Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Carbene-catalyzed enal γ -carbon addition to

α -ketophosphonates for enantioselective access to

bioactive 2-Pyranylphosphonates

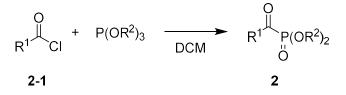
Jun Sun,^a Fangcheng He,^a Zhongyao Wang,^a Dingwu Pan,^a Pengcheng Zheng,^a Chengli Mou,^c Zhichao Jin,*^a Yonggui Robin Chi*^{a,b}

^aLaboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

^bDivision of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

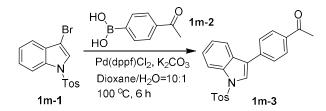
^cSchool of Pharmacy, Guiyang College of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China.

E-Mail: robinchi@ntu.edu.sg

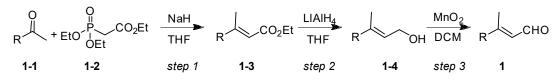

I . General information	2
II . Preparation of substrates	3
III. Reaction conditions optimization	5
IV. General procedure.	6
${\rm V}.$ Stereochemistry determination via X-ray crystallographic analysis	6
VI. <i>In vitro</i> antibacterial bioassay	7
₩. Antiviral biological assay	7
VIII. Characterization of intermediates & products	11
IX. NMR spectra of intermediates & products	22
X . HPLC spectra of products	68

I.General information

Commercially available materials purchased from J&K or Aladdin were used as received. THF was distilled over sodium. Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 10 mL dry Schlenk tube. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (400 MHz) spectrometer or on a JEOL-ECX-500 (500 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00) or chloroform (δ = 7.26, singlet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (g), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (101 MHz) spectrometer or on a JEOL-ECX-500 (126 MHz) spectrometer. Fluorine (¹⁹F) nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a Bruker (376 MHz) spectrometer or on a JEOL-ECX-500 (471 MHz) spectrometer. Phosphorus (³¹P) nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Bruker (162 MHz) spectrometer or on a JEOL-ECX-500 (202MHz) spectrometer. The melting points (m.p.) of the title compounds were determined when left untouched on an XT-4-MP apparatus from Beijing Tech. Instrument Co. (Beijing, China). High resolution mass spectral analysis (HRMS) was performed on a quadrupole/electrostatic field orbitrap mass spectrometer. Absolute configuration of the products was determined by X-ray crystallography. HPLC analyses were measured on Waters systems with Empower3 system controller, Alliance column heater, and 2998 Diode Array Waters 2489 UV/Vis detector. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models AD-H, or OD-H in 4.6 x 250 mm size. The racemic products used to determine the er values were synthesized using racemic catalyst. Optical rotations were measured on a Insmark IP-digi Polarimeter in a 1 dm cuvette at 26 °C. The concentration (c) is given in g/100 mL. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.


II. Preparation of substrates

1. General procedure for the preparation of acyl phosphonate substrates


All acyl phophonates were synthesized using a published Arbuzov reaction procedure.¹ Into an dried 100 mL round bottom flask equipped with a magnetic stir bar, the benzoyl chloride derivative (7 mmol, 1 equiv) was dissolved in CH_2Cl_2 (45 mL). Then, the reaction was purged with N₂ and triethylphosphite (7.7 mmol, 1.1 equiv) was added dropwise. After 24 h stirring, the reaction was concentrated under reduced pressure. The oil obtained was purified by vacuum distillation and stocked in a nitrogen-filled drybox.

2. Preparation of 1-(4-(1-tosyl-1H-indol-3-yl)phenyl)ethan-1-one (1m-3)

To a solution of **1m-1** (3.6 g, 10.3 mmol) and **1m-2** (2.0 g, 12.3 mmol) in Dioxane/H₂O (10: 1, 40 mL) was added K₂CO₃ (2.85 g, 25.6 mmol) and Pd(dppf)Cl₂ (400 mg, 0.55 mmol), the mixture was evacuated and refilled with N₂, then the mixture was stirred at 100 ^oC for 6 h. monitored by TLC, the mixture was filtered and the filtrate was removed under reduced pressure and the residue was purified via column chromatography on silica gel with Hexane/EtOAc (10: 1) as eluent to afford the product **1m-3**.

3. Preparation of enal substrates

The enal substrates were prepared and characterized according to the known procedure as briefed below:^{2,3}

Step 1: To a 100 mL round bottom flask containing NaH (20 mmol, 60% mineral dispersion) and anhydrous THF (40 mL) at 0 °C was added triethyl phosphonoacetate (21.5 mmol) dropwise via an addition funnel. The reaction mixture was naturally warmed to rt, followed by a dropwise addition of a acetophenone solution (13 mmol, in 20 mL

anhydrous THF). The reaction mixture was stirred for 12 h, and then poured into a separating funnel containing water. The organic layer was collected, and the aqueous layer was extracted with diethyl ether (2 × 50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude esidue was subjected to flash chromatography (Hexanes/EtOAc: 95/5) to afford the corresponding α , β -unsaturated ester as a light yellow oil.

Step 2: To a 100 mL round bottom flask containing the unsaturated ester (20 mmol) obtained above and anhydrous THF (40 mL) was carefully added LiAlH₄ (25 mmol) in a few portions at 0 °C. The reaction mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was then cooled to 0 °C and quenched with 1 M aqueous HCI. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organics were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude residue was subjected to flash chromatography (Hexanes/EtOAc: 50/50) to afford the corresponding allylic alcohol as a light yellow oil.

Step 3: To a 100 mL round bottom flask containing the allylic alcohol (20 mmol) obtained above was added activated MnO_2 (100 mmol) and anhydrous CH_2Cl_2 (40 mL) at rt. The reaction mixture was then stirred at 60 °C. After complete consumption of the starting material (as indicated by TLC analysis), the reaction mixture was filtered through a pad of celite. The resulting filtrate was concentrated under reduced pressure. The crude residue was subjected to flash chromatography (Hexanes/EtOAc: 95/5) to afford the corresponding β , β -disubstituted enal as a light yellow oil.

III. Reaction conditions optimization

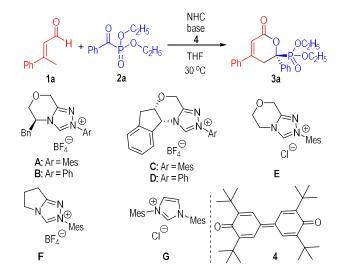
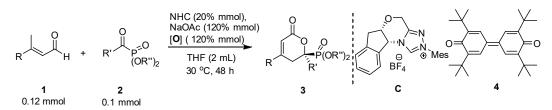
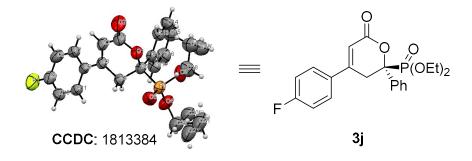



Table 1. Screening of different carbene catalysts, bases and solvents^a.

Entry	Cat.	Base	Solvent	Time [h]	Yield [%] ^b	<i>e.r.</i> ^c
1	Α	Cs ₂ CO ₃	THF	24	n.r.	
2	В	Cs_2CO_3	THF	24	<5	
3	С	Cs ₂ CO ₃	THF	24	10	90:10
4	D	Cs ₂ CO ₃	THF	24	<5	
5	Е	Cs ₂ CO ₃	THF	24	n.r.	
6	F	Cs ₂ CO ₃	THF	24	n.r.	
7	G	Cs ₂ CO ₃	THF	24	36	50:50
8	С	Na ₂ CO ₃	THF	48	33	n.d
9	С	K ₃ PO ₄	THF	48	<10	n.d
10	С	K ₂ CO ₃	THF	48	26	89:11
11	С	Et ₃ N	THF	48	42	97:3
12	С	DMAP	THF	48	31	97:3
13	С	DABCO	THF	48	38	97:3
14	С	NaOAc	THF	48	63	97:3
15	С	NaOAc	THF	24	51	97:3
16	С	NaOAc	toluene	48	23	95:5
17	С	NaOAc	EA	48	40	96:4
18	С	NaOAc	CH₃CN	48	<10	n.d.

^a Reaction conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), NHC (0.02 mmol), base (0.12 mmol), **4** (0.12 mmol), THF (2 mL), 30 °C, 48 h. ^bYields were isolated yields after column chromatography; n.r. = no reaction. ^ce.r. was determined *via* HPLC using a chiral stationary phase, n.d. = no determined.

IV. General procedure.



To a dry Schlenk reaction tube equipped with a magnetic stir bar was added α -ketophosphonates **2** (0.1 mmol), aldehydes **1** (0.12 mmol), triazolium salt **C** (8.4 mg, 0.02 mmol), oxidant **4** (49 mg, 0.12 mmol) and NaOAc (9.9 mg, 0.12 mmol). The schlenk tube was then closed with septum, evacuated and refilled with N₂, freshly distilled anhydrous THF (2 mL) was added. The mixture was stirred at 30 °C for 48 h. After completion of the reaction monitored by TLC, solvent was removed under reduced pressure and the residue was purified via column chromatography on silica gel with Hexane/EtOAc (3: 1) as eluent to afford the products **3**.

V. Stereochemistry determination via X-ray crystallographic

analysis

The absolute stereochemistry of **3j** was determined by the X-ray diffraction. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC: 1813384.

VI. In vitro antibacterial bioassay

The target compounds were dissolved in 150 μ L DMSO and diluted with sterile distilled water containing 0.1 % Tween-20 (4 mL) to prepare 1000 and 500 μ g/mL stock solution. Their antibacterial activities against *Xanthomonas oryzae pv. oryzae* was evaluated by the turbidimeter test. 1 mL of stock solution was added to 4 mL nutrient broth liquid medium NB (3 g of beef extract, 5 g of peptone, 1 g of yeast powder, 10 g of glucose, and 1000 mL of distilled water, pH 7.0 - 7.2) in tubes. Then, to the tube, 40 μ L NB containing bacteria was added and incubated with continuous shaking at 180 rpm for 24 h at 30±1 °C. The test concentration was fixed at 200 and 100 μ g/mL. The data of bacterial growth was reported by measuring the optical density at 600 nm (OD₆₀₀) with a spectrophotometer. DMSO in sterile distilled water containing 0.1 % Tween-20 served as the negative control, whereas Bismerthiazol served as positive control. The inhibitory rate of bacterial culture growth was calculated according to the following formula:

Inhibition rate (%) = (CK-T)/CK×100

"CK" means the value of corrected optical density of bacterial growth on untreated NB (negative control), and "T" means the value of corrected optical density of bacterial growth on treated NB.

VII. Antiviral biological assay

1. Purification of tobacco mosaic virus: Using Gooding's method,⁴ the upper leaves of *Nicotiana tabacum* L. inoculated with TMV were selected and ground in phosphate buffer and then filtered through double-layer pledget. The filtrate was centrifuged at 10000 g treated with PEG twice, and centrifuged again. The whole experiment was processed at 4 °C. Absorbance value was estimated at 260 nm by ultraviolet spectrophotometer virus concn =(A_{260} x dilution ratio)/E $\frac{0.1\%,260\text{nm}}{1\text{ cm}}$

2. Inhibition effect of compound on TMV *in vivo*: The virus was inhibited by mingling with the compound solution at the same volume for 30 min. The mixture was then inoculated on the left side of the leaves of *N. tabacum* L., whereas the right side of the leaves was inoculated with the mixture of solvent and the virus for control. The local lesion numbers were recorded 3 - 4 days after inoculation.⁵ Three repetitions were conducted for each compound.

3. Cure effect of compound on TMV *in vivo*: The leaves of *N. tabacum* L. growing at the same ages were selected. TMV at a concentration of 6 x 10^{-3} mg/mL was dipped and

inoculated on the whole leaves. Then the leaves were washed with water and dried. The compound solution was smeared on the left side, and the solvent was smeared on the right side for control. The local lesion numbers were then recorded 3 - 4 days after inoculation.⁵ For each compound, three repetitions were conducted to ensure the reliability of the results.

4. Inactivation activities of compounds against TMV *in vivo*: The virus was inhibited by mixing with the compound solution at the same volume for 30 min and inoculated on the left side of *N. tabacum* L. leaves, and the solvent and virus mixture was smeared on the right side of the leaves as the control. The number of local lesions was recorded 3 - 4 days after inoculation.^{6,7} Every experiment for each compound was conducted in triplicate. The *in vivo* inhibiton rates of the compounds were calculated using the following formula ("av" means average).

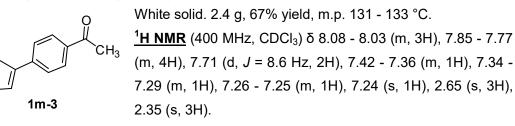
Inhibition rate = [(av number of local lesionsincontrol av number of local lesions smeared with drugs)/ av number of local lesions of control]×100%.

Refrences:

- 1 Y. Huang, F. Berthiol, B. Stegink, M. M. Pollard, A. J. Minnaard, *Adv. Synth. Catal.*, 2009, **351**, 1423.
- 2 C. Burstein, F. Glorius, Angew. Chem. Int. Ed. 2004, 43, 6205.
- 3 N. T. Reynolds, J. R. de Alaniz, T. Rovis, *J. Am. Chem. Soc.* 2004, **126**, 9518.
- 4 G. V. Gooding, Jr., T. T. Hebert, *Phytopathology* 1967, **57**, 1285.
- 5 S. Z. Li, D. M. Wang, S. M. Jiao, Agricuture Press of China: Beijing, China, 1991, 93.
- 6 F. Wu, P. Li, D. Y. Hu, B. A. Song, *Res. Chem. Intermed.*, 2016, **42**, 7153.
- 7 B. A. Song, H. P. Zhang, H. Wang, S. Yang, L. H. Jin, D. Y. Hu, L. L. Pang, W. Xue, J. Agric. Food Chem., 2005, 53, 7886.

Antibact	erial activity of the title com	pounds			
Compound	X. oryzoe pv. oryzae inhibition rate [%] ^a				
Compound —	100 _µ g/mL	200 _µ g/mL			
3a	3.5±1.8	5.3±3.5			
3b	10.8±3.0	45.8±1.5			
3c	7.9±3.9	3.0±0.5			
3d	<i>1.9</i> ±6.7	26.8±4.1			
Зе	8.1±3.8	22.1±1.3			
3f	54.2±2.0	60.8±1.2			
3h	4.9±2.7	0			
3 i	21.8±6.1	13.8±2.9			
Зј	35.0±3.4	39.8±5.4			
3k	0	28.1±6.8			
31	18.5±4.5	27.4±1.8			
3n	23.2±1.5	31.2±3.8			
30	36.4±1.2	29.2±7.8			
3р	0	8.6±3.6			
3q	42.0±3.8	44.7±4.4			
3s	10.7±4.2	13.4±5.4			
3t	0	28.0±4.4			
3u	44.4±4.2	59.9±4.4			
Bismerthiazol ^b	47.1±4.7	72.7±5.8			
Negative control ^c	0	0			
^a Average of three replicates.	^b Commercial bactericide,	used as the positive control.			
^c DMSO was used as the negati	ve control.				

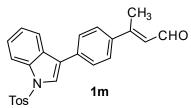
Table 2. Antibacterial activity


Antibacterial activity of the title compounds

Compound	curative effect(%) ^a	protective effect(%) ^a	inactivation effect(%)
3a	31.6±1.4	17.5±2.9	80.1±3.9
3b	36.7±2.7	3.4±1.5	61.4±3.3
3c	41.9±6.3	5.6±2.4	57.4±5.3
3d	23.8±3.2	25.7±2.2	41.7±3.3
3e	19.0±3.0	17.8±4.1	58.3±4.2
3f	7.5±3.7	19.8±2.0	31.2±5.4
3g	47.6±4.4	3.9±1.9	78.4±5.0
3h	42.1±2.0	4.6±1.5	17.6±2.3
3i	44.8±2.9	24.3±3.5	59.7±7.2
Зј	43.0±3.4	8.0±1.2	72.9±6.0
3k	22.2±1.3	-9.9±1.8	86.9±5.7
31	31.7±1.9	7.8±1.3	51.8±1.8
3n	23.3±1.8	14.7±1.8	48.8±5.1
30	43.1±4.4	24.1±2.9	42.3±3.7
3р	30.4±3.4	44.8±2.7	45.7±4.2
3q	14.8±4.5	12.6±3.9	37.0±3.2
3r	27.6±5.6	44.4±7.9	20.4±2.1
3s	-74.1±2.1	6.4±2.8	68.1±2.0
3t	-21.3±2.1	17.5±1.1	31.1±6.6
3u	50.4±3.2	23.6±1.8	35.0±6.5
Ningnanmycin ^b	45.5±2.3	44.6±1.3	90.1±1.2

Table 3. Inhibitory effect against TMV

WII. Characterization of intermediates & products


1-(4-(1-tosyl-1*H*-indol-3-yl)phenyl)ethan-1-one (1m-3):

¹³C NMR (101 MHz, CDCl₃) δ 197.56 (s), 145.29 (s), 138.11 (s), 135.98 (s), 135.53 (s), 135.11 (s), 130.05 (s), 129.04 (s), 128.74 (s), 127.81 (s), 127.47 (s), 126.97 (s), 125.20 (s), 123.84 (d, J = 2.7 Hz), 122.71 (s), 120.29 (s), 113.94 (s), 26.64 (s), 21.61 (s).

HRMS (ESI, m/z): Mass calcd. for C₂₃H₂₀O₃NS [M+H]⁺, 390.1158; found 390.1159.

(*E*)-3-(4-(1-tosyl-1*H*-indol-3-yl)phenyl)but-2-enal (1m):

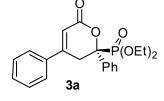
Tos

67 °C. <u>¹H NMR</u> (500 MHz, CDCl₃) δ 10.21 (d, *J* = 7.7 Hz, 1H),

Yellow solid, 500 mg, 39% yield for 3 steps, m.p. 65 -

8.06 (d, *J* = 8.0 Hz, 1H), 7.83 - 7.73 (m, 4H), 7.66 (s, 4H),

7.38 (t, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.24 (d, *J*


= 8.3 Hz, 2H), 6.46 (d, *J* = 7.6 Hz, 1H), 2.61 (s, 3H), 2.34 (s, 3H).

