Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Synthetic Studies on Daphniglaucins Yuanyou Qiu, Jiaxin Zhong, Shan Du, Shuanhu Gao*

Index

I. Experimental Procedures	S2
II. Conditions screening for Cycloaddition	S22
III. Additional References in Manuscript	S23
IV. References	S24
V. ¹ H and ¹³ C NMR Spectra	S25

I. Experimental Procedures

General Information:

Oxygen- and moisture-sensitive reactions were carried out under a nitrogen atmosphere. Solvents were purified and dried by standard. All reactions were monitored by thin-layer chromatography with Huang Hai silica gel HSGF254 pre-coated plates (0.2 mm). Column chromatography was carried out on silica gel (200–300 mesh) purchased from Qingdao Haiyang. All commercially available reagents and catalysts were purchased from Sigma-Aldrich, TCI, Alfa Aesar, Strem Chemicals and J&K Chemicals. 1 H and 13 C NMR spectra were recorded on Bruker-500, 400 spectrometers. Chemical shifts for 1 H and 13 C NMR spectra are reported in ppm (δ) relative to residue protium in the solvent (1 H, δ 7.26 for CDCl₃; 13 C, δ 77.00 for CDCl₃ ppm; the multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were acquired on Waters Micromass GCT Premier or Bruker Daltonics Inc. APEXIII 7.0 TESLA FTMS. Mass spectra were acquired on Agilent 5975C. Specific rotation was performed on Rudolph Research Analytical Autopol VI Polarimeter ($\lambda = 589$ nm, T = 20 $^{\circ}$ C). Melting point was performed on SGW-X4 melting point apparatus. Photochemistry experiments were performed using a BILON-GHX-V 1000 W high pressure mercury lamp housed in quartz immersion.

Experimental Procedures and Compound Characterization:

To a suspension of NaH (36.5 g, 913.7 mmol, 1.8 equiv., 60%) in DMF (450 mL) was added dimethyl malonate (86.7 mL, 761.46 mmol, 1.50 equiv.) dropwise at 0 °C during 30 mins. After heated to 60 °C, KI (8.4 g, 101.53 mmol, 0.20 equiv.) was added, followed by addition of 2-bromo-1,1-dimethoxyethane (60.0 mL, 507.64 mmol, 1.0 equiv.). The mixture was stirred at 100 °C for 24 h. After cooling to rt, the

reaction mixture was poured into pre-ice cold saturated NH₄Cl and extracted with EtOAc (4×850 mL). The combined organic layer was washed with brine (4×850 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was distilled to remove the by-product (bp: 40 °C - 60 °C, 1.0

mmHg) and the residue was mainly the product $S1^{[1]}$ and used directly for next step without purification. $R_f = 0.35$ (20% ethyl acetate-petroleum ether). To a suspension of NaH (16.9 g, 421,19 mmol, 1.30 equiv., 60%) in DMF (300 mL) was added a solution of S1 (71.4 g, 323.99 mmol, 1.0 equiv.) in DMF (50 mL) dropwise at 0 °C during 1 h. After stirring at 0 °C for 30 mins, a solution of BnO(CH₂)₃I (134.2 g, 485.99 mmol, 1.50 equiv.) in DMF (50 mL) was added and moved to stir at rt for 15 h. The reaction mixture was quenched with pre-ice cold saturated NH₄Cl and extracted with EtOAc (4×550 mL). The combined organic layer was washed with brine (4×550 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by silica gel column chromatography (5% to 20% ethyl acetate-petroleum ether) to give product 16 as colorless oil (100.3 g, 56% over 2 steps). $R_f = 0.31$ (20% ethyl acetate-petroleum ether) ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 4.50 (s, 2H), 4.44 (t, J = 5.5 Hz, 1H), 3.71 (s, 6H), 3.48 (t, J = 6.4 Hz, 2H), 3.27 (s, 6H), 2.25 (d, J = 5.5 Hz, 2H), 2.03 – 2.00 (m, 2H), 1.52 – 1.48 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 138.4, 128.3, 127.6, 101.9, 72.8, 70.0, 55.1, 53.6, 52.4, 36.1, 30.0, 24.6 ppm. IR v_{max} 3030, 2952, 1732, 1454, 1365, 1193, 1175, 698 cm⁻¹. HRMS (m/z): ESI [M+Na] calcd for C₁₉H₂₈NaO₇ [M+Na]⁺: 391.1727: found [M+Na]⁺: 391.1732.

To a stirred solution of **16** (29.0 g, 78.71 mmol, 1.0 equiv.) in THF (350 mL) was added a solution of LiAlH₄ (63.0 mL, 157.43 mmol, 2.0 equiv., 2.4 M in THF) dropwise at 0 °C. After stirred at rt for 1 h, the reaction mixture was carefully quenched with EtOAc (50 mL), H₂O (6 mL), 15% aq. NaOH (18 mL) and H₂O (18 mL) in sequence at 0 °C, followed by addition of MgSO₄ and celite. The resulting mixture was filtered and the filtrate was concentrated under vacuum to afford the crude product **S2** as a slight yellow oil (24.0 g). R_f=0.47 (20% ethyl acetate-petroleum ether). The crude product of **S2** was dissolved in CH₂Cl₂ (350 mL), then Mont K10 (2.4 g) was added and stirred at rt for 1.5 h. The reaction mixture was filtered and the filtrate was concentrated under vacuum to afford the crude product, which was purified by silica gel column chromatography (10% to 30% ethyl acetate-petroleum ether) to give product **17** as colorless oil (16.7 g, 78% over 2 steps). R_f = 0.29 (40% ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.00 (dd, J = 5.2, 0.8 Hz, 1H), 4.50 (s, 2H), 3.89 (d, J = 8.7 Hz, 1H), 3.64 (d, J = 8.7 Hz, 1H), 3.62 – 3.51 (m, 2H), 3.46 (t, J = 5.9 Hz, 2H), 3.33 (s, 3H), 2.84 (s, 1H), 1.93 – 1.75 (m, 2H), 1.64 – 1.47 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 128.4, 127.7, 105.3, 74.0, 73.0, 70.6, 67.2,

54.4, 46.7, 41.9, 33.4, 25.1 ppm. IR ν_{max} 3087, 2940, 2861, 1738, 1453, 1361, 1107, 1028, 698 cm⁻¹. HRMS (m/z): ESI [M+Na] calcd for C₁₆H₂₄NaO₄ [M+Na]⁺: 303.1567: found [M+Na]⁺: 303.1575.

BnO OH a): (COCI)₂, DMSO, Et₃N OMe b): hex-5-enylmagnesium bromide, Et₂O, -78 °C OMe box of
$$\frac{20 \text{ min}}{78\%, 2 \text{ steps}}$$
 BnO OH S3

To a stirred solution of oxalyl chloride (9.2 mL, 107.01 mmol, 2.0 equiv.) in CH₂Cl₂ (300 mL) was added a solution of DMSO (15.2 mL, 214.01 mmol, 4.0 equiv.) in CH₂Cl₂ (50 mL) dropwise at -78 °C within 20 mins. After stirring at -78 °C for 20 mins, a solution of **17** (15.0 g, 53.50 mmol, 1.0

equiv.) in CH₂Cl₂ (50 mL) was added and stirred at -78 °C for 1 h. Then Et₃N (44.8 mL, 321.02 mmol, 6.0 equiv.) was added, stirred at -78 °C for 30 mins and at rt for another 30 mins. The reaction was quenched with sat. NH₄Cl (100 mL), washed with H₂O (2×150 mL) and brine (3×150 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product of S3 (14.9 g), which was used directly for next step without purification. To a stirred solution of crude S3 (14.9 g) in Et₂O (250 mL) was added a freshly prepared solution of pent-4-enylmagnesium bromide (80.2 mL, 80.24 mmol, 1.5 equiv., 1.0 M) in Et₂O at -78 °C within 15 mins. The mixture was stirred at -78 °C for 20 mins, and then quenched with MeOH (5 mL) and sat. NH₄Cl (100 mL). The resulting mixture was diluted with EtOAc (250 mL), washed with H₂O (2×100 mL), brine (2×100 mL) and the organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (5% to 10% ethyl acetate-petroleum ether) to give product 18 as colorless oil (14.5 g, 78% over 2 steps). $R_f = 0.48$ (30% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.38 - 7.28 (m, 5H), 5.86 - 5.79 (m, 1H), 5.06 - 4.96 (m, 3H), 4.52 - 4.51 (m, 2H), 4.00 - 3.83 (m, 1H), 3.72 - 3.45 (m, 4H), 3.35 - 3.33 (m, 3H), 2.24 - 1.81 (m, 4H), 1.76 -1.36 (m, 8H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 138.4, 128.4, 127.6, 114.7, 106.1, 105.4, 105.0, 75.2, 74.4, 74.0, 73.4, 73.0, 72.7, 72.5, 70.8, 54.8, 54.2, 49.8, 42.7, 41.1, 40.3, 39.9, 33.7, 33.4, 32.7, 32.4, 32.0, 31.4, 31.0, 26.1, 25.9, 25.8, 25.4, 25.2, 24.8 ppm. IR v_{max} 3064, 3030, 2943, 2862, 1454, 1100, 1042, 790, 698 cm⁻¹. HRMS (m/z): ESI [M+Na] calcd for C₂₁H₃₂NaO₄ [M+Na]⁺: 371.2193; found [M+Na]⁺: 371.2166.

BnO OMe a):DMSO,
$$(COCI)_2$$
 OMe Et_3N , CH_2CI_2 -78 °C, 2 h BnO S4

To a stirred solution of oxalyl chloride (356 uL, 4.15 mmol, 2.0 equiv.) in CH₂Cl₂ (30 mL) was added a solution of DMSO (590 uL, 8.30 mmol, 4.0 equiv.) in CH₂Cl₂ (5 mL) dropwise at -78 °C. After stirring at -78 °C for 20 mins, a solution of **18** (723 mg, 2.07 mmol, 1.0 equiv.) in CH₂Cl₂ (5 mL)

was added and stirred at -78 °C for 1 h. Then Et₃N (2.3 mL, 16.60 mmol, 8.0 equiv.) was added, stirred at -78 °C for 30 mins and moved to stir at rt for another 30 mins. The reaction was quenched with sat. NH₄Cl (10 mL), washed with H₂O (2×15 mL) and brine (3×15 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product S4 (723 mg), which was used directly for next step without purification. To a stirred solution of crude S4 (723 mg) in CH₂Cl₂ (20 mL) was added BF₃•Et₂O (339 uL, 2.70 mmol, 1.3 equiv.) quickly at 0 °C, followed by dropwise addition of m-CPBA (716 mg, 3.11 mmol, 1.5 equiv., 75%) in CH₂Cl₂ (10 mL). The mixture was stirred at 0 °C for 10 mins and moved to stir at rt for 30 mins. Then Et₃N (1.45 mL, 10.38 mmol, 5.0 equiv.) was added and stirred at 0 °C for 30 mins. The resulting mixture was washed with H₂O (2×15 mL) and brine (3×15 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (10% ethyl acetate-petroleum ether) to give 584 mg of the product 19 (85%, 2 steps) as brown oil. $R_f = 0.35$ (20% ethyl acetate-petroleum ether). H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.75 – 5.70 (m, 1H), 5.02 – 4.97 (m, 2H), 4.50 - 4.47 (m, 3H), 4.12 (d, J = 9.6 Hz, 1H), 3.44 (t, J = 5.9 Hz, 2H), 2.97 (d, J = 17.6 Hz, 1H), 2.46(td, J = 7.1, 1.8 Hz, 2H), 2.41 (d, J = 17.6 Hz, 1H), 2.04 (dd, J = 14.2, 7.0 Hz, 2H), 1.96 - 1.84 (m, 2H),1.73 - 1.66 (m, 3H), 1.50 - 1.40 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 175.0, 138.1, 137.6, 128.5, 127.7, 115.7, 73.1, 72.9, 69.2, 56.0, 36.8, 35.9, 32.9, 25.2, 22.4 ppm. IR v_{max} 3065, 3030, 2933, 2861, 1783, 1708, 1454, 1175, 1101, 699 cm⁻¹. HRMS (m/z): ESI [M+ Na] calcd for C₂₀H₂₆NaO₄ $[M+Na]^+$: 353.1723, found $[M+Na]^+$: 353.1736.

To a stirred solution of **19** (18.0 g, 54.48 mmol, 1.0 equiv.) in MeOH (300 mL) was added aq. NaOH (109.0 mL, 109.0 mmol, 2.0 equiv., 1.0 N) at rt and the mixture was stirred at 40 °C for 10 h. After removing the solvent, the residue was dissolved in CH₂Cl₂ (50 mL), adjusted with aq. HCl (1N) to pH=6 and extracted with EtOAc (3×150 mL). The combined organic layer was dried over Na₂SO₄,

filtered and concentrated under vacuum to give crude product of S5 (19.0 g), which was used directly for next step without purification. To a stirred solution of crude S5 (19.0 g) in CH₂Cl₂ (400 mL) was added imidazole (18.6 g, 272.65 mmol, 6.25 equiv.), DMAP (666 mg, 5.45 mmol, 0.1 equiv.) and TBSCl (16.4 g, 109.06 mmol, 2.5 equiv.) successively at 0 °C. The mixture was stirred at 40 °C for 2 h. After cooling to 0 °C, DMF (484 uL, 5.45 mmol, 0.1 equiv.) was added, followed by dropwise addition of oxalyl chloride (13.8 mL, 161.39 mmol, 3.0 equiv.) at 0 °C within 2 h. The mixture was stirred at rt for 24 h, and then quenched with ice solid NaHCO₃ carefully. The resulting mixture was extracted with EtOAc (3×550 mL), and the combined organic layer was washed with brine (2×550 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (2% to 5% ethyl acetate-petroleum ether) to give 19.1 g of the product 20 (79%, 2 steps) as colorless oil. $R_f = 0.78$ (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.36 - 7.27 (m, 5H), 5.83 - 5.75 (m, 1H), 5.03 - 4.95 (m, 2H), 4.52 - 4.43 (m, 4H), 3.53 -3.47 (m, 2H), 3.49 - 3.41 (m, 2H), 2.62 (d, J = 18.0 Hz, 1H), 2.46 (d, J = 18.0 Hz, 1H), 2.27 - 2.21 (m, 2H)2H), 2.14 - 2.10 (m, 2H), 1.67 - 1.58 (m, 3H), 1.54 - 1.51 (m, 1H), 0.86 (s, 9H), 0.02 - 0.01 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ173.7, 154.2, 138.4, 138.0, 128.4, 127.6, 115.0, 102.7, 72.9, 70.1, 69.9, 47.7, 35.9, 33.7, 31.5, 30.2, 29.7, 25.7, 24.7, 24.5, 18.1, -5.60 ppm. IR v_{max} 3065, 3030, 2954, 2928, 2856, 1804, 1701, 1100, 837, 777, 697 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₆H₄₀NaO₄Si [M+Na] +: 467.2588; Found [M+Na] +: 467.2590.

