Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information (ESI)

Directed *ortho* C-H borylation catalyzed using Cp*Rh(III)-NHC complexes

Jompol Thongpaen,^a Thibault E. Schmid,^a Loic Toupet,^b Vincent Dorcet,^c Marc Mauduit^a and Olivier Baslé^{*a}

 ^a Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France,
 ^b Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
 ^c Univ Rennes, CNRS, IPR - UMR 6251, F-35000 Rennes, France.

E-mail for O.B.: olivier.basle@ensc-rennes.fr

Table of Contents

1.	General Remarks	<u>S3</u>
2.	Preparation of Cp*RhCl/NHC Complexes	<u>S4</u>
	2.1. Preparation of the imidazolium salts	S4
	2.2. Preparation of Ag.NHC intermediate complexes	<u>S5</u>
	2.3. Preparation of Cp*RhCl/NHC complexes	<u> </u>
3.	Preparation of Substrates	<u>S8</u>
4.	Optimization Studies	S9
5.	Catalytic C-H Borylation and Characterization of Products	S10
6.	Preliminary Mechanistic Studies	S14
	6.1. Kinetic study for 3a -catalyzed C-H borylation of 4a	<u> </u>
	6.2. Stoichiometric experiments	S15
	6.3. Catalytic C-F borylation	
	6.4. H/D kinetic isotope effect study	<u> </u> S17
	6.5. Radical scavenger experiment	
	6.6. Mercury poisoning test	<u> </u>
7.	C-H Borylation of <i>n</i> -Octane	
8.	References	S20
9.	Spectroscopic Data	<u>S21</u>
10	Crystallographic Data	<u>S46</u>

1. General Remarks

Unless indicated otherwise, all reactions requiring an inert atmosphere were conducted in an argon-filled Braun glove box. All solvents were distilled and degassed prior to use. [RhCp*Cl₂]₂ was purchased from Strem Chemicals. Bis(pinacolato)diboron (B₂pin₂) was purchased from Fluorochem. Pinacolborane (HBpin) was purchased from Sigma-Aldrich. Other chemicals were used as received unless otherwise noted. Several starting materials were synthesized according to modified literature procedures (vide infra). Silica gel chromatography was performed with Sigma-Aldrich's silica gel high-purity grade, pore size 60 Å, 230-400 mesh particle size, 40-63 µm particle size. Products were visualized using a 254 nm UV lamp on TLC plates unless otherwise noted. NMR spectra were acquired on 400 MHz Bruker instruments at the Ecole Nationale Supérieure de Chimie de Rennes. Chemicals shifts were reported relative to residual solvent peaks (CDCl₃ = 7.26 ppm for ¹H and 77.2 ppm for ¹³C; Benzene- d_6 = 7.16 ppm for ¹H). Coupling constants are reported in Hertz (Hz). Abbreviations are used as follows: s = singlet, d =doublet, t = triplet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublets of doublets, br = broad, h = heptets. NMR yields were determined by ${}^{1}H$ NMR spectroscopy with 1,3,5-trimethybenzene as an internal standard unless otherwise noted. Mass spectrometric analyses were performed at Centre Régional de Mesures Physiques de l'Ouest (CRMPO), Université de Rennes 1. Gas Phase Chromatography analysis was conducted on SHIMADZU GCMS-QP2010 SE with SH-RXi-5ms column equipped with QP5000 detector. Optical rotations were recorded on a Perkin Elmer 341 polarimeter.

2. Preparation of Cp*RhCl/NHC complexes

2.1. Preparation of the imidazolium salts

The imidazolium salts **2a.PF**₆, **2b.PF**₆ and **2c.PF**₆ were prepared according to the reported procedure by our laboratory.¹ Mixture A: In a round-bottomed flask were placed 2,4,6-trimethylaniline (4.0 mmol), a corresponding *L*-amino acid (4.0 mmol) and HOAc (18.0 mmol). The mixture was stirred at 60 °C for 5 min. Mixture B: In another round-bottomed flask were placed glyoxal (4.0 mmol), formaldehyde (4.0 mmol) and HOAc (18.0 mmol). The mixture was stirred at 60 °C for 5 min. Then B was added into A. The combined mixture was stirred at 60 °C for 10 min. After cooled down, the mixture was evaporated to remove HOAc. Then H₂O (20 mL) and CH₂Cl₂ (20 mL) were added. The aqueous layer was extracted by CH₂Cl₂ (20 mL x 2). To the combined organic layer was added brine (20 mL) was added. Then the organic layer was separated.

Then KPF₆ (4.0 mmol) and water (50 mL) was added to the organic layer. The mixture was stirred at room temperature for 1 h. Then organic layer was separated, dried over MgSO₄, and concentrated under reduced pressure. Then imidazolium-PF₆ salts were isolated by flash column chromatography on silica gel (CH₂Cl₂: EtOH = 9:1).

Imidazolium salt **2a.PF**₆¹ (pale yellow solid, 52 % yield) ¹H-NMR (400 MHz, CDCl₃): δ 9.73 (br. s, 1H), 9.02 (s, 1H), 7.82 (s, 1H), 7.26 (s, 1H), 7.00 (s, 2H), 5.46-5.42 (m, 1H), 2.33 (s, 3H), 2.16- 2.04 (m, 1H), 2.02 (s, 3H), 2.00 (s, 3H), 1.48-1.39 (m, 1H), 0.96 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ

173.6, 141.0, 136.4, 134.3, 130.9, 129.7, 123.6, 122.9, 63.6, 41.7, 25.1, 22.9, 21.0, 17.0. ³¹P NMR (162 MHz, CDCl₃) δ -144.4 (h, *J* = 732.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.9 (d, *J* = 732.0 Hz).

Imidazolium salt **2b.PF**₆¹ (pale yellow solid, 46 % yield) ¹H- NMR (400 MHz, CDCl₃): δ 9.31 (br. s, 1H), 7.88 (s, 1H), 7.11 (s, 1H), 6.91 (s, 1H), 6.90 (s, 1H), 4.84 (m, 1H, *J* = 6.8 Hz), 2.45-2.40 (m, 1H), 2.24 (s, 3H), 1.93 (s, 6H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.75 (d, *J* = 6.6

Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.1, 141.0, 137.0, 134.4, 134.1, 131.0, 129.7, 129.6, 124.4, 121.6, 72.2, 32.2, 21.1, 19.7, 18.2, 17.2. ³¹P NMR (162 MHz, CDCl₃) δ -144.4 (h, *J* = 732.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.9 (d, *J* = 732.1 Hz).

Imidazolium salt **2c.PF**₆ (pale yellow solid, 42 % yield) ¹H- NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 7.76 (s, 1H), 7.18 (s, 1H), 6.98 (s, 2H), 5.37 (br. s, 1H), 2.32 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H), 1.85 (d, J = 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 141.4, 136.5,

134.6, 130.7, 129.9, 123.4, 123.1, 29.8, 21.2, 17.9, 17.2. ³¹P NMR (162 MHz, CDCl₃) δ -144.4 (h, *J* = 712.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.9 (d, *J* = 713.0 Hz). HRMS (ESI) calcd

for C₁₅H₁₉N₂O₂⁺ (M – PF₆⁺): m/z 259.1441 found 259.1440 (0 ppm). [α]_D²⁰ = +11.2 (c = 2.5 x 10⁻³, chloroform).

2.2. Preparation of Ag.NHC intermediate complexes

The pure imidazolium-PF₆ was loaded on the ion exchange resin Dowex[®] 1x2 chloride form (10 mL/ 1.0 mmol) with Milli Q water/Acetone = 2/1.5 as an eluent. After removal of acetone and water under reduced pressure, the residue was dissolved in CH₂Cl₂, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the desired **2a.Cl**, **2b.Cl**, or **2c.Cl** salts.

In a flame-dried round-bottomed flask were placed Ag_2O (2.5 equiv.), **2a.Cl**, **2b.Cl**, or **2c.Cl** (1 equiv.), CH_2Cl_2 (0.077 M), and 4 Å molecular sieves. The mixture was stirred at room temperature for 24 h under Ar excluding from the light. Next, CH_2Cl_2 was removed under reduce pressure. Then, acetone was added, and the mixture was filtered through a celite pad using acetone as eluent. The filtered solution was concentrated. Then pentane was added to induce precipitation. The precipitate was washed twice with pentane. The desired silver intermediate complex was obtained upon the removal of solvent under vacuum.

Ag.2a (light brown solid, 99 % yield). ¹H-NMR (400 MHz, CDCl₃): δ ¹H NMR (400 MHz, CDCl₃) δ 7.41 (br. s, 1H), 6.90 (s, 2H), 6.88 (s, 1H), 5.24 (br. s, 1H), 2.33 (s, 3H), 2.05 (br. s, 2H), 1.93 (s, 3H), 1.84 (br. s, 3H), 1.28 (br. s, 1H), 0.95 (br. s, 3H), 0.89 (s, 3H).

Ag.2b (light brown solid, 97 % yield). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (br. s, 1H), 6.92 (s, 2H), 6.88 (br. s, 1H), 4.81 (br. s, 1H), 2.48 (br. s, 1H), 2.32 (s, 3H), 1.95 (br. s, 6H), 1.11 (br. s, 3H), 0.82 (s, 3H).

Ag.2c (light brown solid, 90 % yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 6.91 (s, 2H), 6.84 (s, 1H), 5.24 (s, 1H), 2.32 (s, 3H), 2.02 - 1.84 (m, 7H), 1.77 (d, J = 7.2 Hz, 3H).

In a dry round-bottomed flask were placed an equivalence of silver complex Ag.2a, Ag.2b or Ag.2c (which is considered as a dimer), $[RhCp*Cl_2]_2$ (1 equiv.) and CH_2Cl_2 (0.077 M). The mixture was stirred for 24 h under Ar atmosphere excluding from the light. Next, CH_2Cl_2 was removed under reduce pressure. Then, acetone was added, and the mixture was filtered through a celite pad using acetone as eluent. The filtered solution was concentrated. Then pentane was added to induce precipitation. The precipitate was washed twice with pentane. After removal of volatility, the complex was obtained after crystallization in bilayer of acetone and cyclohexane.

Complex 3a (red solid, 92% yield, 9:1 d.r.). **For major diastereomer**; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 1.7 Hz, 1H, N<u>CH</u>_{Heterocycle}), 7.01 (s, 1H, CH_{Mesityl}), 6.96 (s, 1H, CH_{Mesityl}), 6.78 (d, J = 1.9 Hz, 1H, N<u>CH</u>_{Heterocycle}), 4.80 (dd, J = 9.3, 5.0 Hz, 1H, N<u>CH</u>CH₂), 2.43 (s, 3H, *o*-CH_{3Mesityl}), 2.34 (s, 3H, *o*-CH_{3Mesityl}), 2.02 – 1.96 (m, 1H, CH<u>CH₂</u>CH), 1.96 (s, 3H, *p*-CH_{3Mesityl}), 1.84 – 1.74 (m, 1H, CH<u>CH₂</u>CH), 1.60 – 1.49 (m, 1H,

<u>CH</u>(CH₃)₂), 1.31 (s, 15H, Cp*), 1.00 (d, J = 6.5 Hz, 3H, CH(<u>CH₃</u>)₂), 0.95 (d, J = 6.5 Hz, 3H, CH(<u>CH₃</u>)₂). For minor diastereomer; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 1.7 Hz, 1H, N<u>CH</u>_{Heterocycle}), 6.98 (s, 1H, CH_{Mesityl}), 6.96 (s, 1H, CH_{Mesityl}), 6.78 (d, J = 1.9 Hz, 1H, N<u>CH</u>_{Heterocycle}), 4.60 (t, J = 7.9 Hz, 1H, N<u>CH</u>CH₂), 2.34 (s, 3H, *o*-CH_{3Mesityl}), 2.27 (s, 3H, *o*-CH_{3Mesityl}), 2.06 (s, 3H, *p*-CH_{3Mesityl}), 2.02 – 1.96 (m, 1H, CH<u>CH₂</u>CH), 1.84 – 1.74 (m, 1H, CH<u>CH₂</u>CH), 1.60 – 1.49 (m, 1H, <u>CH</u>(CH₃)₂), 1.31 (s, 15H, Cp*), 1.00 (d, J = 6.5 Hz, 3H, CH(<u>CH₃</u>)₂), 0.95 (d, J = 6.5 Hz, 3H, CH(<u>CH₃</u>)₂). For both diastereomers; ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 170.7 (d, J = 54.7 Hz), 139.7, 139.6, 138.6, 138.1, 136.6, 136.5, 130.3, 130.1, 128.6, 124.0, 123.4, 96.7 (d, J = 7.8 Hz, minor diastereomer), 96.4 (d, J = 7.6 Hz, major diastereomer), 64.7, 45.7, 31.1, 27.0, 25.1, 24.8, 23.3, 22.9, 22.7, 21.9, 21.2, 21.1, 20.0, 19.9, 18.9, 18.3, 9.2. HRMS (ESI) calcd for C₂₈H₃₉N₂O₂³⁵ClRh⁺ (M + H⁺): *m/z* 573.1750, found 573.1753 (1 ppm). The crystallization in bilayer of acetone and cyclohexane provides the crystal which suitable for X-ray crystallography.