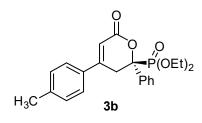
 $\frac{^{13}$ C NMR}{^{13} (126 MHz, CDCl₃) δ 191.27 (s), 156.86 (s), 145.28 (s), 139.50 (s), 135.62 (s), 135.23 (s), 130.08 (s), 129.06 (d, *J* = 20.6 Hz), 128.12 (s), 127.87 (s), 127.16 (s,), 127.02 (s), 126.96 (s), 125.19 (s), 123.81 (s), 123.53 (s), 122.96 (s), 120.39 (s), 114.01 (s), 21.67 (s), 16.36 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{25}H_{22}O_3NS[M+H]^+$, 416.1315; found 146.1314.

Diethyl (R)-(6-oxo-2,4-diphenyl-3,6-dihydro-2H-pyran-2-yl)phosphonate (3a):

Light yellow oil, 24.7 mg, yield: 63%.

 $[\alpha]_{D}^{26} = 115.7 (c \ 1.0 \ CHCl_{3}).$


¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz, 2H), 7.43 (dd, *J* = 4.8, 2.9 Hz, 2H), 7.39 - 7.33 (m, 3H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.25 (t, *J* = 3.4 Hz, 1H), 6.17 (s, 1H), 4.28 - 4.14 (m, 2H), 3.86

(ddd, *J* = 10.1, 8.3, 7.0 Hz, 1H), 3.71 - 3.59 (m, 2H), 3.55 (dd, *J* = 17.8, 7.0 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.14 (d, J = 9.2 Hz), 152.72 (d, J = 13.1 Hz), 136.61 (s), 136.06 (s), 130.91 (s), 129.09 (s), 128.59-128.57 (m), 126.27 (d, J = 3.8 Hz), 126.14 (s), 115.07 (s), 82.22 (d, J = 170.1 Hz), 64.51 (d, J = 7.5 Hz), 64.37 (d, J = 7.5 Hz), 32.11 (s), 16.54 (d, J = 5.0 Hz), 16.28 (d, J = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 16.92 (s).

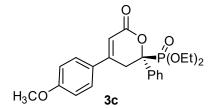
HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{24}O_5P [M+H]^+$, 387.1356; found 387.1349. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H, 25 °C, IPA / Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 15.8 min, Rt₂ (major) = 22.9 min; er = 97:3).

Diethyl (R)-(6-oxo-2-phenyl-4-(p-tolyl)-3,6-dihydro-2H-pyran-2-yl) phosphonate (3b):

 $[\alpha]_{D}^{26} = 126.4 (c \ 1.0 \ CHCl_{3}).$

Light yellow oil, 29 mg, yield: 70%.

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.58 - 7.56 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.32 - 7.28 (m, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.21 (d, *J* = 2.0 Hz, 1H), 4.31 - 4.21 (m, 2H), 3.91 - 3.88 (m, 1H), 3.72


- 3.63 (m, 2H), 3.59 (dd, *J* = 17.8, 6.6 Hz, 1H), 2.38 (s, 3H), 1.35 (t, *J* = 7.0 Hz, 3H), 1.11 (t, *J* = 7.0 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (126 \text{ MHz}, \text{ CDCl}_3) \delta 163.46 \text{ (d, } J = 9.4 \text{ Hz}), 152.63 \text{ (d, } J = 13.4 \text{ Hz}), 141.56 \text{ (s)}, 136.61 \text{ (s)}, 133.14 \text{ (s)}, 129.82 \text{ (s)}, 128.58 \text{ (s)}, 128.54 \text{ (d, } J = 2.2 \text{ Hz}), 126.31 \text{ (d, } J = 3.7 \text{ Hz}), 126.12 \text{ (s)}, 114.06 \text{ (s)}, 82.22 \text{ (d, } J = 170.1 \text{ Hz}), 64.56 \text{ (d, } J = 7.5 \text{Hz}), 64.44 \text{ (d, } J = 7.5 \text{ Hz}), 31.93 \text{ (s)}, 21.46 \text{ (s)}, 16.57 \text{ (d, } J = 5.4 \text{ Hz}), 16.31 \text{ (d, } J = 5.5 \text{ Hz}).$

³¹**P NMR** (202 MHz, CDCl₃) δ 17.00 (s).

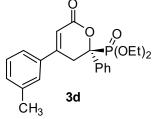
<u>**HRMS**</u> (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_5P[M+H]^+$, 401.1512; found 401.1504. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 16.2 min, Rt₂ (major) = 20.6 min; er = 97:3).

Diethyl (*R*)-(4-(4-methoxyphenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3c):

Light yellow oil, 30 mg, yield: 72%; $[\alpha]_D^{26} = 111.9 (c \ 1.0 \ CHCl_3).$ $\frac{1}{H \ NMR} (400 \ MHz, CDCl_3) \delta 7.60 - 7.54 (m, 2H), 7.48 (d, J = 8.9 \ Hz, 2H), 7.38 - 7.28 (m, 3H), 6.96 - 6.90 (m, 2H),$

6.16 (d, J = 1.8 Hz, 1H), 4.32 - 4.22 (m, 2H), 3.95 - 3.84

(m, 1H), 3.84 (s, 3H), 3.70 - 3.60 (m, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.53 (d, J = 9.4 Hz), 161.91 (s), 152.03 (d, J = 13.5 Hz), 136.57 (s), 128.51 (d, J = 3.8 Hz), 128.46 (d, J = 3.8 Hz), 128.09 (d, J = 2.1 Hz), 127.77 (s), 126.22 (d, J = 4.2 Hz), 114.43 (s), 112.67 (s), 82.04 (d, J = 211.6 Hz), 64.50 (d, J = 7.6Hz), 64.39 (d, J = 7.6 Hz), 55.46 (s), 31.70 (s), 16.49 (d, J = 5.6 Hz), 16.22 (d, J = 5.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.38 (s).


HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_6P[M+H]^+$, 417.1461; found 417.1451.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 21.4 min, Rt_2 (major) = 25.3 min; er = 97:3).

Diethyl (R)-(6-oxo-2-phenyl-4-(m-tolyl)-3,6-dihydro-2H-pyran-2-yl)phosphonate (3d):

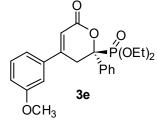
Light yellow oil, 33 mg, yield: 82%.

 $[\alpha]_{D}^{26} = 113.0 (c \ 1.0 \ CHCl_{3}).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.62 - 7.52 (m, 2H), 7.39 - 7.28 (m, 6H), 7.25 (ddd, *J* = 6.0, 4.2, 2.9 Hz, 1H), 6.22 (d, *J* = 2.1 Hz, 1H), 4.34 - 4.21 (m, 2H), 3.90 (dt, *J* = 10.1, 7.1 Hz, 1H), 3.75 - 3.64 (m, 2H), 3.58 (dd, *J* = 17.8, 6.9 Hz, 1H), 2.38 (s, 3H), 1.36

(td, *J* = 7.1, 0.6 Hz, 3H), 1.11 (td, *J* = 7.1, 0.6 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 163.22 (d, J = 9.2 \text{ Hz}), 152.80 (d, J = 13.2 \text{ Hz}), 138.80 (s), 136.55 (s), 135.99 (d, J = 2.0 \text{ Hz}), 131.66 (s), 128.90 (s), 128.52 (d, J = 2.6 \text{ Hz}), 128.47 (d, J = 3.0 \text{ Hz}), 126.73 (s), 126.25 (d, J = 4.1 \text{ Hz}), 123.23 (s), 114.79 (s), 82.16 (d, J = 211.6 \text{ Hz}), 64.49 (d, J = 7.6 \text{ Hz}), 64.36 (d, J = 7.6 \text{ Hz}), 32.07 (s), 21.42 (s), 16.48 (d, J = 5.6 \text{ Hz}), 16.21 (d, J = 5.6 \text{ Hz}).$


³¹P NMR (162 MHz, CDCl₃) δ 16.36 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_5P [M+H]^+$,401.1512; found 401.1504.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 8.2 min, Rt_2 (major) = 12.6 min; er = 96:4).

Light yellow oil, 35 mg, yield: 84%.

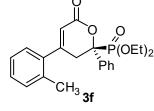
Diethyl (*R*)-(4-(3-methoxyphenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3e):

[α]_D²⁶ = 107.3 (*c* 1.0 CHCl₃). ¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.61 - 7.53 (m, 2H), 7.41 - 7.28 (m, 4H), 7.11 - 7.06 (m, 1H), 7.01 - 6.94 (m, 2H), 6.22 (d, J = 2.1 Hz, 1H), 4.33 - 4.19 (m, 2H), 3.96 - 3.86 (m, 1H), 3.82 (s, 3H), 3.75 - 3.64 (m, 2H), 3.62 - 3.53 (m, 1H), 1.36 (td, J = 7.0,

0.5 Hz, 3H), 1.12 (td, *J* = 7.0, 0.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.14 (d, J = 9.3 Hz), 159.97 (s), 152.61 (d, J = 13.2 Hz), 137.49 (d, J = 2.1 Hz), 136.48 (s), 130.06 (s), 128.54 (d, J = 2.7 Hz), 128.51 (d, J = 3.2Hz), 126.25 (d, J = 4.1 Hz), 118.51 (s), 116.27 (s), 115.26 (s), 111.71 (s), 82.21 (d, J = 211.6 Hz), 64.48 (d, J = 7.6 Hz), 64.36 (d, J = 7.6 Hz), 55.42 (s), 32.14 (s), 16.48 (d, J = 5.6 Hz).

³¹P NMR (202 MHz, CDCl₃) δ 16.92 (s).


HRMS (ESI, m/z): Mass calcd. for C₂₂H₂₆O₆P [M+H]⁺, 417.1461; found 417.1454.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 11.6 min, Rt_2 (major) = 16.0 min; er = 97.5:2.5).

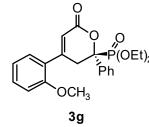
Diethyl (R)-(6-oxo-2-phenyl-4-(o-tolyl)-3,6-dihydro-2H-pyran-2-yl)phosphonate (3f):

Light yellow oil, 16 mg, yield: 40%;

 $[\alpha]_{D}^{26} = -6.3$ (c 1.0 CHCl₃).

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.59 - 7.51 (m, 2H), 7.43 - 7.30 (m, 3H), 7.24 (dd, *J* = 7.1, 1.5 Hz, 1H), 7.22 - 7.16 (m, 2H), 7.04 - 6.94 (m, 1H), 5.87 (d, *J* = 2.1 Hz, 1H), 4.27 (dq, *J* = 14.2, 7.1 Hz, 2H), 3.94 - 3.88 (m, 1H), 3.76 - 3.66 (m, 2H),

3.28 (dd, *J* = 17.9, 7.5 Hz, 1H), 2.11 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H).


 $\frac{{}^{13}\textbf{C} \text{ NMR}}{\textbf{MR}} (101 \text{ MHz, CDCI}_3) \delta 162.59 (d, J = 8.8 \text{ Hz}), 155.26 (d, J = 12.7 \text{ Hz}), 137.83 (d, J = 1.8 \text{ Hz}), 136.67 (s), 134.59 (s), 131.00 (s), 129.08 (s), 128.52 (d, J = 1.9 \text{ Hz}), 128.50 (d, J = 2.4 \text{ Hz}), 126.94 (s), 126.37 (s), 126.33 (s), 119.10 (s), 82.52 (d, J = 170.1 \text{ Hz}), 64.40 (d, J = 2.1 \text{ Hz}), 64.33 (d, J = 5.6 \text{ Hz}), 35.25 (s), 19.94 (s), 16.48 (d, J = 5.6 \text{ Hz}), 16.22 (d, J = 5.6 \text{ Hz}).$

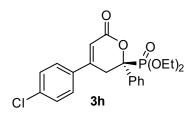
³¹P NMR (162 MHz, CDCl₃) δ 16.28 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_5P [M+H]^+$, 401.1512; found 401.1507. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 10.6 min, Rt₂ (major) = 14.1 min; er = 99:1).

Light yellow oil, 17 mg, yield: 41%.

Diethyl (*R*)-(4-(2-methoxyphenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3g):

[α]_D²⁶ = 58.4 (*c* 1.0 CHCl₃). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.5 Hz, 2H), 7.36 -7.26 (m, 4H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.93 - 6.84 (m, 2H), 6.05 (d, *J* = 1.9 Hz, 1H), 4.23 (p, *J* = 7.1 Hz, 2H), 3.91-3.85 (m, 1H), 3.79 (s, 3H), 3.74 - 3.63 (m, 2H), 3.58 (dd, *J* = 17.9, 6.5


Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H).

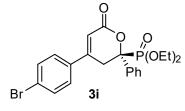
¹³C NMR (101 MHz, CDCl₃) δ 163.18 (d, J = 9.3 Hz), 157.15 (s), 153.92 (d, J = 14.0 Hz), 136.53 (s), 131.38 (s), 128.94 (s), 128.33 (d, J = 3.0 Hz), 128.23 (d, J = 2.6 Hz), 126.61 (s), 126.57 (s), 120.89 (s), 117.77 (s), 111.23 (s), 82.59 (d, J = 170.1 Hz), 64.35 (d, J = 7.6 Hz), 64.16 (d, J = 7.6 Hz), 55.36 (s), 33.43 (s), 16.47 (d, J = 5.6 Hz), 16.21 (d, J = 5.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.45 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_6P[M+H]^+$, 417.1461; found 417.1451.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 12.1 min, Rt_2 (major) = 14.6 min; er = 98:2).

Diethyl (*R*)-(4-(4-chlorophenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3h):

Light yellow oil, 32 mg, yield: 76%. $[\alpha]_{D}^{26} = 111.2 (c \ 1.0 \ CHCl_{3}).$


¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.7, 1.4 Hz, 2H), 7.47 (dt, *J* = 8.9, 4.0 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.31 -7.26 (m, 1H), 7.07 (t, *J* = 8.6 Hz, 2H), 6.15 (d, *J* = 1.8 Hz,

1H), 4.23 (pd, J = 7.1, 1.2 Hz, 2H), 3.94 - 3.80 (m, 1H), 3.65 (dddd, J = 17.2, 8.5, 5.7, 1.4 Hz, 2H), 3.52 (dd, J = 17.8, 7.1 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.25 (d, J = 252.5 Hz), 163.13 - 162.84 (m), 151.45 (d, J = 13.1 Hz), 136.45 (s), 132.17 (dd, J = 3.3, 2.1 Hz), 128.57 (d, J = 2.5 Hz), 128.18 (d, J = 8.7 Hz), 126.15 (d, J = 4.1 Hz), 116.32 (s), 116.11 (s), 114.85 (s), 82.11 (d, J = 184.8 Hz), 64.53 (d, J = 7.6 Hz), 64.38 (d, J = 7.6 Hz), 32.15 (s), 16.46 (d, J = 5.6 Hz), 16.20 (d, J = 5.6 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 16.23 (s).

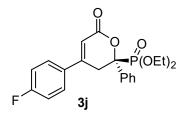
HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{23}CIO_5P [M+H]^+$, 421.0966; found 421.1088. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 16.0 min, Rt₂ (major) = 25.2 min; er = 98:2).

Diethyl (*R*)-(4-(4-bromophenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3i):

Light yellow oil, 35 mg, yield: 75%. $[\alpha]_{D}^{26} = 127.6 (c \ 1.0 \ CHCl_{3}).$

 $\frac{1 \text{H NMR}}{1 \text{ MMR}} (500 \text{ MHz}, \text{CDCI}_3) \delta 7.53 (d, J = 8.6 \text{ Hz}, 4\text{H}), 7.39 - 7.32 (m, 4\text{H}), 7.30 (dd, J = 7.2, 1.6 \text{ Hz}, 1\text{H}), 6.20 (d, J = 2.1 \text{Hz}, 1\text{H}), 4.29 - 4.19 (m, 2\text{H}), 3.88 (dt, J = 10.0, 7.0 \text{ Hz}, 1\text{H}), 3.72 - 3.59 (m, 2\text{H}), 3.51 (dd, J = 17.8, 7.1 \text{ Hz}, 1\text{H}), 1.34 (t, t)$

J = 7.1 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).


¹³C NMR (126 MHz, CDCl₃) δ 162.93 (d, J = 9.3 Hz), 151.48 (d, J = 13.1 Hz), 136.44 (s), 134.99 (s), 132.38 (s), 128.67 (d, J = 1.7 Hz), 127.64 (s), 126.25 (s), 126.22 (s), 125.48 (s), 115.51 (s), 82.22 (d, J = 170.1 Hz), 64.64 (d, J = 7.5 Hz), 64.49 (d, J = 7.5 Hz), 32.06 (s), 16.55 (d, J = 5.6 Hz), 16.28 (d, J = 5.3 Hz).

³¹P NMR (202 MHz, CDCl₃) δ 16.79 (s).

HRMS (ESI, m/z): Mass calcd. for C₂₁H₂₃BrO₅P [M+H]⁺, 465.0461; found 465.0451.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 19.1 min, Rt_2 (major) = 27.4 min; er = 96:4).

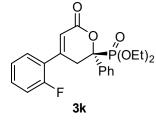
Diethyl (*R*)-(4-(4-fluorophenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3j):

Light yellow crystal, m.p. 111 - 112°C. 25.6 mg, yield: 63%. $[\alpha]_D^{26} = 97.6 \ (c \ 1.0 \ CHCl_3).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.60 - 7.55 (m, 2H), 7.53 - 7.48 (m, 2H), 7.40 - 7.29 (m, 3H), 7.15 - 7.07 (m, 2H), 6.19 (d, *J* = 2.1 Hz, 1H), 4.34 - 4.19 (m, 2H), 3.90 (dt, *J* = 10.1, 7.1 Hz,

1H), 3.76 - 3.60 (m, 2H), 3.56 (dd, *J* = 17.8, 7.0 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz}, \text{CDCI}_3) \delta 164.30 (d, J = 246.4 \text{ Hz}), 163.00 (J = 2.0 \text{ Hz}), 151.48 (d, J = 13.2 \text{ Hz}), 136.42 (s), 132.14 (d, J = 3.3 \text{ Hz}), 128.59 (d, J = 2.5 \text{ Hz}), 128.19 (d, J = 8.7 \text{ Hz}), 126.17 (d, J = 4.1 \text{ Hz}), 116.34 (s), 116.12 (s), 114.84 (s), 82.11 (d, J = 184.8 \text{ Hz}), 64.57 (d, J = 7.6 \text{ Hz}), 64.42 (d, J = 7.6 \text{ Hz}), 32.14 (s), 16.48 (d, J = 5.6 \text{ Hz}), 16.21 (d, J = 5.6 \text{ Hz}).$


³¹P NMR (162 MHz, CDCl₃) δ 16.22 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -108.89 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{23}FO_5P[M+H]^+$, 405.1261; found 405.1254.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 19.1 min, Rt_2 (major) = 31.1 min; er = 97:3).

