cl1	2.360	163.14
	NH3····Cl2	2.556	165.36

4. ESI-MS Spectra

Fig. S14 (a) High resolution ESI-MS data of helicate **2**, and (b) experimental and (c) theoretical isotopic distributions for $[\mathbf{1}_2(PdCl_2)_2]^+$ (m/z = 2469).

5. NMR Spectra

140 130 120 110 100

Fig. S16 ¹³C NMR of **S3** (100 MHz, acetone-*d*₆, 25 °C)

Fig. S17 ¹H NMR of **S6** (400 MHz, DMSO-*d*₆, 25 °C)

Fig. S18 ¹³C NMR of **S6** (100 MHz, DMSO-*d*₆, 25 °C)

Fig. S20 ¹³C NMR of **1** (100 MHz, DMSO-*d*₆, 25 °C)

Fig. S22 ¹³C NMR of **2** (100 MHz, CD₂Cl₂, 25 °C)