Fig. S1 The absolute configuration of Crystal.3a (left) and its corresponding diastereomer (right).²

Complex 3b (red solid, 82% yield, 9:1 d.r.). **For major diastereomer**; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 1H), 6.99 (d, *J* = 1.9 Hz, 1H), 6.95 (s, 1H), 6.78 (d, *J* = 1.9 Hz, 1H), 4.18 (d, *J* = 9.6 Hz, 1H), 2.48 (s, 3H), 2.34 (s, 3H), 2.21 (td, *J* = 6.8, 2.7 Hz, 1H), 1.98 (s, 3H), 1.32 (s, 15H), 1.17 (d, *J* = 6.8 Hz, 3H), 0.86 (d, *J* = 6.7 Hz, 3H). **For minor diastereomer**; ¹H NMR (400

MHz, CDCl₃) δ 7.01 (s, 1H), 7.00 – 6.97 (m, 2H), 6.75 (d, J = 2.0 Hz, 1H), 4.10 (d, J = 10.5 Hz, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 2.26 – 2.18 (m, 1H), 2.11 (s, 3H), 1.26 (s, 15H), 1.06 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H). **For both diastereomers**; ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 170.1 (d, J_{Rh-C} = 55.0 Hz), 169.9, 139.7, 138.2, 136.6, 136.5, 130.3, 128.4, 125.3, 123.8, 96.2 (d, J_{Rh-C} = 7.7 Hz), 73.9, 34.7, 29.8, 21.1, 20.2, 20.1, 19.7, 18.5, 9.2. HRMS (ESI) calcd for C₂₇H₃₆N₂O₂³⁵ClNaRh⁺ (M + Na⁺): m/z 581.1413, found 581.1414 (0 ppm). The crystallization in bilayer of acetone and cyclohexane provides the crystal which suitable for X-ray crystallography.

Fig. S2 The absolute configuration of **Crystal.3b** (left) and its corresponding diastereomer (right).²

Complex 3c (red solid, 94% yield, 7.5:2.5 d.r.). **For major diastereomer**; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 2.0 Hz, 1H), 7.01 (s, 1H), 7.00 (s, 1H), 6.75 (d, J = 2.0 Hz, 1H), 5.19 (q, J = 7.0 Hz, 1H), 2.36 (s, 3H), 2.21 (s, 3H), 2.09 (s, 3H), 1.66 (d, J = 7.1 Hz, 3H), 1.26 (s, 14H). **For minor diastereomer**; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 2.0 Hz, 1H), 7.00 (s, 1H),

6.95 (s, 1H), 6.80 (d, J = 2.0 Hz, 1H), 4.72 (q, J = 7.2 Hz, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 2.07 (s, 3H), 1.84 (d, J = 7.2 Hz, 3H). For major diastereomer; ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 169.5(d, J_{Rh-C} = 54.5 Hz), 139.9, 137.9, 136.9, 136.0, 130.1, 129.1, 123.3, 120.8, 97.0 (d, J_{Rh-C} = 7.0 Hz), 59.2, 21.2, 19.2, 18.4, 18.2, 9.1. For minor diastereomer; ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 169.0 (d, J_{Rh-C} = 54.5 Hz), 139.6, 138.6, 136.5, 135.7, 130.1, 128.5, 124.7, 121.8, 96.7 (d, J_{Rh-C} = 8.1 Hz), 62.2, 21.8, 21.2, 19.8, 18.8, 9.2. HRMS (ESI) calcd for C₂₅H₃₃N₂O₂³⁵ClRh⁺ (M + H⁺): *m/z* 531.1280, found 531.1282 (0 ppm).

3. Preparation of Substrates

Except compound **4a** (CAS: 1008-89-5) and **4q** (CAS: 2116-65-6) which are purchased from Alfa Aesar, other substrates were synthesized according to procedure reported in the literature.

3.1. Preparation of 2-arylpyridines and 1-arylisoquinolines³

To a solution of 2-bromopyridines (2 mmol) (or 2,4-dibromopyridine (1 mmol) for 4l) in toluene (7 mL), ethanol (1.5 mL), and H₂O (7 mL) was added Na₂CO₃ (14.8 mmol) followed by Pd(PPh₃)₄ (0.06 mmol) and corresponding boronic acid (2.6 mmol) under argon in a 50 mL Schlenk tube. The reaction mixture was refluxed at 120 °C for 12 h, and then cooled to room temperature. To the reaction mixture was added aqueous NH₄Cl (15 mL), extracted by EtOAc for three times, dried over MgSO₄, and evaporated in vacuum to afford the crude product, which was further purified by flash chromatography on silica gel with *n*-pentane/EtOAc to give the corresponding substrates. Compounds 4b (CAS: 5957-90-4), 4c (CAS: 4357-28-2), 4d (CAS: 98061-21-3), 4e (CAS: 4385-61-9), 4f (CAS: 203065-88-7), 4g (CAS: 10273-89-9), 4h (CAS: 15827-72-2), 4m (CAS: 76759-26-7), 4j (CAS: 3475-21-6), 4k (CAS: 940289-80-5), 4l (CAS: 15827-72-2), 4m (CAS: 3297-72-1), 4n (CAS: 36710-74-4), and 4q (CAS: 525598-48-5) were previously reported.

Compound 4o

Yellow off-white solid (70 % yield). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 5.7 Hz, 1H), 8.21 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.85 – 7.76 (m, 4H), 7.73 – 7.68 (m, 3H), 7.66 (dd, *J* = 5.7, 0.9 Hz, 1H), 7.57 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.43 – 7.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 142.4, 141.5, 140.8, 138.6, 137.0, 130.5, 130.1, 129.0, 127.6, 127.6, 127.3, 127.2, 127.1, 126.8, 120.0. HRMS (ESI) calcd for C₂₁H₁₆NO (M + H⁺): *m/z* 282.12772, found 282.1278 (0 ppm).

3.2. Preparation of Compound 4r (CAS: 3678-70-4)

Compound 4r was prepared according to the reported procedure⁴ and obtained as off-white solid (0.820 g) Yield: 74%. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.60 (td, J = 7.7, 1.9 Hz, 1H), 7.35 – 7.29 (m, 4H), 7.27 – 7.18 (m, 6H), 7.14 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.11 (dt, J = 7.8, 1.1 Hz, 1H), 5.74 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 149.6, 142.8, 136.5, 129.5, 128.5, 126.6, 123.8, 121.5, 59.5.

3.3. Preparation of Compound 4s (CAS: 12216-00-1)

Compound 4s was prepared according to the reported procedure⁵ and obtained as red solid. Yield: 21%. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.56 (ddd, J = 8.0, 7.4, 1.9 Hz, 1H), 7.40 (ddd, J = 8.0, 1.3, 1.1 Hz, 1H), 7.06 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H), 4.94 – 4.90 (m, 2H), 4.41 – 4.37 (m, 2H), 4.05 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 149.4, 136.0, 120.6, 120.2, 83.8, 70.0, 69.7, 67.3. Analytical data for this compound were consistent with previously reported data.⁶

4. Optimization Study

The studies were carried out on 0.2 mmol scale. Except indicated otherwise, the optimization studies were carried out as followed. In a glove box, in a dry Schlenk tube was placed catalyst (5 mol% of rhodium). Corresponding base (10 mol%) and solvent (2 mL) were added respectively. Next, the mixture was stirred for 10 min followed by the addition of $B_{2}pin_{2}$ (2 equiv. based on boron). The mixture was stirred for another 10 min, and the 2-phenylpyridine (0.2 mmol, 1 equiv.) was added afterward. The tube was closed with septum and sealed with parafilm. Outside the glovebox, the mixture was stirred at indicated temperature for 16h. After cooled down, the mixture was concentrated under reduce pressure and dried under vacuum. The residue was analyzed by ¹H-NMR spectroscopy, and the NMR yield was calculated using 1,3,5-trimethylbenzene as an internal standard.

Entry	Catalyst	Base	Borylating agent	Solvent	Temperature (°C)	% Yield
1	3 a	KOAc	B ₂ pin ₂	toluene	80	0
2	3 a	K_2CO_3	B ₂ pin ₂	toluene	80	8
3	3 a	NaO ^t Bu	B ₂ pin ₂	toluene	80	12
4	3 a	NaO ⁱ Pr	B ₂ pin ₂	toluene	80	61
5	3 a	NaOEt	B ₂ pin ₂	toluene	80	66
6	3 a	NaOMe	B ₂ pin ₂	toluene	80	71
7	3 a	NaHMDS	B ₂ pin ₂	toluene	80	43
8	3 a	NaOMe	B ₂ pin ₂	<i>m</i> -Xylene	80	n.r.
9	3 a	NaOMe	B ₂ pin ₂	MTBE	80	71
10	3 a	NaOMe	B ₂ pin ₂	THF	80	34
11	3 a	NaOMe	B ₂ pin ₂	<i>n</i> -octane	80	9
12	3 a	NaOMe	B ₂ pin ₂	benzene	80	86
13	3 a	NaOMe	B ₂ pin ₂	benzene	70	43
14	3 a	NaOMe	B ₂ pin ₂	benzene	r.t.	n.r.
15	3 a	NaOMe	HBpin	benzene	80	20
16	3b	NaOMe	B ₂ pin ₂	benzene	80	80
17	3c	NaOMe	B ₂ pin ₂	benzene	80	54
18	[RhCp*Cl ₂] ₂ + IMes (5 mol%)	NaOMe	B ₂ pin ₂	benzene	80	29
19	[RhCp*Cl ₂] ₂	NaOMe	B ₂ pin ₂	benzene	80	25
20	[RhCp*Cl ₂] ₂	-	B ₂ pin ₂	benzene	80	n.r.
21	[RhCp*Cl ₂] ₂	NaOMe	HBpin	benzene	80	8
22	2a (5 mol%)	NaOMe	B ₂ pin ₂	benzene	80	n.r.
23	3 a	-	B ₂ pin ₂	benzene	80	n.r.
24	-	NaOMe	B ₂ pin ₂	benzene	80	n.r.

5. Catalytic C-H Borylation

General procedure for C-H borylation

In a glove box, in a dry Schlenk tube was placed **3a** (5 mol%). Then NaOMe (10 mol%) and C_6H_6 were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B₂pin₂ (2 equiv.). The mixture was stirred for another 10 min, and the substrate (1 equiv.) was added afterward. The tube was closed with a septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C for 16h. After cooled down, the mixture was concentrated under reduce pressure and dried under vacuum. To the residue were added 1,3,5-trimethylbenzene (as an internal standard) and 2 mL of CDCl₃. Then the aliquot was analyzed by ¹H NMR which reveal the NMR yield.

