Light-Mediated lodoperfluoroalkylation of Alkenes/Alkynes Catalyzed by Chloride lons: Role of Halogen Bonding

Redouane Beniazza,^{†,‡} Lionel Remisse,[†] Damien Jardel,[†] Dominique Lastécouères[†]

and Jean-Marc Vincent^{†,*}

[†] Univ. Bordeaux – CNRS UMR 5255, 351 Crs de la Libération, 33405 Talence, France [‡] Mohammed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco

Email : jean-marc.vincent@u-bordeaux.fr

Supporting Information

Table of content

I. General experimental details	S2
II. Emission, UV-Vis and NMR spectra	S4
III. Determination of the binding stoichiometry	S7
IV. Determination of the association constant (K_a)	S7
V. General procedure for the ATRAs of R _f I to alkenes and alkynes	S8
VI. ¹ H-, ¹³ C- and ¹⁹ F-NMR spectra	S22

I. General experimental details

All reagents were obtained from commercial sources and used as received. Commercial anhydrous methanol (Sure/Seal, stored on molecular sieves) was used for the ATRA reactions. NMR analyses were carried out on a Bruker avanceII-400 and avanceII-300 (400 MHz and 300 MHz for proton, 101 MHz and 75 MHz for ¹³C, 282 MHz for ¹⁹F) in deuterated chloroform as solvent. The chemical shifts (δ) for carbon and proton resonances are given compared to the residual solvent peak and are expressed in ppm. Mass spectra were recorded by the CESAMO (Bordeaux, France) using electrospray ionisation (ESI) or electron impact ionization (EI). HRMS ESI spectra were obtained on a QStar Elite mass spectrometer (Applied Biosystems) using positive polarity electrospray ionization mode, electron impact ionization (EI) mass spectra were obtained on an ISQ mass spectrometer (Thermo Scientific) and HRMS EI spectra were obtained on a Accutof GCv mass spectrometer (JEOL). Absorption spectra were recorded on a Varian Cary 5000 spectrophotometer in 1 cm pathlength quartz cells. Photoirradiations (320-390 nm) were performed using a portable Fisher Bioblock mercury lamp (type Thin Layer Chromatography "TLC", 6W) set at 365 nm. The transmission spectrum in the UVA region of of 1 thickness commercial borosilicate glass mm can be found at: https://www.sinclairmfg.com/datasheets/optical3.html

	+ C ₈ F ₁₇ I $-$ Addi 7 + C ₈ F ₁₇ I $-$ CD ₃ OD,	tive, Light \sim C ₈ F ₁₇	the second secon	
entry	additive	conversion (%) ^{b}	yield (%) ^c	
1	-	6	4	
2	Bu ₄ NCl (100 mol%)	100	>95	
3	Bu ₄ NCl (10 mol%)	100	>95	
4	Bu ₄ NCl (5 mol%)	83	80	
5	Bu ₄ NCl (1 mol%)	45	41	
6	Bu ₄ NCl (10 mol%) ^{d}	0	-	
7	Bu ₄ NCl (10 mol%) ^e	0	-	
8	Bu ₄ NCl (10 mol%) ^f	0	-	
9	Bu ₄ NF (10 mol%)	37	32	
10	Bu ₄ NBr (10 mol%)	0	-	
11	Bu ₄ NI (10 mol%)	0	-	
12	NaCl (10 mol%)	100	>95	

Table S1. Optimization of the Reaction Conditions^a

^{*a*} Standard conditions unless otherwise noted: Reactions conducted in NMR tubes in CD₃OD (0.7 mL) on 0.1 mmol of alkene and 0.12 mmol of $C_8F_{17}I$, degassing by Ar bubbling for 20 min, irradiation for 25 min by placing the low pressure Hg Lamp type TLC (set at 365 nm: emitted light ~ 320-390 nm) at ~ 1 cm from the tube. ^{*b*} Converted alkene. ^{*c*} Isolated yield. ^{*d*} Reaction in the dark. ^{*e*} Reaction in air. ^{*f*} Irradiation with a household CFL bulb (23W).

II. Emission, UV-Vis and NMR spectra.

Figure S1: Emission spectrum of the low-pressure Hg lamp used in this study.

Figure S2: UV light absorption spectrum of a solution of $C_8F_{17}I$ in MeOH (0.15 M, quartz cuvette, path length 10 mm, 3 mL).

Figure S3 : ¹⁹F (282 MHz) and ¹H (300 MHz) NMR spectra in CDCl₃ of an aliquot of the reaction mixture obtained after irradiation for 2 h of a deaerated MeOH solution (freeze-pump-thaw cycles, flame-sealed glassware) containing $C_8F_{17}I$ (0.15 M) and Bu₄NCl (10 mol%). Addition of an aliquot of an authentic sample of CH₂(OCH₃)₂ confirmed the proposed assignment.

Figure S4. ¹⁹F (282 MHz) NMR spectrum in CDCl₃ of an aliquot of the reaction mixture obtained after irradiation for 2 h of a deaerated MeOH solution (freeze-pump-thaw cycles, flame-sealed glassware) containing $C_8F_{17}I$ (0.15 M).

III. Determination of the binding stoichiometry of C₈F₁₇I with Cl⁻ (Bu₄N⁺Cl⁻) in CDCl₃

The binding stoichiometry of $C_8F_{17}I$ with Cl^- (Bu₄N⁺Cl⁻) was determined by Job's plot analysis using ¹⁹F NMR and the conditions employed by Chen and coworkers i.e. : CDCl₃ (0.5 mL); total amount of $C_8F_{17}I$ and Bu₄N⁺Cl⁻ kept constant at 0.25 mmol (0.5 M); molar ratios [$C_8F_{17}I$]/ [$C_8F_{17}I + Cl^-$] were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Analysis of the NMR spectra afforded the results presented below.

