Supporting Information for

Disguised hydride in a butylmagnesium cation

Sumanta Banerjee, Ankur, Alex Andrews and Ajay Venugopal*

School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Kerala 695551, India

Experimental Methods

All reactions were performed under argon atmosphere using standard Schlenk techniques or in a glovebox under argon atmosphere. Prior to use, glassware was dried at 200 °C and solvents were dried, distilled and degassed using standard methods.¹ Tris(2-aminoethyl)amine (Me₆TREN) was synthesised according to the literature procedure.² N-dimethylanilinium tetrkis(pentaflurophenyl) borate ([PhNMe₂H][B(C₆F₅)₄]) and Tris(pentafluorophenyl)borane (B(C₆F₅)₃) were purchased from Acros Organics and Sigma-Aldrich respectively. Tris(pentafluorophenyl)borane (B(C₆F₅)₃) was further sublimed prior to use. CO₂ (99.990% purity) was purchased from Bhuruka Gases Limited, Bangalore and passed through a column of molecular sieves dried overnight at 200 °C. ¹H, ¹³C, ¹¹B, and ¹⁹F NMR spectra were recorded on a Bruker 500 MHz spectrometer at ambient temperature. Chemical shifts (δ in ppm) in the ¹H and¹³C NMR spectra were referenced to the residual signals of the deuterated solvents. ¹¹B NMR spectra were referenced to NaBH₄ signal in D₂O. ¹⁹F spectra were referenced to CFCl₃ signal. Abbreviations for NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintuplet), sext (sextet), sep (septet), br (broad). Elemental analyses were performed on an *Elemental Vario Micro Cube* machine. Crystals were layered with paratone oil before mounting on the X-Ray diffractometer. X-ray diffraction data were collected on a Bruker Kappa Apex-II CCD diffractometer at 150 K and with Mo-K α irradiation (λ = 0.71073 Å). The structures were solved by direct methods with SIR-92, SHELXS-97 or SHELX-2013.

Synthetic Procedures and Characterization

NMR reaction of n-Bu₂Mg and B(C₆F₅)₃: n-Bu₂Mg (8 μ L, 1M in n-heptane, 0.039 mmol) was taken in a NMR tube inside the glove box at room temperature. After evaporating the solvent through applied vacuum, an equivalent amount of tris(pentafluorophenyl)borane (B(C₆F₅)₃) (0.020 g, 0.039 mmol) was added to it. THF(D8) stored over Na/K alloy was condensed onto the above mixture and ¹H and ¹¹B NMR spectra were recorded at room temperature.

Figure S1. ¹H NMR spectrum of reaction between n-Bu₂Mg and B(C₆F₅)₃ in THF(D8)

Figure S2. ¹¹B NMR spectrum of reaction between n-Bu₂Mg and B(C_6F_5)₃ in THF(D8)

Synthesis of 1 [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄]: Me₆TREN (0.1 mL, 0.36 mmol) was added to [PhNMe₂H][B(C₆F₅)₄] (0.288 g, 0.36 mmol) in 1 mL of dry diethyl ether inside the glove box to form a clear colourless solution. The solution was cooled to less than 10 °C and to it a cool solution of n-Bu₂Mg (0.36 mL, 1M in heptane, 0.36 mmol) in 1mL of diethyl ether was added slowly. Colourless crystals of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] were obtained immediately. Anal. Calc. for Mg1B101N4F20C44H41 (%): C- 49.62, H- 4.60, N- 5.26 Anal. found: (%): C- 49.54, H- 4.47, N- 5.12; ¹H NMR [500 MHz, 300K, THF(D8)]: δ (sext, -0.59 ppm, 2H, Mg-CH₂-CH₂CH₂CH₃), δ (t, 0.86 ppm, 3H, Mg-(CH₂)₃CH₃), δ (sext, 1.27 ppm, 2H, Mg-CH₂-CH₂-CH₂-CH₂CH₃), δ (s, 2.44 ppm, 18H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (s, 2.70 ppm, 6H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (s, 2.78 ppm, 6H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (s, 2.73 ppm, Mg-(CH₂)₂CH₂CH₃), δ (34.32 ppm, Mg-CH₂-CH₂-CH₂CH₃), δ (6.09 ppm, Mg-CH₂-CH₂CH₃), δ (44.53 ppm, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (55.32 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (49.75 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (147.24 ppm, m-CF), δ (137.11 ppm, p-CF); ¹⁹F [470.58 MHz, 300K, THF(D8)]: δ (-132.74 ppm, o-CF), δ (-168.45 ppm, m-CF), δ (-164.96 ppm, p-CF).