To the crude residue was added acetone (10 mL). Next, Oxone[®] (2 equiv.) in 2 mL of water was added dropwise within 2-4 min. Upon the complete addition, the mixture was vigorously stirred for 2 hours. Then an aqueous solution of NaHSO₃ (ca. 25 mL) was added until the formed precipitates dissolved. Then the aqueous layer was extracted by EtOAc (3x30 mL). The combined organic layer was washed with brine then water. After the removal of solvents, the crude residue was purified by column chromatography on silica gel using pentane/ethylacetate as eluent.

Compound 6a

Yellow oil (77 % isolated yield, 86 % NMR yield as borylated product) ¹H NMR (400 MHz, CDCl₃) δ 14.24 (s, 1H), 8.50 (ddd, J = 5.1, 1.9, 1.0 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.31 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.23 (ddd, J = 7.4, 5.0, 1.1 Hz, 1H), 7.04 (dd, J = 8.3, 1.3 Hz, 1H), 6.91 (ddd, J = 7.8, 7.1, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 158.0, 145.9, 137.9, 131.6, 126.2, 121.6, 119.1, 118.9, 118.9, 118.7. Analytical data for this compound were consistent with previously reported data.⁷

Compound 6b

Yellow oil (67 % isolated yield, 75 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.72 (s, 1H), 8.43 (ddd, *J* = 5.0, 1.8, 1.4 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.55 (d, *J* = 2.7 Hz, 1H), 6.48 (dd, *J* = 8.8, 2.7 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 162.0, 157.9, 145.6, 137.7, 127.2, 120.6, 118.3, 112.2, 106.7, 102.2, 55.4. Analytical data for this compound were consistent with previously reported data.⁷

Compound 6c

Yellow oil (64 % isolated yield, 77 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.70 (s, 1H), 8.42 (ddd, J = 5.1, 1.5, 1.3 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.67 (d, J = 8.8 Hz, 1H), 7.17 – 7.10 (m, 1H), 6.53 (d, J = 2.6 Hz, 1H), 6.47 (dd, J = 8.8, 2.6 Hz, 1H), 4.06 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 161.8, 158.0, 145.6, 137.7, 127.2, 120.5, 118.3, 112.0, 107.1, 102.7, 63.6, 14.9. Analytical data for this compound were consistent with previously reported data.⁸

Compound 6d

Off-white solid (70 % isolated yield, 81 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.41 (s, 1H), 8.51 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.66 (d, J = 1.8 Hz, 1H), 7.53 (dd, J = 8.3, 1.8 Hz, 1H), 7.28 (ddd, J = 7.5, 5.0, 1.1 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 159.9, 156.9, 146.1, 138.1, 132.6, 126.2, 122.6, 122.5, 119.9, 119.8, 119.6, 52.3. Analytical data for this compound were consistent with previously reported data.⁹

Compound 6e

Off-white solid (67 % isolated yield, 80 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.40 (s, 1H), 8.51 (ddd, J = 5.1, 1.9, 0.9 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.88 – 7.79 (m, 2H), 7.67 (d, J = 1.8 Hz, 1H), 7.54 (dd, J = 8.3, 1.7 Hz, 1H), 7.28 (ddd, J = 7.5, 5.0, 1.1 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 159.8, 156.9, 146.1, 138.1, 132.9, 126.1, 122.5, 119.9, 119.8, 119.6, 61.2, 14.4. Analytical data for this compound were consistent with previously reported data.⁷

Compound 6f

Yellow solid (44 % isolated yield, 60 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.63 (s, 1H), 8.52 (ddd, J = 5.1, 1.8, 1.0 Hz, 1H), 7.91 (dt, J = 8.3, 1.2 Hz, 1H), 7.89 – 7.83 (m, 2H), 7.31 (ddd, J = 7.3, 5.0, 1.3 Hz, 1H), 7.28 (s, 1H), 7.11 (ddd, J = 8.3, 1.9, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 156.6, 146.1, 138.2, 133.0 (q, J = 32.7 Hz), 126.7, 123.9 (q, J = 273.7 Hz), 122.6, 121.6, 119.6, 115.9 (q, J = 3.9 Hz), 115.1 (q, J = 3.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2. Analytical data for this compound were consistent with previously reported data.¹⁰

Compound 6j

Off-white solid (40 % isolated yield, 45 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.56 (s, 1H), 8.35 (dd, J = 5.2, 0.8 Hz, 1H), 7.80 (dd, J = 8.0, 1.7 Hz, 1H), 7.72 (s, 1H), 7.30 (ddd, J = 8.3, 7.2, 1.6 Hz, 1H), 7.06 (ddd, J = 5.1, 1.5, 0.7 Hz, 1H), 7.02 (dd, J = 8.3, 1.3 Hz, 1H), 6.90 (ddd, J = 7.9, 7.2, 1.3 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 157.7, 149.1, 145.6, 131.4, 126.1, 122.8, 119.7, 118.9, 118.7, 118.7, 21.8. Analytical data for this compound were consistent with previously reported data.¹⁰

Compound 6k

Yellow solid (40 % isolated yield, 48 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 13.59 (s, 1H), 8.70 (d, J = 5.2 Hz, 1H), 8.11 (s, 1H), 7.82 (dd, J = 8.1, 1.7 Hz, 1H), 7.46 (dd, J = 5.3, 1.5 Hz, 1H), 7.37 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.06 (dd, J = 8.3, 1.2 Hz, 1H), 6.96 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 159.4, 147.4, 140.1 (q, J = 34.0 Hz), 132.7, 126.5, 122.8 (q, J = 274.7 Hz), 119.4, 119.0, 118.1, 117.0 (q, J = 3.4 Hz), 115.2 (q, J = 3.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1. HRMS (ESI) calcd for C₁₂H₈NOF₃Na⁺ (M + Na⁺): m/z 262.04502, found 262.0452 (1 ppm).

Compound 61

Pale yellow solid (45 % isolated yield, 56 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 14.29 (s, 1H), 8.76 (dd, J = 2.4, 0.9 Hz, 1H), 8.05 (dd, J = 8.6, 2.4 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.84 (dd, J = 8.0, 1.6 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.56 – 7.47 (m, 2H), 7.47 – 7.40 (m, 1H), 7.33 (ddd, J = 8.3, 7.2, 1.6 Hz, 1H), 7.05 (dd, J = 8.3, 1.3 Hz, 1H), 6.94 (ddd, J = 8.0, 7.2, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 156.7, 144.3, 137.2, 136.1, 134.6, 131.6, 129.4, 128.5, 127.0, 126.3, 119.2, 119.0, 118.8, 118.8. HRMS (ESI) calcd for C₁₇H₁₄NO⁺ (M + H⁺): *m/z* 248.10699, found 248.1067 (1 ppm).

Compound 6m

Yellow solid (46 % isolated yield, 51 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 11.91 (s, 1H), 8.51 – 8.42 (m, 2H), 7.89 (dd, J = 8.3, 1.1 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.67 – 7.58 (m, 2H), 7.39 (ddd, J= 8.8, 7.3, 1.7 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 7.02 (td, J = 7.6, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 157.9, 139.4, 138.0, 131.7, 131.1, 130.6, 127.8, 127.7, 127.5, 126.3, 121.4, 120.3, 118.8, 118.2. Analytical data for this compound were consistent with previously reported data.¹⁰

Compound 6n

Yellow solid (60 % isolated yield, 76 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 12.53 (s, 1H), 8.42 (dd, J = 21.7, 7.1 Hz, 2H), 7.85 (d, J = 8.0 Hz, 1H), 7.76 – 7.65 (m, 2H), 7.63 - 7.51 (m, 2H), 6.71 (d, J = 2.6 Hz, 1H), 6.58 (dd, J = 8.7, 2.7 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 160.2, 158.8, 139.0, 138.0, 132.7, 130.5, 127.8, 127.5, 127.4, 126.0, 119.4, 114.3, 106.0, 102.5, 55.5. HRMS (ESI) calcd for C₁₆H₁₄NO₂⁺ (M + H⁺): *m/z* 252.1019, found 252.1018 (0 ppm).

Compound 60

Off-white solid (64 % isolated yield, 81 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.52 (d, *J* = 8.6 Hz, 1H), 8.48 (d, *J* = 5.7 Hz, 1H), 7.89 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.77 – 7.69 (m, 3H), 7.66 – 7.61 (m, 2H), 7.52 – 7.45 (m, 3H), 7.43 – 7.37 (m, 1H), 7.28 (dd, *J* = 8.1, 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 158.4, 143.9, 140.4, 139.3, 138.0, 132.0, 130.7, 128.9, 127.9, 127.8, 127.7, 127.5, 127.2, 126.3, 120.3, 120.2, 117.6, 116.6. HRMS (ESI) calcd for C₂₁H₁₆NO⁺ (M + H⁺): *m/z* 298.12264, found 298.1229 (1 ppm).

Compound 6p

Yellow off-white solid (41 % isolated yield, 54 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.50 (d, *J* = 8.5 Hz, 1H), 8.44 (d, *J* = 5.7 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.75 – 7.68 (m, 2H), 7.63 – 7.57 (m, 2H), 7.22 (d, *J* = 2.0 Hz, 1H), 7.05 (dd, *J* = 8.3, 2.0 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 157.8, 155.0, 139.3, 138.0, 131.3, 130.6, 128.0, 127.5, 127.4, 126.3, 119.9, 118.6, 116.2, 115.3, 35.0, 31.3. HRMS (ESI) calcd for C₁₉H₂₀NO⁺ (M + H⁺): *m/z* 278.15394, found 278.1540 (0 ppm).

Compound 6q

Off-white solid (33 % isolated yield, 37 % NMR yield as borylated product) ¹H NMR (400 MHz, CDCl₃) δ 11.62 (s, 1H), 8.50 – 8.44 (m, 1H), 7.69 (tdd, J = 7.7, 1.8, 0.6 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.22 – 7.13 (m, 3H), 7.03 – 6.97 (m, 1H), 6.85 – 6.77 (m, 1H), 4.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 156.7, 147.8, 138.4, 130.3, 128.8, 126.3, 122.9, 122.0, 120.1, 118.6, 41.8. Analytical data for this compound were consistent with previously reported data.¹¹

Compound 6r

White solid (7 % isolated yield, 12 % NMR yield as borylated product). ¹H NMR (400 MHz, CDCl₃) δ 12.02 (s, 1H), 8.50 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.46 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.27 – 7.09 (m, 7H), 6.96 – 6.88 (m, 3H), 6.83 (td, *J* = 7.4, 1.3 Hz, 1H), 5.27 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 156.7, 148.3, 141.4, 138.6, 132.1, 129.6, 128.3, 127.8, 127.8, 126.6, 124.8, 122.7, 119.9, 119.8, 59.3. HRMS (ESI) calcd for C₁₈H₁₆NO⁺ (M + H⁺): *m/z* 262.12264, found 262.1227 (0 ppm).

6. Preliminary Mechanistic Study

Bpin

and C_6D_6 (10 mL) were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B_2pin_2 (2.0 mmol). The mixture was stirred for another 10 min. Then **4a** (1.0 mmol) and 1,3,5-trimethoxybenzene (56 mg) was added afterward. The tube was closed with a septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C. Under the argon flow, the aliquot (ca. 0.5 mL) was taken after 15, 30, 45, 60, 75, 90, 105 and 120 minutes. The study was monitored by ¹H-NMR method, and the yield was calculated versus 1,3,5-trimethoxybenzene. The kinetic plot is shown below.