[C ₈ F ₁₇ I] (M)	δ CF ₂ I (ppm)	$\Delta\delta$ (ppm)	$[C_8F_{17}I]/[C_8F_{17}I + CI^-]$	$[C_8F_{17}I]x\Delta\delta$ (M.ppm)	
0	0	0	0	0	
0.05	69.226	9.975	0.1	0.496	
0.10	68.609	9.358	0.2	0.937	
0.15	67.900	8.649	0.3	1.296	
0.20	66.906	7.655	0.4	1.534	
0.25	65.832	6.581	0.5	1.647	
0.30	64.659	5.408	0.6	1.625	
0.35	63.456	4.205	0.7	1.473	
0.40	61.974	2.723	0.8	1.104	
0.45	60.595	1.344	0.9	0.604	
0.50	59.251	0	1.0	0	

IV. Determination of the association constant (K_a) between $C_8F_{17}I$ and $CI^ (Bu_4N^+CI^-)$ in $CDCl_3$

The association constant between $C_8F_{17}I$ and Cl^- (Bu₄N⁺Cl⁻) was determined with Hanna and Ashbaugh's graphical method using ¹⁹F NMR and the conditions employed by Chen and coworkers i.e. : CDCl₃ (0.6mL); amount of $C_8F_{17}I$ kept constant at 0.03 mmol; amount of

Trial 1				Trial 2			
Cl⁻(M)	1/ Cl ⁻ (M ⁻¹)	$\Delta\delta$ (ppm)	1/Δδ	Cl⁻(M)	1/ Cl ⁻ (M ⁻¹)	$\Delta\delta$ (ppm)	1/Δδ
2	0.5	13.4727	0.0742	2	0.5	13.1543	0.0760
1.5	0.67	13.0661	0.0765	1.5	0.67	12.5283	0.0798
1	1.0	12.3411	0.0810	1	1.0	11.6243	0.0860
0.5	2.0	10.5643	0.0947	0.5	2.0	9.9859	0.1001
0.33	3.03	9.4127	0.1062	0.34	2.98	8.4493	0.1184
0.25	4.0	8.4684	0.1181	0.25	4.0	7.2583	0.1378
0.2	5.0	7.4312	0.1346	0.202	4.95	6.9250	0.1444
0.15	6.67	6.3073	0.1585	0.147	6.80	5.5603	0.1798
0.1	10	4.8308	0.2070	0.101	9.90	4.8156	0.2077

 $Bu_4N^+Cl^-$ varied from 0.06 to 1.2 mmol. Analysis of the NMR spectra afforded the results presented below.

V. General procedure for the ATRAs of R_fI to alkenes and alkynes conducted on 1 mmol scale (scheme 1)

In a test tube (borosilicate glass, wall thickness 0.7 mm, diameter 1.6 cm, height 10 cm), or a Schlenk tube (wall thickness 1.8 mm, diameter 2 cm), was introduced a magnetic stir bar and a solution of anhydrous CH₃OH (7 mL) containing Bu₄NCl **A** or NaCl **B** (10 or 20 mol%), R_fI and the alkene or alkyne. Degassing was rapidly initiated (to avoid I₂ formation due to possible oxidation of adventitious HI) by gentle argon bubbling for 30 minutes (test tube) or, even better, by freeze-pump-thaw cycles and filling the tube with argon after the last vacuum pumping (the reaction mixture must remain colorless). It should be noted that a special attention should be taken in the deoxygenation procedure. The reaction was initiated by irradiating at 320-390 nm using a TLC lamp placed at ~ 1 cm from the test tube (irradiation times given in schemes 1-3).

Once the reaction was completed, the CH₃OH solvent was evaporated and the residue was purified by flash chromatography over silica gel (pentane/EtOAc).

Compound 1: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dodec-1-ene (221 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **1** as yellow oil in 87% yield (622 mg) with **A** and 85% yield (608 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.40-4.26 (m, 1H), 3.06-2.63 (m, 2H), 1.94-1.67 (m, 2H), 1.62-1.17 (m, 16H), 0.88 (t, *J* = 6.3 Hz, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 41.7 (t, *J* = 20.7 Hz), 40.3, 31.9, 29.7, 29.54, 29.51, 29.4, 29.3, 28.5, 22.7, 20.9, 14.1; ¹⁹**F**-

NMR (CDCl₃, 282 MHz) δ (ppm) = -80.8, -111.1 to -115.3 (m), -121.60, -121.62, -121.9, -122.8, -123.6, -126.1; **EI-MS** (*m/z*, relative intensity): 714 (M–H, 2), 587 (M–I, 4), 531 (M–C₄H₈I⁺, 5), 517 (M–CF₃HI⁺, 5), 489 (M–C₃H₅F₃I⁺, 5), 85 (C₆H₁₃⁺, 40), 71 (C₅H₁₁⁺, 66), 57 (C₄H₉⁺, 100), 43 (C₃H₇⁺, 70).

Compound 2: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dodec-1-ene (221 μ L, 1 mmol) and C₄F₉I (180 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to affod **2** as yellow oil in 80% yield (412 mg) with **A** and 78% yield (401 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.40-4.27 (m, 1H), 3.08-2.63 (m, 2H), 1.95-1.72 (m, 2H), 1.59-1.17 (m, 16H), 0.88 (t, *J* = 6.3 Hz, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 41.8 (t, *J* = 20.6 Hz), 40.5, 32.1, 29.8, 29.72, 29.69, 29.4, 28.7, 22.8, 21.0, 14.2; ¹⁹**F-NMR**

 $(CDCl_3, 282 \text{ MHz}) \delta (ppm) = -81.1, -111.3 \text{ to } -115.6 \text{ (m)}, -124.6, -125.9; HRMS (FI+): Calcd. for C₁₆H₂₄F₉I : 514.0779, Found: 514.0801.$

Compound 3: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dodec-1-ene (221 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **3** as yellow oil in 85% yield (479.4 mg) with **A** and 82% yield (462.5 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.41-4.25 (m, 1H), 3.07-2.64 (m, 2H), 1.92-1.67 (m, 2H), 1.59-1.12 (m, 16H), 0.88 (t, *J* = 6.6 Hz,

3H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm) = 41.9 (t, *J* = 20.9 Hz), 40.5, 32.1, 29.8, 29.73, 29.71, 29.55, 29.49, 28.7, 22.9, 21.1, 14.2; ¹⁹F-NMR (CDCl₃, 282 MHz) δ (ppm) = -72.1, -111.0 to - 116.5 (m), -116.6, -185.9; **EI-MS** (*m*/*z*, relative intensity): 563 (M-H, 5), 437 (M-I, 5), 395 (M-C₃H₆I⁺, 5), 367 (M-C₅H₁₀I⁺, 4), 339 (M-C₇H₁₄I⁺, 4), 85 (C₆H₁₃⁺, 40), 71 (C₅H₁₁⁺, 66), 57 (C₄H₉⁺, 100), 43 (C₃H₇⁺, 80).