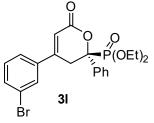
Diethyl (*R*)-(4-(2-fluorophenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3k):

Light yellow oil, 33 mg, yield: 81%.

$$\begin{split} & \left[\alpha\right]_{\text{D}}^{26} = 82.4 \text{ (c 1.0 CHCl}_3\text{)}. \\ & \frac{1}{\text{H} \text{ NMR}} (500 \text{ MHz, CDCl}_3) \delta 7.58 - 7.52 (\text{m}, 2\text{H}), 7.40 - 7.33 (\text{m}, 3\text{H}), 7.32 - 7.28 (\text{m}, 1\text{H}), 7.25 (\text{td}, J = 7.9, 1.7 \text{ Hz}, 1\text{H}), 7.18 - 7.05 (\text{m}, 2\text{H}), 6.19 (\text{d}, J = 2.2 \text{ Hz}, 1\text{H}), 4.27 - 4.20 (\text{m}, 2\text{H}), 3.94 \end{split}$$

- 3.85 (m, 1H), 3.77 - 3.64 (m, 2H), 3.55 (dd, *J* = 18.0, 7.5 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.10 (t, *J* = 7.0 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (126 \text{ MHz}, \text{CDCI}_3) \delta 162.66 (d, J = 9.0 \text{ Hz}), 160.27 (d, J = 253.3 \text{ Hz}), 149.35 (d, J = 13.4 \text{ Hz}), 136.41 (s), 132.06 (d, J = 8.7 \text{ Hz}), 128.85 (s), 128.56 (s), 126.46 (d, J = 3.8 \text{ Hz}), 124.93 (d, J = 12.2 \text{ Hz}), 124.81 (d, J = 2.6 \text{ Hz}), 119.03 (d, J = 5.2 \text{ Hz}), 116.80 (s), 116.62 (s), 82.47 (d, J = 170.1 \text{ Hz}), 64.55 (d, J = 7.5 \text{ Hz}), 64.40 (d, J = 7.5 \text{ Hz}), 33.21 (s), 16.52 (d, J = 5.6 \text{ Hz}), 16.29 (d, J = 5.6 \text{ Hz}).$


³¹**P NMR** (202 MHz, CDCl₃) δ 16.83 (s).

¹⁹F NMR (471 MHz, CDCl₃) δ -111.45 (s).

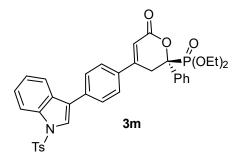
HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{23}FO_5P$ [M+H]⁺, 405.1261; found 405.1252. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁(minor) = 12.4 min, Rt₂ (major) = 17.4 min; er = 98:2).

Diethyl (*R*)-(4-(3-bromophenyl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3I):

 $[\alpha]_{D}^{26} = 99.3 (c \ 1.0 \ CHCl_{3}).$

Light yellow oil, 30 mg, yield: 64%.

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.59 (t, J = 1.7 Hz, 1H), 7.56 - 7.51 (m, 3H), 7.40 - 7.32 (m, 3H), 7.32 - 7.28 (m, 1H), 7.25 (s, 1H), 6.19 (d, J = 2.0 Hz, 1H), 4.29 - 4.16 (m, 2H), 3.94 - 3.80 (m, 1H), 3.74 - 3.58 (m, 2H), 3.49 (dd, J = 17.8, 7.2 Hz, 1H), 1.33 (t,


J = 7.1 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz, CDCI}_3) \delta 162.66 (d, J = 9.1 \text{ Hz}), 151.04 (d, J = 13.1 \text{ Hz}), 138.15 (d, J = 2.1 \text{ Hz}), 136.34 (s), 133.66 (s), 130.54 (s), 129.09 (s), 128.63 (s), 128.60 (s), 126.17 (d, J = 4.1 \text{ Hz}), 124.64 (s), 123.27 (s), 116.16 (s), 82.20 (d, J = 184.8 \text{ Hz}) (s), 64.55 (d, J = 7.6 \text{ Hz}), 64.38 (d, J = 7.6 \text{ Hz}), 32.11 (s). 16.48 (d, J = 5.6 \text{ Hz}), 16.21 (d, J = 5.6 \text{ Hz}).$

³¹P NMR (202 MHz, CDCl₃) δ 16.77 (s).

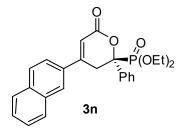
HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{23}BrO_5P [M+H]^+$, 465.0461; found 465.0455. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 10.3 min, Rt₂ (major) = 18.4 min; er = 96:4).

Diethyl (*R*)-(6-oxo-2-phenyl-4-(4-(1-tosyl-1H-indol-3-yl)phenyl)-3,6-dihydro-2*H*-pyran -2-yl)phosphonate (3m):

Light yellow solid, m.p. 105 - 106 °C. 37 mg, yield: 57%.

 $[\alpha]_{D}^{21}$ = 108.4 (*c* 1.0 CHCl₃).

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.76 - 7.74 (m, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.60 - 7.58 (m, 4H), 7.39 -7.35 (m, 3H), 7.33 - 7.29(m, 2H), 7.24 (d, J = 8.3 Hz,


2H), 6.29 (d, *J* = 1.9 Hz, 1H), 4.32 - 4.24 (m, 2H), 3.91 - 3.89 (m, 1H), 3.73 - 3.63 (m, 3H), 2.34 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.0 Hz, 3H).

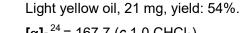
 $\frac{^{13}C \text{ NMR}}{^{13}C (126 \text{ MHz}, \text{ CDCI}_3) \delta 163.32 (d, J = 9.3 \text{ Hz}), 152.07 (d, J = 13.3 \text{ Hz}), 145.38 (s), 136.50 (s), 136.04 (s), 135.54 (s), 135.06 (s), 134.86 (s), 130.13 (s), 128.80 (s), 128.68(s), 128.68(s), 136.50 (s), 136.$

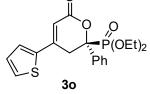
128.33 (s), 127.04(s), 126.80 (s), 126.34 (s), 126.31 (s), 125.27 (s), 123.89 (s), 123.67 (s), 122.67 (s), 120.34 (s), 114.84 (s), 114.01 (s), 82.27(d, J = 170.1 Hz), 64.66 (d, J = 7.4 Hz), 64.54(d, J = 7.4 Hz), 31.92 (s), 21.72 (s), 16.62 (d, J = 5.6 Hz), 16.35 (d, J = 5.4 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ 16.91 (s).

HRMS (ESI, m/z): Mass calcd. for C₃₆H₃₅O₇NPS [M+H]⁺, 656.1866; found 656.1869. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 46.8 min, Rt₂ (major) = 60.8 min; er = 96:4).

Diethyl (R)-(4-(naphthalen-2-yl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyran-2-yl) phosphonate (3n):

Light yellow oil, 30 mg, yield: 69%. $[\alpha]_{D}^{26} = 196.9 (c \ 1.0 \ CHCl_{3}).$ ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.89 (dd, *J* = 8.1, 4.7 Hz, 1H), 7.83 (dd, J = 9.0, 3.3 Hz, 2H), 7.63 - 7.58 (m, 2H), 7.57 - 7.51 (m, 3H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 (dd, J = 7.8, 6.2 Hz, 1H), 6.38 (d, J = 1.9 Hz, 1H), 4.35 - 4.21 (m,


2H), 3.91 (dt, J = 10.1, 7.1 Hz, 1H), 3.86 - 3.72 (m, 2H), 3.71 - 3.61 (m, 1H), 1.37 (t, J = 7.0 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H).


¹³C NMR (126 MHz, CDCl₃) δ 163.30 (d, J = 9.2 Hz), 152.28 (d, J = 13.3 Hz), 136.58 (s), 134.38 (s), 133.10 (d, J = 9.8 Hz), 128.95 (s), 128.94 (s), 128.64 (d, J = 1.9 Hz), 128.61 -128.56 (m), 127.84 (s), 127.79 (s), 127.12 (s), 126.67 (s), 126.37 (s), 126.34 (s), 122.74 (s), 115.20 (s), 82.28 (d, J = 170.1 Hz), 64.65 (d, J = 7.6 Hz), 64.45 (d, J = 7.6 Hz), 31.97 (s), 16.59 (d, *J* = 5.6 Hz), 16.31 (d, *J* = 5.6 Hz).

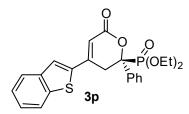
³¹**P NMR** (162 MHz, CDCl₃) δ 16.34 (s).

<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{25}H_{26}O_5P$ [M+H]⁺, 437.1510; found 437.1512. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt_1 (minor) = 16.0 min, Rt_2 (major) = 24.3 min; er = 96:4).

Diethyl (R)-(6-oxo-2-phenyl-4-(thiophen-2-yl)-3,6-dihydro-2H-pyran-2-yl) phosphonate (3o):

 $[\alpha]_{D}^{24} = 167.7 (c \ 1.0 \ CHCl_{3}).$

¹H NMR (500 MHz, CDCl₃) δ 7.57 - 7.53 (m, 2H), 7.45 - 7.39 (m, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.30 - 7.27 (m, 1H), 7.08 (dd, J = 4.9, 3.8 Hz, 1H), 6.13 (d, J = 2.0 Hz, 1H), 4.26 - 4.22 (m,


2H), 3.89 - 3.86 (m, 1H), 3.68 - 3.63 (m, 2H), 3.61 - 3.56 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

 $\frac{1^{3}C \text{ NMR}}{13} (101 \text{ MHz}, \text{CDCI}_{3}) \delta 163.14 (d, J = 9.5 \text{ Hz}), 145.76 (d, J = 14.1 \text{ Hz}), 140.15 (d, J = 2.8 \text{ Hz}), 136.29 (d, J = 0.7 \text{ Hz}), 129.87 (s), 128.57 (d, J = 2.6 \text{ Hz}), 128.54 (d, J = 2.4 \text{ Hz}), 128.26 (s), 126.21 (s), 126.17 (s), 111.99 (s), 81.97 (d, J = 170.6 \text{ Hz}), 64.58 (d, J = 7.6 \text{ Hz}), 64.44 (d, J = 7.6 \text{ Hz}), 32.14 (s), 16.46 (d, J = 5.7 \text{ Hz}), 16.21 (d, J = 5.6 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 15.98 (s).

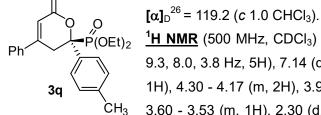
HRMS (ESI, m/z): Mass calcd. for $C_{19}H_{22}O_5PS [M+H]^+$, 393.0920; found 393.0910. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 14.8 min, Rt₂ (major) = 21.1 min; er = 95:5).

Diethyl (*R*)-(4-(benzo[b]thiophen-2-yl)-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3p):

Light yellow solid, m.p. 136 - 138 °C, 30 mg, yield: 68%. $[\alpha]_{D}^{22} = 179.1 (c \ 1.0 \ CHCl_{3}).$

¹H NMR (500 MHz, CDCl₃) δ 7.82 - 7.76 (m, 2H), 7.68 (s, 1H), 7.59 (dd, *J* = 7.6, 1.9 Hz, 2H), 7.40 - 7.33 (m, 4H), 7.32
- 7.28 (m, 1H), 6.22 (d, *J* = 1.9 Hz, 1H), 4.31 - 4.18 (m, 2H),

3.96 - 3.85 (m, 1H), 3.80 - 3.61 (m, 3H), 1.36 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.85 (d, J = 9.3 Hz), 145.93 (d, J = 13.8 Hz), 140.40 (s), 139.78 (d, J = 2.9 Hz), 139.41 (s), 136.25 (s), 128.62 (d, J = 2.4 Hz), 126.81 (s), 126.22 (s), 126.18 (s), 125.79 (s), 125.16 (s), 124.86 (s), 122.43 (s), 114.42 (s), 82.13 (d, J = 169.6Hz), 64.61 (d, J = 7.4 Hz), 64.44 (d, J = 7.8 Hz), 31.75 (s), 16.49 (d, J = 5.6 Hz), 16.23 (d, J = 5.6 Hz).


³¹**P NMR** (162 MHz, CDCl₃) δ 15.99 (s).

<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{23}H_{24}O_5PS[M+H]^+$, 443.1076; found 443.1070.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 $^{\circ}$ C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 12.7 min, Rt₂ (major) = 17.7 min; er = 95:5).

Diethyl (R)-(6-oxo-4-phenyl-2-(p-tolyl)-3,6-dihydro-2H-pyran-2-yl)phosphonate (3q):

Light yellow oil, 34 mg, yield: 84%;

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.50 - 7.46 (m, 2H), 7.42 (ddd, *J* = 9.3, 8.0, 3.8 Hz, 5H), 7.14 (d, *J* = 8.2 Hz, 2H), 6.21 (d, *J* = 2.2 Hz, 1H), 4.30 - 4.17 (m, 2H), 3.97 - 3.84 (m, 1H), 3.73 - 3.63 (m, 2H), 3.60 - 3.53 (m, 1H), 2.30 (d, *J* = 1.2 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3.60 - 3.53 (m, 2H), 3.50 - 3.

3H), 1.13 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.32 (d, J = 9.5 Hz), 152.78 (d, J = 13.3 Hz), 138.44 (s), 136.16 (s), 133.42 (s), 130.89 (s), 129.32 (s), 129.09 (s), 126.22 (d, J = 4.6 Hz), 126.19 (s),

115.12 (s), 82.93 (s), 81.57 (s), 64.45 (dd, *J* = 21.5, 7.4 Hz), 32.04 (s), 21.12 (s), 16.46 (dd, *J* = 27.5, 5.3 Hz), 16.31 - 16.20 (m).

³¹**P NMR** (202 MHz, CDCl₃) δ 17.05 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{26}O_5P[M+H]^+$, 401.1512; found 401.1502. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 13.9 min, Rt₂ (major) = 23.9 min; er = 96:4).

Diethyl (*R*)-(4-(4-fluorophenyl)-6-oxo-2-(p-tolyl)-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3r):

Light yellow oil, 29 mg, yield: 69%.

 $\frac{{}^{1}\text{H NMR}}{(500 \text{ MHz, CDCI}_3)} \delta 7.50 - 7.43 \text{ (m, 2H), 7.41 (d, J)} = 8.3 \text{ Hz, 2H}, 7.13 (d, J = 7.2 \text{ Hz, 2H}), 7.07 (td, J = 8.7, 2.1 \text{ Hz, 2H}), 6.14 (s, 1H), 4.22 (dd, J = 14.2, 7.1 \text{ Hz, 2H}), 3.93 - 3.84 (m, 1H), 3.71 - 3.58 (m, 2H), 3.53 - 3.48 (m, 1H), 2.28 (s, 3H), 1.32 (t, J = 7.0 \text{ Hz, 3H}), 1.11 (t, J = 7.0 \text{ Hz, 3H}).$

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz}, \text{CDCI}_3) \delta 164.28 \text{ (d, } J = 239.6 \text{ Hz}), 162.98 \text{ (d, } J = 3.3 \text{ Hz}), 151.46 \text{ (d, } J = 13.4 \text{ Hz}), 138.42 \text{ (d, } J = 3.1 \text{ Hz}), 133.30 \text{ (d, } J = 0.9 \text{ Hz}), 132.22 \text{ (dd, } J = 3.2, 2.3 \text{ Hz}), 129.27 \text{ (d, } J = 2.6 \text{ Hz}), 128.17 \text{ (d, } J = 8.6 \text{ Hz}), 126.08 \text{ (d, } J = 4.1 \text{ Hz}), 116.18 \text{ (d, } J = 21.9 \text{ Hz}), 114.86 \text{ (s)}, 82.94 \text{ (s)}, 81.24 \text{ (s)}, 64.39 \text{ (dd, } J = 18.6, 7.5 \text{ Hz}), 32.04 \text{ (s)}, 21.01 \text{ (s)}, 16.35 \text{ (dd, } J = 22.5, 5.6 \text{ Hz}).$

³¹P NMR (162 MHz, CDCl₃) δ 16.34 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -108.89 (s).

<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{22}H_{25}FO_5P[M+H]^+$, 419.1418; found 419.1408.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 $^{\circ}$ C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 19.1 min, Rt₂ (major) = 38.3 min; er = 96:4).

Diethyl (*R*)-(2-(4-fluorophenyl)-4-(naphthalen-2-yl)-6-oxo-3,6-dihydro-2*H*-pyran-2-yl) phosphonate (3s):

Light yellow oil, 40 mg, yield: 88%.

3s F

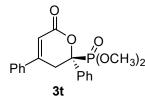
 $[\alpha]_{D}^{26} = 214.2 (c 1.0 \text{ CHCl}_{3}).$

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 8.02 (d, J = 1.5 Hz, 1H), 7.94 -7.88 (m, 1H), 7.85 - 7.82 (m, 2H), 7.59 - 7.51 (m, 3H), 7.48 (dd, J = 8.4, 2.2 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.36 (dd, J = 12.1, 1.5 Hz, 1H), 4.35 - 4.22 (m, 2H), 3.97 - 3.91(m, 1H), 3.80 - 3.68 (m, 3H), 2.30 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H), 1.15

(t, J = 7.1 Hz, 3H).

 $\frac{^{13}\mathbf{C} \text{ NMR}}{^{13}\mathbf{C} \text{ NMR}} (101 \text{ MHz, CDCl}_3) \delta 163.02 (d, J = 9.0 \text{ Hz}), 162.79 (d, J = 248.5 \text{ Hz}), 152.24 (d, J = 13.7 \text{ Hz}), 138.42 (d, J = 3.1 \text{ Hz}), 134.29 (s), 133.14 (dd, J = 17.7, 15.5 \text{ Hz}), 129.29 (d, J = 2.6 \text{ Hz}), 128.86 (s), 127.73 (d, J = 2.6 \text{ Hz}), 127.03 (s), 126.59 (s), 126.21 (d, J = 4.1 \text{ Hz}), 122.70 (s), 115.14 (s), 82.19 (d, J = 170.6 \text{ Hz}), 64.56 (d, J = 7.6 \text{ Hz}), 64.47 (d, J = 7.6 \text{ Hz}), 31.78 (s), 21.04 (s), 16.62 (d, J = 5.6 \text{ Hz}), 16.29 (d, J = 5.6 \text{ Hz}).$

³¹P NMR (202 MHz, CDCl₃) δ 17.09 (s).