Scheme S1 Kinetic plot of 3a-catalyzed C-H borylation of 4a

6.2. Stoichiometric experiments

In a glove box, in a dry J. Young valve NMR tube was placed a red dispersion of 3a (0.025 mmol in 0.6 mL of C₆D₆). Then an equivalent of NaOCH₃ or NaOCD₃ and B₂pin₂ (1 equiv.) were added respectively. The tube was sealed. Outside the glove box, the mixture was allowed to react at 80 °C for 45 minutes then subjected to NMR analysis. After NMR analysis, in the glovebox, the residue was sampled and subjected to the GCMS analysis.

In ¹H NMR spectra, a signal at 3.51 ppm was observed corresponding to <u>CH₃</u>OBpin.¹² This signal disappeared when NaOCD₃ was used. In ¹¹B NMR spectra, a signal at 22.7 ppm for CH₃OBpin was observed in both cases. Furthermore, key signals at 1.81 and 1.74 ppm were observed which refer to Cp*H.¹³ This compound was also detected in GCMS analysis; GCMS (EI): m/z 136 (50), 121 (100), 105 (50).

Fig. S3 Spectra of stoichiometric reaction with A) NaOCH₃ and B) NaOCD₃

6.3. Catalytic C-F borylation with 3a

Scheme S2: Catalytic C-F borylation with 3a

Condition A: Standard condition

In a glove box, in a dry Schlenk tube was placed **3a** (5 mol%). Then NaOMe (10 mol%) and C_6H_6 were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B₂pin₂ (2 equiv.). The mixture was stirred for another 10 min, and 2-(pentafluorophenyl)-pyridine¹⁴ (0.5 mmol) was added afterward. The tube was closed with a septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C for 16h. After cooled down, the mixture was concentrated under reduce pressure and dried under vacuum. To the residue were added fluorobenzene (as an internal standard) and 2 mL of CDCl₃. Then the aliquot was analyzed by ¹⁹F NMR. The *ortho* functionalized product was *not detected* in the spectrum.

Condition B: Reported condition¹⁵

The procedure was followed the one reported in the literature.¹³ In a glove box, a dry Schlenk tube was charged with 2-(pentafluorophenyl)-pyridine (0.4 mmol, 1.0 equiv), B₂pin₂ (0.8 mmol, 2.0 equiv.), followed by addition of KOAc (0.8 mmol, 2.0 equiv) and **3a** (5 mol%). Toluene (2 mL) was then added. The Schlenk tube was sealed and heated to 80 °C (oil bath) for 12h. After cooled down, the mixture was concentrated under reduce pressure and dried under vacuum. To the residue were added fluorobenzene (as an internal standard) and 2 mL of CDCl₃. Then the aliquot was analyzed by ¹⁹F NMR. The *ortho* functionalized product was *not detected* in the spectrum.

6.4. H/D kinetic isotope effect Study

a. Synthesis of 2-pentadeuteriophenylpyridine

<u>Step I</u>: The reported procedure was applied.¹⁶ To a vigorously stirred solution of sulfuric acid (16.65 g, 9.05 mL) in H₂O (33.3 mL), deuteriobenzene (4.21 g, 4.43 mL, 50 mmol) was added in one portion at 0 °C. Thereafter, NaBrO₃ (8.30 g, 55.0 mmol) added in two portions with an interval of 1 h at the same temperature. The reaction mixture was stirred for an additional 10 h at ambient temperature, poured into ice- cold water (100

mL) and extracted with n-pentane (3×40 mL). The combined extracts were washed with icecold water (2×50 mL), sat. aq. NaHCO₃ solution (2×50 mL), brine (40 mL), and dried. *n*-Pentane was carefully evaporated, and the residue was distilled at 45 °C under reduce pressure (0.1 Torr) into a cold (-78 °C) trap to give 6.614 g (70 %) of pure 1bromopentadeuteriobenzene as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) *no signal*. ¹³C NMR (101 MHz, CDCl₃): δ = 131.0 (t, *J* = 25.3 Hz), 129.5 (t, *J* = 24.5 Hz), 126.2 (t, *J* = 24.5 Hz), 122.0.

Step II: The reported procedure was applied.¹⁶ A two-neck 500 mL flask fitted with a magnetic stirring bar, and low-temperature thermometer was charged with bromobenzene- d_5 (8.1 mL, 40.0 mmol) under nitrogen atmosphere. Dry THF (100 mL) was added, and the solution was cooled to - 78°C. To this solution was added n-butyllithium (25.0 mL, 1.6 M, 40.0 mmol) using a slow addition pump over 30 min. The solution was stirred at

-78°C for 2 h whereupon triisopropyl borate (6.3 g, 60.0 mmol) dissolved in 10 mL of dry THF was added drop wise to the reaction system. The solution was allowed to warm to room temperature overnight. After that the reaction was quenched with dilute HCl (20%, 70 mL), and the reaction mixture was stirred for 3 h at room temperature. The resulted biphasic solution was extracted with Et₂O (2 X 50 mL). The ethereal solution was washed twice with H₂O and concentrated by rotary evaporation. To the crude product (viscous liquid), n-hexane 75 ml was added. The white (*d*₅-phenyl)boronic acid solid precipitated in pentane was filtered, dried and used without further purification (80% isolated yield).

<u>Step III</u>: The reported procedure was applied.¹⁷ A mixture of 2bromopyridine (500 mg, 3.16 mmol), pentadeuteriophenylboronic acid (600 mg, 4.74 mmol), K₂CO₃ (873 mg, 6.32 mmol), Pd(OAc)₂ (10 mg, 0.04 mmol), distilled water (12 mL) and ethanol (36 mL) was stirred at 80 °C in air for 1 h. The reaction mixture was added to brine (15 mL) and extracted with ethyl acetate (4 × 15 mL). The solvent was concentrated under vacuum, and the product was isolated by column chromatography on a short silica

gel column to give 2-phenylpyridine- d_5 in 95% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.72 – 8.69 (m, 1H), 7.78 – 7.71 (m, 2H), 7.23 (ddd, J = 6.1, 4.8, 2.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 149.8, 139.4, 136.8, 128.4 (t, *J* = 24.2 Hz), 126.6 (t, *J* = 24.2 Hz), 122.2, 120.7. HRMS (ESI) calcd for C₁₁H₅D₅N⁺ (M + H⁺): *m/z* 161.11216, found 161.1122 (0 ppm).

b. Kinetic isotopic effect study

In a glove box, in a dry Schlenk tube was placed **3a** (5 mol%). Then NaOMe (10 mol%) and C₆D₆ were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B₂Pin₂ (2 equiv.). The mixture was stirred for another 10 min, and an equimolar of 2-phenylpyridine (0.25 mmol) and 2-phenylpyridine- d_5 (0.25 mmol) and 1,3,5-trimethoxybezene (28 mg) were added. The tube was closed with a septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C for 90 minutes. Then the aliquot was taken and analyzed by ¹H-NMR. *Integration of the peaks at 7.96 ppm revealed the* k_H/k_D . At 90 min; the NMR yield is 39 % and $k_H/k_D = 1.3$.

Fig. S4 The spectra for H/D kinetic isotope effect experiment

In a glove box, in a dry Schlenk tube was placed **3a** (5 mol%). Then NaOMe (10 mol%) and C_6D_6 were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B₂pin₂ (2 equiv.). The mixture was stirred for another 10 min, and an equimolar of 2-phenylpyridine (0.20 mmol), BHT (0.5 equiv.) and 1,3,5-trimethoxybezene (28 mg) were added. The tube was closed with septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C for 16 hours. Then the aliquot was taken and analyzed by ¹H-NMR. The NMR yield is 82 % which showed that the radical reaction is likely non-operative.

6.6. Mercury poisoning test

50 %

In a glove box, in a dry Schlenk tube was placed **3a** (5 mol%). Then NaOMe (10 mol%) and C₆D₆ were added respectively. Next, the mixture was stirred for 10 min followed by the addition of B₂pin₂ (2 equiv.). The mixture was stirred for another 10 min, and an equimolar of 2-phenylpyridine (0.20 mmol), mercury (5 equiv.) and 1,3,5-trimethoxybezene (28 mg) were added. The tube was closed with septum and sealed with parafilm. Outside the glove box, the mixture was stirred at 80 °C for 16 hours. Then the aliquot was taken and analyzed by ¹H-NMR. The NMR yield is 50 % which showed that the nanocatalysis is likely non-operative.

7. C-H Borylation of *n*-Octane

Inside the glovebox, to a dry Schlenk tube were added 3a (5 mol%), B₂pin₂ (0.2 mmol). Then *n*-Octane (2 mL) was added, and the tube was closed with septum and sealed with parafilm. Outside the glovebox, the resulting biphasic solid-liquid mixture was stirred at 150 °C for 16h. After cooled down, the volatiles were remove. The crude residue was subjected to silica gel chromatography using dichlomethane as eluent. After removal of solvent, 4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane was obtained as colorless oil.

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane

¹H NMR (400 MHz, CDCl₃) δ 1.44 – 1.33 (m, 2H), 1.27 – 1.24 (m, 10H), 1.24 (s, 12H), 0.92 – 0.80 (m, 3H), 0.76 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 82.96, 32.59, 32.05, 29.53, 29.41, 24.96, 24.16, 22.83, 14.27. GCMS (EI): *m/z* 240 (2), 225 (58), 183

(7), 154 (14), 111 (17), 129.1 (100). Analytical data for this compound were consistent with previously reported data.^{18,19}

8. References

- 1. C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C. Crévisy, O. Baslé and M. Mauduit, *Chem. Eur. J.*, 2015, **21**, 993-997.
- 2. S. Attar, J. H. Nelson, J. Fischer, A. de Cian, J.-P. Sutter and M. Pfeffer, *Organometallics*, 1995, 14, 4559-4569.
- 3. J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim and S. Chang, J. Am. Chem. Soc., 2012, **134**, 9110-9113.
- 4. C. Hierlinger, T. Roisnel, D. B. Cordes, A. M. Z. Slawin, D. Jacquemin, V. Guerchais and E. Zysman-Colman, *Inorg. Chem.*, 2017, **56**, 5182-5188.
- 5. S. Takebayashi and T. Shibata, Organometallics, 2012, 31, 4114-4117.
- 6. K. Sünkel and S. Weigand, Inorganica Chim. Acta, 2011, 370, 224-229
- 7. J. Dong, P. Liu and P. Sun, J. Org. Chem., 2015, 80, 2925-2929.
- 8. Y. Yan, P. Feng, Q.-Z. Zheng, Y.-F. Liang, J.-F. Lu, Y. Cui and N. Jiao, *Angew. Chem. Int. Ed.*, 2013, **52**, 5827-5831.
- 9. Y. Wu and B. Zhou, Org. Lett., 2017, 19, 3532-3535.
- 10. T. Yamaguchi, E. Yamaguchi, N. Tada and A. Itoh, *Adv. Synth. Catal.*, 2015, 357, 2017-2021.
- 11. W. Herzog, C. Bronner, S. Löffler, B. He, D. Kratzert, D. Stalke, A. Hauser and O. S. Wenger, *ChemPhysChem*, 2013, 14, 1168-1176.
- 12. T. Bolaño, M. A. Esteruelas, M. P. Gay, E. Oñate, I. M. Pastor and M. Yus, Organometallics, 2015, 34, 3902-3908.
- 13. L. M. A. Quintana, S. I. Johnson, S. L. Corona, W. Villatoro, W. A. Goddard, M. K. Takase, D. G. VanderVelde, J. R. Winkler, H. B. Gray, J. D. Blakemore, *Proc. Natl. Acad. Sci. U. S. A.*, 2016, 113, 6409-6414
- 14. H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2008, 130, 1128-1129.
- 15. G. Wen-Hao, M. Qiao-Qiao, G. Ji-Wei and Z. Xingang, *Angew. Chem. Int. Ed.*, 2015, **54**, 9075-907
- 16. L. Ackermann, S. I. Kozhushkov and D. S. Yufit, Chem. Eur. J., 2012, 18, 12068-12077.
- 17. C.-Z. Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang and C.-H. Cheng, *Chem. Eur. J.*, 2013, **19**, 14181-14186.
- 18. G. Zhang, J. Wu, M. Wang, H. Zeng, J. Cheng, M. C. Neary and S. Zheng, *Eur. J. Org. Chem.*, 2017, **2017**, 5814-5818.
- 19. A. Caballero and S. Sabo-Etienne, Organometallics, 2007, 26, 1191-1195.