Compound 4: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), pent-4-en-1ol (102 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc : 80/20) to afford **4** as yellow oil in 65% yield (411 mg) with **A** and 81% yield (510 mg) with **B**.

M.p. = 61-63 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.45-4.29 (m, 1H), 3.78-3.64 (m, 2H), 3.07-2.66 (m, 2H), 2.03-1.55 (m, 4H), 1.39 (s, 1H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 61.8, 41.9 (t, *J* = 21 Hz), 37.0, 32.8, 20.4; ¹⁹**F-NMR** (CDCl₃, 282 MHz)

 δ (ppm) = -80.8, -111.1 to -115.3 (m), -121.58, -121.62, -121.9, -122.8, -123.6, -126.2; **CI-MS** (*m/z*, relative intensity): 631 (M-H, 5), 615 (C₁₃H₉F₁₇I⁺, 100), 505 (M–I, 60), 487 (C₁₃H₈F₁₇⁺, 50).

Compound 5: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), pent-4-en-1ol (102 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc: 85/15) to afford **5** as colorless oil in 54 % yield (260 mg) with **A** and 77% yield (370 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.44-4.29 (m, 1H), 3.69 (t, *J* = 6.3 Hz, 2H), 3.07-2.66 (m, 2H), 1.98-1.67 (m, 4H), 1.66 (s, 1H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 61.8, 41.9 (t, *J* = 21 Hz), 37.0, 32.8, 20.5; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -

72.0, -111.0 to -115.2 (m), -116.6, -185.9; **EI-MS** (*m/z*, relative intensity): 465 (M–H₂O, 100), 355 (M–I, 40), 37 (C₁₀H₉F₁₁, 35).

Compound 6: Synthesized from A (28 mg, 0.1 mmol) or B (5.8 mg, 0.1 mmol), undec-10-en-1-ol (200 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 85/15) to afford **6** as yellow oil in 85% yield (605 mg) with A and 82% (584 mg) yield with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.38-4.26 (m, 1H), 3.64 (t, J = 6.3 Hz, 2H), 3.04-2.65 (m, 2H), 1.92-1.69 (m, 2H), 1.65-1.49 (m, 2H), 1.45-1.18 (m, 12H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 63.2, 41.8 (t, J = 20.8 Hz), 40.5, 32.9, 29.7, 29.6, 29.5, 29.4, 28.6,

25.9, 21.0; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -80.8, -111.8 to -115.5 (m), -121.57, -121.60, -121.9, -122.7, -123.6, -126.2; **HRMS** (ESI): Calcd. for C₁₉H₂₂F₁₇ONaI : 739.0336; Found: 739.0336.

Compound 7: Synthesized from **B** (5.8 mg, 0.1 mmol), undec-10-en-1-ol (200 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 85/15) to afford **7** as yellow oil in 80% yield (450 mg).

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.40-4.27 (m, 1H), 3.66 (t, J = 6.9 Hz, 2H), 3.06-2.71 (m, 2H), 1.92-1.71 (m, 2H), 1.65-1.54 (m, 3H), 1.44-1.26 (m, 11H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 63.1, 41.8 (t, J = 20.8 Hz), 40.4, 32.9, 29.7, 29.6, 29.5, 29.4, 28.6,

25.8, 21.1; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -72.0, -111.1 to -115.9 (m), -116.5, -185.8; **CI-MS** (*m/z*, relative intensity): 565 (M, 2), 549 (C₁₆H₂₁F₁₁I⁺, 100), 439 (C₁₆H₂₂F₁₁O⁺, 20), 421 (C₇H₂F₁₁I⁺, 100), 365 (C₁₂H₁₂F₁₁⁺, 30); **HRMS** (CI⁺): Calcd. for C₁₆H₂₁F₁₁I (M-H₂O): 549.0512; Found: 549.0533.

Compound 8: Synthesized from A (28 mg, 0.1 mmol) or B (5.8 mg, 0.1 mmol), tert-butyl allylcarbamate (157 mg, 1 mmol) and $C_8F_{17}I$ (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 95/5), to afford **8** as a yellow solid in 71% yield (500 mg) with A and 67% yield (473 mg) with B.

Mp = 84-86 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 5.01 (brs, 1H), 4.43-4.31 (m, 1H), 3.67-3.33 (m, 2H), 2.98-2.62 (m, 2H), 1.45 (s, 9H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 155.8, 80.4, 49.1, 38.8 (t, J = 21.2 Hz), 28.4, 18.8; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ

(ppm) = -80.9, -111.5 to -115.0 (m), -121.7, -121.97, -121.98, -122.8, -123.7, -126.2; **HRMS** (ESI): Calcd. for $C_{16}H_{15}NO_2F_{17}NaI$: 725.9768, Found: 725.9765.

Compound 9: Synthesized from A (28 mg, 0.1 mmol), tert-butyl allylcarbamate (157 mg, 1 mmol) and C_4F_9I (180 µL, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash

chromatography over silica gel (pentane/EtOAc, 95/5), to afford **9** as a yellow solid in 61% yield (307 mg,).

Mp = 68-70 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 5.04 (brs, 1H), 4.93-4.30 (m, 1H), 3.65-3.33 (m, 2H), 2.98-2.64 (m, 2H), 1.44 (s, 9H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 155.7, 80.4, 49.1, 38.6 (t, J = 21.1 Hz), 28.4, 18.7; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = - 81.1, -111.5 to -115.2 (m), -124.7, -126.0; **HRMS** (FI+): Calcd. for C₁₂H₁₅NO₂F₉I : 503.0003, Found: 503.0010.