<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{26}H_{28}O_5P[M+H]^+$, 451.1669; found 451.1658.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 $^{\circ}$ C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 16.1 min, Rt₂ (major) = 22.3 min; er = 96:4).

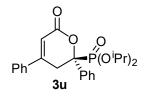
Dimethyl (*R*)-(6-oxo-2,4-diphenyl-3,6-dihydro-2*H*-pyran-2-yl)phosphonate (3t):

 $[\alpha]_{D}^{26} = 114.1 (c \ 1.0 \ CHCl_{3}).$

Light yellow oil, 18 mg, yield: 50%.

 $\frac{{}^{1}\text{H NMR}}{(\text{OCH}_{3})_{2}} (500 \text{ MHz}, \text{CDCI}_{3}) \delta 7.57 (\text{dd}, J = 7.6, 1.8 \text{ Hz}, 2\text{H}), 7.50 - 7.45 (\text{m}, 2\text{H}), 7.43 - 7.33 (\text{m}, 5\text{H}), 7.33 - 7.28 (\text{m}, 1\text{H}), 6.22 (\text{d}, J = 2.1 \text{ Hz}, 1\text{H}), 3.88 (\text{d}, J = 10.4 \text{ Hz}, 3\text{H}), 3.73 - 3.66 (\text{m}, 1\text{H}), 3.62 - 3.55 (\text{m}, 1\text{H}), 3.46 (\text{d}, J = 10.4 \text{ Hz}, 3\text{H}).$

¹³C NMR (101 MHz, CDCl₃) δ 162.92 (d, J = 9.3 Hz), 152.64 (d, J = 13.3 Hz), 136.24 (s), 135.93 (d, J = 2.1 Hz), 130.93 (s), 129.07 (s), 128.70 (d, J = 2.7 Hz), 128.67 (d, J = 3.4Hz), 126.17 (d, J = 4.2 Hz), 126.10 (s), 114.96 (s), 82.29 (d, J = 170.0 Hz), 54.95 (d, J = 7.3 Hz), 54.76 (d, J = 7.7 Hz), 31.98 (s).


³¹P NMR (162 MHz, CDCl₃) δ 18.52 (s).

<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{19}H_{20}O_5P[M+H]^+$, 359.1043; found 359.1037.

Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 $^{\circ}$ C, IPA/Hexane = 20/80, 0.8 mL/min, 254 nm), Rt₁ (minor) = 15.2 min, Rt₂ (major) = 23.8 min; er = 97:3).

Diisopropyl (*R*)-(6-oxo-2,4-diphenyl-3,6-dihydro-2*H*-pyran-2-yl)phosphonate (3u):

Light yellow oil, 25.2 mg, yield: 61%.

[α]_D²⁶ = 100.0 (*c* 1.0 CHCl₃).

<u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.56 (dd, J = 7.5, 2.0 Hz, 2H), 7.47 (dd, J = 7.4, 1.7 Hz, 2H), 7.43 - 7.37 (m, 3H), 7.33 (t, J = 7.6 Hz, 2H), 7.30 - 7.27 (m, 1H), 6.21 (d, J = 2.1 Hz, 1H), 4.82 (dq, J =

12.5, 6.3 Hz, 1H), 4.36 (dq, *J* = 12.5, 6.3 Hz, 1H), 3.68 (ddd, *J* = 17.8, 11.1, 2.2 Hz, 1H), 3.55 (dd, *J* = 17.8, 6.5 Hz, 1H), 1.35 (d, *J* = 6.2 Hz, 3H), 1.33 (d, *J* = 6.1 Hz, 3H), 1.22 (d, *J* = 6.1 Hz, 3H), 0.95 (d, *J* = 6.2 Hz, 3H).

 $\frac{1^{3}$ **C** NMR (126 MHz, CDCl₃) δ 163.39 (d, *J* = 9.2 Hz), 152.72 (d, *J* = 13.2 Hz), 136.90 (s), 136.26 (s), 130.81 (s), 129.07 (s), 128.42 (d, *J* = 1.6 Hz), 128.38 (d, *J* = 2.1 Hz), 126.48 (d,

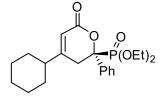
J = 4.1 Hz), 126.16 (s), 115.20 (s), 82.27 (d, J = 171.1 Hz), 73.45 (d, J = 7.5 Hz), 73.15 (d, J = 7.9 Hz), 32.41 (s), 24.32 (d, J = 2.1 Hz), 24.07 (d, J = 3.8 Hz), 23.26 (d, J = 5.9 Hz). ³¹**P NMR** (202 MHz, CDCl₃) δ 15.34 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{23}H_{28}O_5P[M+H]^+$, 415.1669; found 415.1657. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel OD-H; 25 °C, IPA/Hexane = 20/80, 0.6 mL/min, 254 nm), Rt₁ (major) = 8.0 min, Rt₂ (minor) = 9.4 min; er = 97: 3).

Diethyl (*S*)-(6-oxo-2-phenethyl-4-phenyl-3,6-dihydro-2*H*-pyran-2-yl)phosphonate (3v):

Light yellow oil, 8 mg, yield: 19%. $[\alpha]_D^{26} = 84.2 (c \ 0.5 \ CHCl_3).$

 $\frac{{}^{1}\text{H NMR}}{P(OEt)_{2}} \frac{{}^{1}\text{H NMR}}{I} (400 \text{ MHz, CDCI}_{3}) \delta 7.57 - 7.52 \text{ (m, 2H), 7.48 - 7.43 (m, 3H), 7.31 - 7.26 (m, 2H), 7.19 (dd, <math>J = 5.2, 2.4 \text{ Hz}, 3H$), 6.37 (d, J = 1.4 Hz, 1H), 4.29 - 4.16 (m, 4H), 3.46 - 3.36 (m, 1H), 3.02 (ddd, J = 20.2, 18.5, 1.6 Hz, 1H), 2.93 - 2.83 (m, 2H), 2.45 - 2.23 (m, 2H),


1.37 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H).

 $\frac{^{13}C \text{ NMR}}{^{13}C \text{ NMR}} (101 \text{ MHz}, \text{CDCI}_3) \delta 163.19 \text{ (d, } J = 4.5 \text{ Hz}), 152.43 \text{ (d, } J = 6.6 \text{ Hz}), 140.87 \text{ (s)}, 136.01 \text{ (s)}, 130.88 \text{ (s)}, 129.09 \text{ (s)}, 128.61 \text{ (s)}, 128.40 \text{ (s)}, 126.25 \text{ (s)}, 126.13 \text{ (s)}, 114.33 \text{ (s)}, 81.18 \text{ (d, } J = 168.0 \text{ Hz}), 63.85 \text{ (d, } J = 7.2 \text{ Hz}), 63.76 \text{ (d, } J = 7.6 \text{ Hz}), 38.02 \text{ (d, } J = 2.3 \text{ Hz}), 30.37 \text{ (d, } J = 3.1 \text{ Hz}), 29.81 \text{ (d, } J = 5.3 \text{ Hz}), 16.55 \text{ (s)}, 16.50 \text{ (s)}.$

³¹P NMR (202 MHz, CDCl₃) δ 21.06 (s).

HRMS (ESI, m/z): Mass calcd. for $C_{23}H_{28}O_5P [M+H]^+$, 415.1669; found 415.1656. Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C, IPA/Hexane = 20/80, 0.6 mL/min, 254 nm), Rt₁ (minor) = 19.6 min, Rt₂ (major) = 32.5 min; er = 97:3).

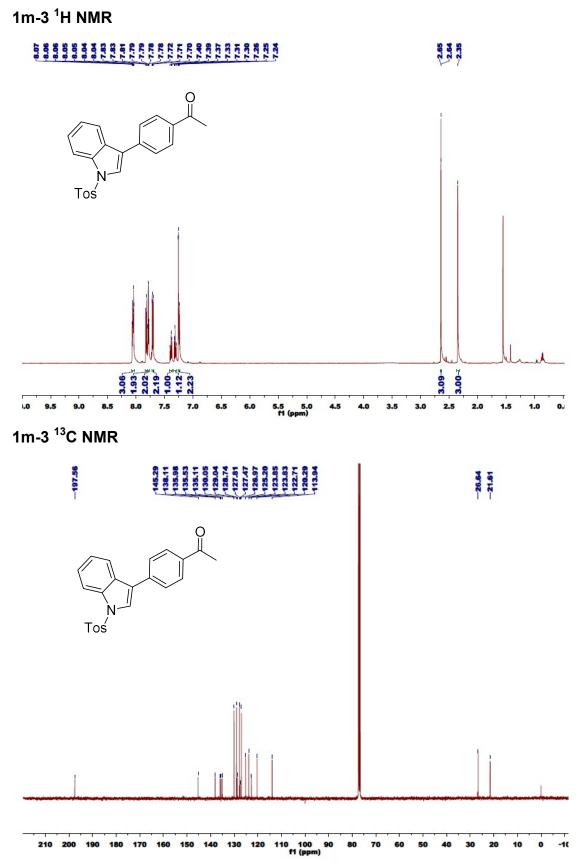
Diethyl (*R*)-(4-cyclohexyl-6-oxo-2-phenyl-3,6-dihydro-2*H*-pyran-2-yl)phosphonate (3w):

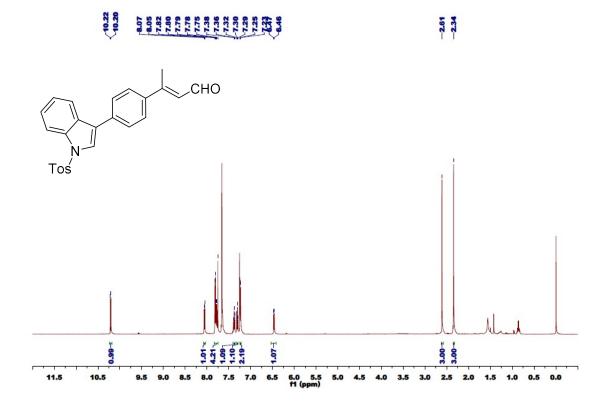
Colorless oil, 7 mg, yield: 17%. $[\alpha]_D^{26} = 294.0 (c \ 1.0 \ CHCl_3).$ ¹<u>H NMR (400 MHz, CDCl_3)</u> δ 7.56 - 7.48 (m, 2H), 7.41 - 7.30 (m, 3H), 5.68 (s, 1H), 4.29 - 4.20 (m, 2H), 4.16 (ddd, *J* = 14.2, 9.0, 7.1 Hz, 1H), 3.92 - 3.78 (m, 1H), 3.61 (ddd, *J* = 10.1, 8.1, 7.1 Hz, 1H), 3.92 - 3.78 (m, 1H), 3.61 (ddd, *J* = 10.1, 8.1, 7.1 Hz, 1Hz, 1H), 3.92 - 3.78 (m, 1H), 3.92 - 3.78 (m, 1Hz), 3.92 - 3.78 (m, 2Hz), 3.92 - 3.92 - 3.92 (m, 2Hz), 3.92

1H), 3.29 (ddd, *J* = 17.8, 11.2, 2.1 Hz, 1H), 3.06 (dd, *J* = 17.8, 6.6 Hz, 1H), 2.00 (dd, *J* = 15.7, 7.3 Hz, 1H), 1.84 - 1.73 (m, 2H), 1.73 - 1.60 (m, 3H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.29 - 1.23 (m, 2H), 1.22 - 1.15 (m, 2H), 1.08 (t, *J* = 7.1 Hz, 3H).

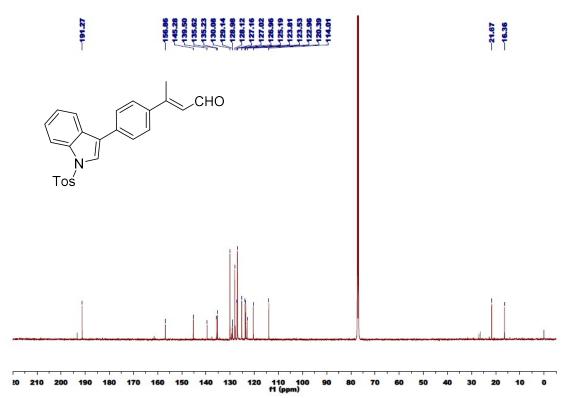
¹³C NMR (101 MHz, CDCl₃) δ 163.25 (d, J = 8.9 Hz), 162.81 (d, J = 12.4 Hz), 136.61 (s), 128.35 (s), 128.33 (s), 126.20 (d, J = 4.1 Hz), 114.11 (s), 81.99 (d, J = 168.9 Hz), 64.31 (t,

J = 7.1 Hz), 44.87 (d, J = 1.6 Hz), 32.23 (s), 30.19 (s), 29.91 (s), 26.15 - 25.50 (m), 16.46 (d, J = 5.6 Hz), 16.18 (d, J = 5.6 Hz).

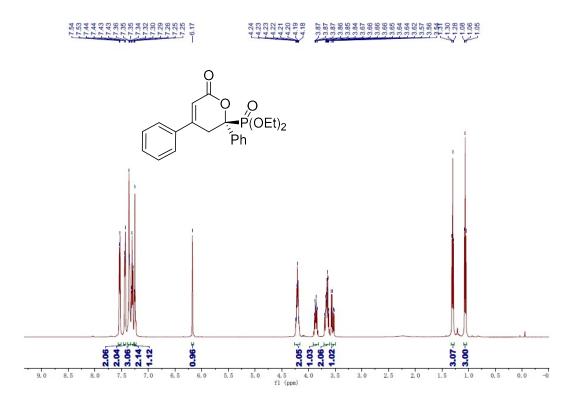

³¹**P NMR** (162 MHz, CDCl₃) δ 16.46 (s).


<u>HRMS</u> (ESI, m/z): Mass calcd. for $C_{21}H_{30}O_5P[M+H]^+$, 393.1825; found 393.1813.

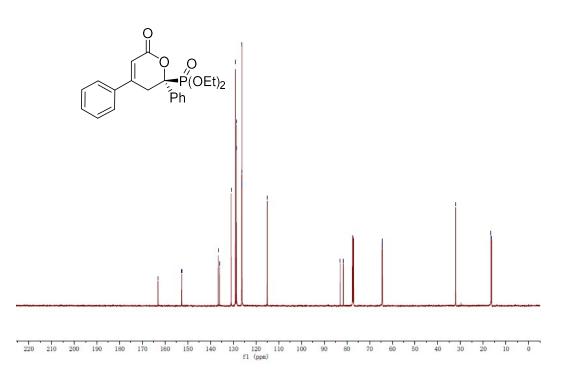
Enantiomeric ratio was measured by chiral phase HPLC (Chiralcel AD-H; 25 °C,


IPA/Hexane = 20/80, 0.6 mL/min, 254 nm), Rt_1 (minor) = 10.8 min, Rt_2 (major) = 14.0 min; er = 98:2).

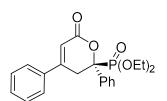
IX. NMR spectra of intermediates & products




```
1m<sup>13</sup>C NMR
```

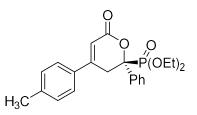


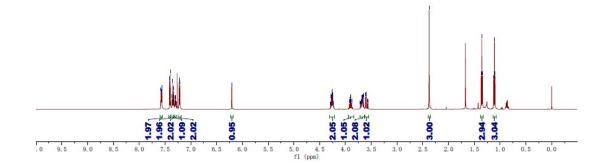
3a ¹H NMR



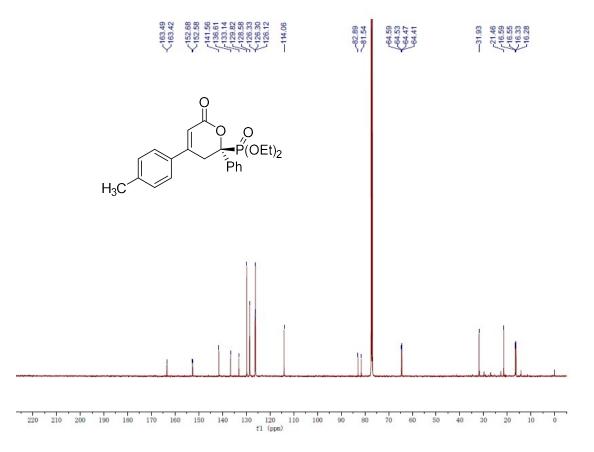
3a ¹³C NMR

3a ³¹P NMR

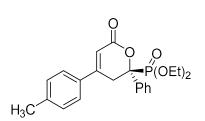


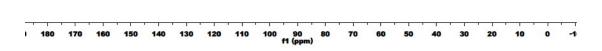

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

-16.92

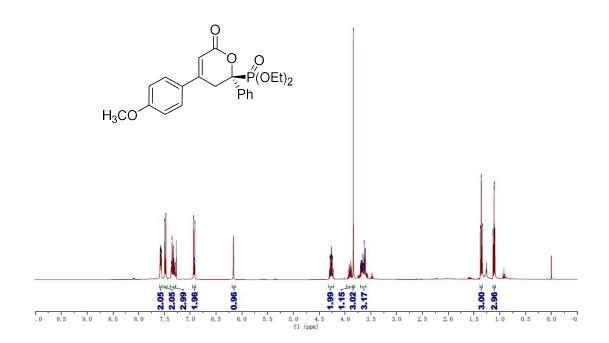

3b¹H NMR

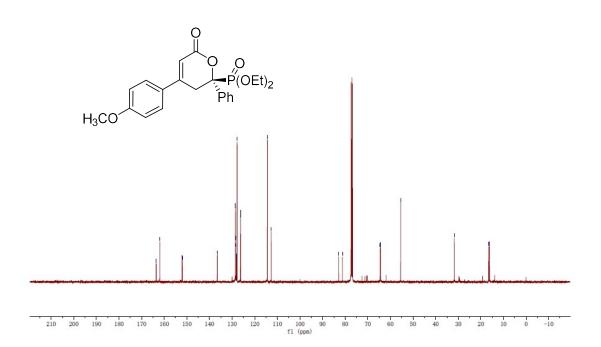
7,757 7,757 7,757 7,757 7,757 7,7557 7,7557 7,7557 7,7557 7,7557 7,7557 7,7557 7,7557 7,7557 7,7