9. Spectroscopic Data

40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

¹³C NMR Spectrum in CDCl₃ for 6c

¹³C NMR Spectrum in CDCl₃ for 6d

40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300	-320	-340
40	20	Ŭ	20	40	00	00	100	120	f1 (p	opm)	100	200	220	240	200	200	000	020	040

10. Crystallographic Data

• ORTEP of **3a**; CCDC nº 1405507

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.43986
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5224 / 0 / 330
Goodness-of-fit on F^2	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0211, $wR2 = 0.0555$
R indices (all data)	R1 = 0.0211, wR2 = 0.0556
Absolute structure parameter	-0.009(3)
Extinction coefficient	0.00115(8)
Largest diff. peak and hole	0.496 and -0.737 e.A^-3

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for jj086_cu_150k. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
Rh(1)	4941(1)	9110(1)	1508(1)	13(1)
Cl(1)	3440(1)	9088(1)	417(1)	25(1)
0(1)	5216(2)	6422(1)	1463(1)	24(1)
0(2)	4678(2)	7776(1)	1497(1)	20(1)
N(1)	6946(2)	8141(2)	543(2)	16(1)
N(2)	6942(3)	9425(2)	130(2)	18(1)
C(1)	5753(3)	10026(2)	2335(2)	19(1)
C(2)	4612(3)	10366(2)	1952(2)	18(1)
C(3)	3475(3)	9860(2)	2173(2)	20(1)
C(4)	3918(3)	9183(2)	2635(2)	20(1)
C(5)	5350(3)	9269(2)	2731(2)	19(1)
C(6)	7068(4)	10449(2)	2400(2)	30(1)
C(7)	4555(4)	11185(2)	1517(2)	30(1)
C(8)	2070(3)	10045(3)	1944(2)	34(1)
C(9)	3099(4)	8482(2)	2960(2)	33(1)
C(10)	6171(4)	8744(2)	3271(2)	32(1)
C(11)	6454(3)	8925(2)	710(2)	14(1)
C(12)	7704(3)	8150(2)	-126(2)	23(1)
C(13)	7716(3)	8956(2)	-382(2)	24(1)
C(14)	6840(3)	10334(2)	54(2)	18(1)
C(15)	7801(3)	10835(2)	422(2)	19(1)
C(16)	7707(3)	11712(2)	345(2)	23(1)
C(17)	6725(4)	12093(2)	-109(2)	25(1)
C(18)	5856(3)	11567(2)	-514(2)	25(1)
C(19)	5897(3)	10686(2)	-453(2)	21(1)
C(20)	8970(3)	10445(2)	835(2)	25(1)
C(21)	6639(4)	13046(2)	-182(2)	34(1)
C(22)	5025(4)	10158(2)	-978(2)	29(1)
C(23)	5474(3)	7179(2)	1345(2)	16(1)
C(24)	6867(3)	7373(2)	1033(2)	18(1)
C(25)	7848(3)	7390(2)	1718(2)	26(1)
C(26)	9348(3)	7350(2)	1511(2)	34(1)
C(27)	9913(4)	8218(3)	1328(3)	47(1)
C(28)	10122(5)	6970(3)	2181(3)	52(1)
0(21)	6218(3)	4982(2)	702(2)	37(1)

$D_{h}(1) = C(11)$	2 0 (0 (2))
$\operatorname{RII}(1) = \operatorname{C}(11)$	2.066(3)
Rh(1)-0(2)	2.1191(19)
Rh(1)-C(2)	2.147(3)
Ph(1) = C(5)	2 156(3)
$R_{1}(1) = C(3)$	2.100(3)
Rn(1) - C(1)	2.184(3)
Rh(1)-C(4)	2.195(3)
Rh(1) - C(3)	2.208(3)
Db(1) Cl(1)	2.4065(7)
$\operatorname{RII}(1) = \operatorname{CI}(1)$	2.4005(7)
O(1) - C(23)	1.237(4)
O(2)-C(23)	1.262(4)
N(1) - C(11)	1 362(4)
N(1) = C(12)	1 270(1)
N(1) = C(12)	1.370(4)
N(1) - C(24)	1.476(4)
N(2)-C(11)	1.361(4)
N(2)-C(13)	1.387(4)
N(2) - C(14)	1 442(4)
C(1) C(2)	1 1 2 (1)
C(1) = C(2)	1.420(4)
C(1) - C(5)	1.431(4)
C(1)-C(6)	1.485(4)
C(2) - C(3)	1.444(4)
C(2) - C(7)	1 492 (4)
C(2) C(1)	1 402(5)
C(3) = C(4)	1.403(5)
C(3) - C(8)	1.496(5)
C(4)-C(5)	1.456(4)
C(4) - C(9)	1,487(4)
C(5) - C(10)	1 / 92 (5)
C(0) C(10)	1.452(5)
C(6) - H(6A)	0.9800
С(6)-Н(6В)	0.9800
С(6)-Н(6С)	0.9800
C(7)-H(7A)	0.9800
C(7) = H(7B)	0 9800
C(7) $H(7D)$	0.9000
C(7) - H(7C)	0.9800
C(8)-H(8A)	0.9800
С(8)-Н(8В)	0.9800
С(8)-Н(8С)	0.9800
$C(0) = U(0\lambda)$	0 9800
C(9) = H(9A)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
C(10)-H(10A)	0.9800
C(10) - H(10B)	0,9800
C(10) = H(10C)	0 0000
C(10) = R(100)	
C(12) - C(13)	1.345(5)
С(12)-Н(12)	0.9500
С(13)-Н(13)	0.9500
C(14) - C(19)	1,401(4)
C(14) = C(15)	1 200(5)
C(14) = C(15)	1.399(3)
C(15) - C(16)	1.392(4)
C(15)-C(20)	1.504(4)
C(16)-C(17)	1.394(5)
C(16) - H(16)	0 9500
C(17) C(19)	1 201 (5)
C(17) = C(18)	1.391(5)
C(17) - C(21)	1.510(4)
C(18)-C(19)	1.393(5)
C(18)-H(18)	0.9500
C(19) - C(22)	1 508(5)
C(20) = U(202)	1.000(0)
C(2U) = H(2UA)	0.9800
С(20)-Н(20В)	0.9800
С(20)-Н(20С)	0.9800
С(21)-Н(21А)	0.9800
C(21) - H(21B)	0 9800
C(21) - H(21C)	0 0000
$C(21) = \Pi(21C)$	0.9000
C(ZZ) = H(ZZA)	0.9800
С(22)-Н(22В)	0.9800

C (22) H (220) $C (23) - C (24)$ $C (24) - C (25)$ $C (24) - H (24)$ $C (25) - C (26)$ $C (25) - H (25A)$ $C (25) - H (25B)$ $C (26) - C (27)$ $C (26) - C (27)$ $C (26) - H (26)$ $C (27) - H (27A)$ $C (27) - H (27A)$ $C (27) - H (27B)$ $C (27) - H (27C)$ $C (28) - H (28A)$ $C (28) - H (28B)$ $C (28) - H (28C)$ $O (21) - H (21D)$ $O (21) - H (21E)$	0.9800 1.532(4) 1.536(4) 1.0000 1.550(5) 0.9900 0.9900 1.514(6) 1.514(5) 1.0000 0.9800 0.89(6)
C (11) -Rh (1) -O (2) C (11) -Rh (1) -C (2) O (2) -Rh (1) -C (2) C (11) -Rh (1) -C (5) O (2) -Rh (1) -C (5) C (2) -Rh (1) -C (1) O (2) -Rh (1) -C (1) C (2) -Rh (1) -C (1) C (2) -Rh (1) -C (4) O (2) -Rh (1) -C (4) O (2) -Rh (1) -C (4) C (1) -Rh (1) -C (4) C (1) -Rh (1) -C (3) O (2) -Rh (1) -C (3) O (2) -Rh (1) -C (3) C (1) -Rh (1) -C (1) O (2) -Rh (1) -C1 (1) O (2) -Rh (1) -C1 (1) C (2) -Rh (1) -C1 (1) C (2) -Rh (1) -C1 (1) C (3) -Rh (1) -C1 (1) C (4) -Rh (1) -C1 (1) C (3) -Rh (1) -C1 (1) C (3) -Rh (1) -C1 (1) C (3) -Rh (1) -C1 (1) C (1) -Rh (1) -C1 (1) C (1) -Rh (1) -C1 (1) C (2) -Rh (1) -C1 (1) C (1) -Rh (1) -C1 (1) C (2) -C (1) -C (24) C (11) -N (2) -C (13) C (11) -N (2) -C (14) C (13) -N (2) -C (14) C (2) -C (1) -C (6) C (2) -C (1) -Rh (1) C (3) -R (1) -C (2) C (1) -C (2) -C (7) C (3) -C (2) -C (7) C (1) -C (2) -Rh (1) C (3) -C (2) -Rh (1) C	$\begin{array}{c} 86.93(10)\\ 118.60(11)\\ 153.95(10)\\ 121.44(12)\\ 98.50(10)\\ 64.88(11)\\ 104.41(11)\\ 135.07(11)\\ 38.48(12)\\ 38.50(12)\\ 159.45(12)\\ 90.05(10)\\ 64.28(12)\\ 39.09(12)\\ 64.34(12)\\ 155.41(12)\\ 116.90(10)\\ 38.70(12)\\ 63.94(11)\\ 63.85(12)\\ 37.15(12)\\ 86.79(8)\\ 84.30(6)\\ 101.14(9)\\ 151.66(8)\\ 138.66(9)\\ 113.14(9)\\ 89.51(8)\\ 131.46(19)\\ 111.6(2)\\ 127.2(2)\\ 120.9(2)\\ 111.0(3)\\ 128.0(3)\\ 120.7(3)\\ 107.7(3)\\ 125.5(3)\\ 126.2(3)\\ 69.39(16)\\ 69.69(16)\\ 132.7(2)\\ 107.9(3)\\ 125.9(3)\\ 125.9(3)\\ 125.3(3)\\ 72.14(17)\\ 72.93(17)\\ \end{array}$