Compound 10: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), 10-bromodec-1-ene (201 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to **10** as yellow oil in 89% yield (681 mg) with **A** and 80% yield (610 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.40-4.25 (m, 1H), 3.40 (t, J = 6.9 Hz, 2H), 3.06-2.62 (m, 2H), 1.94-1.66 (m, 4H), 1.59-1.19 (m, 10H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 41.7 (t, J = 20.8 Hz), 40.4, 34.0, 32.9, 29.7, 29.3, 28.8, 28.5, 28.2, 21.0; ¹⁹**F-NMR**

 $(CDCl_3, 282 \text{ MHz}) \delta (ppm) = -80.9, -111.0 \text{ to } -115.5 \text{ (m)}, -121.64, -121.67, -122.0, -122.8, -123.7, -126.2; CI-MS ($ *m/z*, relative intensity): 765 (M–H, 5), 685 (M–Br, 100), 637 (M–I, 90), 557 (C₁₈H₁₈F₁₇⁺, 80), 503 (C₁₄H₁₀F₁₇⁺, 30).

Compound 11: Synthesized from **B** (5.8 mg, 0.1 mmol), 10-bromodec-1-ene (201 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **11** as colorless oil in 83% yield (513 mg).

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.39-4.25 (m, 1H), 3.40 (t, J = 6.9 Hz, 2H), 3.04-2.68 (m, 2H), 1.92-1.69 (m, 4H), 1.56-1.19 (m, 10H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 41.9 (t, J = 20.8 Hz), 40.4, 34.0, 32.9, 29.7, 29.3, 28.8, 28.5, 28.2, 21.0; ¹⁹**F-NMR**

 $(CDCl_3, 282 \text{ MHz}) \delta (ppm) = -72.0, -110.8 \text{ to } -115.4 \text{ (m)}, -116.5, -185.8; HRMS (CI+): Calcd.$ for $C_{15}H_{19}BrF_{11}$ (M-I) : 487.0494; Found: 487.0507.

Compound 12: Synthesized from **B** (5.8 mg, 0.1 mmol), but-3-en-1-ylbenzene (150 μ L, 1 mmol) and C₈F₁₇I (573 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash

chromatography over silica gel (100% pentane) to afford **12** as pink solid in 88% yield (600 mg).

M.p. = 44-46 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.44-7.33 (m, 2H), 7.29-7.18 (m, 3H), 4.41-4.25 (m, 1H), 3.10-2.67 (m, 4H), 2.29-2.06 (m, 2H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 140.1, 128.8, 128.7, 126.6, 42.0 (t, *J* = 16.5 Hz), 41.9, 35.9, 20.2; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -81.1, -110.0 to -115.1

(m), -121.70, -121.73, -122.1, -122.9, -123.7, -126.4; **HRMS** (FI+): Calcd. for $C_{18}H_{12}F_{17}I$: 677.9712; Found: 677.9731.

Compound 13: Synthesized from **A** (28 mg, 0.1 mmol), but-3-en-1-ylbenzene (150 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **13** as yellow oil in 68% yield (460 mg).

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.40-7.31 (m, 2H), 7.27-7.19 (m, 3H), 4.30 (ddd, J = 5.1 Hz, J = 8.4 Hz and J = 13.3 Hz, 1H), 3.12-2.66 (m, 4H), 2.27-2.03 (m, 2H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 140.0, 128.8, 128.6, 126.5, 42.0 (t, J = 16.5 Hz),

41.9, 35.9, 20.3; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -72.0, -110.4 to -115.1 (m), -116.5, -185.9; **EI-MS** (*m*/*z*, relative intensity): 528 (M, 5), 401 (M-I, 5), 91 (C₇H₇⁺, 100).

Compound 14: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dimethyl(phenyl)(vinyl)silane (192 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **14** as colorless oil in 76% yield (535 mg) with **A** and 76% yield (535 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.59-7.52 (m, 2H), 7.46-7.37 (m, 3H), 3.38 (dd, J = 2.7 Hz and J = 10.5 Hz, 1H), 2.79-2.37 (m, 2H), 0.53 (s, 3H), 0.52 (s, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 134.5, 134.1, 130.3, 128.3, 38.4 (t, J = 21.5 Hz), -0.6, -3.0, -4.4;

¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -80.9, -112.9 to -116.7 (m), -121.7, -122.60, -122.4, -122.8, -123.7, -126.2; ; **HRMS** (FI+): Calcd. for C₁₈H₁₄F₁₇ISi : 707.9638, Found: 707.9628. **Compound 15:** Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dimethyl(phenyl)(vinyl)silane (192 μ L, 1 mmol) and C₄F₉I (180 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **15** as colorless oil in 80% yield (408 mg) with **A** and 79% yield (400 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.57-7.51 (m, 2H), 7.47-7.35 (m, 3H), 3.37 (dd, J = 2.7 Hz and J = 10.2 Hz, 1H), 2.78-2.37 (m, 2H), 0.53 (s, 3H), 0.51 (s, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 134.5, 134.1, 130.3, 128.3, 35.1 (t, J = 21.8 Hz), -0.6, -3.0, -4.4;

¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -81.1, -113.0 to -116.8 (m), -124.7, -126.0; **HRMS** (FI+): Calcd. for C₁₄H₁₄F₉ISi : 507.9765; Found: 507.9772.

Compound 16: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), dimethyl(phenyl)(vinyl)silane (192 μ L, 1 mmol) and C₅F₁₁I (204 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **16** as colorless oil in 82 % yield (458 mg) with **A** and 85% yield (474 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.58-7.51 (m, 2H), 7.47-7.37 (m, 3H), 3.37 (dd, J = 2.7 Hz and J = 10.5 Hz, 1H), 2.80-2.38 (m, 2H), 0.53 (s, 3H), 0.52 (s, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 134.5, 134.1, 130.3, 128.3, 35.3 (t, J = 21.8 Hz), -0.4, -3.1, -4.4;

¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -72.0, -112.7 to -116.9 (m), -185.8; **HRMS** (FI+): Calcd. for C₁₅H₁₄F₁₁ISi: 557.9734; Found: 557.9746.