21

To a stirred solution of TsMe (1.4 g, 8.10 mmol, 2.0 equiv.) in anhydrous THF (40 mL) was added a solution *n*-BuLi (8.9 mL, 14.17 mmol, 3.5 equiv., 1.6 M in hexane) dropwise at -78 °C under nitrogen atmosphere. ^[2] After stirring at -78 °C for 20 mins, a solution of **20** (1.8 g, 4.05 mmol, 1.0 equiv.)

in THF (10 mL) was added carefully and stirred at -78 °C for 2 h. Then the reaction mixture was quenched with sat. NH₄Cl (15 mL), extracted with EtOAc (3×55 mL), and the combined organic layer was washed with brine (2×55 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (3% to 5% to 20% ethyl acetate-petroleum ether) to give 1.86 g of the product **S6** (75%) as yellow oil. $R_f = 0.57$ (20% ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.36 – 7.27 (m, 7H), 5.78 – 5.70 (m, 1H), 5.01 – 4.93 (m, 2H), 4.48 (s, 2H), 4.14 (q, J = 13.3 Hz, 2H), 3.70 (s, 2H), 3.42 (t, J = 6.2 Hz, 2H), 3.07 – 2.91 (m, 2H), 2.47 – 2.42 (m, 5H), 2.04 – 1.97 (m, 2H), 1.78 – 1.73 (m, 2H), 1.62 – 1.57 (m, 2H), 1.50 – 1.43 (m, 2H), 0.85 (s, 9H), 0.004 – -0.003 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 212.5, 196.9, 145.3, 138.5, 138.2, 135.9, 129.9, 128.3, 127.6, 114.9, 72.9, 70.2, 67.8, 65.1, 55.8, 45.8, 37.6, 33.0, 28.9, 25.8, 24.3, 22.4, 18.1, -5.7 ppm. IR ν_{max} 2953, 2928, 2111, 1661, 1340, 1154, 1098, 836, 667 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₅₀NaO₆SSi [M+Na]⁺: 637.2990; Found [M+Na]⁺: 637.3015.

To a stirred solution of **20** (1.8 g, 2.93 mmol, 1.0 equiv.) and TsN₃ (1.2 g, 5.85 mmol, 2.0 equiv.) in MeCN (15 mL) was added Et₃N (1.2 mL, 8.78 mmol, 3.0 equiv.) dropwise at 0 °C. After stirring at rt for 2 h, the reaction mixture was quenched with NaHCO₃(15 mL), extracted with EtOAc (3×35 mL), and the combined organic layer was washed with brine (2×35 mL),

dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (3% to 7% ethyl acetate-petroleum ether) to give 1.50 g of the product **21** (77%). $R_f = 0.71$ (20% ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d,

J = 8.3 Hz, 2H), 7.36–7.26 (m, 7H), 5.79 – 5.69 (m, 1H), 5.01 – 4.93 (m, 2H), 4.45 (s, 2H), 3.70 (q, J = 10.0 Hz, 2H), 3.38 (t, J = 6.3 Hz, 2H), 2.95 (d, J = 17.5 Hz, 1H), 2.78 (d, J = 17.5 Hz, 1H), 2.43 – 2.40 (m, 5H), 1.99 (dd, J = 13.9, 6.4 Hz, 2H), 1.75 – 1.69 (m, 2H), 1.38 – 1.32 (m, 2H), 0.81 (s, 9H), -0.04 – -0.05 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 212.2, 186.8, 145.3, 139.2, 138.4, 130.03 (s), 128.4, 127.5, 114.9, 72.8, 70.2, 64.9, 55.1, 40.6, 37.5, 33.0, 28.9, 25.7, 24.3, 22.4, 18.1, -5.8 ppm. IR ν_{max} 3063, 3031, 2919, 2850, 2114, 1779, 1708, 1178, 1151, 1086, 815 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₄₈O₆NaSSiN₂ [M+Na]⁺: 663.2895; Found [M+Na]⁺: 663.2919.

TBSO Ts
$$Rh_2(AcO)_4$$
, 4 Å MS, CH_2CI_2 O °C to r.t, 2 h, 89% O OTBS

To a solution of **21** (1.45 g, 2.26 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (200 mL) was added activated 4Å MS (1.45 g) and Rh₂(OAc)₄ (5.0 mg, 11.31 umol, 0.005 equiv.) at 0 °C. The mixture was stirred at rt for 8 h, and then filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (7% to 20% ethyl acetate-petroleum ether) to give **22a** (965 mg, 70%) as light yellow oil, $R_f = 0.29$ (20% ethyl acetate-petroleum ether) and **22b** (268 mg, 19%) as light brown oil, $R_f = 0.33$ (20% ethyl acetate-petroleum ether).

22a: 'H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.36 – 7.26 (m, 7H), 4.46 (d, J = 1.9 Hz, 2H), 3.56 (d, J = 10.0 Hz, 1H), 3.44 – 3.37 (m, 2H), 3.26 (d, J = 10.0 Hz, 1H), 2.86 – 2.81 (m, 1H), 2.54 – 2.49 (m 1H), 2.42 (s, 3H), 2.39 – 2.34 (m, 1H), 2.13 (s, 2H), 1.94 – 1.90 (m, 1H), 1.75 – 1.38 (m, 9H), 0.82 (s, 9H), -

0.06 (s, 3H), -0.12 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃) δ 200.1, 144.9, 138.5, 133.6, 130.6, 129.0, 128.4, 127.6, 101.5, 99.4, 72.9, 70.6, 64.5, 47.1, 44.4, 42.5, 38.8, 33.5, 32.8, 28.9, 25.8, 24.7, 23.8, 18.1, -5.9 ppm. IR ν_{max} 3446, 3066, 3031, 2953, 2928, 2856, 1730, 1326, 1159, 1094, 853, 836, 776, 660 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₄₈NaO₆SSi [M+Na]⁺: 635.2833, found [M+Na]⁺: 635.2866.

22b: ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 2H), 7.37 – 7.25 (m, 7H), 4.43 (s, 2H), 3.33 – 3.29 (m, 4H), 3.05 – 3.03 (m, 1H), 2.51 – 2.47 (m, 1H), 2.38

(s, 3H), 2.22 - 2.13 (m, 3H), 1.92 - 1.89 (m, 1H), 1.78 - 1.44 (m, 8H), 0.85 (s, 9H), 0.003 - 0.000 (m, 6H) ppm. 13 C NMR (125 MHz, CDCl₃) δ 202.5, 145.0, 138.5, 133.4, 130.5, 129.1, 128.4, 127.6, 101.9, 99.4, 728, 70.7, 65.9, 46.2, 43.3, 41.8, 39.2, 33.6, 33.4, 30.5, 29.7, 25.8, 24.6, 23.9, 18.1, -5.8 ppm. IR v_{max} 3066, 3031, 2953, 2928, 2858, 1730, 1323, 1184, 1094, 837, 776, 664 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₄₈NaO₆SSi [M+Na]⁺: 635.2833, found [M+Na]⁺: 635.2866.

General procedure for preparation of SmI₂: ^[3] An oven-dried flask charged with samarium metal powder (5.13 g, 34.09 mmol, 1.1 equiv.) was flame-dried and cooled. After cooling to rt under N₂, degassed anhydrous THF (310 mL) was added and then cooled to 0 °C, followed by addition of CH₂I₂ (2.5 mL, 30.99 mmol, 1.0 equiv.). The mixture was stirred at 0 °C for 15 mins and then at rt for 2 h. The resulting SmI₂ solution was deep blue-green.

To an oven-dried flask charged with **22a** (6.6 g, 10.77 mmol, 1.0 equiv.), HMPA (9.40 mL, 54.83 mmol, 5.0 equiv.) and MeOH (2.20 mL, 54.83 mmol, 5.0 equiv.), was added a freshly prepared SmI₂ solution (323 mL, 32.31 mmol, 3.0 equiv., 0.1 M) in THF under nitrogen atmosphere at - 78 °C. The mixture was stirred at - 78 °C for

30 mins and quenched with the air at rt. Then aq. HCl (72.1 mL, 216.26 mmol, 20.0 equiv., 3 M) and (8.8 mL, 216.26 mmol, 20.0 equiv.) was added and stirred at 50 °C for 10 h. After cooling to rt, the reaction mixture was quenched with ice-cold sat. NaHCO₃ carefully and the solvent was removed under vacuum. The residue was dissolved in EtOAc (550 mL), washed with Na₂S₂O₃ (1×150 mL), H₂O (2×250 mL) and brine (2×250 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (20% ethyl acetate-petroleum ether) to give 3.05 g of the product **23** (82%) as colorless oil. R_f = 0.10 (20% ethyl acetate-petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 4.49 (s, 2H), 4.33 (d, J = 7.6 Hz, 1H), 3.80 (d, J = 11.6 Hz, 1H), 3.60 (t, J = 10.4 Hz, 1H), 3.44 (td, J = 6.1, 2.0 Hz, 2H), 3.34 (d, J = 9.7 Hz, 1H), 2.75 (d, J = 8.7 Hz, 1H), 2.45 (dd, J = 17.5, 1.4 Hz, 1H), 2.26 – 2.13 (m, 2H), 1.97 – 1.52 (m, 10H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 207.8, 138.3, 128.4, 127.7, 100.4, 83.6, 73.0, 70.4, 68.4, 44.6, 42.9, 42.3, 38.7), 33.9, 31.7, 29.6, 24.4, 23.4 ppm. IR v_{max} 2920, 2851, 1722, 1384, 1040, 839, 776, 698 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₁H₂₈NaO₄ [M+Na]⁺: 367.1880, found [M+Na]⁺: 367.1891.

To a stirred suspension of NaH (770 mg, 19.25 mmol, 3.0 equiv., 60%) in anhydrous THF (25 mL) was added a solution of **23** (2.21 g, 6.42 mmol, 1.0 equiv.) in THF (20 mL) carefully at 0 °C under nitrogen atmosphere. After stirring at 0 °C for 5 mins, a solution of **24**^[4] (1.62 g, 12.83 mmol, 2.0 equiv.) in THF (20 mL) was added carefully and stirred at 0 °C for 15 mins. Then the reaction mixture was

poured into aq. HCl (38.25 mL, 38.25 mmol, 6.0 equiv., 1 N) carefully at rt and extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (2×250 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (20% ethyl acetate-petroleum ether) to give 2.25 g of the product **25** (95%) as colorless oil. $R_f = 0.33$ (30% ethyl acetate-petroleum ether). HNMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 4.69 (d, J = 9.1 Hz, 1H), 4.49 – 4.45 (m, 3H), 4.17 (d, J = 9.1 Hz, 1H), 3.48 (t, J = 4.9 Hz, 2H), 3.12 (s, 1H), 2.62 – 2.57 (m, 1H), 2.25 – 2.21 (m, 1H), 1.89 – 1.50 (m, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 200.6, 170.0, 138.2, 128.5, 127.7, 96.5, 82.5, 73.9, 73.1, 69.7, 56.2, 48.1, 42.2, 38.4, 33.6, 32.3, 31.9, 24.3, 24.0 ppm. IR v_{max} 2954, 2866, 1790, 1725, 1453, 1170, 1030, 699 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₂H₂₆NaO₅ [M+Na]⁺: 393.1672, found [M+Na]⁺: 393.1647. Conditions for culturing single crystal: CH₂Cl₂:Hexane=1:4, Static mixing, volatilization and crystallization at room temperature, CCDC 1835492.

An oven-dried flask charged with LiBr (4.0 mg, 45.55 mmol, 7.5 equiv.) was flame-dried and cooled. A freshly prepared solution of SmI₂ (303.7 mL, 30.37 mmol, 5.0 equiv., 0.1 M) in THF was added and stirred at rt for 20 mins. Then the above solution was transferred to another oven-dried flask charged with **25** (2.25

g, 6.07 mmol, 1.0 equiv.) and t-BuOH (2.8 mL, 30.37 mmol, 5.0 equiv.) at 0 °C via syringe. The

mixture was stirred at 0 °C for 1 h and quenched with the air at rt. After removing the solvent, the residue was dissolved EtOAc (500 mL), washed with Na₂S₂O₃ (1×150 mL), H₂O (2×250 mL) and brine (2×250 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product S7 and 26. To the crude product in CH₂Cl₂ (100 mL) was added SiO₂ (2.25 g), NaOAc (1.49 g, 18.12 mmol, 3.0 equiv.) and PCC (3,91 g, 18.12 mmol, 3.0 equiv.) successively at rt. After stirring at rt for 8 h, the reaction mixture was filtered and the filtrate was washed with 1 N aq. HCl (2×55 mL), H₂O (2×55 mL) and brine (2×55 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (20% to 40% ethyl acetate-petroleum ether) to give 850 mg of 26 (38%, 79% brsm), R_f = 0.36 (40% ethyl acetate-petroleum ether) and 1.18 g of 25 recovered. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 4.50 (s, 2H), 4.36 (d, J = 9.1 Hz, 1H), 4.14 (d, J = 9.1 Hz, 1H), 3.92 – 3.90 (m, 1H), 3.51 – 3.48 (m, 2H), 2.77 (s, 1H), 1.82 – 1.55 (m, 15H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 138.2, 128.5, 127.7, 103.1, 93.1, 7 74.6, 73.1, 69.9, 56.0, 54.8, 37.4, 32.7, 30.4, 28.7, 28.1, 25.5, 21.0, 20.5 ppm. IR ν_{max} 3062, 3030, 2952, 2864, 1769, 1454, 1175, 1098, 1027, 698 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₂H₂₈NaO₅ [M+Na]⁺: 395.1829, found [M+Na]⁺: 395.1848.

To an oven-dried flask charged with **26** (30.0 mg, 80.55 umol, 1.0 equiv.), 4Å MS (30.0 mg) and anhydrous MeCN (5 mL) was added BF₃•OEt₂ (79.5 uL, 644.37 umol, 8.0 equiv.) at rt. The mixture was stirred at 80 °C for 1 h. After cooling to rt, the reaction mixture was quenched with sat. NaHCO₃ (5 mL) and extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by preparative thin layer chromatography, (20% ethyl acetate-petroleum ether) to give 12.2 mg of the mixture of **28** and **29** (43%) as colorless oil. $R_f = 0.86$ (40% ethyl acetate-petroleum ether), and 4.9 mg of the mixture of **S8** as colorless oil. $R_f = 0.87$ (40% ethyl acetate-petroleum ether).

¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 11.26 (s, 0.49 H), 7.38 – 7.26 (m, 5H), 5.37 (dd, J = 4.3, 2.1 Hz, 0.44 H), 5.27 (d, J = 1.8 Hz, 0.49 H), 4.49 (dd, J = 8.5, 3.5 Hz, 2H), 4.40 – 4.20 (m, 2H), 3.81 (s, 0.44 H), 3.44 (dtd, J = 10.2, 6.3, 1.3 Hz, 2H), 3.04 – 2.96 (m, 0.44 H), 2.81 – 2.72 (m, 0.49 H), 2.69 – 2.03 (m, 6H), 1.95 – 1.35 (m, 8H). ppm. ¹³C NMR (125 MHz, CDCl₃) δ 204.4, 176.1, 173.8, 173.3, 144.5, 143.1, 138.2, 130.5, 128.5, 128.4, 127.8,

127.7, 127.6, 124.8, 103.0, 74.8, 73.1, 72.9, 70.0, 69.7, 62.8, 47.9, 46.5, 45.8, 43.5, 38.8, 34.0, 33.6, 32.7, 32.0, 31.6, 31.1, 30.2, 29.8, 26.5, 25.0, 24.7 ppm. IR ν_{max} 3087, 3031, 2940, 2853, 1784, 1703, 1454, 1361, 1200, 1171, 1101, 1031, 818, 698 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₂H₂₆NaO₄ [M+Na]⁺: 377.1723, found [M+Na]⁺: 377.1736.

¹H NMR (500 MHz, CDCl₃) δ 11.45 (s, 0.10H), 10.96 (s, 0.63H), 7.39 – 7.26 (m, 5H), 4.53 – 4.44 (m, 2H), 4.21 – 4.02 (m, 2H), 3.45 (dt,
$$J$$
 = 10.2, 6.3 Hz, 2H), 2.83 – 2.58 (m, 2H), 2.48 – 2.02 (m, 6H), 1.88 – 1.53 (m, 8H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 204.2, 175.9, 172.6, 138.4, 136.5, 133.5, 128.4, 127.7, 101.5, 77.9, 75.9, 73.1, 70.3, 69.8, 59.9, 49.7, 45.7, 44.4, 39.5, 38.2, 36.3, 34.1, 33.9, 32.8, 30.7, 26.1, 25.5, 24.8, 21.9, 21.3 ppm. IR ν_{max} 3030, 2921, 2850, 1786, 1702, 1202, 1172, 1029, 812, 698 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₂H₂₆NaO₄ [M+Na]⁺: 377.1723, found [M+Na]⁺: 377.1736.

To a solution of 28 and 29 (20.0 mg, 56.43 umol, 1.0 equiv.) in anhydrous acetone

2H), 4.22 (dd, J = 9.1, 1.6 Hz, 1H), 4.08 (d, J = 9.1 Hz, 1H), 3.48 – 3.34 (m, 2H), 2.76 – 2.64 (m, 1H), 2.58 – 2.50 (m, 1H), 2.49 – 2.42 (m, 1H), 2.40 – 2.33 (m, 1H), 2.28 – 2.19 (m, 1H), 2.13 – 2.05 (m, 1H), 1.86 – 1.73 (m, 2H), 1.70 – 1.60 (m, 1H), 1.53 – 1.33 (m, 4H), 1.31 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 144.1, 143.9, 128.4, 127.6, 115.1, 72.9, 70.2, 68.4, 53.2, 50.9, 45.7, 32.8, 32.2, 30.9, 29.1, 25.5, 22.1 ppm. IR v_{max} 3055, 2995, 2924, 2853, 1437, 1182, 1120, 882, 743, 694 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₄H₃₀NaO₃ [M+Na]⁺: 389.2087, found [M+Na]⁺: 389.2102.

BnO

LiAlH₄, THF

$$0$$
 °C to r.t, 2 h

 85%

BnO

HO

Me

30

CCDC 1835496

To a solution of **30** (80 mg, 218.20 umol, 1.0 equiv.) in anhydrous THF (5 mL) was added a solution of LiAlH₄ (364 uL, 873.15 umol, 4.0 equiv., 2.5 M in THF) at 0 °C. After stirring at rt for 2 h, the reaction mixture was quenched with EtOAc (5 mL) and 1N aq. HCl (5 mL), extracted with EtOAc (3×10 mL). The combined organic

layer was washed with brine (2×10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (20% ethyl acetate-petroleum ether) to give 69.0 mg of **31** (85%) as thick solid, $R_f = 0.12$ (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.31 (d, J = 1.2 Hz, 0.36 H), 5.01 (s, 0.73H), 4.93 (s, 0.36H), 4.84 (s, 0.73H), 4.64 (d, J = 1.0 Hz, 0.36H), 4.51 – 4.49 (m, 2H), 4.12 – 3.80 (m, 3H), 3.70 (d, J = 12.2 Hz, 1H), 3.55 – 3.34 (m, 3H), 2.66 – 1.79 (m, 10H), 1.78 – 1.34 (m, 7H), 1.14 – 1.07 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 154.3, 138.7, 137.9, 137.4, 128.5, 127.9, 112.8, 112.4, 73.2, 71.3, 71.1, 68.5, 66.9, 62.4, 49.3, 48.0, 47.7, 44.3, 40.0, 37.4, 34.8, 33.5, 32.8, 30.4, 29.4, 24.9, 24.2, 22.0, 19.6, 18.3 ppm. IR ν_{max} 3424, 2960, 2943, 2874, 1464, 1383, 1108, 1052, 887cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂4H₃4NaO₃ [M+Na]⁺: 393.2400, found [M+Na]⁺: 393.2417. Conditions for culturing single crystal: CH₂Cl₂:Hexane=1:4, Static mixing, volatilization and crystallization at room temperature, CCDC 1835496.

To a solution of a mixture of **28**, **29** and **S8** (620 mg, 1.75 umol, 1.0 equiv.) in anhydrous acetone (35 mL) was added K₂CO₃ (2.44 g, 17.49 mmol, 10.0 equiv.), NaI (2.60 g, 17.49 mmol, 10.0 equiv.) and allyl bromide (1.20 mL, 13.99 mmol, 8.0 equiv.) at rt under nitrogen atmosphere. After stirring at 60 °C for 10 h, the solvent was removed and the residue was dissolved in EtOAc (50 mL), washed

with Na₂S₂O₃ (1×15 mL), H₂O (2×15 mL) and brine (2×15 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (10% ethyl acetate-petroleum ether) to give a mixture of **S10** and **S11** (602 mg, 87%) as colorless oil, R_f = 0.34 (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.28 (m, 5H), 5.77 – 5.69 (m, 1H), 5.02 – 4.97 (m, 2H), 4.50 – 4.47 (m, 3H), 4.12 (d, J = 9.6 Hz, 1H), 3.44 (t, J = 5.9 Hz, 2H), 2.97 (d, J = 17.6 Hz, 1H), 2.48 – 2.39 (m, 3H), 2.04 (dd, J = 14.2, 7.0 Hz, 2H), 1.97 – 1.84 (m, 2H), 1.73 – 1.66 (m, 2H), 1.50 – 1.40 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 175.0, 138.1, 137.6, 128.5, 127.7, 115.7, 73.1, 72.9, 69.2, 55.9, 36.8, 35.9, 32.9, 25.2, 22.4 ppm. IR ν_{max} 2927, 2856, 1786, 1702, 1454, 1102, 1022, 699 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₅H₃₀NaO₄ [M+Na]⁺: 417.2036, found [M+Na]⁺: 417.2020.

To a solution of a mixture of **S10** and **S11** (602 mg, 1.53 mmol, 1.0 equiv.) in anhydrous THF (35 mL) was added a solution of LiBHEt₃ (7.6 mL, 7.63 mmol, 5.0 equiv., 1.0 M in THF) at -10 °C and stirred at that temperature for 1 h. After quenched with MeOH (1 mL) and 1 N aq. HCl (10

mL), the mixture was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (2×30 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give 605 mg of the crude mixture of **S12** and **S13**, which was used directly for next step without purification. To a crude mixture of **S12** and **S13** in anhydrous DMF (20 mL) was added TBAI (559.0 mg, 1.51 mmol, 1.0 equiv.) and NaH (605.0 mg, 15.13 mmol, 10.0 equiv.) at rt. After stirring at rt for 10 mins, BnBr (1.6 mL, 15.13

mmol, 10.0 equiv.) was added at rt and stirred at 45 °C for 10 h. After cooling to rt, the reaction mixture was quenched with sat. NH₄Cl (35 mL), extracted with EtOAc (2×55 mL). The combined organic layer was washed with brine (2×35 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (5% ethyl acetate-petroleum ether) to give a mixture of **32** and **S14** (440 mg, 60%, 2 steps) as colorless oil, $R_f = 0.72$ (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.22 (m, 10H), 5.89 – 5.80 (m, 1H), 5.39 (d, J = 2.1 Hz, 1H), 5.18 – 5.07 (m, 2H), 4.73 – 4.68 (m, 1H), 4.59 – 4.56 (m, 1H), 4.48 – 4.36 (m, 2H), 4.31 – 4.26 (m, 1H), 4.20 – 4.03 (m, 2H), 3.46 – 3.30 (m, 2H), 2.83 – 2.66 (m, 2H), 2.53 – 2.26 (m, 3H), 2.19 – 1.65 (m, 6H), 1.55 – 1.29 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 176.5, 144.3, 139.3, 138.5, 137.9, 135.5, 132.9, 132.3, 128.3, 128.1, 127.4, 118.9, 118.8, 78.9, 73.2, 73.1, 70.9, 70.6, 69.9, 56.2, 54.4, 52.6, 50.9, 46.2, 39.1, 37.3, 36.5, 35.3, 32.5, 30.9, 29.6, 27.0, 26.2, 25.9, 23.4, 22.7 ppm. IR ν_{max} 3063, 3029, 2925, 2853, 1774, 1496, 1454, 1103, 1012, 697 cm⁻¹. HRMS (m/z): ESI [M+N_a]⁺ calcd for C₃₂H₃₈NaO₄ [M+N_a]⁺: 509.2668, found [M+N_a]⁺: 509.26620.

To a solution of **30** (30.0 mg, 71.33 umol, 1.0 equiv.) in anhydrous THF (5 mL) was added a solution of LiAlH₄ (570.6 uL, 1.43 mmol, 20.0 equiv., 2.5 M in TH F) at 0 °C. After stirring at rt for 5 h, the reaction mixture was quenched with EtOAc (5 mL) and 1N aq. HCl (5 mL),

extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (20% ethyl acetate-petroleum ether) to give 23.6 mg of a mixture of 33 and S15 (78%) as thick solid, $R_f = 0.23$ (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.24 (m, 10H), 5.93 – 5.86 (m, 1H), 5.30 (d, J = 2.2 Hz, 0.69H), 5.09 – 5.03 (m, 2H),

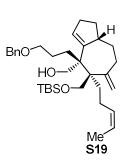
4.63 - 4.15 (m, 7H), 4.01 - 3.71 (m, 2H), 3.61 - 3.37 (m, 5H), 2.87 - 2.84 (m, 1H), 2.69 - 2.47 (m, 2H), 2.39 - 1.15 (m, 15H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 148.2, 139.1, 138.2, 137.8, 136.4, 135.5, 129.5, 128.5, 128.4, 128.3, 128.2, 127.8, 127.2, 126.9, 117.5, 117.4, 87.3, 84.6, 73.4, 73.2, 72.0, 71.6, 71.4, 63.9, 63.3, 49.7, 49.3, 45.4, 39.5, 37.1, 34.6, 34.4, 32.5, 30.8, 25.1, 24.9, 24.4, 23.5, 22.9, 22.2, 21.2 ppm. IR ν_{max} 3420, 3064, 3029, 2930, 2855, 1454, 1094, 1052, 910, 696 cm⁻¹. HRMS (m/z): ESI [M+N_a]⁺ calcd for $C_{32}H_{42}NaO_4$ [M+N_a]⁺: 513.2975, found [M+N_a]⁺: 513.2962. Conditions for culturing single crystal: CH₂Cl₂:Hexane=1:4, Static mixing, volatilization and crystallization at room temperature, CCDC 1835500.

To a solution of a mixture of **28**, **29** and **S8** (98.6 mg, 278.19 umol, 1.0 equiv.) in anhydrous MeCN (8 mL) was added K₂CO₃ (115.3 mg, 834.56 umol, 2.0 equiv.) and (Z)-5-iodopent-2-ene (272.7 mg, 1.39 mmol, 5.0 equiv.) at rt under nitrogen atmosphere. After stirring at 80 °C for 14 h, the solvent was removed and the residue was dissolved in EtOAc (50 mL), washed with Na₂S₂O₃ (1×15 mL), H₂O (2×15 mL) and brine (2×15 mL). The organic layer was dried over Na₂SO₄, filtered

and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (10% ethyl acetate-petroleum ether) to give **34** (45.3 mg, 39%) as colorless oil, $R_f = 0.50$ (25% ethyl acetate-petroleum ether). 1H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.54 – 5.39 (m, 2H), 5.34 – 5.23 (m, 1H), 4.44 (s, 2H), 4.23 – 4.11 (m, 2H), 3.45 – 3.29 (m, 2H), 2.83 – 2.09 (m, 10H), 1.92 – 1.77 (m, 3H), 1.56 (d, J = 3.9 Hz, 3H), 1.53 – 1.41 (m, 4H) ppm. 13 C NMR (125 MHz, CDCl₃) δ 203.5, 172.3, 142.2, 138.2, 129.8, 128.9, 128.4, 127.9, 127.7, 126.8, 125.9, 73.2,69.6, 68.3, 64.1, 50.0, 45.3, 42.5, 31.1, 30.1, 29.6, 27.3, 24.7.21.8, 17.9, 12.8 ppm. IR ν_{max} 2920, 2850, 1786, 1697, 1384, 1099, 1024, 698 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for $C_{27}H_{34}NaO_4$ [M+Na]⁺: 445.2355, found [M+Na]⁺: 445.2364.

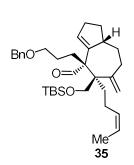
To an oven-dried flask charged with PPh₃MeBr (1.26 g, 3.51 mmol, 33.0 equiv.) and *t*-BuOK (358.5 mg, 3.19 mmol, 30.0 equiv.) was added anhydrous THF (10 mL) at rt under nitrogen atmosphere. After stirred at rt for 10 mins, the suspention was transferred to another oven-dried flask charged with crude **34** (45.0 mg, 106.49 umol, 1.0 equiv.) via syringe. The mixture was stirred at rt for 10 mins and at 70 °C for 8 h. After cooling to rt, the reaction mixture was quenched with sat. NH₄Cl (10

mL), extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (2×20 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (5% ethyl acetate-petroleum ether) to give 36.5 mg of the product S16 (82%) as colorless oil. R_f = 0.74 (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.70 (s, 1H), 5.46 – 5.39 (m, 2H), 5.34 – 5.24 (m, 1H), 5.22 (s, 1H), 4.51 – 4.43 (m, 2H), 4.27 (dd, J = 9.1, 1.5 Hz, 1H), 4.05 (d, J = 9.1 Hz, 1H), 3.47 – 3.35 (m, 2H), 2.72 (s, 1H), 2.43 – 2.31 (m, 3H), 2.28 – 2.17 (m, 1H), 2.14 – 2.01 (m, 2H), 1.95 – 1.74 (m, 4H), 1.64 – 1.60 (m, 1H), 1.57 – 1.53 (m, 3H), 1.54 – 1.24 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 143.6, 141.3, 138.4, 129.3, 128.9, 128.4, 127.6, 124.8, 117.2, 72.9, 70.2, 68.2, 56.9, 51.4, 45.6, 32.3, 32.2, 31.9, 30.9, 29.6, 25.4, 21.7, 12.8 ppm. IR ν_{max} 2932, 2856, 1786, 1384, 1098, 1026, 697 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₂₈H₃₆NaO₃ [M+Na]⁺: 443.2557, found [M+Na]⁺: 443.2572.