C(4)-C(3)-C(2)	108.5(3)
C(4)-C(3)-C(8)	126.6(3)
C(2) - C(3) - C(8)	124.9(3)
C(4) - C(3) - Rh(1)	70.92(17)
C(2) = C(3) = Rn(1)	68.38(16) 106.0(0)
C(8) - C(3) - Rn(1)	126.8(2) 107.0(2)
C(3) = C(4) = C(3)	107.9(3) 127 1(2)
C(5) = C(4) = C(9)	127.1(3) 125 1(3)
C(3) - C(4) - Bh(1)	71 93(17)
C(5) - C(4) - Rh(1)	68,98(16)
C(9) - C(4) - Rh(1)	123.5(2)
C(1) - C(5) - C(4)	107.7(3)
C(1)-C(5)-C(10)	126.9(3)
C(4)-C(5)-C(10)	124.5(3)
C(1)-C(5)-Rh(1)	71.81(17)
C(4) - C(5) - Rh(1)	71.92(17)
C(10) - C(5) - Rh(1)	130.3(2)
C(1) - C(6) - H(6A)	109.5
C(1) - C(6) - H(6B)	109.5
C(1) - C(6) - H(6C)	109.5
H(6A) - C(6) - H(6C)	109.5
H(6B) - C(6) - H(6C)	109.5
C(2) - C(7) - H(7A)	109.5
С(2)-С(7)-Н(7В)	109.5
H(7A)-C(7)-H(7B)	109.5
С(2)-С(7)-Н(7С)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B) - C(7) - H(7C)	109.5
C(3) - C(8) - H(8A) C(3) - C(8) - H(8B)	109.5
H(8A) - C(8) - H(8B)	109.5
C(3) - C(8) - H(8C)	109.5
H(8A) - C(8) - H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(4)-C(9)-H(9A)	109.5
С(4)-С(9)-Н(9В)	109.5
H(9A)-C(9)-H(9B)	109.5
C(4) - C(9) - H(9C)	109.5
H(9A) - C(9) - H(9C)	109.5 100 E
H(9B) = C(9) = H(9C) C(5) = C(10) = H(103)	109.5
C(5) - C(10) - H(10B)	109.5
H(10A) - C(10) - H(10B)	109.5
С(5)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
N(1)-C(11)-N(2)	103.8(2)
N(1) - C(11) - Rh(1)	122.3(2)
N(2) - C(11) - Rh(1)	132.0(2)
C(13) - C(12) - N(1)	106.6(3)
C(13) - C(12) - H(12)	126.7
N(1) = C(12) = H(12) C(12) = C(13) = N(2)	120.7 106.9(3)
C(12) - C(13) - H(13)	126.5
N(2)-C(13)-H(13)	126.5
C(19)-C(14)-C(15)	121.6(3)
C(19)-C(14)-N(2)	119.9(3)
C(15)-C(14)-N(2)	118.0(3)
C(16)-C(15)-C(14)	118.1(3)
C(16) - C(15) - C(20)	120.2(3)
C(14) - C(15) - C(20)	121.5(3)
C(15) = C(16) = C(17)	121.9(3)
C(13) = C(16) = H(16) C(17) = C(16) = H(16)	119.1 110 1
	エエジ・エ

C(18)-C(17)-C(16)	118.0(3)
C(18) - C(17) - C(21) C(16) - C(17) - C(21)	121.0(3)
C(17) -C(18) -C(19)	122.5(3)
C(17) - C(18) - H(18)	118.8
C(19) - C(18) - H(18) C(18) - C(19) - C(14)	118.8 117.5(3)
C (18) -C (19) -C (22)	119.2(3)
C(14)-C(19)-C(22)	123.1(3)
C(15) - C(20) - H(20A)	109.5
H(20A) - C(20) - H(20B)	109.5
С(15)-С(20)-Н(20С)	109.5
H (20A) -C (20) -H (20C)	109.5
H(20B) - C(20) - H(20C) C(17) - C(21) - H(21A)	109.5
C(17) -C(21) -H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(17) - C(21) - H(21C) H(21A) - C(21) - H(21C)	109.5
H(21R) - C(21) - H(21C)	109.5
C(19)-C(22)-H(22A)	109.5
C(19) - C(22) - H(22B)	109.5
C(19) - C(22) - H(22C)	109.5
Н (22А) –С (22) –Н (22С)	109.5
H(22B) -C(22) -H(22C)	109.5
O(1) - C(23) - O(2) O(1) - C(23) - C(24)	123.5(3) 116 2(3)
O(2) -C(23) -C(24)	120.3(2)
N(1) - C(24) - C(23)	114.4(2)
N(1) - C(24) - C(25) C(23) - C(24) - C(25)	112.8(2)
N(1) - C(24) - H(24)	106.8
С(23)-С(24)-Н(24)	106.8
C(25) - C(24) - H(24)	106.8
C(24) - C(25) - C(26) C(24) - C(25) - H(25A)	108.1
С(26)-С(25)-Н(25А)	108.1
C(24) - C(25) - H(25B)	108.1
H(25A) - C(25) - H(25B) H(25A) - C(25) - H(25B)	107.3
C (28) –C (26) –C (27)	108.8(3)
C (28) -C (26) -C (25)	110.1(3)
C(27) - C(26) - C(25) C(28) - C(26) - H(26)	112.1(3)
С(27) –С(26) –Н(26)	108.6
C(25)-C(26)-H(26)	108.6
C(26) - C(27) - H(27A)	109.5
H(27A) - C(27) - H(27B)	109.5
С(26)-С(27)-Н(27С)	109.5
H(27A) - C(27) - H(27C)	109.5
C(26) - C(28) - H(28A)	109.5
С (26) –С (28) –Н (28В)	109.5
H (28A) -C (28) -H (28B)	109.5
U (26) -U (28) -H (28C) H (28A) -C (28) -H (28C)	109.5 109.5
H (28B) -C (28) -H (28C)	109.5
H(21D)-O(21)-H(21E)	104(5)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
Rh(1)	14(1)	10(1)	14(1)	-2(1)	0(1)	-1(1)
Cl(1)	24(1)	26(1)	23(1)	-4(1)	-8(1)	-1(1)
0(1)	25(1)	13(1)	33(1)	3(1)	4(1)	-2(1)
0(2)	19(1)	12(1)	30(1)	-2(1)	5(1)	-2(1)
N(1)	17(1)	12(1)	19(1)	0(1)	2(1)	1(1)
N(2)	20(1)	14(1)	20(1)	1(1)	6(1)	1(1)
C(1)	21(2)	19(1)	16(1)	-8(1)	2(1)	-3(1)
C(2)	24(2)	11(1)	20(1)	-5(1)	4(1)	1(1)
C(3)	19(2)	21(2)	21(2)	-8(1)	4(1)	2(1)
C(4)	25(2)	20(2)	16(1)	-5(1)	7(1)	-6(1)
C(5)	24(2)	17(1)	14(1)	-3(1)	-1(1)	-1(1)
C(6)	27(2)	38(2)	26(2)	-5(2)	1(1)	-13(2)
C(7)	40(2)	16(2)	33(2)	2(1)	8(2)	8(1)
C(8)	18(2)	39(2)	44(2)	-10(2)	4(2)	5(2)
C(9)	41(2)	29(2)	29(2)	0(2)	14(2)	-14(2)
C(10)	45(2)	30(2)	22(2)	0(1)	-8(2)	7(2)
C(11)	16(1)	11(1)	15(1)	0(1)	0(1)	0(1)
C(12)	26(2)	18(2)	24(2)	0(1)	7(1)	5(1)
C(13)	29(2)	22(2)	21(2)	1(1)	10(1)	5(1)
C(14)	21(1)	13(1)	19(1)	4(1)	6(1)	2(1)
C(15)	19(1)	19(1)	20(1)	3(1)	5(1)	2(1)
C(16)	23(2)	18(2)	28(2)	-2(1)	7(1)	-3(1)
C(17)	30(2)	16(2)	28(2)	7(1)	13(1)	3(1)
C(18)	28(2)	23(2)	25(2)	7(1)	4(1)	8(1)
C(19)	21(1)	21(2)	21(1)	2(1)	4(1)	1(1)
C(20)	21(2)	25(2)	29(2)	0(1)	1(1)	3(1)
C(21)	45(2)	17(2)	40(2)	5(1)	7(2)	5(2)
C(22)	31(2)	29(2)	28(2)	5(1)	-5(2)	-2(2)
C(23)	21(1)	12(1)	16(1)	-1(1)	-2(1)	-2(1)
C(24)	20(2)	11(1)	21(1)	2(1)	1(1)	1(1)
C(25)	25(2)	27(2)	27(2)	8(1)	-5(1)	-3(1)
C(26)	26(2)	30(2)	45(2)	0(2)	-8(2)	2(1)
C(27)	32(2)	43(2)	64(3)	15(2)	-6(2)	-8(2)
C(28)	33(2)	48(2)	74(3)	19(2)	-17(2)	2(2)
0(21)	46(2)	20(1)	43(2)	0(1)	14(1)	-2(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for jj086_cu_150k. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	х	У	Z	U (eq)
H(6A)	7105	10776	2885	45
Н(6В)	7194	10831	1956	45
H(6C)	7772	10019	2401	45
H(7A)	4331	11646	1877	44
н (7в)	3875	11149	1110	44
H(7C)	5422	11299	1278	44
H(8A)	2045	10557	1620	51
H(8B)	1711	9565	1649	51
H(8C)	1533	10136	2413	51
H(9A)	2189	8525	2760	49
H (9B)	3086	8523	3529	49
H(9C)	3482	7935	2806	49
H(10A)	7116	8834	3158	48
H(10B)	5951	8143	3200	48
H(10C)	5985	8910	3810	48
H(12)	8135	7678	-360	27
н(13)	8168	9166	-828	29
H(16)	8331	12062	610	27
H(18)	5209	11818	-845	30
H(20A)	9633	10264	452	38
H(20B)	8672	9953	1137	38
H(20C)	9367	10865	1187	38
H(21A)	6445	13198	-724	51
H(21B)	7487	13300	-26	51
H(21C)	5928	13259	156	51
H(22A)	4090	10299	-882	44
H(22B)	5174	9555	-870	44
H(22C)	5245	10278	-1523	44
H(24)	7128	6883	695	21
H(25A)	7641	6906	2064	31
H(25B)	7689	7916	2019	31
H(26)	9462	6979	1044	40
H(27A)	9417	8471	895	70
H(27B)	9835	8584	1788	70
н(27С)	10851	8163	1184	70
H(28A)	9764	6407	2304	77
н(28в)	11061	6917	2035	77
H(28C)	10044	7338	2639	77
H(21D)	6000(50)	5460(40)	920(30)	50
(21E)	6850(50)	5130(30)	370(30)	50
· = /			/	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for jj086_cu_150k.

C(5) - C(1) - C(2) - C(3)	5.3(3)
C(6) = C(1) = C(2) = C(3)	-166.9(3)
Bh(1) - C(1) - C(2) - C(3)	64 6(2)
C(5) = C(1) = C(2) = C(7)	175 4(3)
C(6) - C(1) - C(2) - C(7)	3 2 (5)
Bb(1) = C(1) = C(2) = C(7)	-125 3(3)
C(5) = C(1) = C(2) = Pb(1)	-59 1 (2)
C(5) = C(1) = C(2) = Rit(1) C(6) = C(1) = C(2) = Rit(1)	
C(0) = C(1) = C(2) = C(4)	
C(1) = C(2) = C(3) = C(4)	-4.5(3)
C(7) = C(2) = C(3) = C(4) Db(1) = C(2) = C(4)	
C(1) = C(2) = C(3) = C(4)	JJ.0(2) 175 2(2)
C(1) - C(2) - C(3) - C(8)	I/J.J(J)
C(7) = C(2) = C(3) = C(3)	120 6(2)
RII(1) = C(2) = C(3) = C(0) $C(1) = C(2) = C(3) = D(1)$	-120.0(3)
C(1) = C(2) = C(3) = RI(1)	-04.1(2)
C(7) = C(2) = C(3) = Rn(1)	1 7 (2)
C(2) = C(3) = C(4) = C(5)	L./(3)
C(8) = C(3) = C(4) = C(5)	-177.9(3)
RI(1) = C(3) = C(4) = C(5)	59.9(2)
C(2) = C(3) = C(4) = C(9)	-17.0(3)
C(8) - C(3) - C(4) - C(9)	3.4(5)
Rn(1) = C(3) = C(4) = C(9)	-118.8(3)
C(2) = C(3) = C(4) = Rn(1)	-58.2(2)
C(8) - C(3) - C(4) - Rn(1)	122.2(3)
C(2) = C(1) = C(5) = C(4)	-4.2(3)
C(6) - C(1) - C(5) - C(4)	167.9(3)
Rn(1) - C(1) - C(5) - C(4)	-63.4(2)
C(2) = C(1) = C(3) = C(10)	-1/3.0(3)
C(0) = C(1) = C(0) = C(10) Pb(1) = C(1) = C(5) = C(10)	-1.3(3)
RII(1) = C(1) = C(3) = C(10)	IZ7.2(3)
C(2) = C(1) = C(3) = RI(1) C(6) = C(1) = C(5) = RI(1)	-129.2(2)
C(0) = C(1) = C(0) = RI(1) C(3) = C(4) = C(5) = C(1)	-120.7(3)
C(3) - C(4) - C(5) - C(1)	-1797(3)
C(J) = C(J) = C(J) = C(J) Pb(J) = C(J) = C(J)	63 3 (2)
C(3) = C(4) = C(5) = C(10)	171 3 (3)
C(9) - C(4) - C(5) - C(10)	-10 0(5)
Bb(1) = C(4) = C(5) = C(10)	-126.9(3)
C(3) - C(4) - C(5) - Bh(1)	$-61 \ 8 (2)$
C(9) - C(4) - C(5) - Bh(1)	117 0(3)
C(12) - N(1) - C(11) - N(2)	-0.7(3)
C(24) - N(1) - C(11) - N(2)	172 0 (3)
C(12) - N(1) - C(11) - Rh(1)	165.5(2)
C(24) - N(1) - C(11) - Rh(1)	-21.9(4)
C(13) - N(2) - C(11) - N(1)	0.0(3)
C(14) - N(2) - C(11) - N(1)	-173.8(3)
C(13) - N(2) - C(11) - Rh(1)	-164.2(2)
C(14) - N(2) - C(11) - Rh(1)	22.0(5)
C(11) - N(1) - C(12) - C(13)	1.1(4)
C(24) - N(1) - C(12) - C(13)	-172.1(3)
N(1) - C(12) - C(13) - N(2)	-1.0(4)
C(11) - N(2) - C(13) - C(12)	0.6(4)
C(14) - N(2) - C(13) - C(12)	174.9(3)
C(11)-N(2)-C(14)-C(19)	-101.2(4)
C(13)-N(2)-C(14)-C(19)	85.5(4)
C(11)-N(2)-C(14)-C(15)	86.3(4)
C(13)-N(2)-C(14)-C(15)	-87.0(4)
C(19)-C(14)-C(15)-C(16)	7.3(4)
N(2)-C(14)-C(15)-C(16)	179.7(3)
C(19)-C(14)-C(15)-C(20)	-167.7(3)
N(2)-C(14)-C(15)-C(20)	4.7(4)
C(14)-C(15)-C(16)-C(17)	-2.6(5)
C(20)-C(15)-C(16)-C(17)	172.4(3)