Figure S3. ¹H NMR spectrum of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) in THF(D8)

Figure S4. ¹³C NMR spectrum of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) in THF(D8)

Figure S5. ¹⁹F NMR spectrum of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) in THF(D8)

Figure S6. ¹¹B NMR spectrum of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) in THF(D8)

📮 - Mg atom, 💻 - N atom, 🔳 - C atom

Figure S7. Space filling model of $[Me_6TREN-Mg-n-Bu][B(C_6F_5)_4]$ (1) indicating that the metal centre is completely encapsulated by methyl groups on the Me_6TREN ligand (Hydrogen atoms have been hidden for clarity)

Synthesis of 2 $[Me_6TREN-Mg-O_2C(n-Bu)]_2[B(C_6F_5)_4]_2$: Crystals of 1 $[Me_6TREN-Mg-(n)Bu][B(C_6F_5)_4]$ were dissolved in THF in a reaction flask and pressurised with carbon dioxide (1 atm) at -40 °C which was slowly raised to room temperature. The solution was allowed to stir for 12 hours. Upon layering the THF solution with pentane and storage at -25 °C colourless crystals were obtained with quantitative yield. Anal. Calc. for Mg1B1O3N4F20C45H49 (%): C- 48.74, H- 4.42, N- 5.05 Anal. found: (%): C- 48.60, H- 4.31, N- 4.99; ¹H NMR [500 MHz, 300K, THF(D8)]: δ (t, 2.23 ppm, 3H, MgO₂C(*CH*₂-CH₂CH₂CH₃)),

 δ (t, 0.9 ppm, 3H, MgO₂C((CH₂)₃CH₃), δ (sext, 1.36 ppm, 2H, MgO₂C((CH₂)₂CH₂CH₃)), δ (quin, 1.59 ppm, 2H, MgO₂C(CH₂-CH₂-CH₂CH₃)), δ (s, 2.42 ppm, 18H, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (t, 2.68 ppm, 6H, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (t, 2.89 ppm, 6H, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (t, 1.09 ppm, residual Et₂O), δ (q, 3.36 ppm, residual Et₂O); ¹¹B [160 MHz, 300K, THF(D8)]: δ (s, -13.50 ppm, B(C₆F₅)₄); ¹³C NMR [125.74 MHz, 300K, THF(D8)]: δ (124.89 ppm, MgO₂C(n-Bu)), δ (13.24 ppm, MgO₂C((CH₂)₃CH₃)), δ (35.06 ppm, MgO₂C((CH₂)₂CH₂CH₃)), δ (28.01 ppm, MgO₂C(CH₂-CH₂CH₂CH₃)), δ (22.63 ppm, MgO₂C(CH₂-CH₂CH₂CH₃)), δ (45.27 ppm, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (52.20 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (56.04 ppm, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (65.29 ppm, residual Et₂O), δ (14.67 ppm, residual Et₂O), δ (135.17 ppm, *ipso*-C), δ (149.14 ppm, *o*-CF), δ (147.20 ppm, *m*-CF), δ (137.14 ppm, *p*-CF); ¹⁹F [470.58 MHz, 300K, THF(D8)]: δ (-132.75 ppm, *o*-CF), δ (-168.46 ppm, *m*-CF), δ (-164.97 ppm, *p*-CF).