To a solution of **S16** (22.0 mg, 52.31 umol, 1.0 equiv.) in anhydrous THF (5 mL) was added a solution of LiAlH₄ (418 uL, 1.05 mmol, 20.0 equiv., 2.5 M in THF) at 0 °C. After stirring at rt for 10 h, the reaction mixture was quenched with EtOAc (5 mL) and 1N aq. HCl (5 mL), extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (2×10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude **S17**, which was used directly for next step without purification. To a solution of crude **S17** (22.2 mg) in anhydrous CH₂Cl₂/DMF (5 mL/1mL) was added

imidazole (44.5 mg, 653.53 umol, 12.5 equiv.), NaI (78.7 mg, 522.83 umol, 10.0 equiv.) and TBSCl (39.4 mg, 261.41 umol, 5.0 equiv.) successively at rt. The mixture was stirred at 40 °C for 0.5 h. After cooling to rt, the reaction mixture was diluted with EtOAc (50 mL), washed with Na₂S₂O₃ (1×15 mL), H₂O (2×15 mL) and brine (2×15 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (10% ethyl acetate-petroleum ether) to give **S19** (12.4 mg, 44%) as colorless oil, $R_f = 0.40$ (5% ethyl acetate-petroleum ether), and **S18** (10.8 mg, 38%) as colorless oil, $R_f = 0.60$ (5% ethyl acetate-petroleum ether).

BnO
TBSO
HO
Me
S18


¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.26 (m, 5H), 5.41 – 5.39 (m, 2H), 5.29 (s, 1H), 5.04 (s, 1H), 4.70 (s, 1H), 4.55 (dd, J = 10.7, 3.3 Hz, 1H), 4.48 (s, 2H), 4.08 (d, J = 10.6 Hz, 1H), 4.03 (dd, J = 12.3, 3.1 Hz, 1H), 3.62 (d, J = 10.7 Hz, 1H), 3.60 – 3.53 (m, 1H), 3.44 – 3.38 (m, 2H), 2.73 – 2.66 (m, 1H), 2.36 – 2.29 (m, 1H), 2.16 – 1.59 (m, 14H), 1.58 (d, J = 4.8 Hz, 3H), 1.47 – 1.40 (m, 3H), 0.93 (s, 9H), 0.14 – 0.12 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 152.6, 149.4, 138.7, 131.4, 128.6, 4, 114.9, 72.8, 71.1, 64.0, 62.8, 50.7, 48.1, 43.9, 33.8, 33.2, 32.1, 30.4, 29.1, 25.8, 32.2, 12.8, -5.6 ppm. IR ν_{max} 3452, 3087, 3010, 2934, 2857, 1612, 1470, 1266, 1009,

128.3, 127.5, 123.4, 114.9, 72.8, 71.1, 64.0, 62.8, 50.7, 48.1, 43.9, 33.8, 33.2, 32.1, 30.4, 29.1, 25.8, 25.1, 24.9, 21.9, 18.2, 12.8, -5.6 ppm. IR v_{max} 3452, 3087, 3010, 2934, 2857, 1612, 1470, 1266, 1009, 1054, 838, 779, 697 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for $C_{34}H_{54}NaO_3Si$ [M+Na]⁺: 561.3734, found [M+Na]⁺: 561.3739.

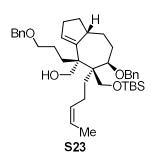
¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.42 – 5.39 (m, 2H), 5.35 – 5.31 (m, 1H), 5.01 (s, 1H), 4.65 (dd, J = 11.1, 3.0 Hz, 1H), 4.53 (s, 1H), 4.49 (s, 2H), 4.10 – 4.01 (m, 2H), 3.73 (d, J = 10.7 Hz, 1H), 3.54 – 3.39 (m, 3H), 2.75 (dd, J = 3.6, 1.8 Hz, 1H), 2.35 – 2.26 (m, 1H), 2.16 – 1.66 (m, 11H), 1.60 – 1.48 (m, 6H), 1.40 – 1.38 (m, 1H), 1.28 – 1.24 (m, 1H), 0.94 (s, 9H), 0.16 – 0.14 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 153.1, 149.3, 138.9, 130.9, 129.9, 128.3, 127.5,

127.3, 123.6, 113.6, 76.8, 72.6, 71.3, 63.3, 50.4, 48.2, 43.9, 33.8, 31.9, 30.5, 28.0, 25.8, 25.3, 25.0, 21.8, 18.2, 12.9, -5.6 ppm. IR ν_{max} 3446, 3011, 2934, 2857, 1470, 1258, 1053, 837, 778, 696 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for $C_{34}H_{54}NaO_3Si$ [M+Na]⁺: 561.3734, found [M+Na]⁺: 561.3761.

To a solution of **S19** (13.0 mg, 24.12 umol, 1.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) was added NaHCO₃ (81.1 mg, 964.97 umol, 40.0 equiv.) and DMP (102.3 mg, 241.24 umol, 10.0 equiv.) successively at rt. After stirring at for 1 h, the solvent was removed. The residue was dissolved in EtOAc (30 mL), followed by addition of sat. Na₂S₂O₃ (5 mL) and sat. NaHCO₃ (5 mL), and then stirred at rt for 20 mins. The

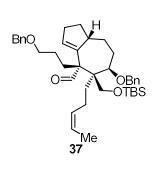
resulting mixture was seperated, and the organic layer was washed with H_2O (2×5 mL) and brine (2×5 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (1% ethyl acetate-petroleum ether) to give **35** (10.1 mg, 78%) as colorless oil, $R_f = 0.65$ (5% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 9.97 (s, 1H), 7.38 – 7.26 (m, 5H), 5.68 (d, J = 1.7 Hz, 1H), 5.44 – 5.35 (m, 2H), 5.05 (s, 1H), 4.54 (s, 1H), 4.50 (s, 2H), 3.89 (d, J = 10.4 Hz, 1H), 3.57 (d, J = 10.1 Hz, 1H), 3.54 – 3.54 (m, 1H), 3.46 – 3.43 (m, 1H), 2.71 – 2.68 (m, 1H), 2.40 – 2.37 (m, 1H), 2.24 – 2.10 (m, 4H), 1.96 – 1.66 (m, 10H), 1.58 – 1.57 (m, 3H), 1.46 – 1.42 (m, 1H), 1.29 – 1.24 (m, 1H), 0.89 (s, 9H), 0.05 – 0.04 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 203.1, 150.3, 145.1, 138.9, 130.7, 130.5, 128.3, 127.6, 127.4, 123.7, 114.9, 72.6, 71.3, 62.6, 56.3, 54.1, 45.6, 32.7, 31.5, 30.8, 30.2, 29.7, 28.9, 25.9, 25.5, 22.3, 18.3, 12.8, -5.7, -5.8 ppm. IR ν_{max} 3087, 3011, 2929, 2856, 1720, 1470, 1256, 1096, 837, 770, 696 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₅₂NaO₃Si [M+ Na]⁺: 559.3578, found [M+ Na]⁺: 559.3591.

To a solution of a mixture of **34** (45.0 mg, 106.49 umol, 1.0 equiv.) in anhydrous THF (10 mL) was added a solution of LiBHEt₃ (1.06 mL, 1.06 mmol, 10.0 equiv., 1.0 M) in THF at -10 °C and stirred at that temperature for 2 h. After quenched with MeOH (1 mL) and 1 N aq. HCl (10 mL), the resulting mixture was extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to


give 46 mg of the crude **S20**, which was used directly for next step without purification. To a crude **S20** in anhydrous DMF (5 mL) was added NaI (324.8 mg, 2.17 mmol, 20.0 equiv.) and NaH (43.3 mg, 1.07 mmol, 10.0 equiv.) at rt. After stirring at rt for 10 mins, BnBr (226.8 uL, 2.17 mmol, 20.0 equiv.) was added at rt and stirred at 45 °C for 10 h. After cooling to rt, the reaction mixture was quenched with sat. NH₄Cl (15 mL), extracted with EtOAc (2×30 mL). The combined organic layer was washed with brine (3×20 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (5% ethyl acetate-petroleum ether) to give **36** (39.0 mg, 70%, 2 steps) as colorless oil, $R_f = 0.62$ (20% ethyl acetate-petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.21 (m, 10H), 5.50 – 5.40 (m, 1H), 5.34 – 5.27 (m, 2H), 4.73 (d, J = 11.5 Hz, 1H), 4.64 – 4.59 (m, 1H), 4.44 (s, 2H), 4.24 (d, J = 8.2 Hz, 1H), 4.11 – 4.08 (m, 2H), 3.45 – 3.33 (m, 2H),

2.78 (s, 1H), 2.45 – 1.62 (m, 11H), 1.60 (d, J = 6.1 Hz, 3H), 1.56 – 1.29 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 144.3, 139.3, 138.5, 129.2, 128.3, 128.1, 127.6, 127.5, 127.4, 127.1, 125.1, 73.3, 73.1, 70.7, 69.9, 56.1, 52.9, 46.4, 32.4, 30.9, 29.7, 27.3, 26.8, 25.9, 21.6, 12.8 ppm. IR ν_{max} 3063, 3027, 2925, 2853, 1774, 1496, 1454, 1359, 1103, 1012, 696 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₃₄H₄₂NaO₄ [M+ Na]⁺: 537.2975, found [M+ Na]⁺: 537.2981.

To a solution of **36** (60.0 mg, 116.57 umol, 1.0 equiv.) in anhydrous THF (5 mL) was added a solution of LiAlH₄ (1.17 mL, 1.17 mmol, 10.0 equiv., 1.0 M in THF) at rt. After stirring at 70 °C for 5 h, the reaction mixture was quenched with EtOAc (5 mL) and 1N aq. HCl (5 mL), extracted with EtOAc (3×15 mL). The combined organic layer was washed with brine (2×15 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to give 60.5 mg of crude **S21**, which was used directly for next step without purification. To a solution of crude **S21** (60.5 mg) in anhydrous CH₂Cl₂/DMF (10 mL/2 mL) was added imidazole (98.4 mg, 1.45 mmol, 12.5 equiv.), NaI (173.4 mg, 1.16 mmol, 10.0 equiv.) and TBSCl (87.2 mg, 578.34 umol, 5.0 equiv.) successively at rt. The mixture was stirred at 40 °C for 0.5 h. After cooling to rt, the reaction mixture was diluted with EtOAc (60 mL), washed with Na₂S₂O₃ (1×15 mL), H₂O (2×15 mL) and brine (2×15 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under vacuum to give crude product, which was purified by silica gel column chromatography (5% to 10% ethyl acetate-petroleum ether) to give **S22** (35.8 mg, 49%) as colorless oil, $R_f = 0.42$ (5% ethyl acetate-petroleum ether), and **S23** (20.1 mg, 28%) as colorless oil, $R_f = 0.32$ (5% ethyl acetate-petroleum ether).


¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.21 (m, 10H), 5.43 – 5.28 (m, 3H), 4.61 (dd, J = 12.0, 9.7 Hz, 2H), 4.49 (d, J = 9.9 Hz, 2H), 4.33 – 4.24 (m, 1H), 4.19 – 4.10 (m, 1H), 3.99 (d, J = 11.1 Hz, 1H), 3.59 – 3.26 (m, 5H), 2.93 (d, J = 5.8 Hz, 1H), 2.31 – 1.93 (m, 7H), 1.88 – 1.66 (m, 5H), 1.59 (s, 3H), 1.52 – 1.32 (m, 4H), 0.93 – 0.88 (m, 9H), 0.10 – 0.01 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 148.9, 139.0, 138.8, 131.6, 130.9, 129.7, 128.2, 127.3, 123.7, 83.1, 72.8, 71.7,

70.7, 64.8, 63.5, 50.1, 48.7, 44.7, 32.9, 30.7, 28.5, 26.0, 25.9, 25.8, 25.4, 24.6, 21.7, 21.4, 18.1, 17.9, 12.9, -5.7 ppm. IR ν_{max} 3420, 3064, 3029, 2930, 2855, 1454, 1094, 734, 697 cm⁻¹. HRMS (m/z): ESI [M+N_a]⁺ calcd for C₄₀H₆₀NaO₄Si [M+N_a]⁺: 655.4153, found [M+N_a]⁺: 655.4185.

¹H NMR (500 MHz, CDCl₃) δ 1H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.45 – 5.37 (m, 2H), 5.27 (d, J = 2.1 Hz, 1H), 4.57 (dd, J = 11.7, 9.3 Hz, 1H), 4.48 (q, J = 12.1 Hz, 2H), 4.31 – 4.24 (m, 3H), 4.02 (d, J = 10.6 Hz, 1H), 3.63 – 3.41 (m, 6H), 2.94 (s, 1H), 2.35 – 2.31 (m, 2H), 2.20 – 1.76 (m, 10H), 1.62 – 1.57 (m, 3H), 0.94 – 0.87 (m, 9H), 0.16 – 0.04 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 147.3, 132.3, 131.4, 130.9, 128.9, 128.3, 128.2,

127.4, 127.3, 127.1, 126.9, 83.7, 72.9, 71.4, 71.3, 65.6, 64.6, 63.7, 49.4, 49.2, 44.6, 33.0, 31.9, 30.6, 29.4, 27.2, 26.0, 25.4, 22.7, 22.4, 21.5, 12.8, -5.6 ppm. IR ν_{max} 3445, 3063, 3028, 2951, 2929, 2856, 1455, 1361, 1254, 1057, 836, 777, 732, 696 cm⁻¹. HRMS (m/z): ESI [M+N_a]⁺ calcd for C₄₀H₆₀NaO₄Si [M+N_a]⁺: 655.4153, found [M+N_a]⁺: 655.4175.