Compound 17: Synthesized from **A** (28 mg, 0.1 mmol) or **B** (5.8 mg, 0.1 mmol), (*Z*)cyclooctene (130 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane 100%) to afford **17** (d.r = 1:1) as yellow oil in 89% yield (584 mg) with **A** and 77% yield (505 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.67-4.56 (m, 0.5H, d1 or d2), 4.55-4.48 (m, 0.5H, d1 or d2), 2.52-2.23 (m, 3H, d1 and d2), 2.18-1.96 (m, 3H, d1 and d2), 1.93-1.34 (m, 7H, d1 and d2); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 41.1 (t, *J* = 20.0 Hz, d1 or d2), 40.7 (t, *J* = 20.2 Hz, d1 or d2), 36.1 (d1 or d2), 35.0 (d1 or d2), 34.7 (d1 or d2), 34.0 (d1 or

d2), 27.3 (d1 or d2), 27.2 (d1 or d2), 26.6 (d1 and d2), 25.5 (d1 or d2), 25.1 (d1 or d2), 25.0 (d1 or d2), 23.8 (d1 or d2), 23.6 (d1 or d2); ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -81.0 (d1

or d2), -115.3 to -117.9 (m, d1 or d2), -119.9 (d1 or d2), -121.6 (d1 or d2), -121.9 (d1 or d2), -122.4 (d1 or d2), -126.2 (d1 or d2); **EI-MS** (*m/z*, relative intensity): 529 (M-I, 5), 109 (C₈H₁₃⁺, 40), 81 (C₆H₉⁺, 26), 69 (C₅H₉⁺, 65), 55 (C₄H₉⁺, 70), 43 (C₃H₇⁺, 100).

Compound 18: Synthesized from A (28 mg, 0.1 mmol) or B (5.8 mg, 0.1 mmol), (*Z*)-cyclooctene (130 μ L, 1 mmol) and C₄F₉I (180 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **18** (d.r = 1:1) as yellow oil in 63% yield (289 mg) with A and 79% yield (360 mg) with B.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.64-4.56 (m, 0.5H, d1 or d2), 4.55-4.47 (m, 0.5H, d1 or d2), 2.53-2.22 (m, 3H, d1 and d2), 2.18-1.95 (m, 3H, d1 and d2), 1.92-1.33 (m, 7H, d1 and d2); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 40.9 (q, *J* = 20.0 Hz, d1 or d2), 40.6 (q, *J* = 20.2 Hz, d1 or d2), 39.7 (d1 or d2), 38.3 (d1 or d2), 36.1 (d1 or d2), 34.0 (d1 or d2),

35.0 (d1 or d2), 34.7 (d1 or d2), 33.9 (d1 and d2), 27.3 (d1 or d2), 27.2 (d1 or d2), 26.5 (d1 or d2), 25.0 (d1 or d2), 24.9 (d1 or d2), 23.7 (d1 or d2), 23.6 (d1 or d2); ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -81.1 (d1 or d2), -115.4 to -118.3 (m, d1 or d2), -120.9 (d1 or d2), -126.3 (d1 or d2).

Compound 19: Synthesized from **A** (56 mg, 0.2 mmol) or **B** (11.6 mg, 0.2 mmol), dodec-1ene (221 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **19** as yellow oil in 76% yield (277 mg) with **A** and 69% yield (250 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.26-4.14 (m, 1H), 3.00-2.67 (m, 2H), 1.87-1.66 (m, 2H), 1.60-1.15 (m, 16H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 125.8 (q, *J* = 276.9 Hz), 45.1 (q, *J* = 28.1 Hz), 39.9, 32.1, 29.71, 29.69, 29.53, 29.47,

28.7, 22.8, 20.0, 14.3; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -64.0 (t, *J* = 10.4 Hz); **EI-MS** (*m/z*, relative intensity): 363 (M, 97), 237 (M-I, 75), 84 (C₂H₃F₃⁺, 100), 70 (CF₃H or C₅H₁₀, 97), 56 (C₄H₈, 94); **HRMS** (ESI): Calcd. for C₁₃H₂₃F₃I : 363.0796; Found: 363.0806.

Compound 20: Synthesized from A (56 mg, 0.2 mmol) or B (11.6 mg, 0.2 mmol), pent-4-en-1-ol (102 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc: 85/15) to afford **20** as yellow oil in 79% yield (223 mg) with **A** and 71% yield (200 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.29-4.15 (m, 1H), 3.69 (t, J = 6.0 Hz, 2H), 2.98 (s, 1H), 2.97-2.70 (m, 2H), 1.93-1.57 (m, 4H),; ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 125.7 (q, J = 276.9 Hz), 61.7, 45.0 (q, J = 28.1 Hz), 36.2, 32.5, 21.3; ¹⁹**F-NMR** (CDCl₃, 282 MHz)

δ (ppm) = -63.9 (t, J = 10.2 Hz); **CI-MS** (*m*/*z*, relative intensity): 265 (M-H₂O, 100), 155 (M-I, 50), 137 (C₆H₈F1₃⁺, 55).

Compound 21: Synthesized from **A** (56 mg, 0.2 mmol) or **B** (11.6 mg, 0.2 mmol), undec-10en-1-ol (200 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 85/15) to afford **21** as yellow oil in 81% yield (296 mg) with **A** and 88% yield (321 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.24-4.10 (m, 1H), 3.63 (t, J = 6.6 Hz, 2H), 2.99-2.63 (m, 2H), 1.82-1.64 (m, 3H), 1.56-1.44 (m, 3H), 1.35-1.23 (m, 10H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 125.7 (q, J = 277.0 Hz), 63.0, 45.0 (q, J = 28.0 Hz), 39.8, 32.8,

29.6, 29.5, 29.4, 29.3, 28.6, 25.8, 22.0; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -63.9 (t, *J* = 10.4 Hz); **HRMS** (ESI): Calcd. for C₁₂H₂₂F₃NaI : 389.0559; Found: 389.0551.

Compound 22: Synthesized from **A** (56 mg, 0.2 mmol) or **B** (11.6 mg, 0.2 mmol), tert-butyl allylcarbamate (157 mg, 1 mmol), CF_3I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH_3OH), and CH_3OH (1 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc: 95/5) to afford **22** as white solid in 65% yield (229 mg) with **A** and 59% yield (207 mg) with **B**.