Figure S8. ¹H NMR spectrum of $[Me_6TREN-Mg-O_2C(n-Bu)]_22[B(C_6F_5)_4]$ (2) in THF(D8). Origin of Et₂O signals in the spectrum is due to the presence of traces of solvent in 1.

Figure S9. ¹H NMR spectrum of [Me₆TREN-Mg-O₂C(n-Bu)]₂2[B(C₆F₅)₄] (2) in THF(D8)

Figure S10. ¹⁹F NMR spectrum of [Me₆TREN-Mg-O₂C(n-Bu)]₂2[B(C₆F₅)₄] (2) in THF(D8)

Figure S11. ¹¹B NMR spectrum of [Me₆TREN-Mg-O₂C(n-Bu)]₂2[B(C₆F₅)₄] (2) in THF(D8)

Synthesis of 4 [Me₆TREN-Mg-O-C(H)Ph₂][B(C₆F₅)₄]: Crystals of 1 [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄](0.356 g, 0.36 mmol) were added to 1 equivalent of benzophenone(0.065 g, 0.36 mmol) in a reaction flask inside the glove box. Toluene was added to the solid mixture and the solution was heated to 60 °C for 12 hours. The solvent was evacuated and the resultant gel was washed multiple times with n-pentane till it turned into a solid powder. The solid was crystallised using THF/pentane at -30 °C. Colourless crystals were obtained from the yellow solution after 2 days. Anal. Calc. for Mg1B101N4F20C49H41 (%): C-53.53, H- 4.12, N- 4.71 Anal. found: (%): C- 53.35, H- 4.01, N- 4.59; ¹H NMR [500 MHz, 300K, THF(D8)]: δ (s, 2.42 ppm, 18H, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (s, 2.69 ppm, 6H, Me₆TREN- N(CH₂CH₂NMe₂)₃), δ (s, 6.01 ppm, Mg-OC(H)Ph₂)), δ (t, 7.02 ppm, *m*-CH(Mg-OC(H)Ph₂)), δ (t, 7.16 ppm, *p*-CH(Mg-OC(H)Ph₂)), δ (d, 7.46 ppm, *o*-CH(Mg-OC(H)Ph₂)); ¹³C NMR [125.74 MHz, 300K, THF(D8)]: δ (44.83 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (55.31 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (55.31 ppm, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (127.49 ppm, *o*-C(Mg-OC(H)Ph₂)), δ (125.90 ppm, *m*-C(Mg-OC(H)Ph₂)), δ (125.36 ppm, *p*-CF)

Figure S12. ¹H NMR spectrum of [Me₆TREN-Mg-O-C(H)Ph₂][B(C₆F₅)₄] 4 in THF(D8)

Figure S13. ¹³C NMR spectrum of [Me₆TREN-Mg-O-C(H)Ph₂][B(C₆F₅)₄] 4 in THF(D8)

NMR reaction of [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) with Benzophenone in THF(D8): Crystals of 1 [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄](0.10 g, 0.10 mmol) were added to 1 equivalent of benzophenone(0.02 g, 0.10 mmol) in a J Young NMR tube inside the glove box. THF(D8) was condensed to the solid mixture and the solution was heated to 60 °C for 12 hours. ¹H NMR spectrum was recorded at room temperature.

Figure S14. ¹H NMR spectrum of the reaction between $[Me_6TREN-Mg-(n)Bu][B(C_6F_5)_4]$ (1) and benzophenone in THF(D8) depicting the formation of two distinct products