To a solution of S23(2.7 mg, 4.27 umol, 1.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) was added NaHCO₃ (14.3 mg, 170.62 umol, 40.0 equiv.) and DMP (18.1 mg, 42.65 umol, 10.0 equiv.) successively at rt. After stirring at for 0.5 h, the solvent was removed. The residue was dissolved in EtOAc (20 mL), followed by addition of sat. Na₂S₂O₃ (5 mL) and sat. NaHCO₃ (5 mL), and then stirred at rt for 20 mins. The resulting mixture was seperated, and the organic layer was washed with H₂O (2×5 mL) and brine (2×5 mL), dried over Na₂SO₄, filtered and

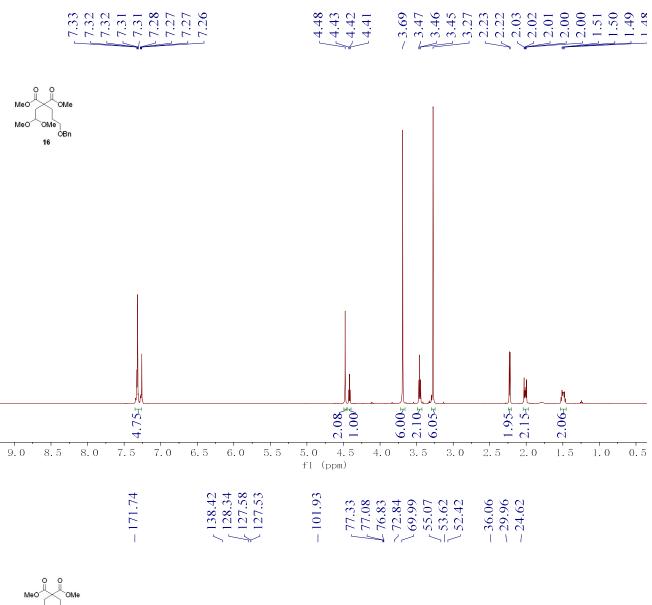
concentrated under vacuum to give crude product, which was purified by preparative thin layer chromatography (3% ethyl acetate-petroleum ether) to give **37** (1.9 mg, 71%) as colorless oil, R_f = 0.74 (5% ethyl acetate-petroleum ether). 1 H NMR (500 MHz, CDCl₃) δ 1H NMR (500 MHz, CDCl₃) δ 10.03 – 10.02 (m, 1H), 7.33 – 7.22 (m, 10H), 5.44 – 5.39 (m, 3H), 5.34 (d, J = 2.1 Hz, 1H), 4.53 – 4.49 (m, 3H), 4.27 – 4.25 (m, 1H), 3.91 (d, J = 6.7 Hz, 1H), 3.86 – 3.84 (m, 1H), 3.51 – 3.43 (m, 3H), 2.95 (s, 1H), 2.62 – 2.55 (m, 1H), 2.43 – 1.75 (m, 10H), 1.68 – 1.58 (m, 4H), 1.55 – 1.34 (m, 5H), 0.92 – 0.82 (m, 9H), 0.05 – 0.00 (m, 6H) ppm. 13 C NMR (125 MHz, CDCl₃) δ 207.8, 146.8, 138.8, 138.7, 130.9,

130.1, 128.3, 127.4, 127.2, 126.9, 124.1, 82.7, 72.9, 71.3, 63.8, 55.9, 51.6, 44.7, 32.9, 30.6, 30.2, 26.2, 25.9, 25.7, 23.9, 23.3, 22.5,18.3, 12.8, -5.7 ppm. IR ν_{max} 3028, 3011, 2927, 2855, 1708, 1454, 1361, 1252, 1091, 837, 777, 733, 696 cm⁻¹. HRMS (m/z): ESI [M+Na]⁺ calcd for C₄₀H₅₈NaO₄Si [M+Na]⁺: 653.3997, found [M+Na]⁺: 653.4042.

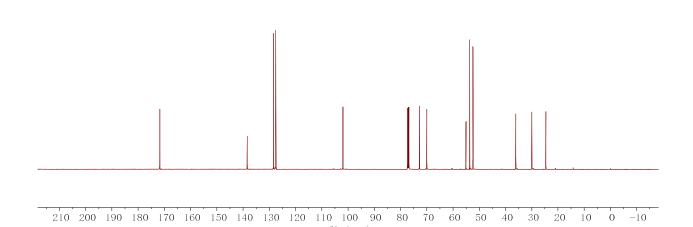
Conditions Screening for Cycloaddition

•								
Entry	R	Additive	Solvent	Temp.	Time	Yield		
1	CH ₂ (35)	BnNHCH ₂ CO ₂ H	PhMe	110°C	15 h	decomposed		
2	CH ₂ (35)	BnNHCH ₂ CO ₂ H	DMF	90 °C to 110 °C	12	NR		
3	CH ₂ (35)	BnNHCH ₂ CO ₂ H Et ₃ N	DMF	110 °C	4 h	decomposed		
4	CH ₂ (35)	HCI.BnNHCH ₂ CO ₂ E t Et ₃ N	PhMe	rt to 110 °C	12.5 h	NR		
5	CH ₂ (35)	BnNH ₂ , TfOCH ₂ TMS CsF	DCM	rt to 40 °C	28 h	NR		
6	CH ₂ (35)	BnNHCH ₂ TMS MgSO ₄	DCE	90 °C	15 h	NR		
7	CH ₂ (35)	NH ₃ , Ti(Oi-Pr) ₄ TMSCN	MeOH	0°C to 70°C	22 h	NR		
8	CH ₂ (35)	NH ₃ , NH ₄ Cl, TMSCN	MeOH	0°C to 70°C	21 h	NR		
9	CH ₂ (35)	BnNH ₂ , AlMe ₃ TMSCN	PhMe	0°C to rt	18.5 h	NR		
10	OBn (37)	BnNHCH ₂ TMS MgSO ₄	DCE	90 °C	15 h	NR		
11	OBn (37)	BnNHCH ₂ CO ₂ H Et ₃ N	DMF	90 °C to 155 °C	23 h	decomposed		
12	OBn (37)	BnNHCH ₂ CO ₂ H 4Å MS, Et ₃ N	DMF	90 °C to 155 °C	23 h	ND		
13	OBn (37)	BnNHCH ₂ CO ₂ H 4Å MS	DMF	110°C to 155 °C	17 h	decomposed		

Additional References in Manuscript

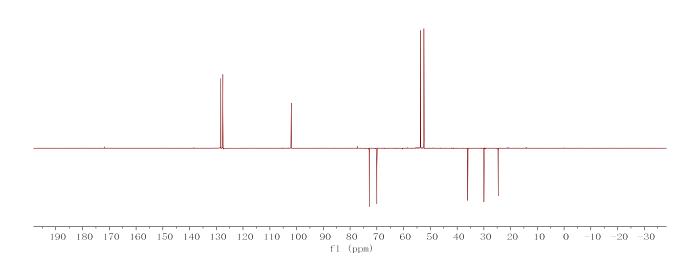

- (a) R. B. Ruggeri, M. M. Hansen, C. H. Heathcock, J. Am. Chem. Soc. 1988, 110, 8734; (b) R. B. Ruggeri, C. H. Heathcock, J. Org. Chem. 1990, 55, 3714; (c) C. H. Heathcock, S. K. Davidsen, S. Mills, M. A. Sanner, J. Am. Chem. Soc. 1986, 108, 5650; (d) S. Piettre, C. H. Heathcock, Science 1990, 248, 1532; (e) C. H. Heathcock, Angew. Chem. Int. Ed. Engl. 1992, 31, 665; (f) C. H. Heathcock, S. K. Davidsen, S. Mills, M. A. Sanner, J. Org. Chem. 1992, 57, 2531; (g) C. H. Heathcock, M. M. Hansen, R. B. Ruggeri, J. C. Kath, J. Org. Chem. 1992, 57, 2544; (h) R. B. Ruggeri, K. F. McClure, C. H. Heathcock, J. Am. Chem. Soc. 1989, 111, 1530; (i) J. A. Stafford, C. H. Heathcock, J. Org. Chem. 1990, 55, 5433; (j) C. H. Heathcock, J. A. Stafford, J. Org. Chem. 1992, 57, 2566; (k) C. H. Heathcock, J. A. Stafford, D. L. Clark, J. Org. Chem. 1992, 57, 2575; (l) C. H.; Kath, J. C. Heathcock, R. B. Ruggeri, J. Org. Chem. 1995, 60, 1120; (m) C. H. Heathcock, S. Piettre, J. Kath, Pure & Appl. Chem. 1990, 62, 1911; (n) C. H. Heathcock, D. Joe, J. Org. Chem. 1995, 60, 1131.
- 11. (a) I. Coldham, L. Watson, H. Adams, N. G. Martin, J. Org. Chem. 2011, 76, 2360; (b) G. Belanger, J. Boudreault, F. Levesque, Org. Lett. 2011, 13, 6204; (c) I. Hayakawa, K. Niida, H. Kigoshi, Chem. Commun. 2015, 51, 11568; (d) S. E. Denmark, R. Y. Baiazitov, S. T. Nguyen, Tetrahedron 2009, 65, 6535; (e) S. E. Denmark, S. T. Nguyen, R. Y. Baiazitov, Heterocycles 2008, 76, 143; (f) I. Coldham, A. J. M. Burrell, H. D. S. Guerrand, N. Oram, Org. Lett. 2011, 13, 1267; (g) S. Ikeda, M. Shibuya, N. Kanoh, Y. Iwabuchi, Org. Lett. 2009, 11, 1833; (h) D. R. Williams, P. K. Mondal, S. A. Bawel, P. P. Nag, Org. Lett. 2014, 16, 1956; (i) D. Sole, X. Urbaneja, J. Bonjoch, Org. Lett. 2005, 7, 5461; (j) F. Sladojevich, I. N. Michaelides, D. Benjamin, J. W. Ward, D. J. Dixon, Org. Lett. 2011, 13, 5132; (k) B. Darses, I. N. Michaelides, F. Sladojevich, J. W. Ward, P. R. Rzepa, D. Dixon, Org. Lett. 2012, 14, 1684; (1) C. Xu, L. Wang, X. Hao, D. Z. Wang, J. Org. Chem. 2012, 77, 6307; (m) M. Yang, L. Wang, Z. He, S.-H. Wang, S.-Y. Zhang, Y.-Q. Tu, F.-M. Zhang, Org. Lett. 2012, 14, 5114; (n) Y. Yao, G. Liang, Org. Lett. 2012, 14, 5499; (o) X. Xiong, Y. Li, Z. Lu, M. Wan, J. Deng, S. Wu, H. Shao, A. Li, Chem. Commun. 2014, 50, 5294; (p) A. A. Ibrahim, A. N. Golonka, A. M. Lopez, J. L. Stockdill, Org. Lett. 2014, 16, 1072; (q) J.-J. Guo, Y. Li, B. Cheng, T. Xu, C. Tao, X. Yang, D. Zhang, G. Yan, H. Zhai, Chem. - Asian J. 2015, 10, 865; (r) D. Ma, H. Cheng, C. Huang, L. Xu, Tetrahedron Lett. 2015, 56, 2492; (s) A. K. Chattopadhyay, H. Menz, V. L. Ly, S. Dorich, S. Hanessian, J. Org. Chem. 2016, 81, 2182; (t) A. K. Chattopadhyay, V. L. Ly, S. Jakkepally, G. Berger, S. Hanessian, Angew. Chem. Int. Ed. 2016, 55, 2577; (u) M. Ueda, M. A. A. Walczak, P. Wipf, Tetrahedron Lett. 2008, 49, 5986; (v) S. Dorich, J. R. Del Valle, S. Hanessian, Synlett 2014,

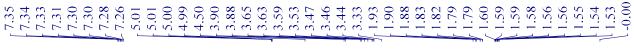
25, 799; (w) S. Hanessian, S. Dorich, H. Menz, *Org. Lett.* 2013, **15**, 4134; (x) T. B. Dunn, J. M. Ellis, C. C. Kofink, J. R. Manning, L. E. Overman, *Org. Lett.* 2009, **11**, 5658; (y) B. Fang, H. Zheng, C. Zhao, P. Jing, H. Li, X. Xie, X. She, *J. Org. Chem.* 2012, **77**, 8367; (z) H. Li, Y. Qiu, C. Zhao, Z. Yuan, X. Xie, X. She, *Chem. -Asian J.* 2014, **9**, 1274.

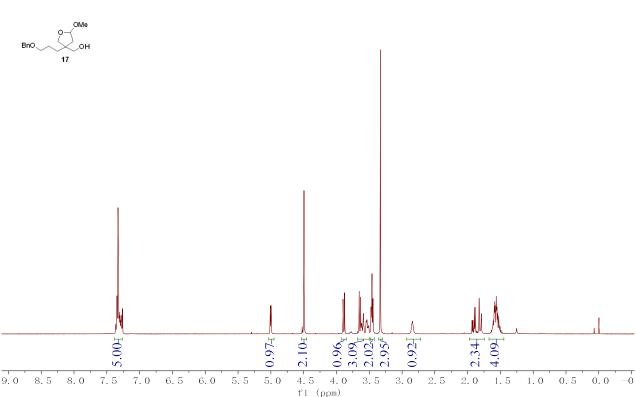

References

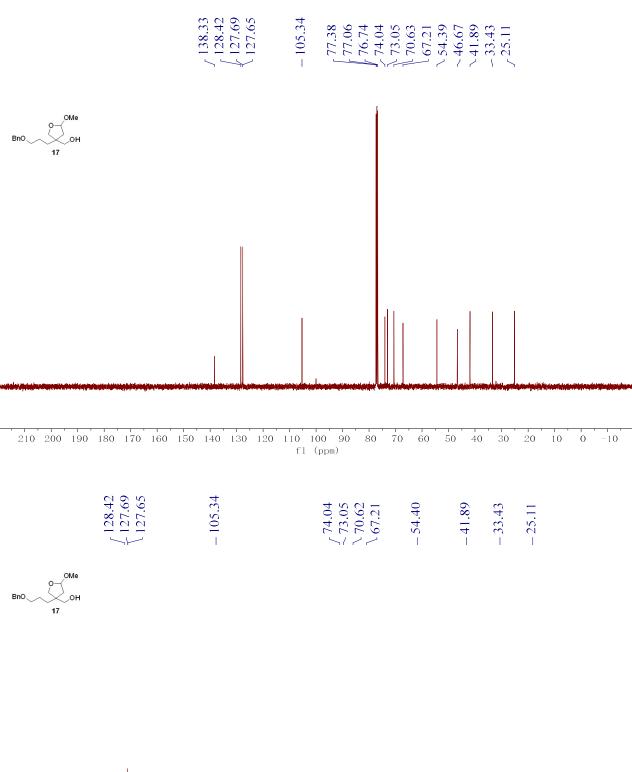
- 1. Z. Chen, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 13593.
- 2. M. W. Thomsen, B. M. Handwerker, S. A. Katz, R. B. Belser, J. Org. Chem. 1988, 53, 907.
- 3. G. A. Molander, G. Hahn, J. Org. Chem. 1986, 51, 2596.
- 4. B. M. Trost, Y. Zhang, T. Zhang, J. Org. Chem. 2009, 74, 5115.