-2.4(5)
179.8(3)
2.9(5)
-179.2(3)
1.5(5)
-173.2(3)
-6.8(4)
-179.0(3)
167.8(3)
-4.5(5)
170.2(2)
-7.0(4)
49.1(4)
-138.8(3)
-75.9(4)
96.1(3)
150.7(3)
-32.0(4)
-82.2(3)
95.2(3)
-66.9(4)
165.1(3)
-153.6(3)
85.1(4)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
------	--------	-------	-------	--------

(C₂₇ H₃₆ Cl N₂ O₂ Rh, O); M = 574.94. D8 VENTURE Bruker AXS diffractometer [*], Mo-Kα radiation (λ = 0.71073 Å), T =150(2) Κ; orthorhombic $P = 2_1 2_1 2_1 (I.T.#19)$, a = 9.8757(4), b = 15.8497(5), c =17.3332(7) Å, V = 2713.11(18) Å³. Z = 4, d = 1.408 g.cm⁻³, $\mu = 0.757$ mm⁻¹. The structure was solved by dual-space algorithm using the SHELXT program [1], and then refined with full-matrix least-square methods based on F^2 (SHELXL-2014) [2]. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F^2 with 6134 unique intensities and 317 parameters converged at $\omega R(F^2) = 0.0832$ (R(F) = 0.0393) for 5055 observed reflections with $I > 2\sigma(I)$.

[1] G. M. Sheldrick, Acta Cryst. A71 (2015) 3-8
[2] Sheldrick G.M., Acta Cryst. C71 (2015) 3-8

Structural data

Empirical formula C_{27} H₃₆ Cl N₂ O₃ Rh Extended formula C_{27} H₃₆ Cl N₂ O₂ Rh, O Formula weight 574.94 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space grouporthorhombic, P 2_1 </ b = 15.8497(5) Å, β = 90 ° $c = 17.3332(7) \text{ Å, } \gamma = 90^{\circ}$ Volume 2713.11(18) Å³ Z, Calculated density 4, 1.408 $(g.cm^{-3})$ 0.757 mm^{-1} Absorption coefficient F(000)1192 Crystal size 0.520 x 0.340 x 0.080 mm Crystal color red 2.350 to 27.484 ° Theta range for data collection h_min, h_max -12, 12 k min, k max -16, 20 1 min, 1 max -22, 22 Reflections collected / unique $18101 / 6134 [R(int)^a = 0.0717]$ 5055 Reflections $[I>2\sigma]$ 0.997 Completeness to theta max Absorption correction type Max. and min. transmission multi-scan 0.941 , 0.759 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 6134 / 0 / 317 Flack parameter -0.02(3)^bGoodness-of-fit 1.034 $R1^c = 0.0393$, $wR2^d = 0.0832$ Final R indices $[I>2\sigma]$ $R1^c = 0.0570$, $wR2^d = 0.0899$ R indices (all data) Largest diff. peak and hole 0.800 and -0.946 e⁻.Å⁻³

 ${}^{a}R_{int} = \sum |F_{o}^{2} - \langle F_{o}^{2} \rangle| / \sum [F_{o}^{2}]$ ${}^{b}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n - p)\}^{1/2}$ ${}^{c}R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ ${}^{d}wR2 = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\}^{1/2}$ $w = 1 / [\sigma(F_{o}^{2}) + aP^{2} + bP] \text{ where } P = [2F_{c}^{2} + MAX(F_{o}^{2}, 0)] / 3$

Table 2. Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (Å²). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	У	Z	occ.	U(eq)
Rh1	0.50248(5)	0.58883(2)	0.35296(2)	1	0.01181(10)
C11	0.35664(16)	0.59925(10)	0.46351(8)	1	0.0245(3)
C1	0.5343(6)	0.5682(3)	0.2305(3)	1	0.0188(14)
C2	0.5706(6)	0.4917(3)	0.2716(3)	1	0.0190(12)
С3	0.4549(6)	0.4642(3)	0.3127(3)	1	0.0165(12)
C4	0.3419(6)	0.5190(3)	0.2922(3)	1	0.0176(12)
C5	0.3920(6)	0.5824(3)	0.2435(3)	1	0.0169(12)
C6	0.6222(7)	0.6168(4)	0.1763(3)	1	0.0291(15)
H6A	0.602555	0.599635	0.123169	1	0.044
H6B	0.717557	0.605376	0.188004	1	0.044
H6C	0.604230	0.677267	0.182196	1	0.044
C7	0.7001(7)	0.4431(4)	0.2636(3)	1	0.0295(15)
H7A	0.715766	0.409876	0.310410	1	0.044
H7B	0.775515	0.482490	0.256035	1	0.044
H7C	0.693805	0.405255	0.219032	1	0.044

C8	0.4453(6)	0.3850(3)	0.3591(4)	1	0.0274(13)
н8д	0 414970	0 338652	0 325898	1	0 041
HSB	0 380283	0 392975	0 401173	1	0 041
H8C	0.534421	0.371355	0 380654	1	0.011
110C	0.1000(6)	0.571555	0.2196(4)	1	0.0200(14)
C 9	0.1909(0)	0.5107(4)	0.3188(4)	1	0.0200(14)
НЭА	0.161403	0.566816	0.328832	1	0.043
н9В	0.195939	0.4/6899	0.365938	1	0.043
H9C	0.145306	0.482836	0.278402	1	0.043
C10	0.3152(7)	0.6548(4)	0.2100(3)	1	0.0296(15)
H10A	0.301339	0.645320	0.154688	1	0.044
H10B	0.366712	0.707021	0.217567	1	0.044
H10C	0.227187	0.659666	0.235727	1	0.044
C11	0.5776(6)	0.7785(3)	0.3638(3)	1	0.0177(11)
C12	0.7154(6)	0.7545(3)	0.3960(3)	1	0.0177(12)
H12	0.748102	0.803610	0.426978	1	0.021
C13	0.8225(6)	0.7382(4)	0 3328 (3)	1	0.0278(14)
U13	0.790729	0 689840	0 300383	1	0.0270(11)
C14	0.750725	0.000040	0.2809(4)	1	0.033
C14 U147	0.0300(0)	0.0143(4)	0.2009(4)	1	0.0429(19)
HI4A	0./51335	0.828507	0.25/398	1	0.064
HI4B	0.904688	0.801831	0.240217	1	0.064
H14C	0.870847	0.862534	0.311432	1	0.064
C15	0.9612(7)	0.7155(4)	0.3658(4)	1	0.045(2)
H15A	1.025571	0.706965	0.323489	1	0.068
H15B	0.953955	0.663531	0.396167	1	0.068
H15C	0.993104	0.761461	0.398981	1	0.068
C16	0.7863(6)	0.6798(3)	0.5166(3)	1	0.0215(13)
Н16	0.833391	0.725871	0.539215	1	0.026
C17	0.7798(6)	0.6007(3)	0.5434(3)	1	0.0220(12)
н17	0 821576	0 579721	0 588870	1	0 026
C18	0.6553(6)	0.6049(3)	0 4321 (3)	1	0.020
C10	0.6974(6)	0.0045(3)	0.4092(3)	1	0.0133(11)
C19 C20	0.0074(0)	0.4040(3)	0.4982(3)	1	0.0147(11)
C20 C21	0.5921(6)	0.4294(3)	0.5498(3)	1	0.0101(12)
CZI	0.5867(6)	0.3417(3)	0.5532(3)	1	0.0196(12)
H21	0.522202	0.316210	0.586456	1	0.024
C22	0.6711(6)	0.2902(3)	0.5105(3)	1	0.0209(13)
C23	0.7698(6)	0.3280(3)	0.4650(3)	1	0.0195(12)
Н23	0.831220	0.293285	0.437249	1	0.023
C24	0.7816(5)	0.4155(3)	0.4589(3)	1	0.0177(11)
C25	0.5040(8)	0.4820(3)	0.6021(3)	1	0.0262(11)
H25A	0.409073	0.465629	0.595470	1	0.039
Н25В	0.514855	0.541810	0.589206	1	0.039
H25C	0.531110	0.472692	0.655870	1	0.039
C26	0.6585(7)	0.1952(3)	0.5134(4)	1	0.0286(15)
н26д	0 645994	0 177135	0 567014	1	0 043
H26B	0 7/092/	0 169/5/	0 192518	1	0.013
IIZ OD	0.740924	0.177201	0.492510	1	0.043
H20C	0.000010	0.177391	0.402010	1	0.043
	0.9000(6)	0.4551(3)	0.41/1(3)	1	0.0227(13)
HZ/A	0.868172	0.503308	0.386720	1	0.034
H27B	0.941478	0.413363	0.382788	1	0.034
H27C	U.967170	0.474397	0.454867	Ţ	0.034
Nl	0.7101(5)	0.6812(3)	0.4487(2)	1	0.0166(10)
N2	0.7003(5)	0.5550(2)	0.4920(2)	1	0.0169(10)
01	0.4916(5)	0.72183(18)	0.34851(19)	1	0.0216(7)
02	0.5557(4)	0.8546(2)	0.3520(2)	1	0.0293(10)
011	0.6324(5)	1.0007(3)	0.4298(2)	1	0.0344(11)

Table 3. Bond lengths [Å]

Rh1	- C18	= 2.056(5)
Rh1	- 01	= 2.112(3)
Rh1	- C3	= 2.146(5)

