Electronic Supporting Information (ESI) for:

CsPbX₃/Cs₄PbX₆ core/shell perovskite nanocrystals

Chao Jia,^a Hui Li,^a Xianwei Meng^b and Hongbo Li*a

^a Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials

and Green Applications, School of Materials Science & Engineering, Beijing institute

of Technology, Beijing 10081, China

* Email: hongbo.li@bit.edu.cn

^b Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

1. Chemicals

Lead (II) bromide (PbBr₂, 99.999% trace metals basis), Lead (II) chloride (PbCl₂, 99.99% trace metals basis), Lead (II) iodide (PbI₂, 99.99% trace metals basis), cesium carbonate (Cs₂CO₃, 99.9% trace metals basis) and oleylamine (OLA, technical grade, 70%) were purchased from Sigma-Aldrich. 1-Octadecene (ODE, technical grade, 90%) and zinc bromide (ZnBr₂, anhydrous, 99.5%) were purchased from J&K Scientific. Oleic acid (OA, A.R.) was purchased from Macklin. Hexane (analytical grade, 95%) was purchased from Beijing Chemical Works.

2. Synthesis of CsPbBr₃/Cs₄PbBr₆ core/shell NCs

Cs-oleate was prepared firstly. In detail, Cs_2CO_3 (1.25mmol), ODE (20 mL) and OA (1.55 mL) were loaded into a 50 mL 3-neck flask, attached a Schlenk Line, degassed the mixture at 100 °C for 30 min under vacuum, and then heated to 150 °C under N₂ for 30 min. The Cs-oleate solution was stored by stirring at 100 °C to avoid precipitation.

Synthesis of CsPbBr₃ NCs was performed according to the method slightly modified from the protocol reported by Protesescu et al. Briefly, PbBr₂ (0.188 mmol), ODE (5 mL), OA (0.5 mL) and OLA (0.5 mL) were mixed in a 50 mL 3-neck flask, heated to 100 °C and purged under vacuum for 30 min. Then, the temperature was increased to 170 °C and 0.058 mmol Cs-oleate solution was quickly injected. The reaction mixture was cooled with the water bath in 10 seconds.

Synthesis of CsPbBr₃/**Cs**₄**PbBr**₆ **core/shell NCs** was performed by using the above solution containing CsPbBr₃ NCs without any treatment. Before the growth of the Cs₄PbBr₆ shell, the resulting CsPbBr₃ NCs solution was lowered to room temperature and 0.1 mmol (or 0.2 mmol) ZnBr₂ was added to the flash, degassed at 50 °C for 20 min under vacuum. Afterward the temperature was raised to 70 °C under a nitrogen atmosphere, Cs-oleate with different amount (for instance, 0.203 mmol corresponding to a shell thickness of 1.5 nm) was quickly injected. The solution was lowered to room temperature using a water bath after 3 min. The solution turned bright green again.

To collect the NCs, the crude solution was then centrifuged at 8000 rpm for 5 min. After centrifugation, the supernatant was discarded and the NCs were re-dispersed in 1 mL hexane.

After centrifuging the suspension (3 min, 3000 rpm), the supernatant was saved for further investigation. $CsPbCl_3/Cs_4PbCl_6$ and $CsPbI_3/Cs_4PbI_6$ core/shell NCs were prepared following the same procedures, except different halide source.

3. Synthesis of pure Cs₄PbBr₆NCs for comparison

The Cs_4PbBr_6NCs were synthesized according to a reported method with slight modifications, i.e. the amount of Cs-oleate and the temperature. $PbBr_2$ (0.2 mmol) was first added to a mixture of ODE (8 mL), OA (0.4 mL) and OLA (2 mL) in a 50 mL reaction flask. The mixture was degassed for 30 min at 100 °C. Then the solution was allowed to cool down under N₂. When the temperature reached 70 °C, 0.46 mmol of Cs-OA (0.325 g Cs₂CO₃ dissolved in 5 mL OA in a 50 ml 3-neck flask, the details were the same as preparation of Cs-oleate) was swiftly injected. After 3 min, the solution was quickly cooled down using a water bath.

4. Characterization

TEM images of obtained NCs were acquired by a JEM-2100 transmission scanning electron microscope (TEM, JEOL, Japan). UV-vis spectra were recorded using a JASCO V-570 spectrophotometer at room temperature. Fluorescence measurements were carried out on a Cary Eclipse fluorescence spectrophotometer (Varian, Inc.). X-ray diffraction (XRD) measurements were performed on a D8 Focus X-ray diffractometer.

Figure S1, TEM image of pure Cs₄PbBr₆NCs.

Figure S2, Absorption spectra of pure Cs₄PbBr₆NCs.

Figure S3, XRD patterns of pure Cs₄PbBr₆NCs.

Figure S4, HRTEM image of CsPbBr₃/Cs₄PbBr₆ core/shell NCs.

Figure S5, PL intensity of $CsPbI_3$ NCs (Black Square) and $CsPbI_3/Cs_4PbI_6$ core/shell NCs (Red sphere) exposed to air as function of time over one week.