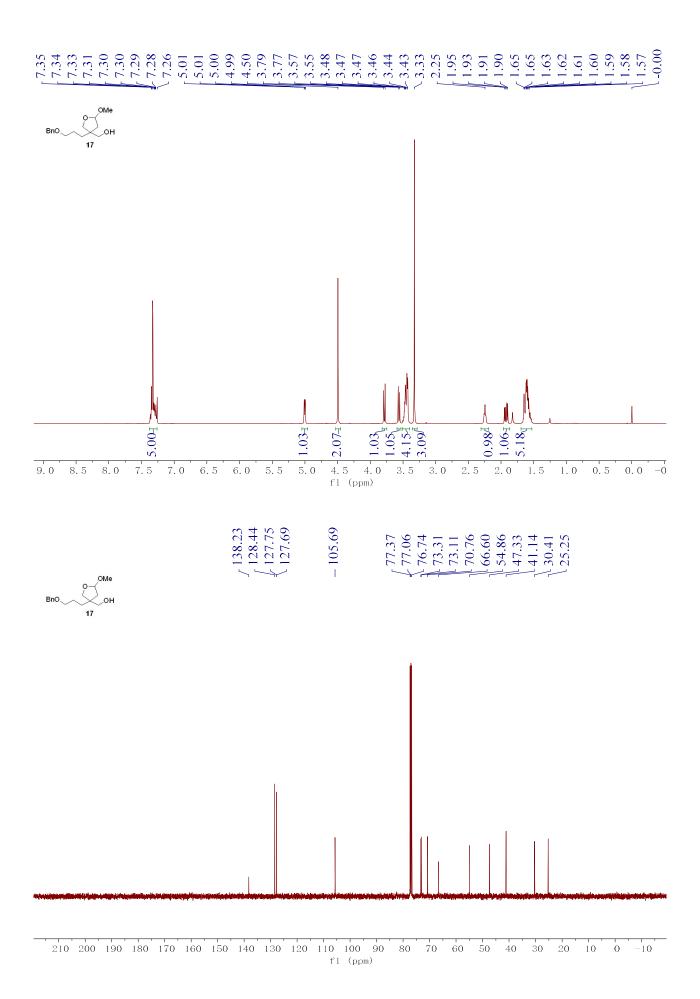
II. ¹H and ¹³C NMR Spectra

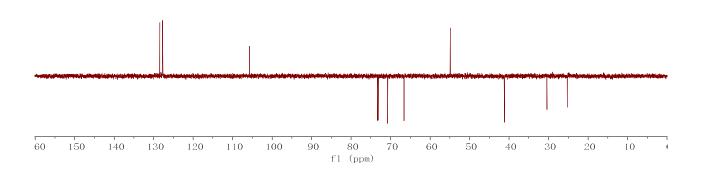


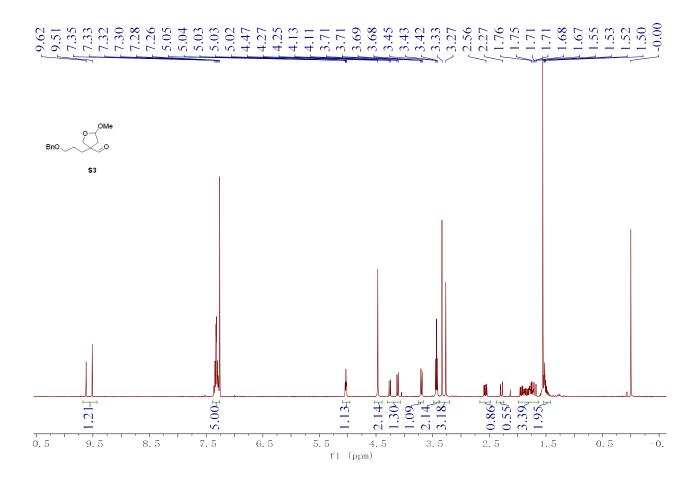


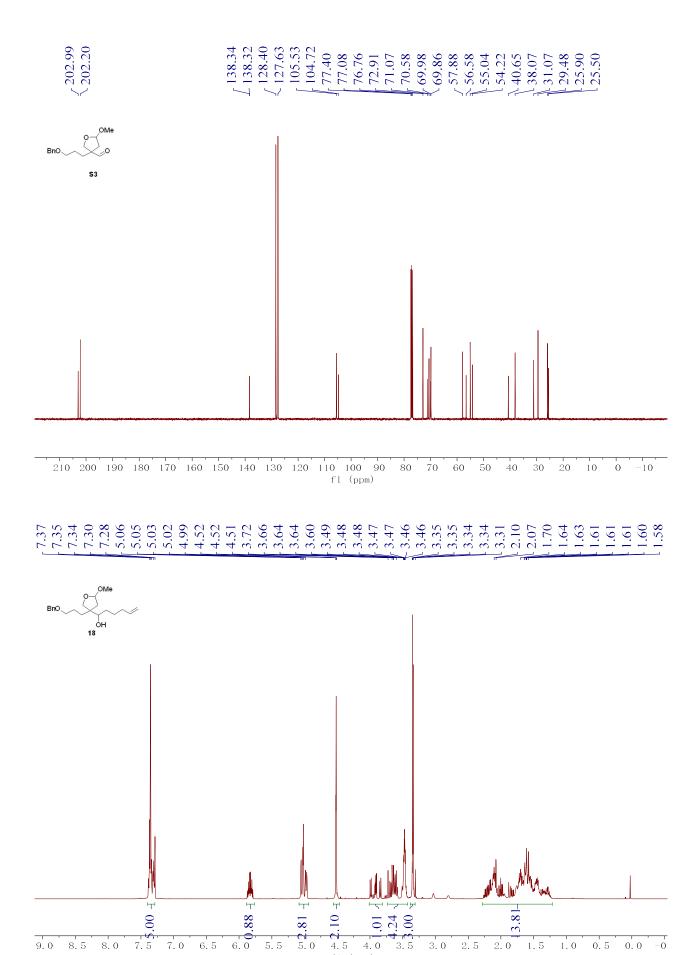


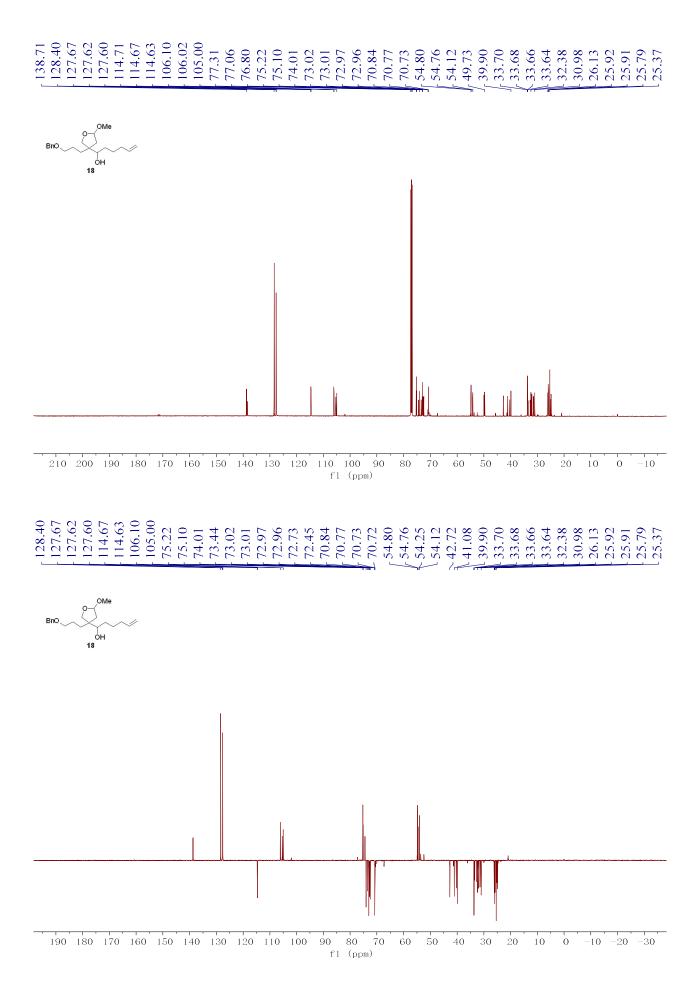


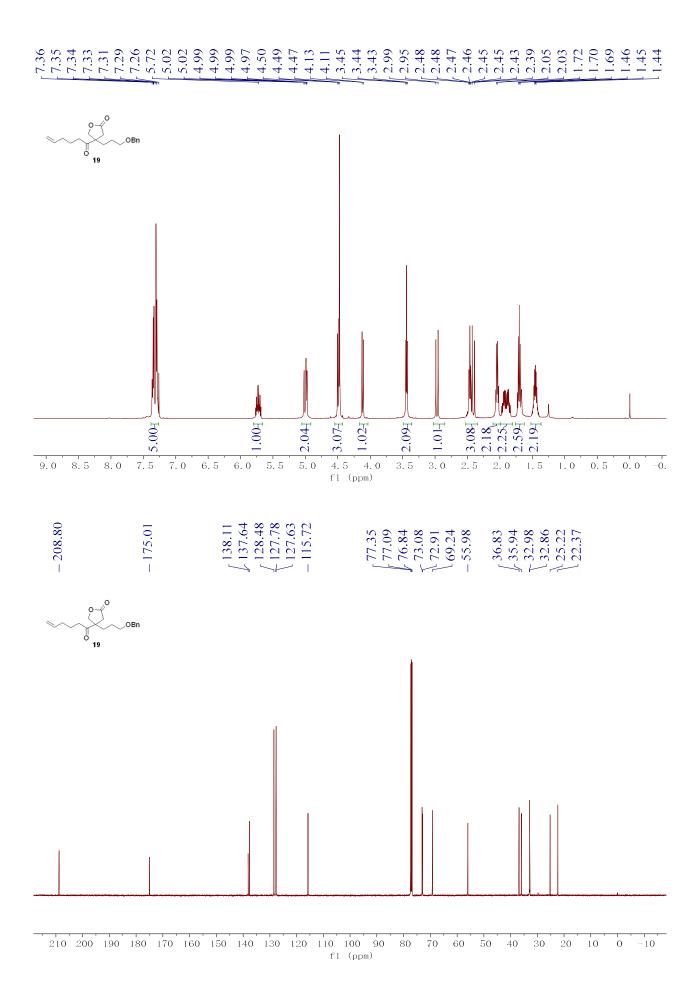


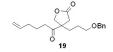


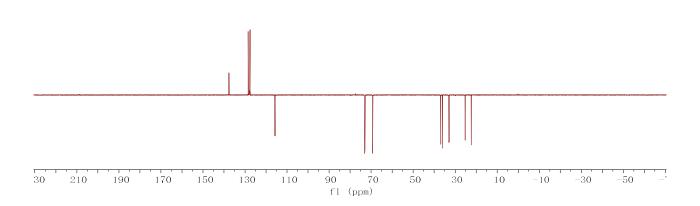


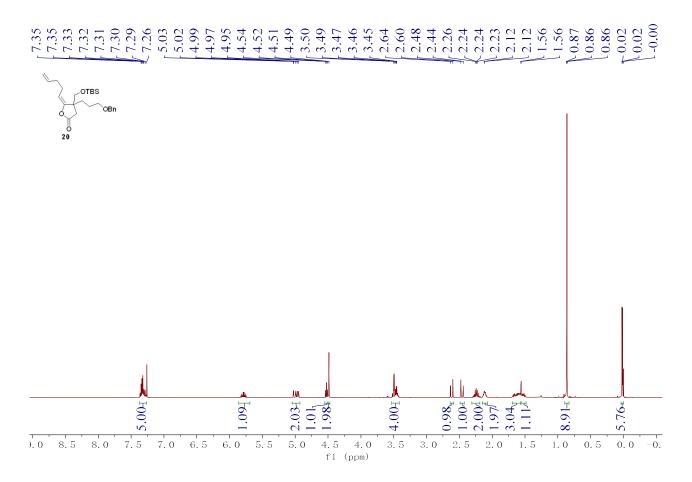