Rh1	_	C1	=	2.170(5)
Rh1	-	C5	=	2.191(5)
Rh1	-	C2	=	2.193(5)
Rh1	-	C4	=	2.202(5)
Rh1	-	Cll	=	2.4029(14)
C1	_	С5	=	1.441(9)
C1	_	C2	=	1.451(8)
C1	-	C6	=	1.493(7)
C2	-	С3	=	1.415(8)
C2	-	С7	=	1.500(8)
C3	-	C4	=	1.458(8)
C3	-	C8	=	1.494(7)
C4	-	C5	=	1.403(7)
C4	-	С9	=	1.490(8)
С5	-	C10	=	1.493(7)
C6	-	H6A	=	0.9800
C6	-	Н6В	=	0.9800
C6	-	H6C	=	0.9800
C7	-	H7A	=	0.9800
C7	-	Н7В	=	0.9800
С7	-	H7C	=	0.9800
C8	-	H8A	=	0.9800
C8	-	H8B	=	0.9800
C8	-	H8C	=	0.9800
С9	-	H9A	=	0.9800
С9	-	Н9В	=	0.9800
С9	-	H9C	=	0.9800
C10	-	H10A	=	0.9800
C10	-	H10B	=	0.9800
C10	-	H10C	=	0.9800
C11	-	02	=	1.242(6)
C11	-	01	=	1.265(6)
C11	-	C12	=	1.520(8)
C12	-	Nl	=	1.478(6)
C12	-	C13	=	1.544(8)
C12	-	H12	=	1.0000
C13	-	C14	=	1.516(8)
C13	-	C15	=	1.528(9)
C13	-	H13	=	1.0000
C14	-	H14A	=	0.9800
C14	-	H14B	=	0.9800
C14	-	H14C	=	0.9800
C15	-	H15A	=	0.9800
C15	-	H15B	=	0.9800
C15	-	H15C	=	0.9800
C16	-	C17	=	1.339(7)
C16	-	Nl	=	1.397(7)

C16	-	H16	=	0.9500
C17	-	N2	=	1.391(6)
C17	-	H17	=	0.9500
C18	-	Nl	=	1.356(6)
C18	-	N2	=	1.378(6)
C19	-	C24	=	1.391(7)
C19	-	C20	=	1.411(7)
C19	-	N2	=	1.442(6)
C20	-	C21	=	1.392(7)
C20	-	C25	=	1.511(8)
C21	-	C22	=	1.383(8)
C21	-	H21	=	0.9500
C22	-	C23	=	1.389(8)
C22	-	C26	=	1.511(7)
C23	-	C24	=	1.395(7)
C23	-	H23	=	0.9500
C24	-	C27	=	1.512(7)
C25	-	H25A	=	0.9800
C25	-	H25B	=	0.9800
C25	-	H25C	=	0.9800
C26	-	H26A	=	0.9800
C26	-	H26B	=	0.9800
C26	-	H26C	=	0.9800
C27	-	H27A	=	0.9800
C27	-	Н27В	=	0.9800
C27	_	H27C	=	0.9800

Table 4. Angles [°]

C18	- Rh1	- 01	=	86.47(18)
C18	- Rh1	- C3	=	119.40(2)
01	- Rh1	- C3	=	153.54(19)
C18	- Rh1	- C1	=	124.40(2)
01	- Rh1	- C1	=	96.99(16)
C3	- Rh1	- C1	=	64.90(2)
C18	- Rh1	- C5	=	161.70(2)
01	- Rh1	- C5	=	89.39(17)
C3	- Rh1	- C5	=	64.30(2)
C1	- Rh1	- C5	=	38.60(2)
C18	- Rh1	- C2	=	106.90(2)
01	- Rh1	- C2	=	133.84(18)
C3	- Rh1	- C2	=	38.00(2)
C1	- Rh1	- C2	=	38.90(2)
C5	- Rh1	- C2	=	64.10(2)
C18	- Rh1	- C4	=	155.50(2)
01	- Rh1	- C4	=	116.59(18)
С3	- Rh1	- C4	=	39.10(2)

C1	- Rh1	- C4	=	64.00(2)
C5	- Rh1	- C4	=	37.24(19)
C2	- Rh1	- C4	=	63.90(2)
C18	- Rh1	- Cl1	=	84.21(15)
01	- Rh1	- Cl1	=	85.99(11)
C3	- Rhl	- Cl1	=	101.02(15)
C1	- Rh1	- Cl1	=	151.29(16)
C5	- Rh1	- Cl1	=	113.27(16)
C2	- Rh1	- Cl1	=	138.14(16)
C4	- Rh1	- Cl1	=	89.09(15)
C5	- C1	- C2	=	107.10(5)
C5	- C1	- C6	=	125.80(5)
C2	- C1	- C6	=	126.60(5)
C5	- C1	- Rh1	=	71.50(3)
C2	- C1	- Rh1	=	71.40(3)
C6	- C1	- Rh1	=	128.50(4)
C3	- C2	- C1	=	107.80(5)
C3	- C2	- C7	=	125.20(5)
C1	- C2	- C7	=	126.40(5)
C3	- C2	- Rh1	=	69.20(3)
C1	- C2	- Rh1	=	69.70(3)
C7	- C2	- Rh1	=	133.00(4)
C2	- C3	- C4	=	108.20(5)
C2	- C3	- C8	=	125.50(5)
C4	- C3	- C8	=	125.70(5)
C2	- C3	- Rh1	=	72.80(3)
C4	- C3	- Rh1	=	72.50(3)
C8	- C3	- Rh1	=	127.80(4)
C5	- C4	- C3	=	107.70(5)
C5	- C4	- C9	=	125.60(5)
C3	- C4	- C9	=	126.70(5)
C5	- C4	- Rh1	=	71.00(3)
C3	- C4	- Rh1	=	68.40(3)
С9	- C4	- Rh1	=	125.50(4)
C4	- C5	- C1	=	109.00(5)
C4	- C5	- C10	=	127.30(6)
C1	- C5	- C10	=	123.70(5)
C4	- C5	- Rh1	=	71.80(3)
C1	- C5	- Rh1	=	69.90(3)
C10	- C5	- Rh1	=	123.60(4)
C1	- C6	- H6A	=	109.50
C1	- C6	- н6в	=	109.50
H6A	- C6	- н6в	=	109.50
C1	- C6	- H6C	=	109.50
H6A	- C6	- H6C	=	109.50
H6B	- C6	- H6C	=	109.50
C2	- C7	- H7A	=	109.50

C2	- C7	- Н7В	=	109.50
H7A	- C7	- Н7В	=	109.50
C2	- C7	- н7с	=	109.50
H7A	- C7	- н7с	=	109.50
Н7В	- C7	- н7С	=	109.50
C3	- C8	- H8A	=	109.50
C3	- C8	- Н8В	=	109.50
H8A	- C8	- Н8В	=	109.50
C3	- C8	- H8C	=	109.50
H8A	- C8	- H8C	=	109.50
H8B	- C8	- H8C	=	109.50

Table 5. Torsion angles [°]

C5	- C1	- C2	- C3	= -4.10(6)
C6	- C1	- C2	- C3	= -176.40(5)
Rh1	- C1	- C2	- C3	= 58.90(4)
C5	- C1	- C2	- C7	= 167.90(5)
C6	- C1	- C2	- C7	= -4.50(9)
Rh1	- C1	- C2	- C7	= -129.10(6)
C5	- C1	- C2	- Rh1	= -63.00(3)
C6	- C1	- C2	- Rh1	= 124.60(5)
C1	- C2	- C3	- C4	= 5.00(6)
C7	- C2	- C3	- C4	= -167.00(5)
Rh1	- C2	- C3	- C4	= 64.30(3)
C1	- C2	- C3	- C8	= 176.20(5)
C7	- C2	- C3	- C8	= 4.20(9)
Rh1	- C2	- C3	- C8	= -124.50(5)
C1	- C2	- C3	- Rh1	= -59.30(3)
C7	- C2	- C3	- Rh1	= 128.70(5)
C2	- C3	- C4	- C5	= -4.10(6)
C8	- C3	- C4	- C5	= -175.30(5)
Rh1	- C3	- C4	- C5	= 60.40(3)
C2	- C3	- C4	- C9	= 176.70(5)
C8	- C3	- C4	- C9	= 5.50(8)
Rh1	- C3	- C4	- C9	= -118.90(5)
C2	- C3	- C4	- Rh1	= -64.50(4)
C8	- C3	- C4	- Rh1	= 124.30(5)
C3	- C4	- C5	- C1	= 1.60(6)
С9	- C4	- C5	- C1	= -179.20(5)
Rh1	- C4	- C5	- C1	= 60.30(4)
C3	- C4	- C5	- C10	= -177.60(5)
С9	- C4	- C5	- C10	= 1.70(8)
Rh1	- C4	- C5	- C10	= -118.90(5)
С3	- C4	- C5	- Rh1	= -58.70(3)

С9	- C4	- C5	- Rh1	= 120.50(5)
C2	- C1	- C5	- C4	= 1.50(6)
C6	- C1	- C5	- C4	= 174.00(5)
Rh1	- C1	- C5	- C4	= -61.50(3)
C2	- C1	- C5	- C10	= -179.30(5)
C6	- C1	- C5	- C10	= -6.90(8)
Rh1	- C1	- C5	- C10	= 117.70(5)
C2	- C1	- C5	- Rh1	= 63.00(3)
C6	- C1	- C5	- Rh1	= -124.60(5)
02	- C11	- C12	- N1	= 146.00(5)
01	- C11	- C12	- N1	= -35.50(7)
02	- C11	- C12	- C13	= -88.80(6)
01	- C11	- C12	- C13	= 89.70(6)
Nl	- C12	- C13	- C14	= -175.80(5)
C11	- C12	- C13	- C14	= 57.10(6)
Nl	- C12	- C13	- C15	= -53.90(6)
C11	- C12	- C13	- C15	= 179.00(5)
Nl	- C16	- C17	- N2	= 0.00(7)
C24	- C19	- C20	- C21	= -6.60(8)
N2	- C19	- C20	- C21	= -179.20(5)
C24	- C19	- C20	- C25	= 170.00(5)
N2	- C19	- C20	- C25	= -2.60(8)
C19	- C20	- C21	- C22	= 1.30(8)
C25	- C20	- C21	- C22	= -175.50(5)
C20	- C21	- C22	- C23	= 3.30(8)
C20	- C21	- C22	- C26	= -177.40(5)
C21	- C22	- C23	- C24	= -2.90(8)
C26	- C22	- C23	- C24	= 177.90(6)
C20	- C19	- C24	- C23	= 7.00(8)
N2	- C19	- C24	- C23	= 179.80(5)
C20	- C19	- C24	- C27	= -167.50(5)
N2	- C19	- C24	- C27	= 5.30(7)
C22	- C23	- C24	- C19	= -2.10(8)
C22	- C23	- C24	- C27	= 172.40(5)
N2	- C18	- N1	- C16	= -0.30(6)
Rh1	- C18	- N1	- C16	= 164.90(4)
N2	- C18	- N1	- C12	= 167.90(5)
Rh1	- C18	- N1	- C12	= -26.80(7)
C17	- C16	- N1	- C18	= 0.20(7)
C17	- C16	- N1	- C12	= -168.70(5)
C11	- C12	- N1	- C18	= 53.90(7)
C13	- C12	- N1	- C18	= -73.30(7)
C11	- C12	- N1	- C16	= -138.90(5)
C13	- C12	- N1	- C16	= 93.90(6)
N1	- C18	- N2	- C17	= 0.30(6)
Rh1	- C18	- N2	- C17	= -163.00(4)
Nl	- C18	- N2	- C19	= -171.00(5)

Rh1	- C18	- N2	- C19	=	25.70(8)
C16	- C17	- N2	- C18	=	-0.20(7)
C16	- C17	- N2	- C19	=	171.70(5)
C24	- C19	- N2	- C18	=	81.30(7)
C20	- C19	- N2	- C18	=	-105.70(6)
C24	- C19	- N2	- C17	=	-89.10(6)
C20	- C19	- N2	- C17	=	83.80(7)
02	- C11	- 01	- Rh1	=	174.40(4)
C12	- C11	- 01	- Rh1	=	-4.10(7)