M.p.= 67-69 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 5.05 (brs, 1H), 4.32-4.16 (m, 1H), 3.62-3.31 (m, 2H), 2.89-2.62 (m, 2H), 1.44 (s, 9H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 155.7, 125.5 (q, *J* = 276 Hz), 80.3, 48.7, 41.9 (q, *J* = 28.0 Hz), 28.4, 20.1; ¹⁹**F-NMR**

(CDCl₃, 282 MHz) δ (ppm) = -63.9 (t, *J* = 9.9 Hz); **HRMS** (FI+): Calcd. for C₉H₁₅O₂F₃NI : 353.0099; Found: 353.0104.

Compound 23: Synthesized from A (56 mg, 0.2 mmol) or B (11.6 mg, 0.2 mmol), but-3-en-1ylbenzene (150 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **23** as yellow oil in 84% yield (283 mg) with **B**.

¹**H-NMR** (CDCl₃, 400 MHz) δ (ppm) = 7.30-7.19 (m, 2H), 7.14-7.07 (m, 3H), 4.14-3.95 (m, 1H), 2.98-2.76 (m, 2H), 2.75-2.52 (m, 2H), 2.14-1.87 (m, 2H); ¹³**C-NMR** (CDCl₃, 101 MHz) δ (ppm) = 140.1, 128.7, 128.6, 126.5, 125.7 (q, *J* = 278 Hz), 45.1 (q, *J* = 29.2

Hz), 41.3, 35.6, 21.1; ¹⁹**F-NMR** (CDCl₃, 376 MHz) δ (ppm) = -63.7 (t, *J* = 11.3 Hz); **CI-MS** (*m/z*, relative intensity): 327 (M, 25), 201 (M-I, 30), 91 (C₇H₇⁺, 100); **HRMS** (CI+): Calcd. for C₁₁H₁₂F₃I: 327.9935; Found: 327.9947.

Compound 24: Synthesized from **B** (11.6 mg, 0.2 mmol), (-)-Quinine (324 mg, 1 mmol), CF_3I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (EtOAc 100%) to afford **24** (d.r = 2:1) as yellow solid in 73% yield (380 mg).

M.p. = 203-205 °C; ¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 8.69-8.57 (m, 1H, d1 and d2), 7.81-7.60 (m, 2H, d1 and d2), 7.13-7.00 (m, 2H, d1 and d2), 6.58-6.52 (m, 0.66H, d1), 6.49-6.44 (m, 0.33H, d2), 5.92 (brs, 1H, d1 and d2), 4.44-4.26 (m, 1H, d1 and d2), 3.82-3.52 (m, 5H, d1 and d2), 3.48-3.34 (m, 1H, d1 and d2), 3.28-3.05 (m, 1H, d1 and d2), 2.90-2.47 (m, 4H, d1 and d2), 2.41-2.05 (m, 3H,

d1 and d2), 1.99-1.80 (m, 1H, d1 and d2), 1.45-1.27 (m, 1H, d1 and d2); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) (**d1**) = 158.71, 146.85, 144.2, 143.2, 130.8, 126,88, 125.58, 123.20, 119.3, 100.5, 65.7, 60.2, 59.3, 58.7, 44.3, 42.2-41.8 (m), 41.7, 25.4, 24.2, 21.1, 17.8; (**d2**) = 158.74, 146.81, 144.0, 143.3, 130.9, 126,91, 125.55, 123.22, 122.9, 100.4, 65.9, 60.0, 58.5, 54.5, 44.1, 42.2-41.8 (m), 39.6, 28.3, 24.4, 20.1, 17.6; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -62.8 (t, *J* = 9.6 Hz, d1), -63.1 (t, *J* = 9.6 Hz, d2); **HRMS** (ESI): [M+H] C₂₁H₂₅N₂O₂F₃I : 521.0907; Found: 521.0914.

Compound 25: Synthesized from A (56 mg, 0.2 mmol) or B (11.6 mg, 0.2 mmol), 2allylbenzoic acid (162 mg, 1 mmol), CF_3I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH_3OH), and CH_3OH (1 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 90/10) to afford **25** as yellow oil in 73% yield (263 mg) with **A** and 56% yield (100 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 8.18 (dd, J = 1.2 Hz and J = 7.8 Hz, 1H), 7.58 (td, J = 1.2 Hz and J = 7.5 Hz, 1H), 7.44 (td, J = 1.5 Hz and J = 7.5 Hz, 1H), 7.33 (dd, J = 0.9 Hz and J = 7.8 Hz, 1H), 4.61-4.43 (m, 1H), 3.85 (dd, J = 4.8 Hz and J = 13.8 Hz, 1H), 3.88

(dd, J = 9.6 Hz and J = 13.8 Hz, 1H), 3.13-2.78 (m, 2H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm) = 172.4, 141.7, 133.4, 133.1, 132.6, 130.0, 127.9, 125.8 (q, J = 276.8 Hz), 45.5, 44.9 (q, J = 29.2 Hz), 21.5 (q, J = 3.0 Hz); ¹⁹F-NMR (CDCl₃, 282 MHz) δ (ppm) = -63.5 (t, J = 10.2 Hz); HRMS (ESI): Calcd. for [M-I] C₁₁H₁₀O₂F₃ : 231.0638; Found: 231.0642.

Compound 26: Synthesized from **A** (56 mg, 0.2 mmol) or **B** (11.6 mg, 0.2 mmol), dimethyl(phenyl)(vinyl)silane (192 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **26** as colorless oil in 77% yield (270 mg) with **A** and 81% yield (290 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.58-7.52 (m, 2H), 7.47-7.36 (m, 3H), 3.28 (dd, J = 2.7 Hz and J = 11.1 Hz, 1H), 2.71-2.40 (m, 2H), 0.53 (s, 3H), 0.51 (s, 3H); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 134.6, 134.1, 130.2, 128.3, 126.2 (q, J = 277.0 Hz), 38.4 (q, J =