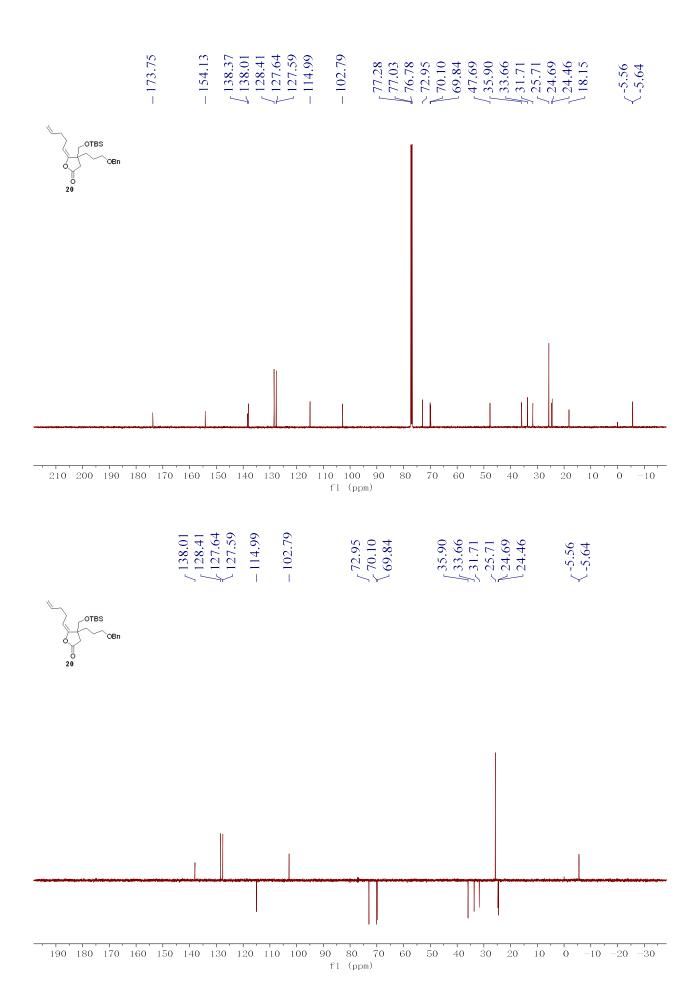


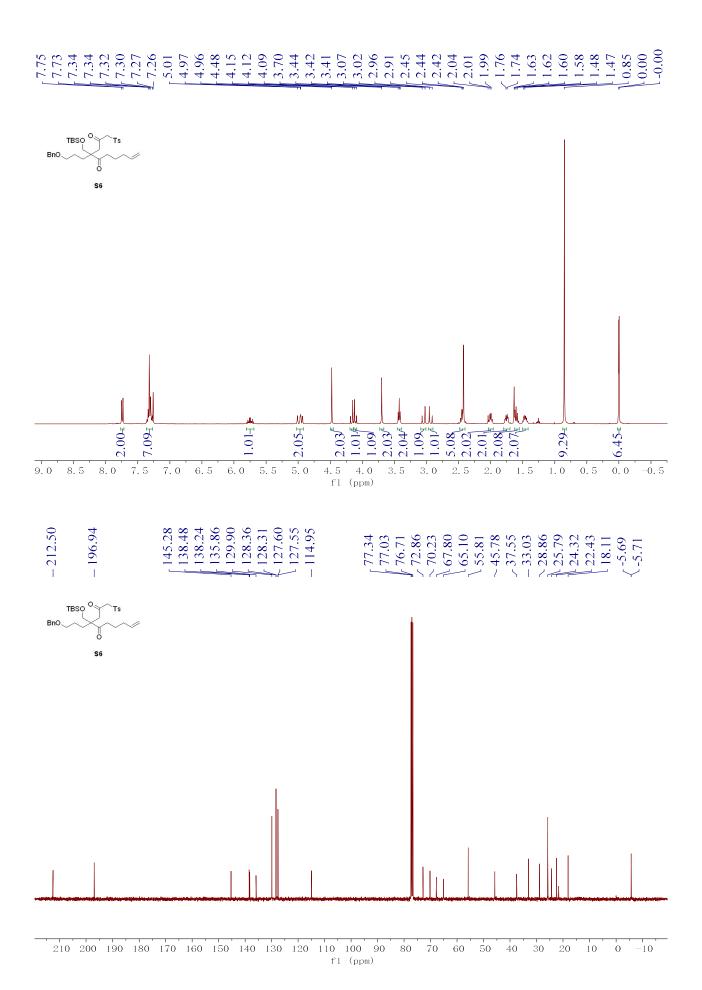


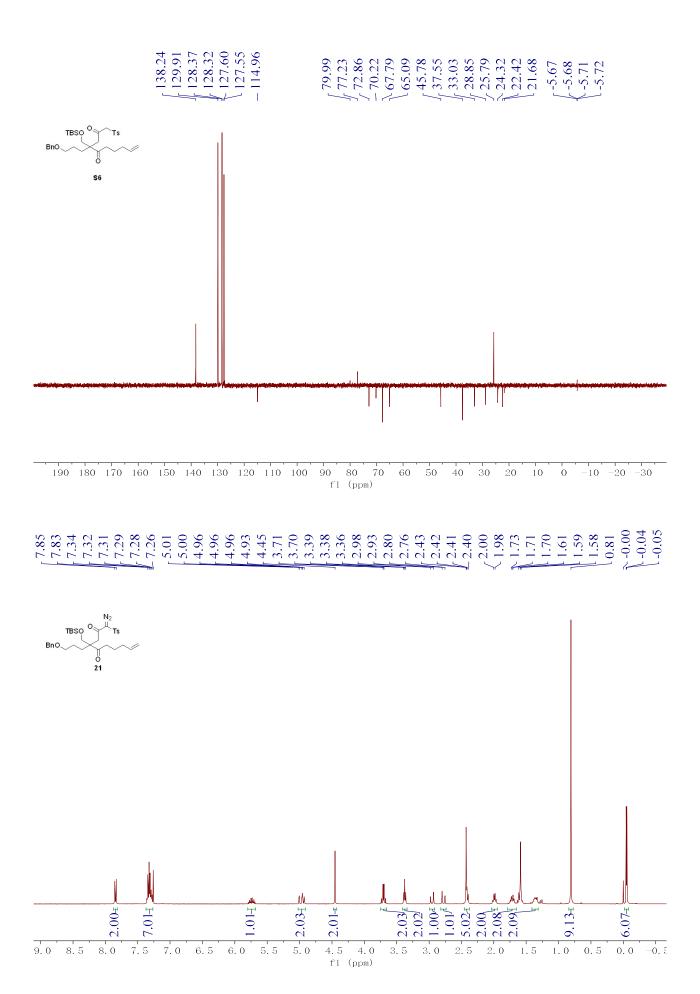


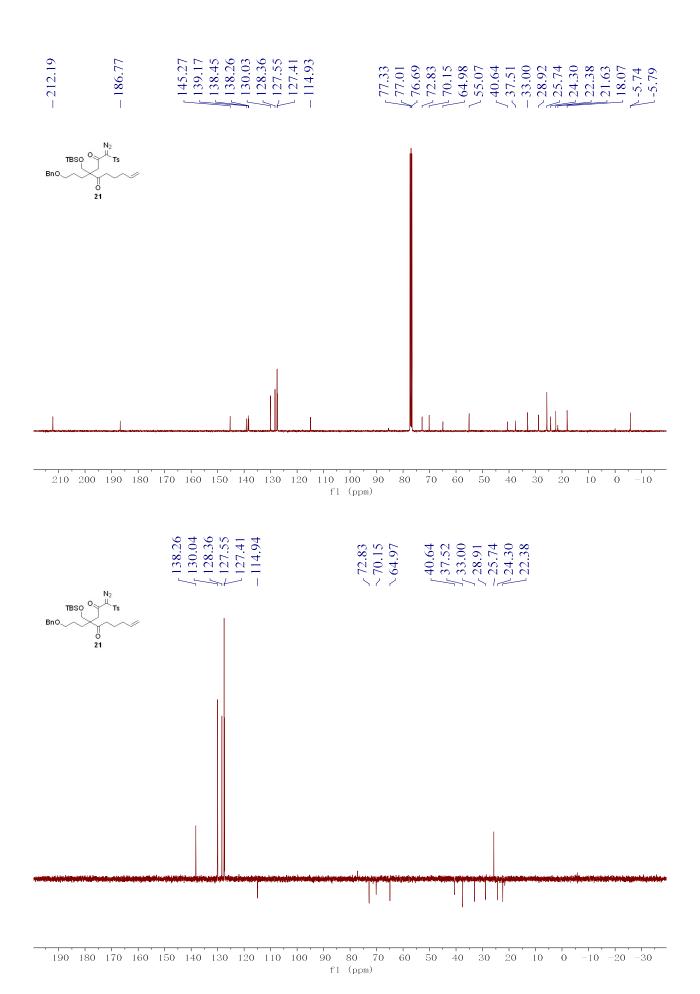


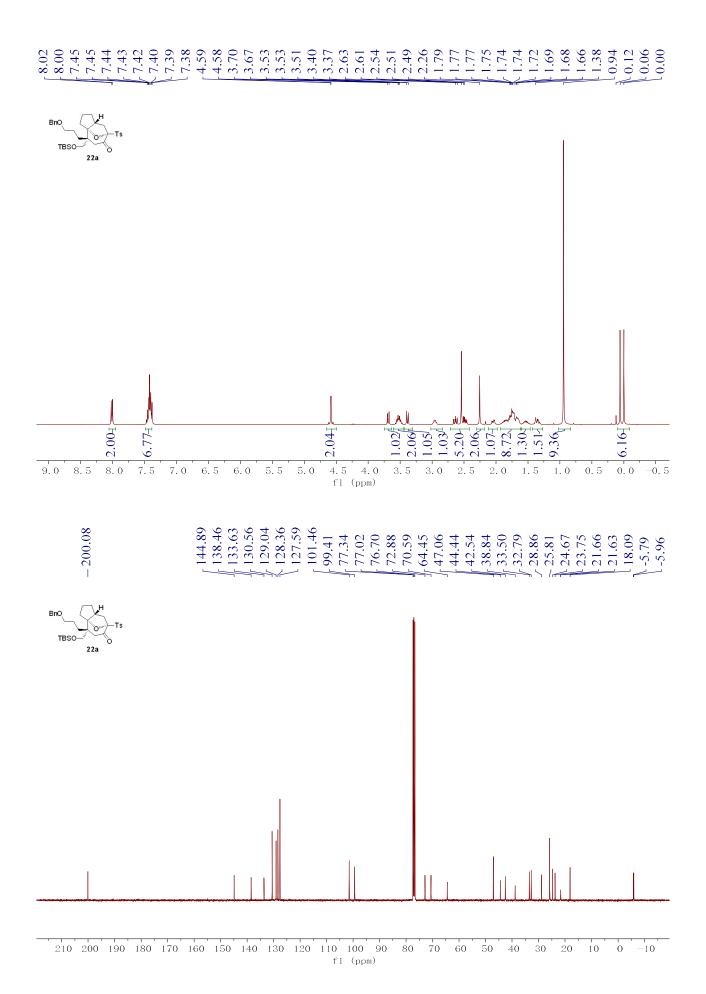


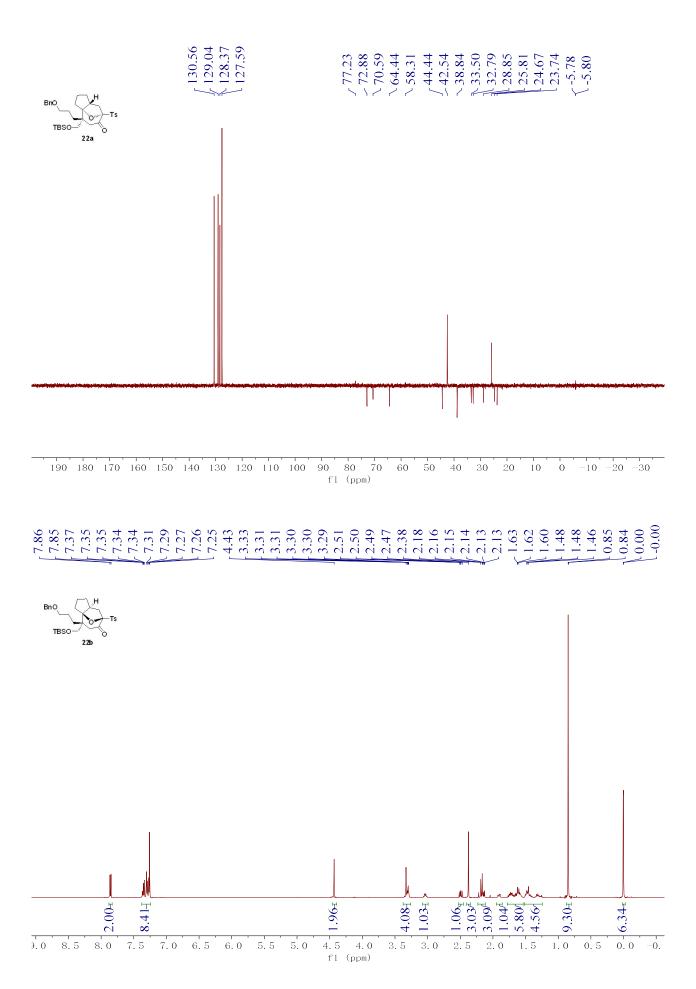


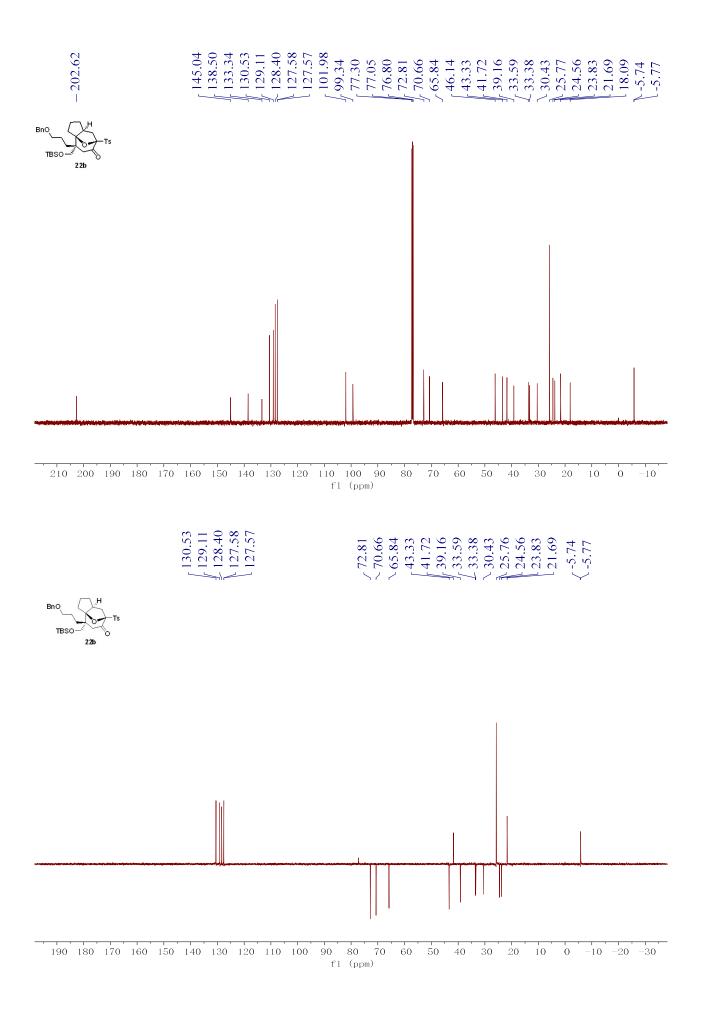


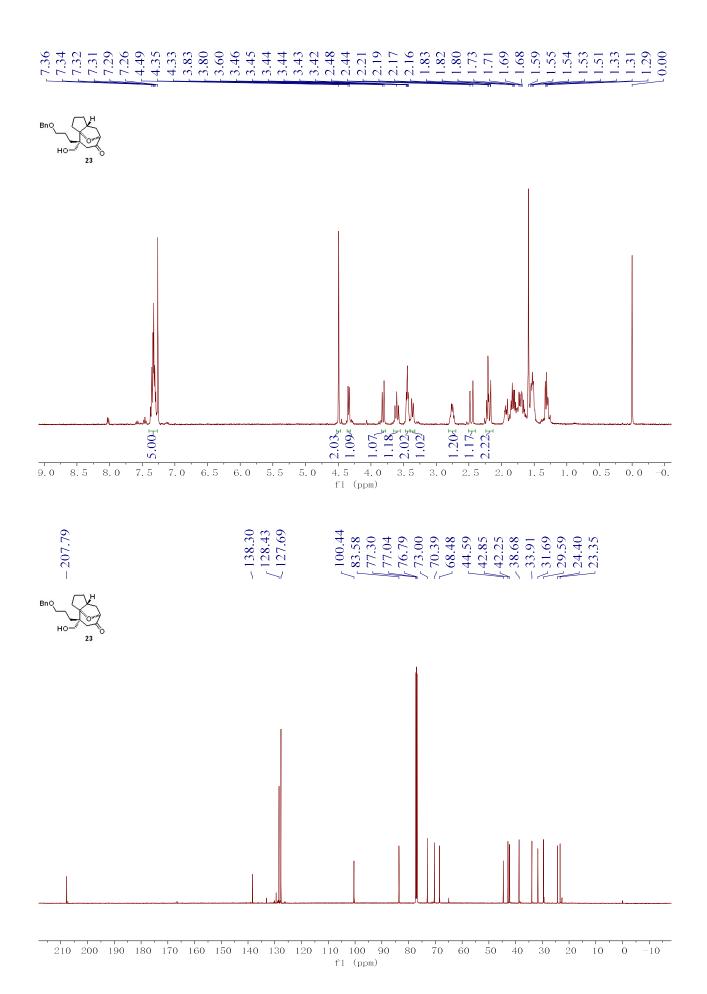


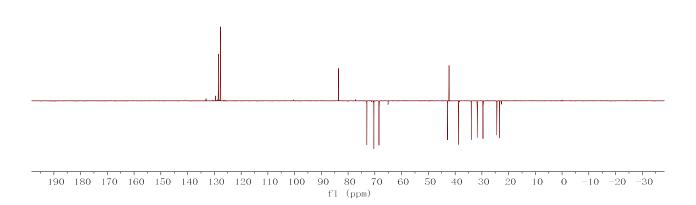


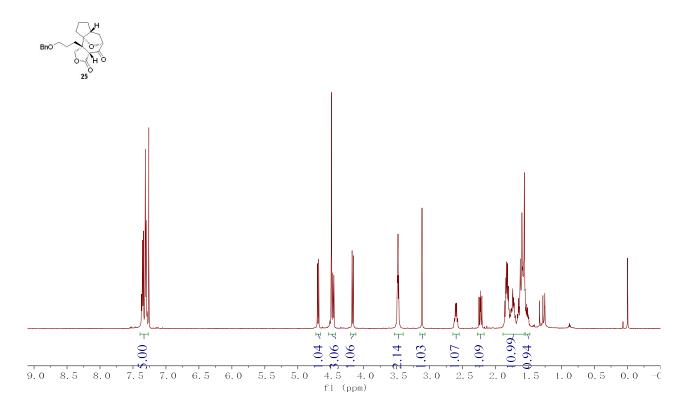