Synthesis of [Me₆TREN-Mg-][HB(C₆F₅)₃[B(C₆F₅)₄]: Crystals of 1 Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (0.356 g, 0.36 mmol) and an equivalent amount of tris(pentafluorophenyl)borane B(C₆F₅)₃ (0.18 g, 0.36 mmol) was added to a reaction flask followed by addition of 1 mL of toluene inside the glove box. The mixture was stirred for over 12 hours at 80 °C. Evacuated the solvent and washed the resultant gel with n-pentane till the formation of white powder. The white powder was redissolved in THF(D8) and analysed using NMR spectrometer. ¹H NMR [500 MHz, 300K, THF(D8)]: δ (s, 2.64 ppm, 18H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (s, 2.92 ppm, 6H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (t, 3.01 ppm, 6H, Me₆TREN-N(CH₂CH₂NMe₂)₃), δ (t, 1.11 ppm, residual Et₂O), δ (q, 3.38 ppm, residual Et₂O), δ (s, 2.30 ppm, residual toluene), δ (m, 7.06 - 7.19 ppm, residual toluene) ; ¹¹B [160 MHz, 300K, THF(D8)]: δ (s, -13.50 ppm, B(C₆F₅)₄), δ (d, J = 90.2 Hz, -22.28 ppm, *H*-B(C₆F₅)₃); ¹⁹F [470.58 MHz, 300K, THF(D8)]: δ (-132.73 ppm, *o*-CF(B(C₆F₅)₄)), δ (-164.86 ppm, *o*-CF(HB(C₆F₅)₃)), δ (-168.60 ppm, *m*-CF(HB(C₆F₅)₃)), δ (-164.86 ppm, *o*-CF(HB(C₆F₅)₃)).

Figure S15. ¹H NMR spectrum of $[Me_6TREN-Mg_-][HB(C_6F_5)_3]B(C_6F_5)_4]$ in THF(D8). Origin of Et₂O signals in the spectrum is due to the presence of traces of solvent in 1.

Figure S16. ¹¹B NMR spectrum of [Me₆TREN-Mg-][HB(C₆F₅)₃[B(C₆F₅)₄] in THF(D8)

Figure S17. ¹⁹F NMR spectrum of [Me₆TREN-Mg-][HB(C₆F₅)₃[B(C₆F₅)₄] in THF(D8)

NMR reaction of $[Me_6TREN-Mg-n-Bu][B(C_6F_5)_4]$ (1) with $B(C_6F_5)_3$ in THF(D8): Crystals of 1 [Me_6TREN-Mg-n-Bu][B(C_6F_5)_4] (0.10 g, 0.10 mmol) were added to 1 equivalent of tris(pentafluorophenyl) borate (0.05 g, 0.10 mmol) in a J Young NMR tube inside the glove box. THF(D8) was condensed to the solid mixture and the solution was heated to 80 °C for 12 hours. ¹¹B and ¹⁹F NMR spectra were recorded at room temperature.

Figure S18. ¹¹B NMR spectrum of the reaction between [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) and B(C₆F₅)₃ in THF(D8) depicting the formation of two distinct products (alkyl transfer and β -hydride abstraction)

Figure S19. ¹⁹F NMR spectrum of the reaction between $[Me_6TREN-Mg-n-Bu][B(C_6F_5)_4]$ (1) and $B(C_6F_5)_3$ in THF(D8) depicting the formation of two distinct products

Reaction with [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) with BPh₃ in toluene: Crystals of 1 Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (0.356 g, 0.36 mmol) and an equivalent amount of tris(pentafluorophenyl)borane $B(C_6F_5)_3$ (0.18 g, 0.36 mmol) were added in a reaction flask followed by addition of 1 mL of toluene inside the glove box. The mixture was stirred for over 12 hours at 80 °C. Evacuated the solvent and washed the resultant gel with n-pentane till the formation of white powder. The white powder was redissolved in THF(D8) and analysed using NMR spectrometer.

Figure S20. ¹H NMR spectrum of the reaction between [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) and BPh₃

Figure S21. ¹¹B NMR spectrum of the reaction between [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) and BPh₃

Figure S22. ¹⁹F NMR spectrum of the reaction between [Me₆TREN-Mg-n-Bu][B(C₆F₅)₄] (1) and BPh₃

References

- 1. W. L. F. Armarego, C. Li Lin Chai, *Purification of laboratory chemicals*, Seventh Edition, 2012.
- 2. M. Ciampolini, N. Nardi, *Inorg. Chem.*, 1966, **5**, 41–44.