28.9 Hz), 2.1 (q, J = 2.3 Hz), -2.9, -4.5; ¹⁹F-NMR (CDCl₃, 282 MHz) δ (ppm) = -65.0 (t, J = 1.0 K)

11.3 Hz); **HRMS** (FI+): Calcd. for C₁₁H₁₄F₃ISi : 357.9861; Found: 357.9850.

Compound 27: Synthesized from **A** (56 mg, 0.2 mmol) or **B** (11.6 mg, 0.2 mmol), (*Z*)-cyclooctene (130 μ L, 1 mmol), CF₃I (3 mmol, i.e. 6 mL of a 2 M stock solution in CH₃OH), and CH₃OH (1 mL). The residue was purified by flash chromatography over silica gel (pentane 100%) to afford **27** (d.r = 1:1) as yellow oil in 71% yield (218 mg) with **A** and 64% yield (196 mg) with **B**.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 4.64-4.44 (m, 1H, d1 and d2), 2.53-2.20 (m, 3H, d1 and d2), 2.17-2.02 (m, 3H, d1 and d2), 1.99-1.75 (m, 3H, d1 and d2), 2.53-2.20 (m, 5H, d1 and d2); ¹³**C-NMR** (CDCl₃, 75 MHz) δ (ppm) = 128.5 (q, *J* = 277.8 Hz, d1 or d2), 128.4 (q, *J* = 277.7 Hz, d1 or d2), 42.5 (q, J = 24.5 Hz, d1 or d2), 42.3 (q, J = 24.6 Hz, d1 or d2), 38.7 (d1 or d2), 38.1 (d1 or d2), 36.1 (d1 or d2), 35.4 (d1 or d2), 35.2 (d1 or d2), 68.5 (d1 or d2), 34.1 (d1 and d2), 26.92 (d1 or d2), 26.89 (d1 or d2), 26.1 (d1 or d2), 25.8 (d1 or d2), 25.5-25.2 (m, d1 or d2), 24.5-24.1 (m, d1 or d2); ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -73.3 (d, J = 9.3 Hz, d1 or d2), -73.4 (d, J = 9.3 Hz, d1 or d2); **HRMS** (EI): Calcd. for [M-I] C₉H₁₄F₃ : 179.1047; Found: 179.1049.

Compound 28: Synthesized from A (28 mg, 0.1 mmol) or B (5.8 mg, 0.1 mmol), dodec-1-yne (130 μ L, 1 mmol) and C₈F₁₇I (573.2 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane 100%) to afford 28 (d.r = 3:1) as yellow oil in 81% yield (577 mg) with A and 69% yield (489 mg) with B.

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 6.34 (t, J = 14.4 Hz, 1H, d1), 6.39 $(t, J = 13.2 \text{ Hz}, 0.25\text{H}, d2), 2.77-2.57 \text{ (m}, 2.5\text{H}, d1+d2), 1.67-1.52 \text{$ 2.5H, d1+d2), 1.31-1,19 (m, 17.5H, d1+d2), 0.88 (t, J = 6.4 Hz, 3.75H, d1+d2); ¹³C-NMR (CDCl₃, 75 MHz)): d1: δ (ppm) = 126.7 (t, J = 24.03 Hz), 123.3, 41.3, 32.1,

29.7, 29.5, 29.4, 28.6, 22.9, 14.2; **d2** : δ (ppm) = 123.2, 121.8 (t, *J* = 23.93 Hz), 48.6, 32.1, 29.7, 29.5, 29.2, 28.2, 22.9, 14.2; EI-MS (m/z, relative intensity): 712 (M, 2), 585 (M-I, 2), 529 (M- $C_4H_8I^+$, 10), 97 ($C_7H_{13}^+$, 50), 83 ($C_6H_{11}^+$, 60), 57 ($C_4H_9^+$, 90), 43 ($C_3H_7^+$, 100); **HRMS** (CI+): Calcd. for [M-H] C₂₀H₂₁F₁₇I: 711.0416; Found: 711.0426.

Compound 29: Synthesized from A (56 mg, 0.1 mmol), but-3-yn-1-ol (77 µL, 1 mmol) and C₈F₁₇I (573 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 90/10) to afford **29** (d.r = 2.3:1) as yellow solid in 71% yield (438 mg).

Mp = 65-67 °C; ¹**H-NMR** (CDCl₃, 400 MHz) δ (ppm) = 6.48 (t, J = 14.0 Hz, 0.65H, d1), 6.40 (t, J = 13.2 Hz, 0.31H, d2), 3.90-3.80 (m, 2H, d1+d2), 3.02-2.87 (m, 2H, d1+d2), 1.69 (brs, 1H, d1), 1.25 (brs, 0.4H,

d2); ¹³C-NMR (CDCl₃, 101 MHz)): d1: δ (ppm) = 129.2 (t, J = 23.8 Hz), 117.2, 62.0, 43.8; **d2** : δ (ppm) = 124.5 (t, J = 23.8 Hz), 118.7, 60.7, 51.1; **HRMS** (ESI): Calcd. for C₁₂H₅F₁₇IO : 614.9108; Found: 614.9105.

Compound 30: Synthesized from **B** (5.8 mg, 0.1 mmol), but-3-yn-1-ol (77 μ L, 1 mmol) and C₅F₁₁I (204 µL, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 90/10) to afford **30** (d.r = 3:1) as yellow oil in 91% yield (422 mg).

¹**H-NMR** (CDCl₃, 400 MHz) δ (ppm) = 6.48 (t, *J* = 14.4 Hz, 1H, d1), 6.39 (t, *J* = 13.2 Hz, 0.4H, d2), 3.89-3.78 (m, 2.8H, d1+d2), 3.04-2.84 (m, 2.8H, d1+d2), 1.89 (brs, 1.4H, d1+d2); ¹³**C-NMR**

(CDCl₃, 101 MHz)): **d1**: δ (ppm) = 129.3 (t, J = 24.03 Hz), 117.2, 62.0, 43,7; **d2** : δ (ppm) = 124.6 (t, J = 23.9 Hz), 120.3, 60.7, 51.0; **CI-MS** (*m*/*z*, relative intensity): 466 (M, 5), 449 (C₉H₅F₁₁I⁺, 45), 437 (C₈H₅F₁₁I⁺, 75), 417 (C₈H₄F₁₀I⁺, 100), 338 (C₉H₅F₁₁O⁺, 82); **HRMS** (CI+): Calcd. for C₉H₅F₁₁I (M-H₂O): 448.9260; Found: 448.9273.

Compound 31: Synthesized from **B** (5.8 mg, 0.1 mmol), but-3-yn-1-ol (77 μ L, 1 mmol) and C₄F₉I (180 μ L, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 90/10) to afford **31** (d.r = 4:1) as yellow oil in 53% yield (219 mg).