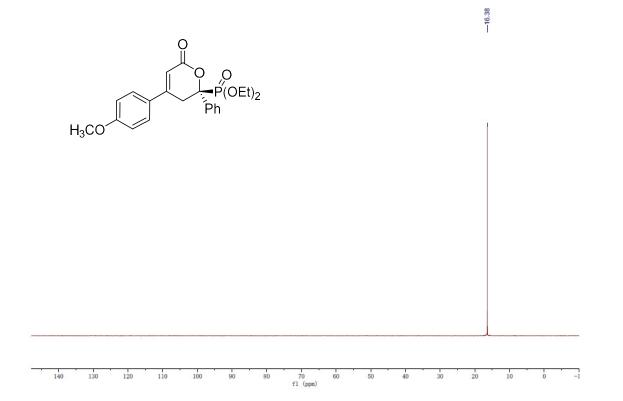


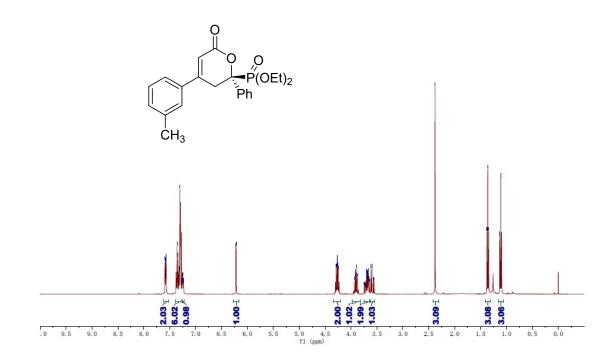


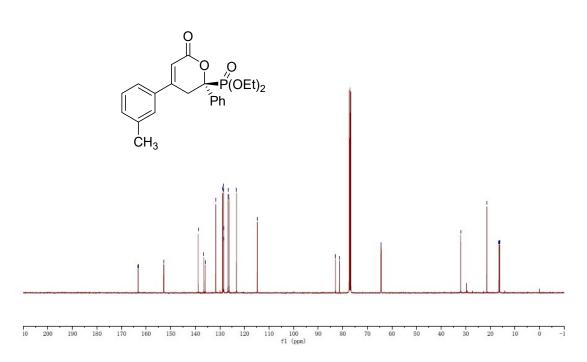
3b¹³C NMR

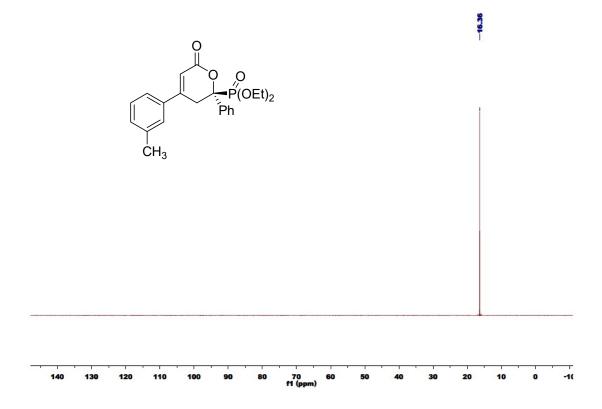

3b ³¹P NMR

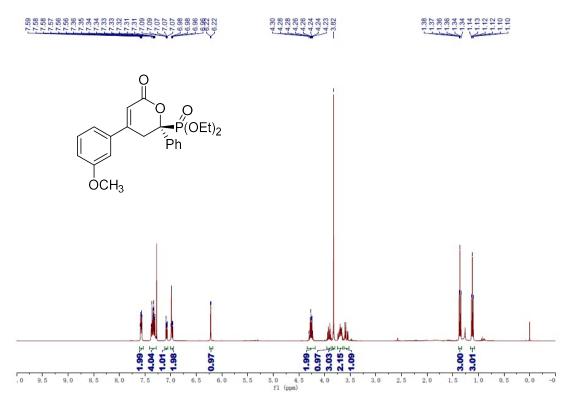

-17.00

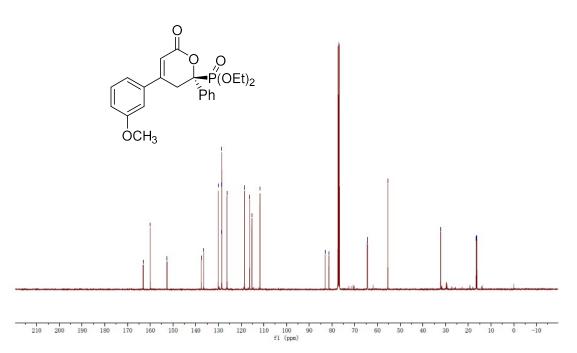

3c¹H NMR

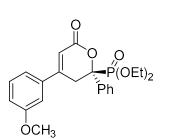

3c¹³C NMR

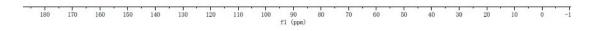



3d ¹H NMR

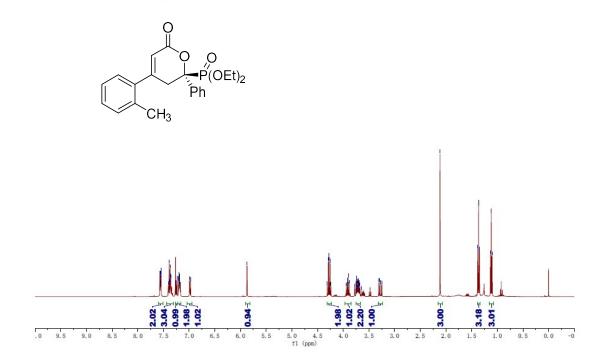


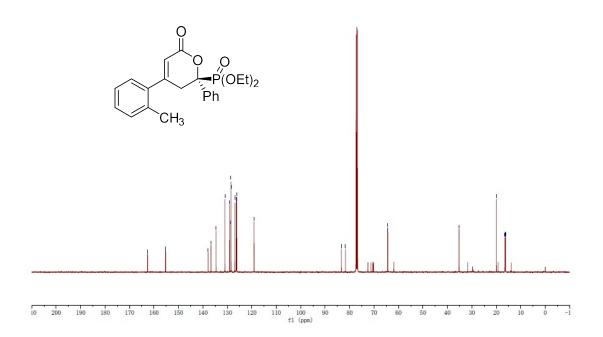


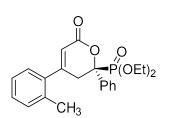

3e¹H NMR



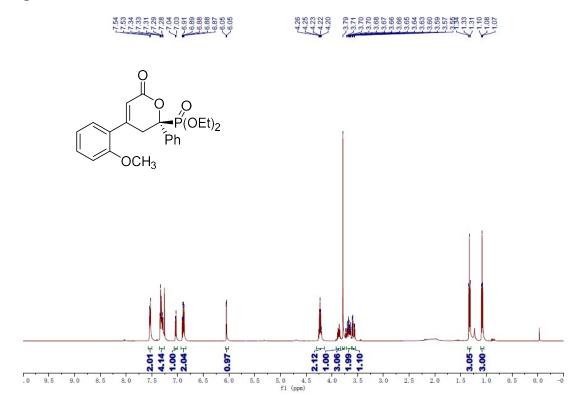
3e¹³C NMR

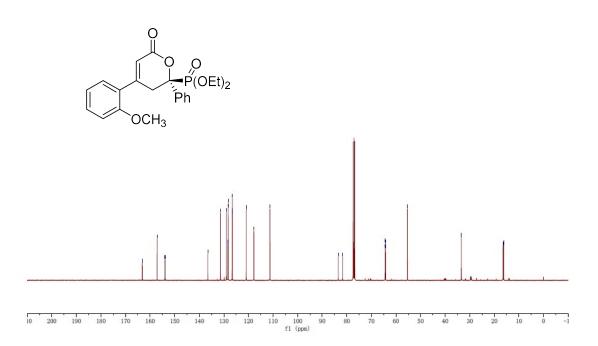



-16.92

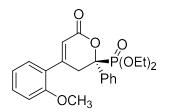

3f¹H NMR

3f¹³C NMR

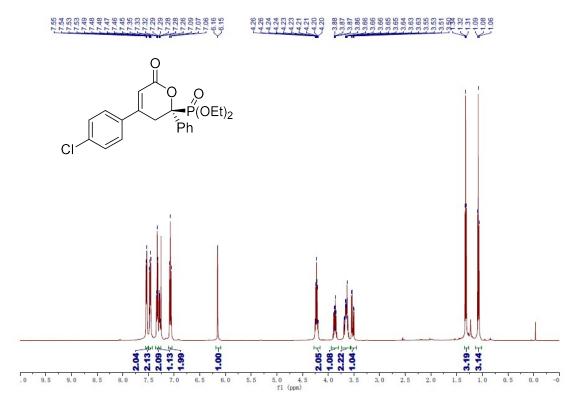



40 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -1 fl (ppm)