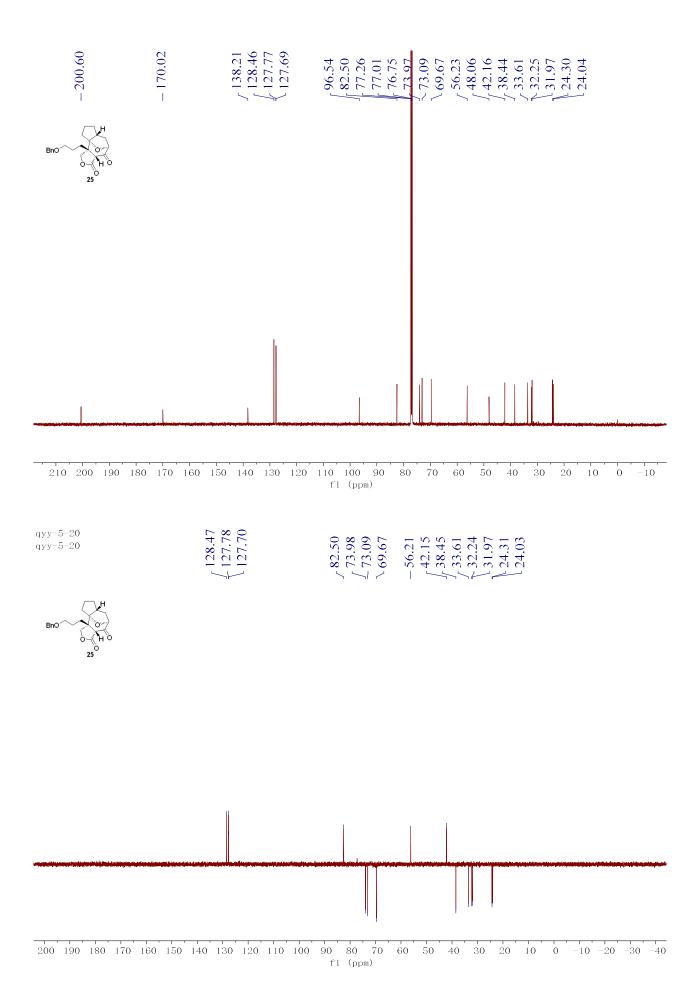


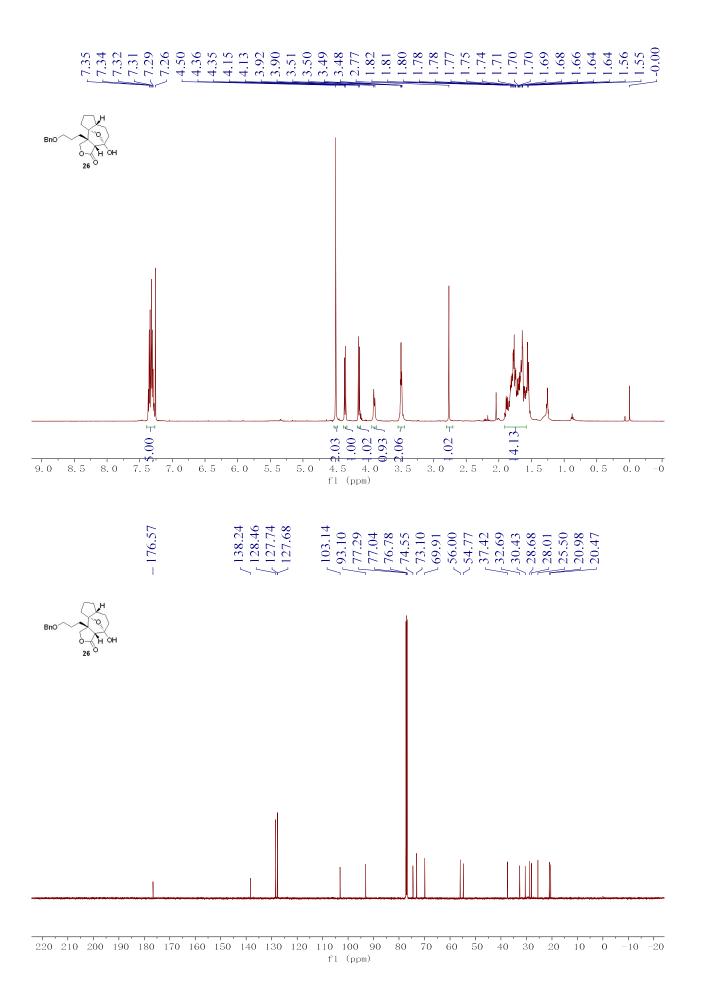


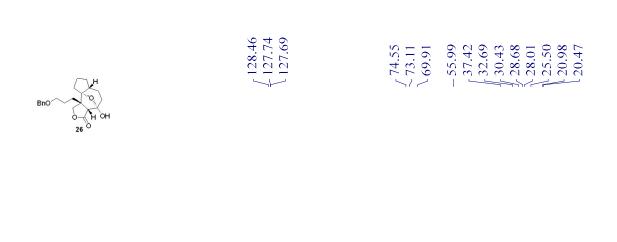


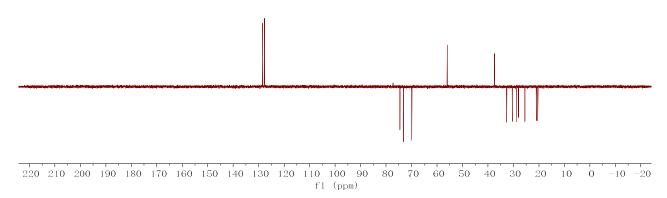


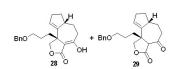


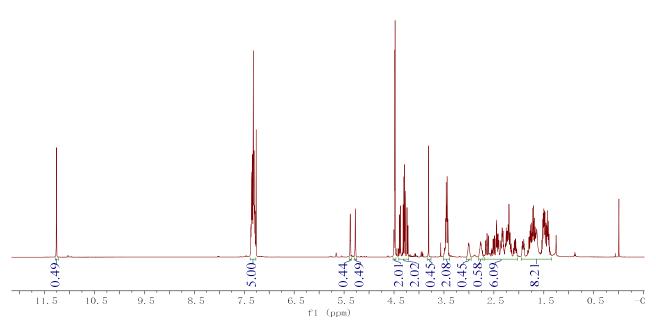


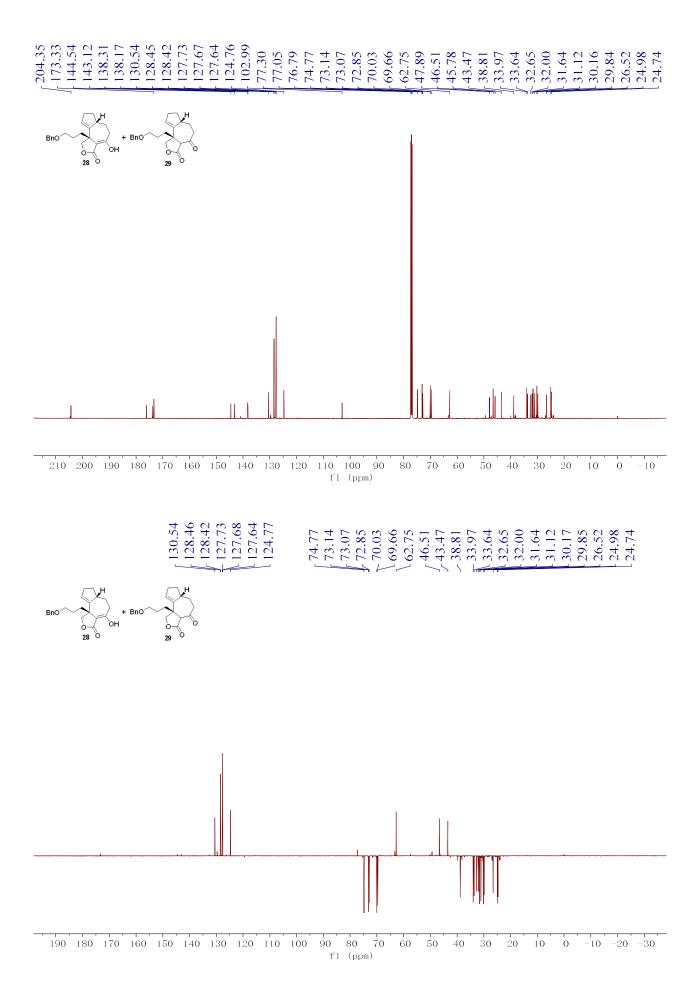


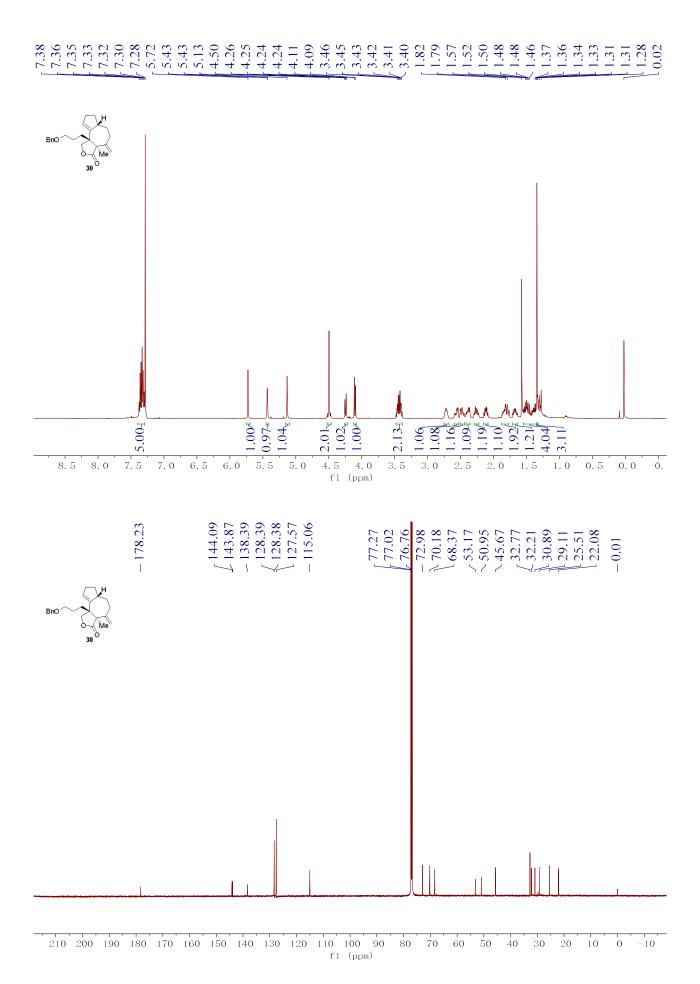


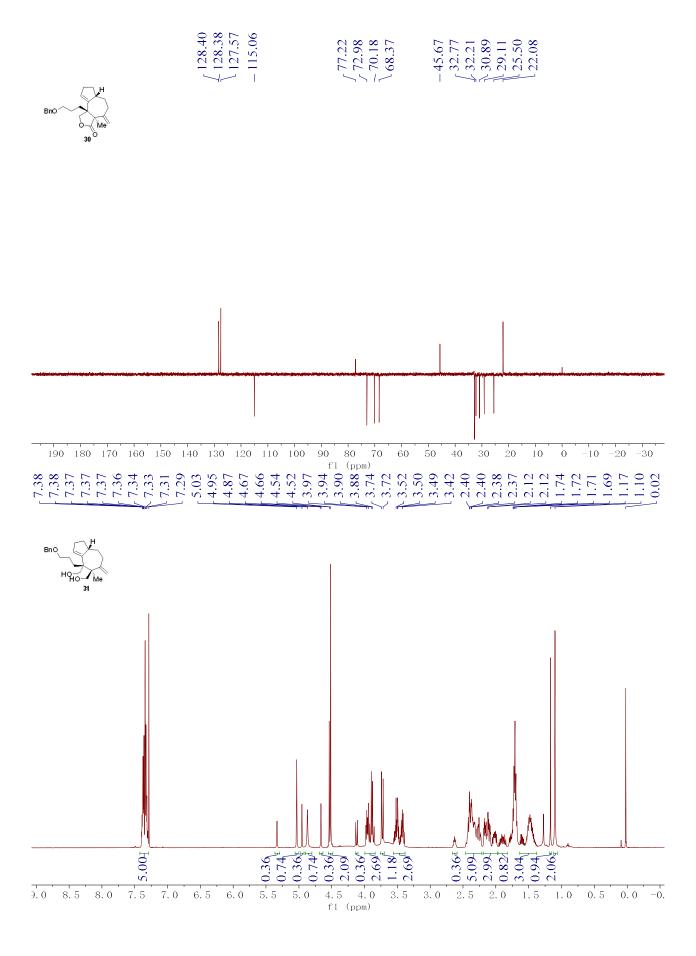











111.26 17.35 1