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 6.47 (t, *J* = 14.4 Hz, 0.8H, d1), 6.39 (t, *J* = 13.2 Hz, 0.2H, d2), 3.84 (t, *J* = 6.3 Hz, 2H, d1+d2), 3.00-2.85 (m, 2H, d1+d2), 1.89 (s, 1H, d1+d2); ¹³**C-NMR** (CDCl₃, 75 MHz): **d1**:

δ (ppm) = 129.0 (t, *J* = 23.5 Hz), 117.2, 62.0, 43,8; **d2**: δ (ppm) = 124.3 (t, *J* = 23.5 Hz), 114.3, 60.7, 51.0; **HRMS** (CI+): Calcd. for C₈H₆F₉IO: 415.99319; Found: 415.9323.

Compound 32: Synthesized from A (56 mg, 0.1 mmol), 6-chlorohex-1-yne (122 μ L, 1 mmol) and C₈F₁₇I (573 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **32** (d.r = 3:1) as yellow oil in 57% yield (188 mg).

¹**H-NMR** (CDCl₃, 300 MHz) (**d1**) δ (ppm) = 6.36 (t, *J* = 14.4 Hz, 1H), 3.55 (t *J* = 6.3 Hz, 2H), 2.75-2.61 (m, 2H), 1.89-1.68 (m, 4H); (**d2**) δ (ppm) = 6.27 (t, *J* = 13.2 Hz, 1H), 3.56 (t *J* = 6.0 Hz, 2H), 2.79-2.63 (m, 2H), 1.85-1.68 (m, 4H); ¹³**C-NMR** (CDCl₃,

101 MHz) δ (ppm) = 127.3 (t, J = 23.7 Hz), 121.8, 44.5, 40.3, 31.2, 27.4.

Compound 33: Synthesized from **A** (56 mg, 0.1 mmol), prop-2-ynylbenzene (124 μ L, 1 mmol) and C₈F₁₇I (573 mg, 1.05 mmol) in CH₃OH (7 mL). The residue was purified by flash chromatography over silica gel (100% pentane) to afford **33** (d.r = 2.1:1) as yellow solid in 82% yield (543 mg).

Mp = 49-51 °C; ¹**H-NMR** (CDCl₃, 400 MHz) δ (ppm) =7.46-7.29 (m, 4.5H, d1+d2), 7.24-7,15 (m, 3H, d1+d2), 6.51 (t, J = 14.0 Hz, 1H, d1), 6.39 (t, J = 13.2 Hz, 0.5H, d2), 4.06 (s, 2H, d1), 4.03 (s, 1H, d2); ¹³C-**NMR** (CDCl₃, 101 MHz)): **d1**: δ (ppm) = 136.9, 129.1, 128.9, 127.7

(t, J = 23.8 Hz), 127.6, 46.8; **d2** : δ (ppm) = 136.4, 129.3, 129.0, 127.8, 123.4 (t, J = 24.0 Hz), 51.8; **EI-MS** (*m*/*z*, relative intensity): 662 (M, 10), 535 (M-I, 15), 243 (C₉H₈I⁺, 20), 166 (C₁₀H₈F₂⁺, 70), 146 (C₁₀H₇F⁺, 100), 115 (C₉H₈⁺, 70), 69 (CF₃⁺, 10).

Compound 34: Synthesized from **B** (5.8 mg, 0.1 mmol), *N*-allyl-4-methylbenzenesulfonamide (106 mg, 0.5 mmol) and IC_4F_8I (309 mg, 0.68 mmol) in CH₃OH (1.5 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 90/10) to afford **34** as a solid in 79% yield (260 mg).

¹H-NMR (CDCl₃, 300 MHz) δ (ppm) = 7.80-7.73 (m, 2H), 7.37-7.28 (m, 2H), 5.09 (t, *J* = 6.6 Hz, 1H), 4.30-4.18 (m, 2H), 4.30-4.18 (m, 2H), 3.42-3.23 (m, 2H), 2.93-2.61 (m, 2H), 2.43 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm) = 144.2, 136.7, 130.1, 127.2, 51,0, 38.5

(t, J = 21.0 Hz), 21.7, 17.0; ¹⁹**F-NMR** (CDCl₃, 282 MHz) δ (ppm) = -58.7, -111.7 to -114.7 (m), -112.7, -122.6; **HRMS** (ESI): Calcd. for C₁₄H₁₃NO₂F₈NaSI₂: 687.8521; Found: 687.8522.

Compound 35: Synthesized from **B** (3.4 mg, 0.06 mmol), pent-4-en-1-ol (25.8 mg, 0.3 mmol) and **34** (190 mg, 0.29 mmol) in CH₃OH (3 mL). The residue was purified by flash chromatography over silica gel (pentane/EtOAc, 80/20) to afford **35** as yellow oil in 64% yield (139 mg).

¹**H-NMR** (CDCl₃, 300 MHz) δ (ppm) = 7.78-7.69 (m, 2H), 7.36-7.30 (m, 2H), 5.35-5.20 (m, 1H), 4.44-4.29 (m, 1H), 4.27-4.15 (m, 1H), 3.69 (t, *J* = 6.3 Hz, 2H), 3.38-3.23 (m,

2H), 3.03-2.57 (m, 4H), 2.42 (s, 3H), 1.97-1.63 (m, 5H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm) = 144.2, 136.7, 130.1, 127.1, 61.7, 51,0, 41.8 (t, *J* = 20.5 Hz), 38.5 (t, *J* = 21.1 Hz), 37.0, 32.7, 21.6, 20.8, 17.0; ¹⁹F-NMR (CDCl₃, 282 MHz) δ (ppm) = -110.3, -115.6, -122.7, -123.9; **HRMS** (ESI): Calcd. for C₁₉H₂₃O₃F₈NaSI₂: 773.9252; Found: 773.9273.

VI. ¹H-, ¹³C- and ¹⁹F-NMR spectra

S27

S29

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

S56

-50 -55 . -90 -100 -105 -110 -115 -125 -130 -60 -65 -70 -75 -80 -85 -95 -120 -135 -140 -145