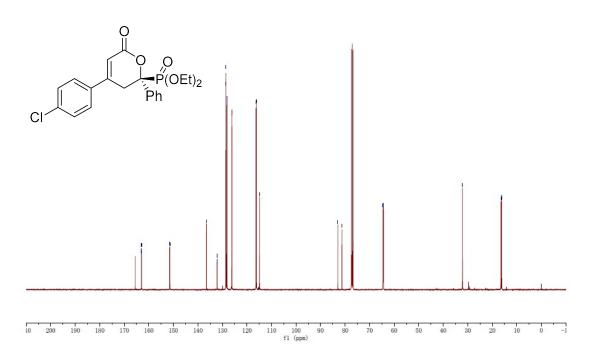
3g ¹H NMR

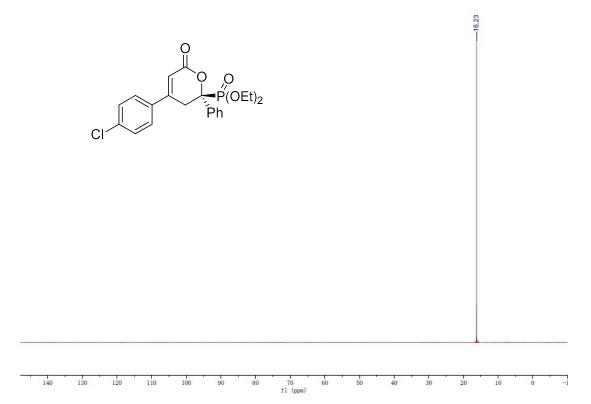


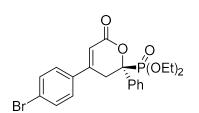
3g ¹³C NMR

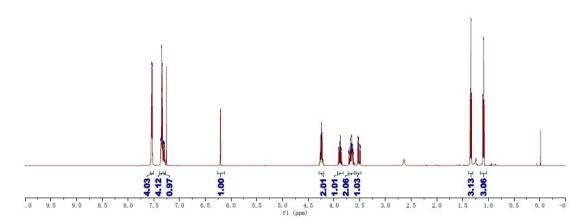


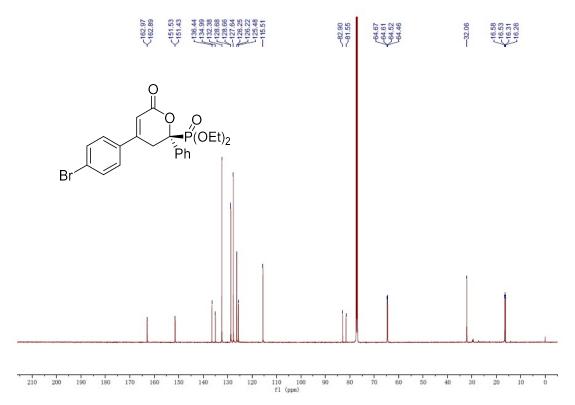
3g ³¹P NMR


140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

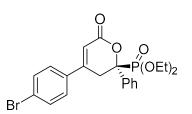

3h ¹H NMR

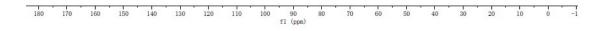

3h¹³C NMR



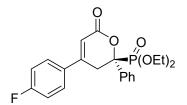


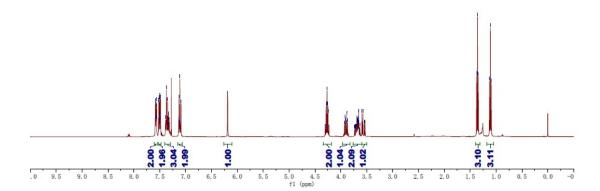
3i ¹H NMR

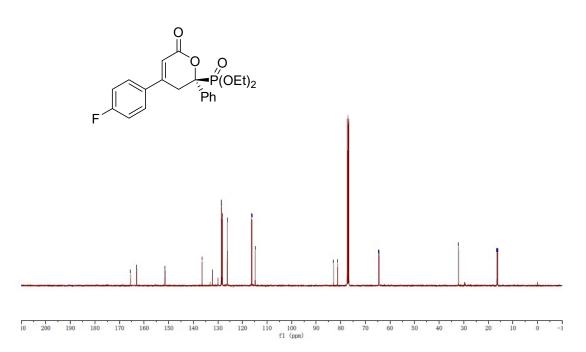


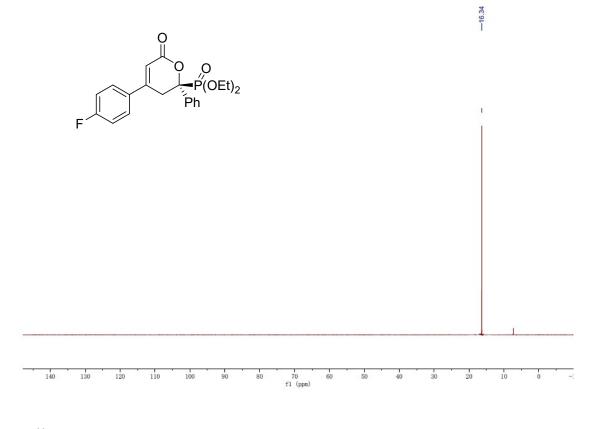


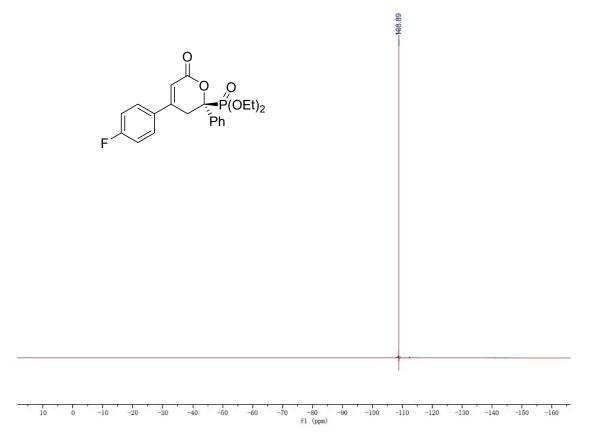
3i¹³C NMR

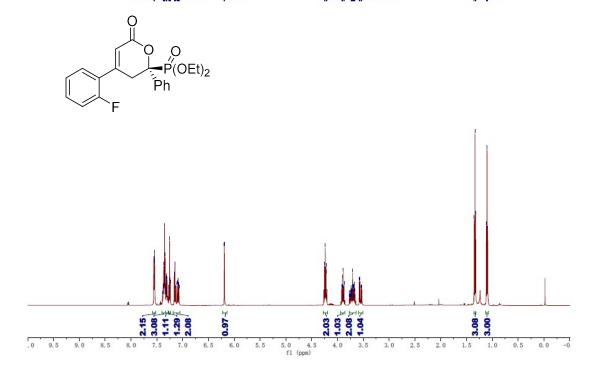



3i ³¹P NMR

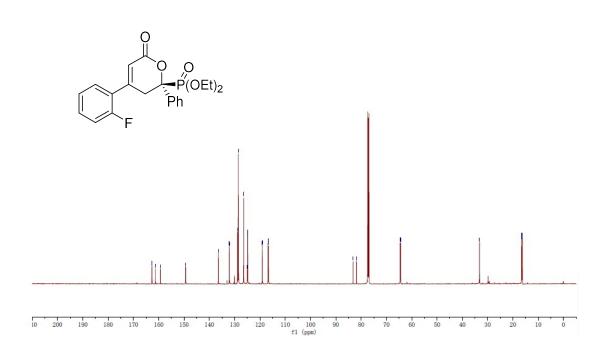

3j ¹H NMR

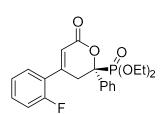


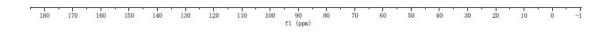

3j ¹³C NMR



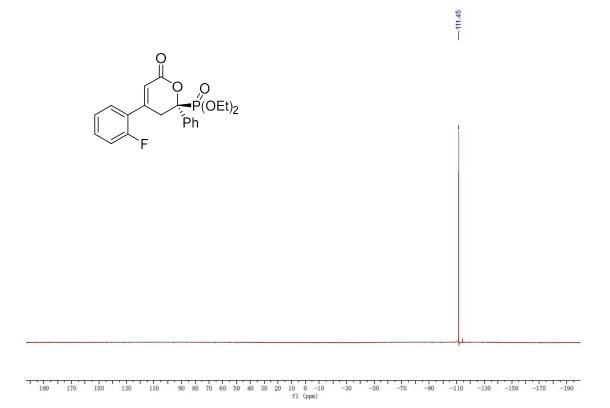
3j ¹⁹F NMR

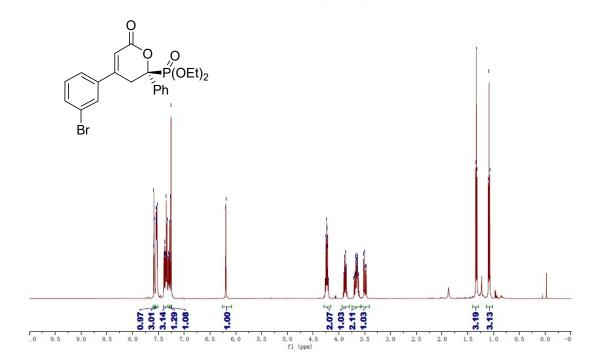



3k¹H NMR



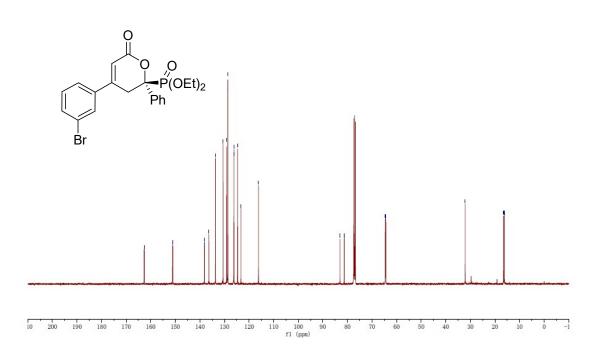
3k¹³C NMR



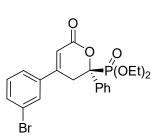


16.83

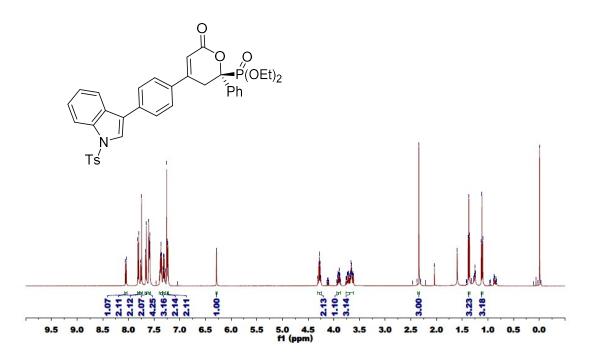
3k ¹⁹F NMR



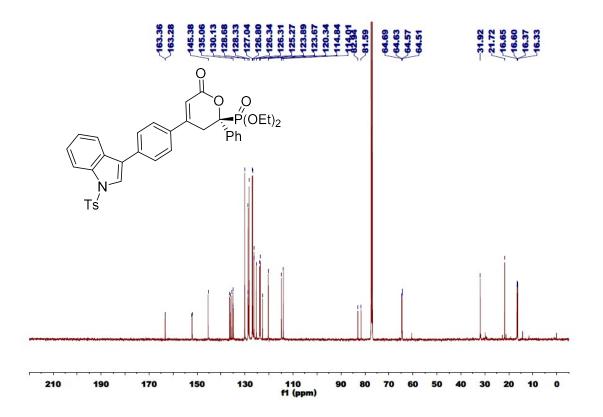
31¹H NMR

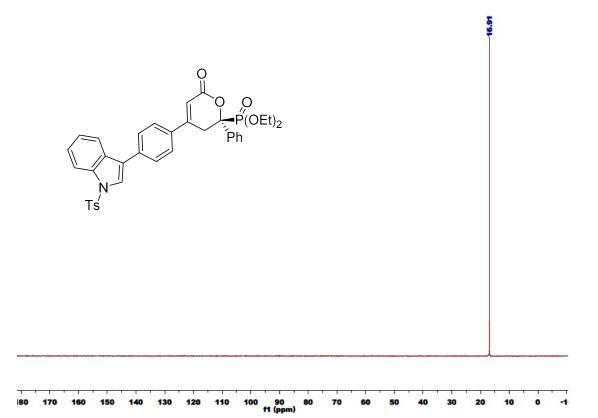


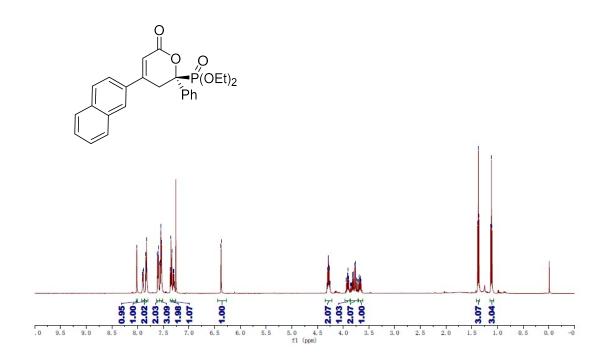
3I ¹³C NMR



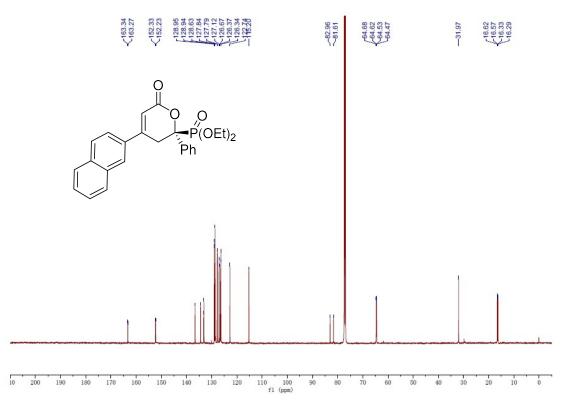
3I ³¹P NMR

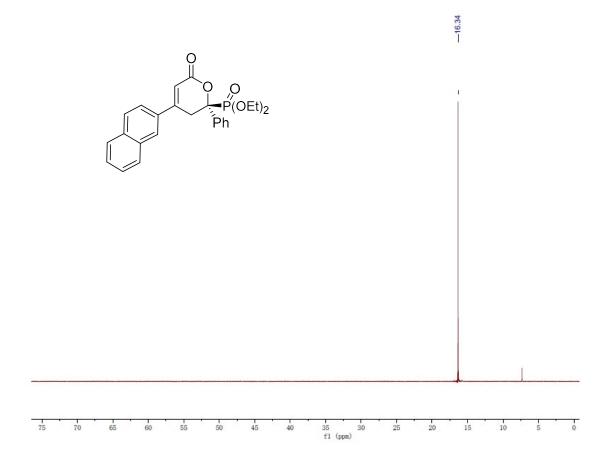



180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

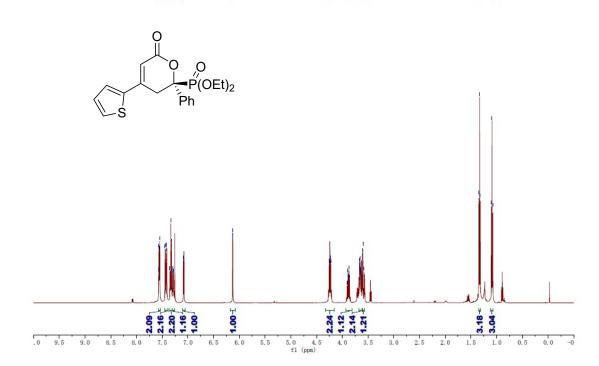


3m¹C NMR

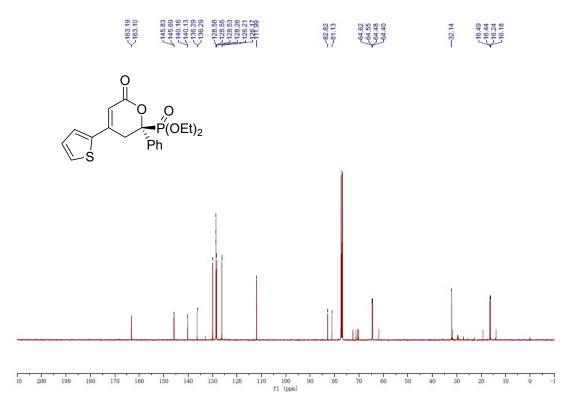


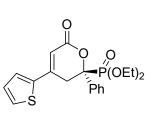


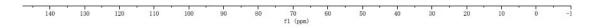
3n ¹H NMR



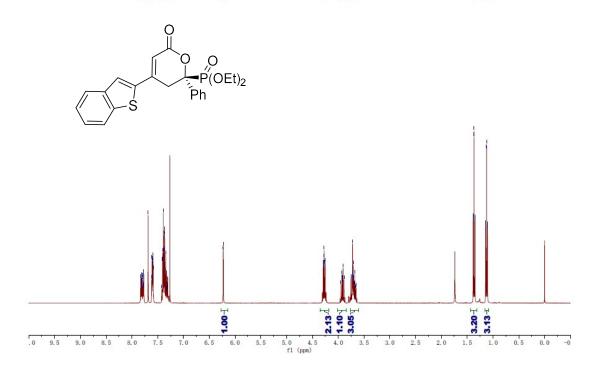
3n ¹³C NMR



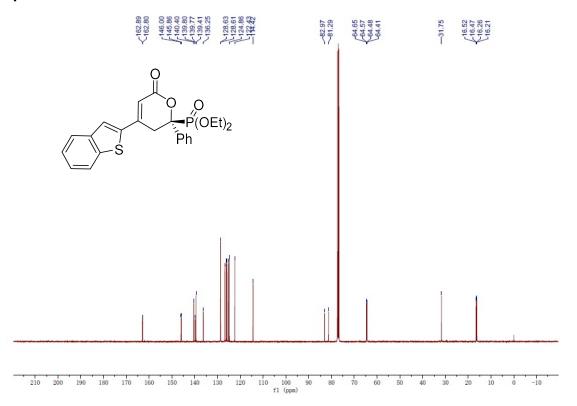


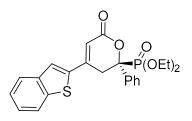

30¹H NMR

30 ¹³C NMR



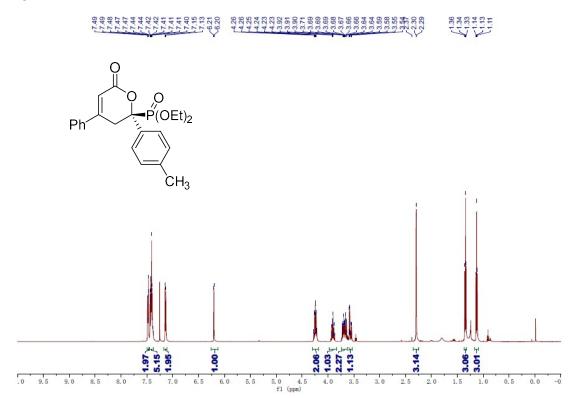
-15.98

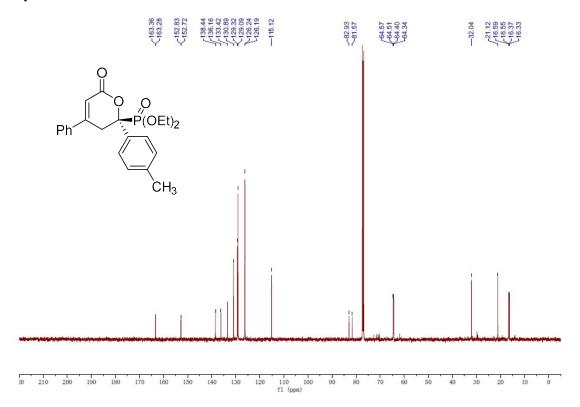

T

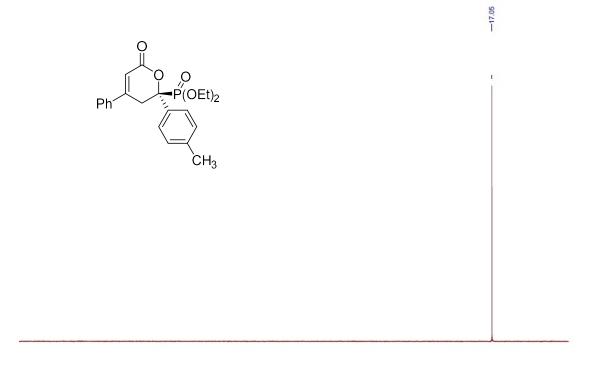

3p¹H NMR

17,173 17,173

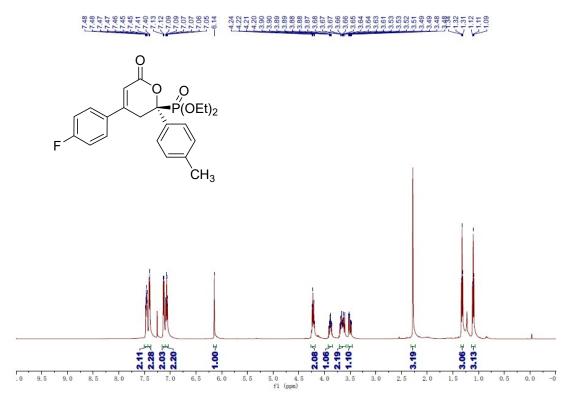
3p¹³C NMR

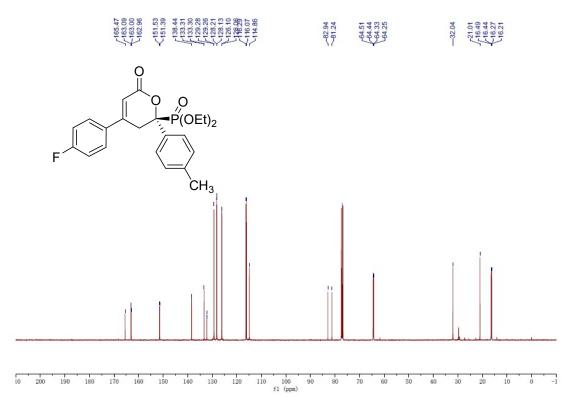



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

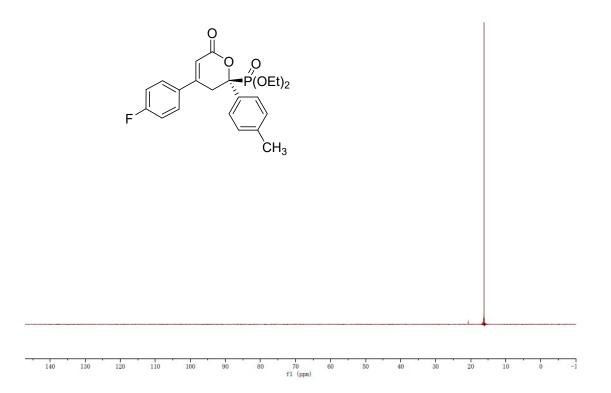

-15.99

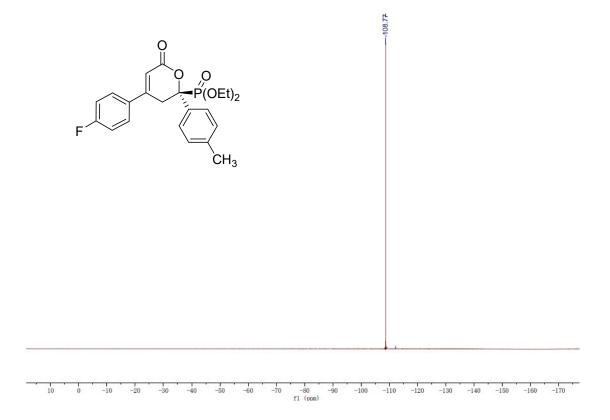
3q ¹H NMR

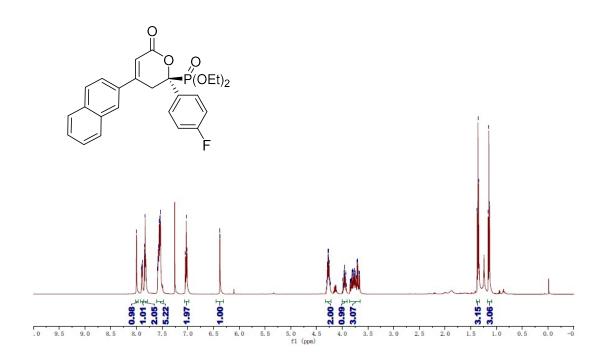

3q ¹³C NMR

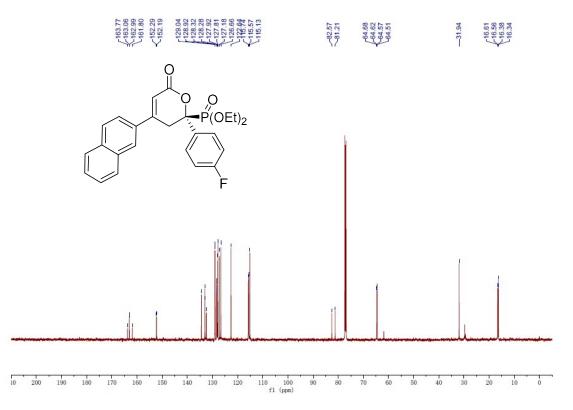


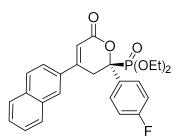
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

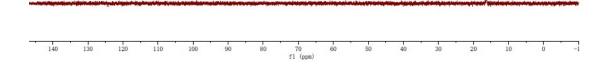

3r¹H NMR

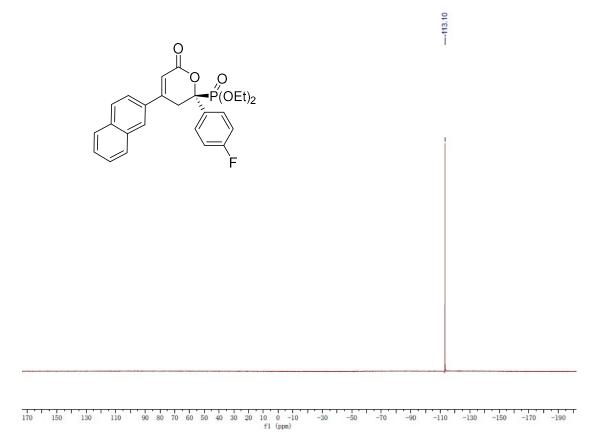

3r¹³C NMR

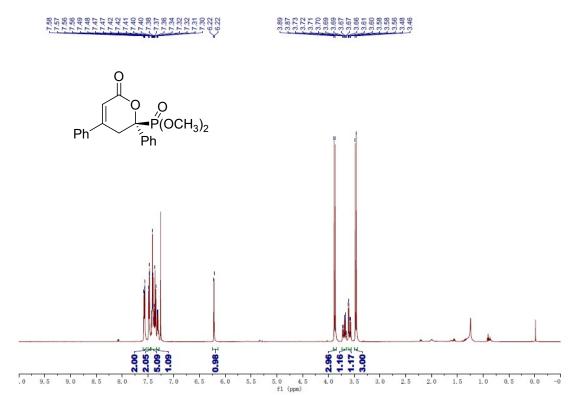



3r¹⁹F NMR

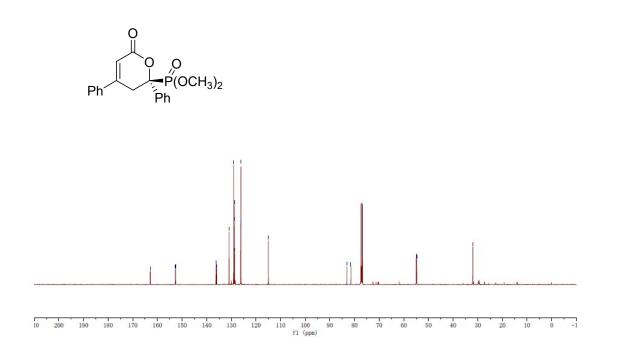


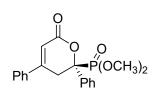

3s ¹H NMR

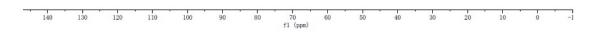

3s¹³C NMR



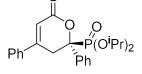
3s¹⁹F NMR

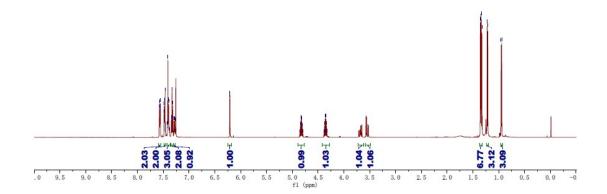



3t¹H NMR

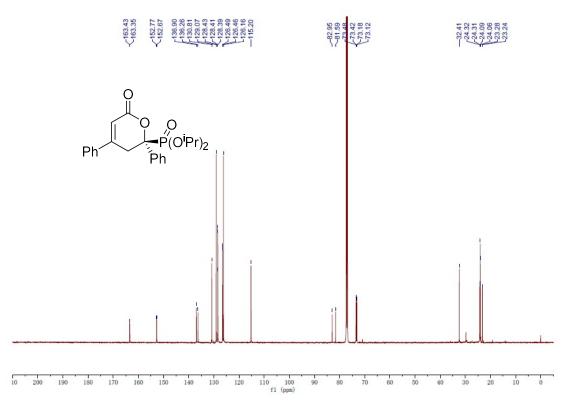


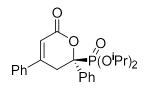
3t ¹³C NMR



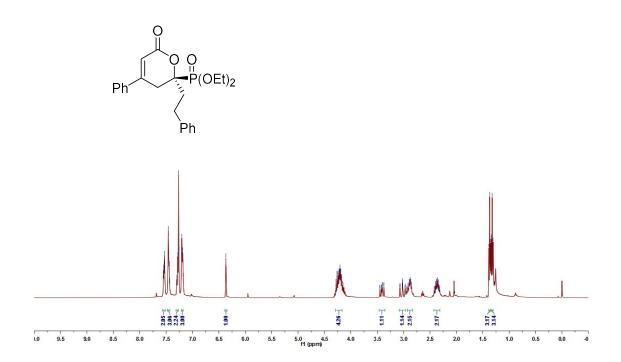


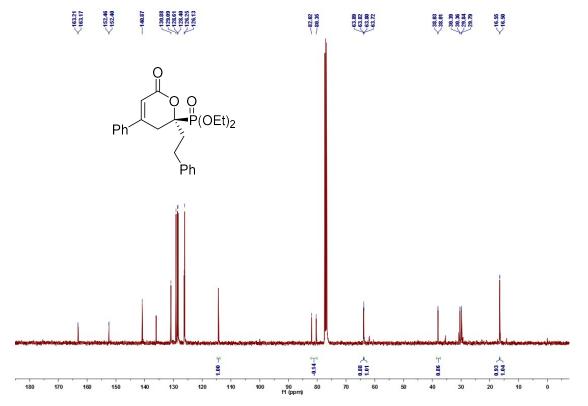
-18.52


3u ¹H NMR

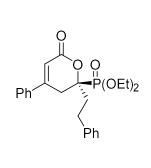


3u¹³C NMR



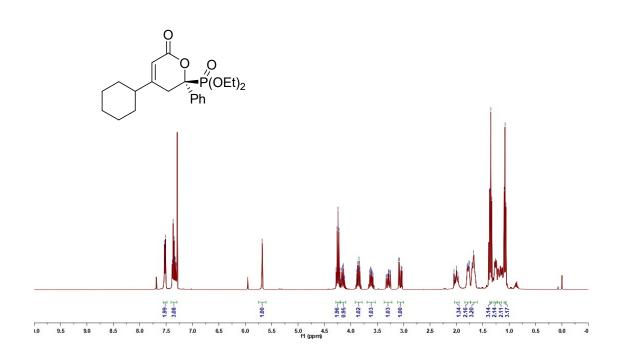

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

-15.34


3v ¹H NMR

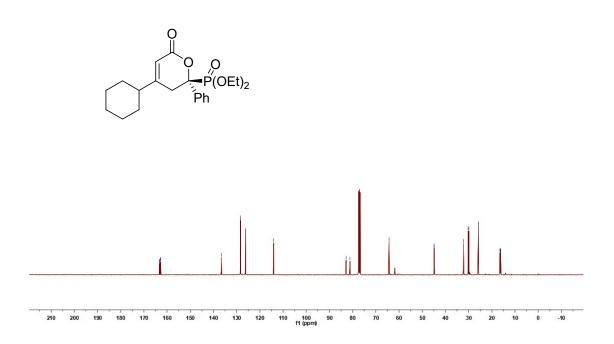
3v¹³C NMR

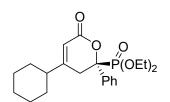
3v ³¹P NMR

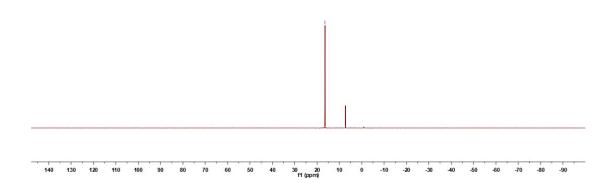


-21.06

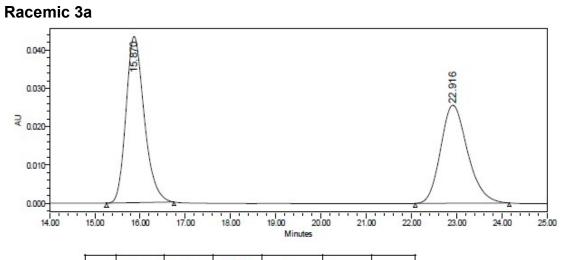
-	_																	<u> </u>			
								· · · ·					- 1 - C		4 12 2						
90		180	170	160	150	140	130	120	110	100	90 f1 (ppm)	80	70	60	50	40	30	20	10	0	-1

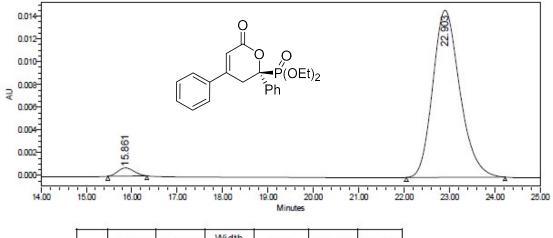

3w¹H NMR



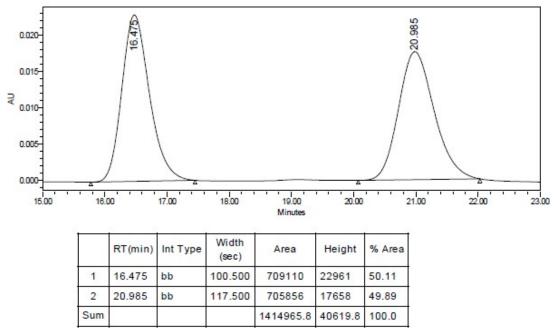


3w¹³C NMR

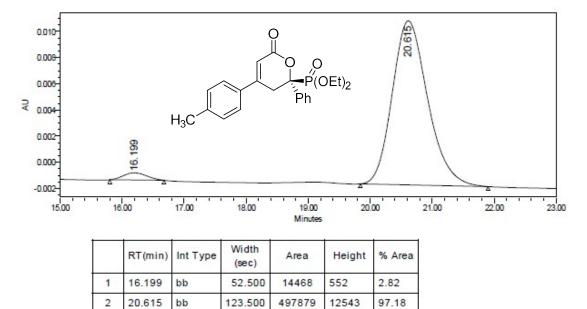




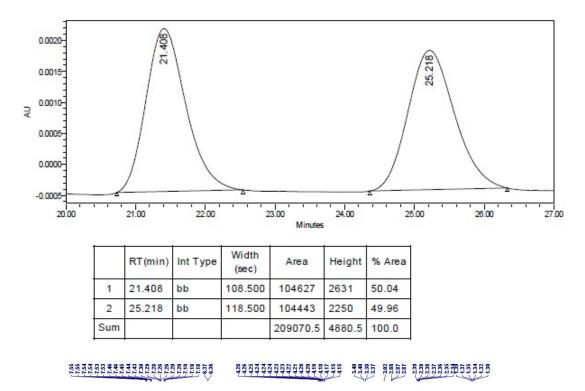
\boldsymbol{X} . HPLC spectra of products

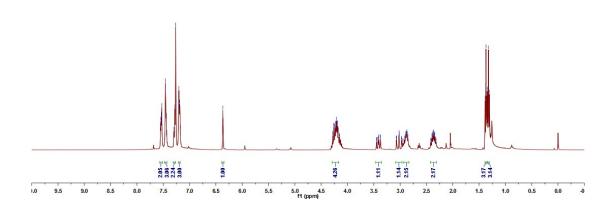

	RT(min)	Int Type	Width (sec)	Area	Height	% Area
1	15.870	bb	89.500	1216502	43391	53.38
2	22.916	bb	124.500	1062435	25612	46.62
Sum				2278937.1	69003.4	100.0

Enantioenriched 3a

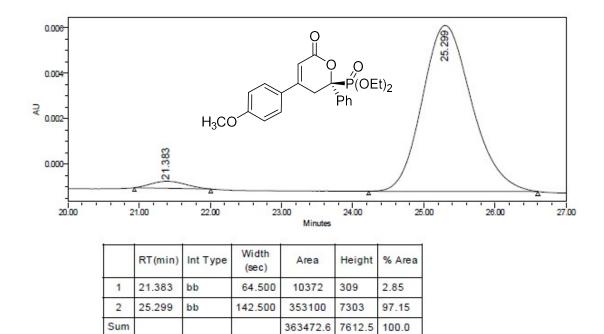

	RT(min)	Int Type	(sec)	Area	Height	% Area
1	15.861	bb	51.500	17652	712	2.81
2	22.903	bb	130.500	609800	14687	97.19
Sum				627451.6	15398.6	100.0

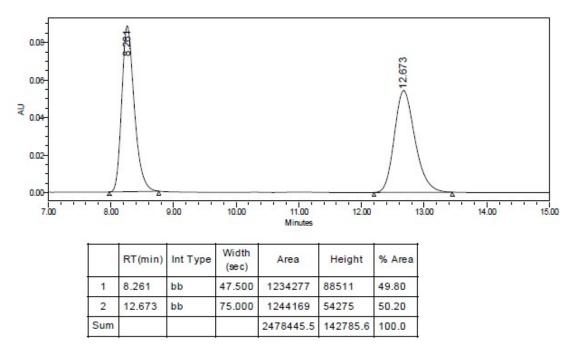
Enantioenriched 3b

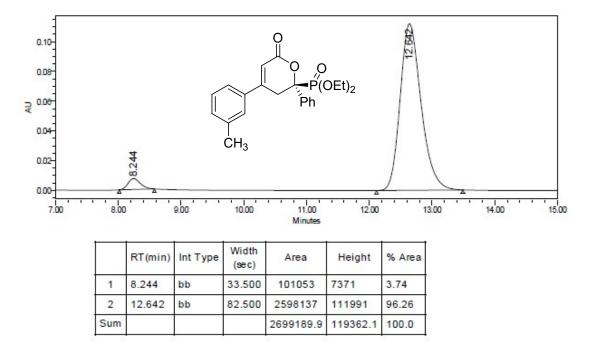

Sum

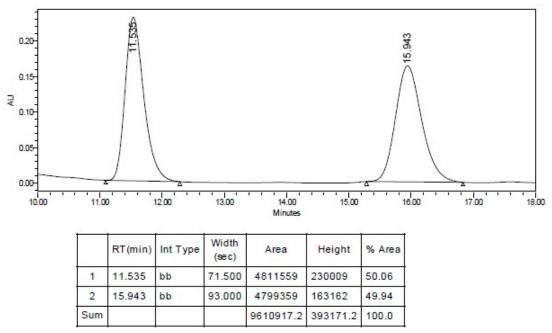


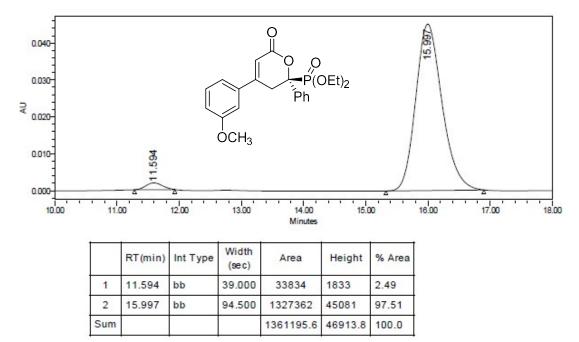
512347.3

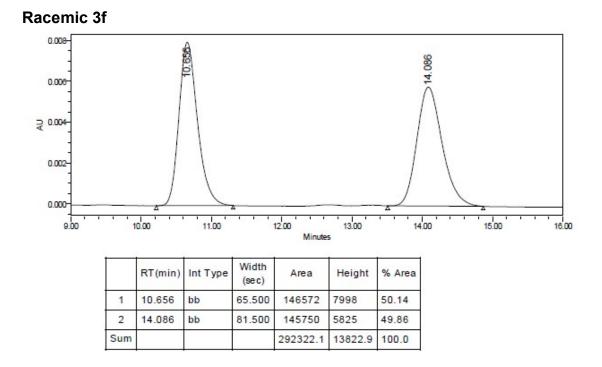

13094.7

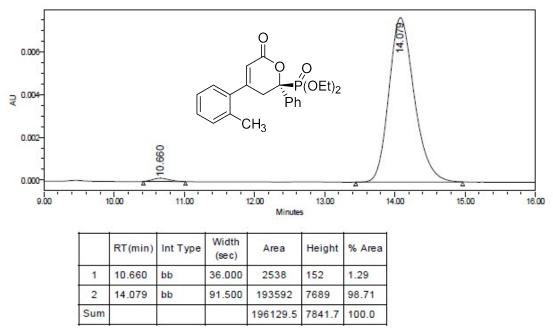



Enantioenriched 3c

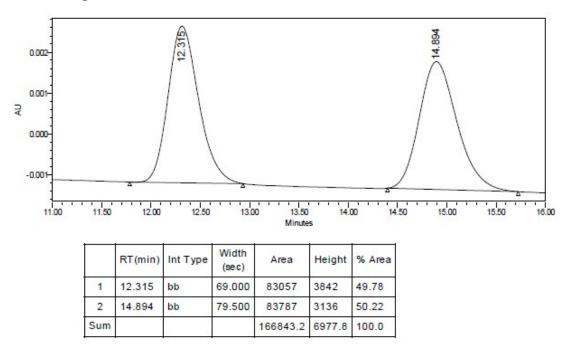


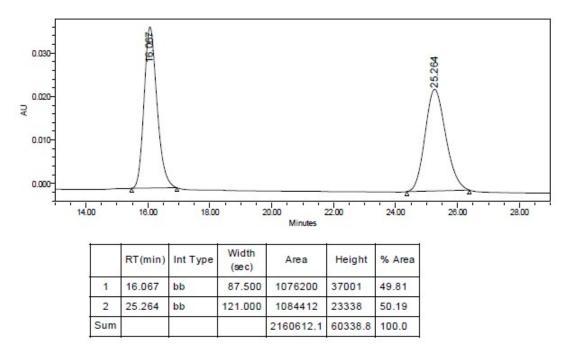

Enantioenriched 3d



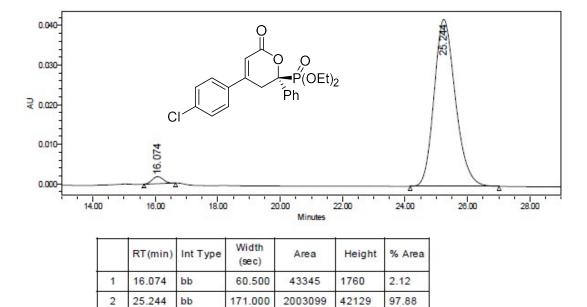


Enantioenriched 3e



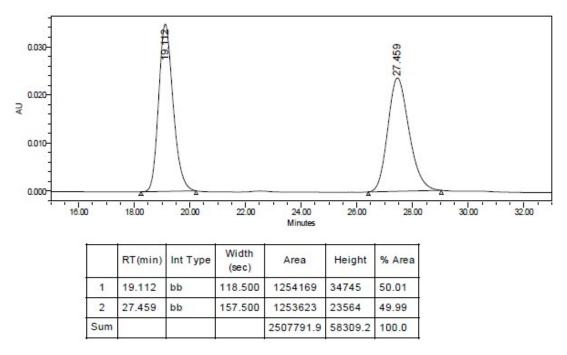

Racemic 3g

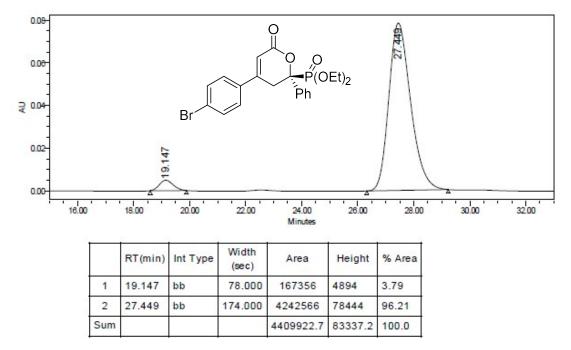
Enantioenriched 3g



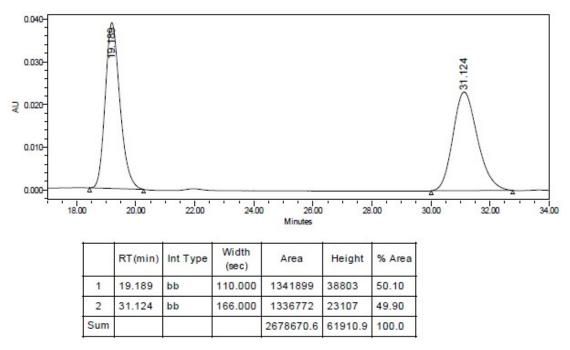
Racemic 3h

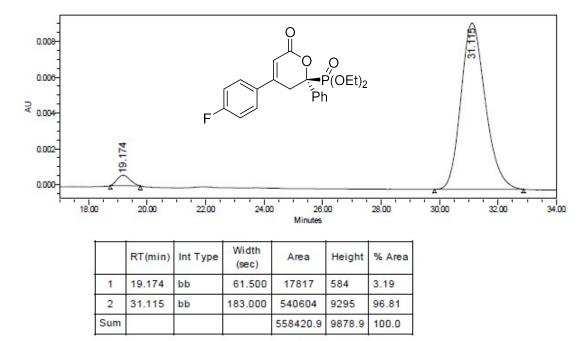
Enantioenriched 3h

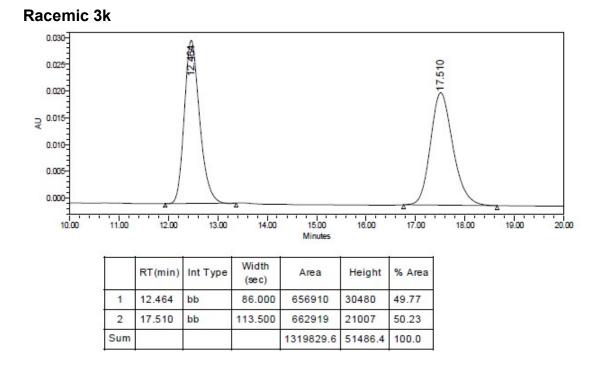

Sum

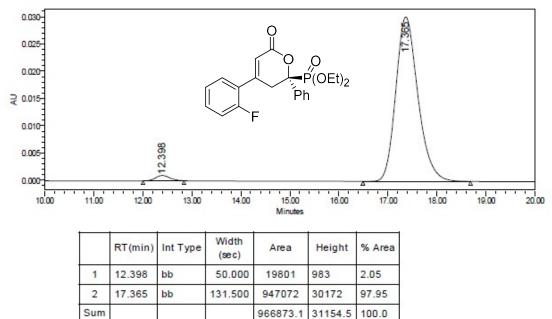

2046444.0

43889.1

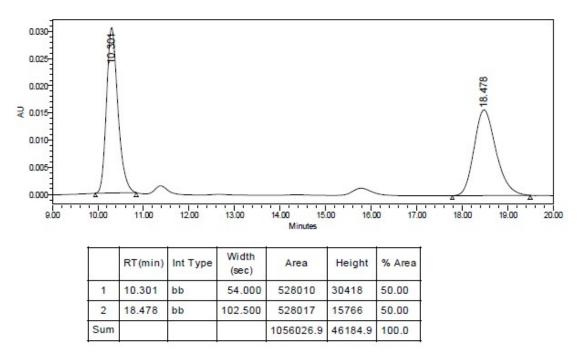


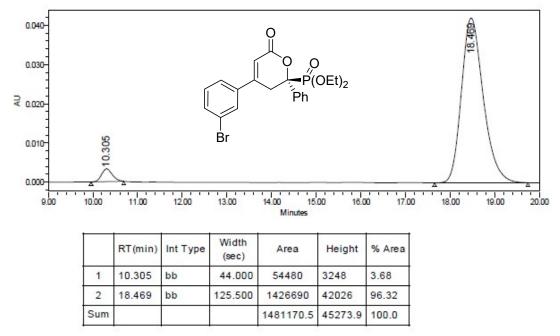

Enantioenriched 3i

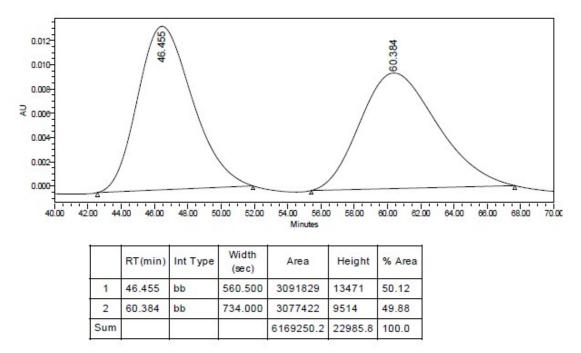




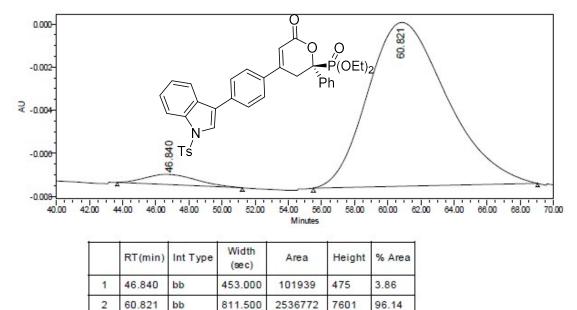
Enantioenriched 3j






Racemic 3I

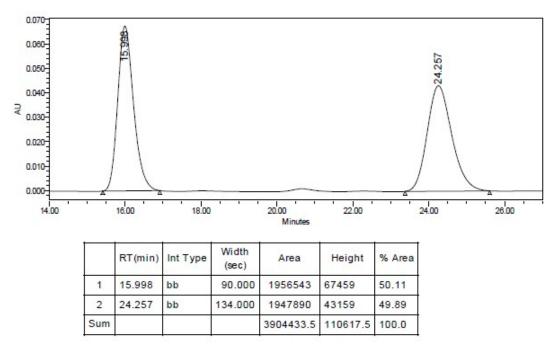
Enantioenriched 3I



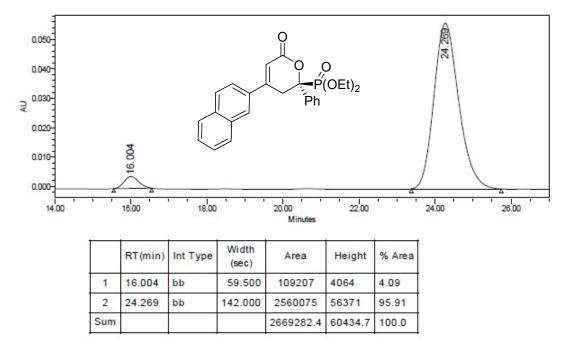
Racemic 3m

Enantioenriched 3m

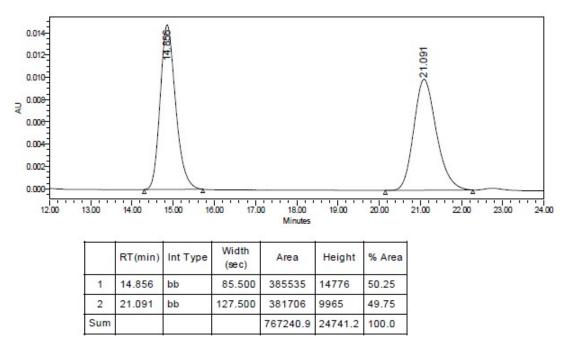
Sum

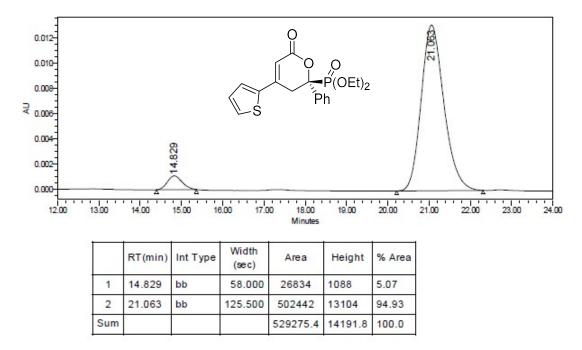


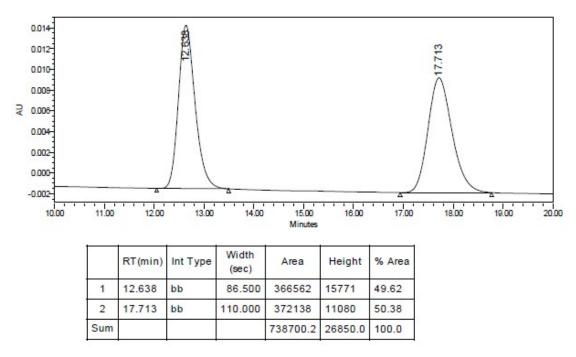
2638710.9

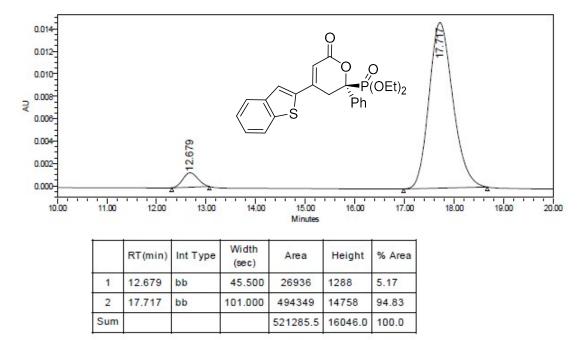

8076.1

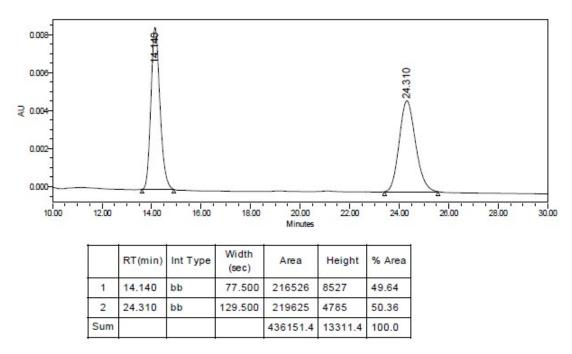
2	-
×	5
,	-
	3

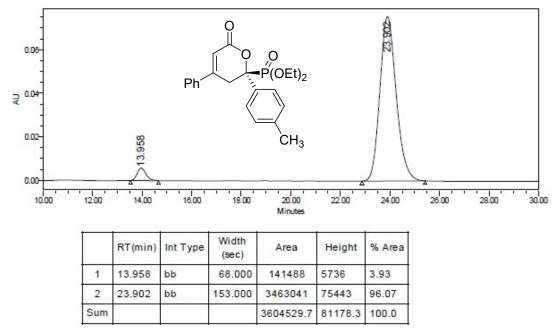


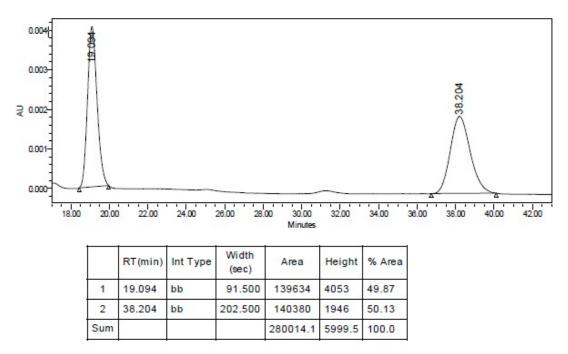

Enantioenriched 3n



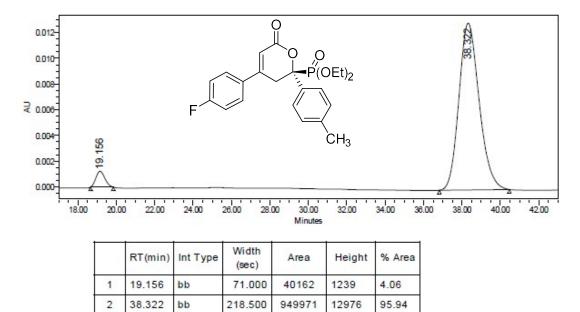

Enantioenriched 3o



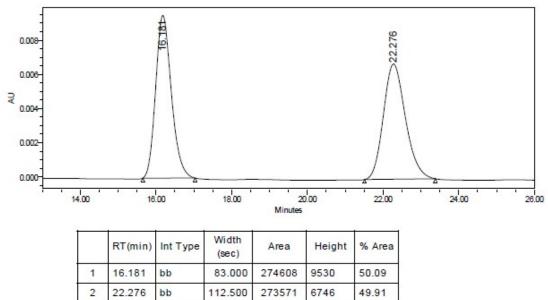

Enantioenriched 3p



Enantioenriched 3q

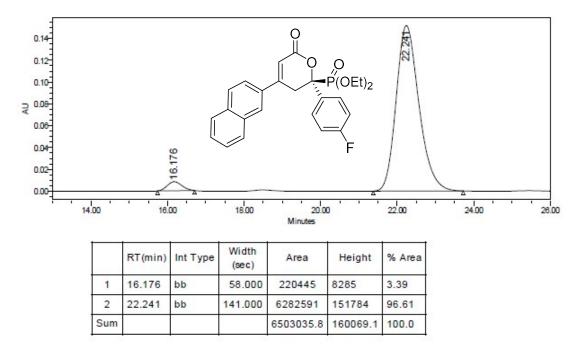


Enantioenriched 3r

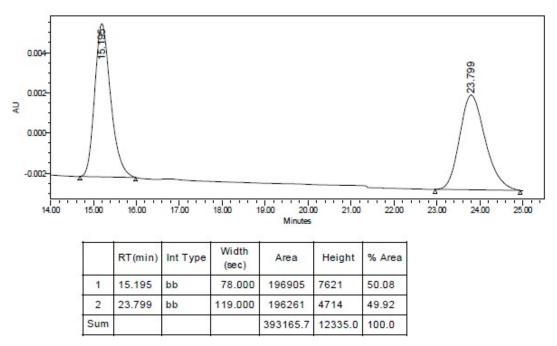

Sum

990133.1

14215.6

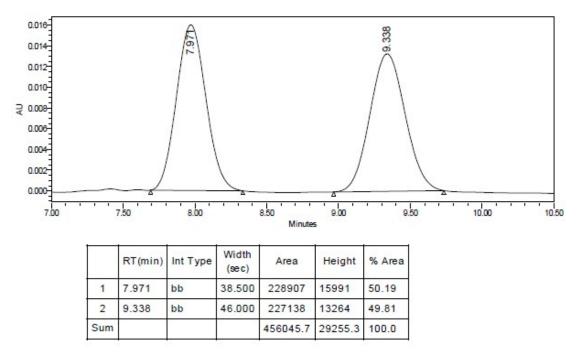

548178.9

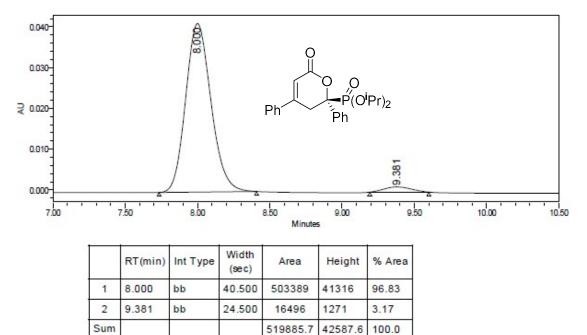
16276.2


100.0

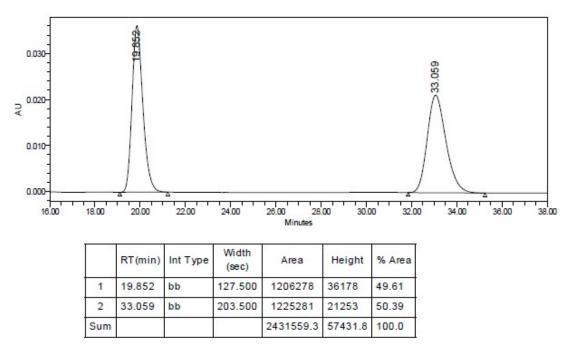
Enantioenriched 3s

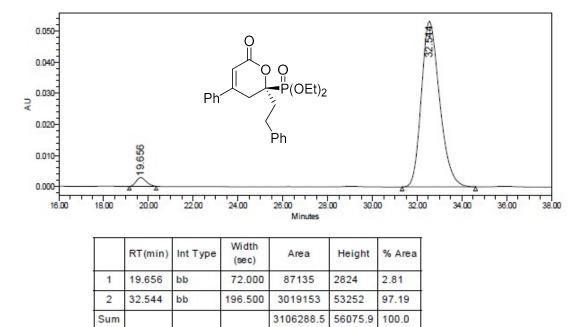
Sum

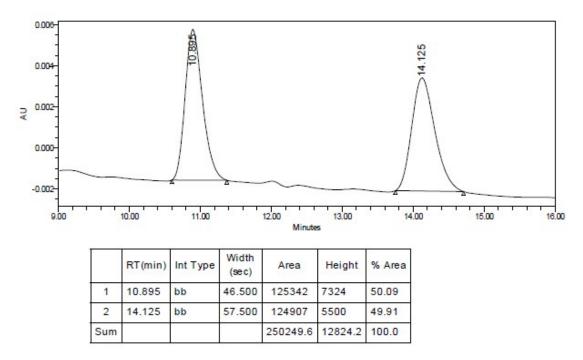


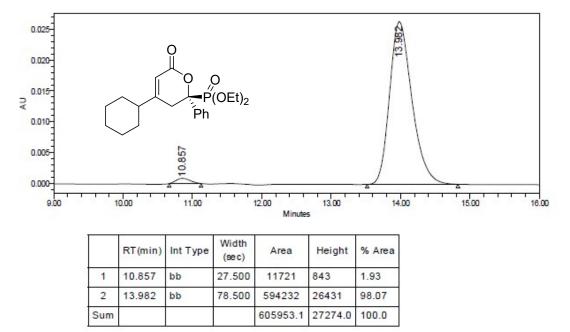

0.030-23.747 0.025 _O ₽(OCH₃)₂ 0.020-₹ 0.015 Ph Ρh 0.010-15.177 0.005-0.000-23.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 24.00 25.00 14.00 Minutes Width RT(min) Int Type Area Height % Area (sec) 2.62 1 15.177 bb 47.000 33748 1488 2 23.747 bb 118.500 1256295 30059 97.38 Sum 1290043.5 31546.7 100.0

Enantioenriched 3t


Racemic 3u


Enantioenriched 3u




Enantioenriched 3v

Racemic 3w

Enantioenriched 3w

