Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Palladium-catalyzed Cocyclotrimerization of Arynes with a Pyramidalized Alkene

José M. Alonso, Sabela Quiroga, Sandra Codony, Andreea L. Turcu, Marta Barniol-Xicota, Dolores Pérez, Enrique Guitián, Santiago Vázquez, and Diego Peña*

CONTENTS

1) GENERAL METHODS	S 3
2) EXPERIMENTAL PROCEDURES AND DATA	S 4
3) ATTEMPTS WITH OTHER PYRAMIDALIZED ALKENES	S 9
4) REFERENCES	S 10
5) NMR SPECTRA	S 11
6) X-RAY DIFFRACTION DATA	S 16

1) GENERAL METHODS

All reactions were carried out under argon atmosphere using oven-dried glassware. Solvents were dried by distillation from a drying agent. Commercial reagents were purchased from ABCR GmbH, Aldrich Chemical Co., or Stream Chemicals Inc, and were used without any further purification. *n*-BuLi was used from solution in hexanes (2.40 M). Flash chromatography was performed on Merck silica gel 60 F254. ¹H and ¹³C NMR spectra were recorded at 300, 400 and 500 MHz (Varian Mercury instrument). Every experiment was performed at 298 K unless otherwise indicated. Low resolution electron impact mass spectra (EI-LRMS) were determined at 70 eV on a HP-5988A instrument. High resolution mass spectra (HRMS) were obtained on a Micromass Autoespec spectrometer.

2) EXPERIMENTAL PROCEDURES AND DATA

Synthesis of starting materials 1, 11, 15, 16, 19 and 20

Diiodoalkane **1** was prepared following a modification of a reported procedure.¹

Scheme S1

To a solution of 3,4,8,9-tetramethyltetracyclo[$4.4.0.0^{3,9}.0^{4,8}$]decane-1,6-dicarboxylic acid (374 mg, 1.34 mmol) in dry 1,2-dichloroethane (20 mL) was added 1,3-diiodo-5,5-dimethylhydantoin (1.42, 3.74 mmol). The resulting orange solution was irradiated (2 x 60 W tungsten bulb) at reflux for 22 h. The suspension was cooled to room temperature and filtered. The solid was washed with dichloromethane (2 x 10 mL). The combined filtrate and washings were washed with 10% aqueous solution of NaHSO₃ (3 x 10 mL). The organic layer was washed with 2 N NaOH (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum to obtain 557 g of a yellow mixture of starting **1** and some anhydride derived from **1**. Purification by column chromatography (silica gel, *n*-hexane/ethyl acetate) gave **1** (eluted with *n*-hexane) as an off-white solid (235 mg, 40% yield). Further elution with *n*-hexane/ethyl acetate 95/5 furnished anhydride of the starting dicarboxylic acid (60 mg).

Aryne precursors **11**, **15**, **16**, **19** and **20** were prepared following previously reported procedures.²

General procedure for cocyclotrimerization of arynes and a pyramidalized alkene

Synthesis of adduct 8

Scheme S2

Compound 1 (20 mg, 0.045 mmol), Na/Hg (5% Na, 168 mg, 0.361 mmol), CsF (84 mg, 0.552 mmol), 18-Crown-6 (73 mg, 0.276 mmol), and Pd(PPh₃)₄ (15 mg, 0.013 mmol) were placed in a oven-dried shlenck under Ar atmosphere. Then, solution of 11 (83 mg, 0.276 mmol) in THF (4 mL) was added. The mixture was stirred at room temperature for 16h. After that time, the reaction mixture was filtrated through a celite plug, and purified on column chromatography (hexanes) to yield 8 as a white solid (12 mg, 79%). Triphenylene (7)³ was isolated as byproduct (42 mg, 67% from precursor 11) Crystallization from slow diffusion of hexane in chloroform afforded 8 as colorless crystals.

Data for compound **8**: ¹H NMR (CDCl₃, 300 MHz): δ 1.05 (12H, s, Me), 1.26 (4H, d, *J* = 11.8 Hz, CH₂), 2.24 (4H, d, *J* = 11.8 Hz, CH₂), 7.21 (4H, m, CH Ar), 7.22 (2H, m, CH Ar), 7.94 (2H, m, CH Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 15.6 (4C, Me), 44.8 (2C, C), 45.8 (4C, C), 50.1 (4C, CH₂), 122.2 (2C, CH Ar), 125.9 (2C, CH Ar), 127.3 (2C, CH Ar), 127.6 (2C, CH Ar), 130.9 (2C, C Ar), 139.6 (2C, C Ar). EM (EI+), m/z (%): 340 (M+, 10). HRMS: for C₂₆H₂₈ calculated 340,2129, observed 340,2201. M. P. 249.2-252.0 °C.

Synthesis of adduct 17

Scheme S3

Compound **1** (20 mg, 0.045 mmol), Na/Hg (5% Na, 164 mg, 0.361 mmol), CsF (84 mg, 0.552 mmol), 18-Crown-6 (73 mg, 0.276 mmol), and Pd(PPh₃)₄ (15 mg, 0.013 mmol) were placed in an oven-dried shlenck under Ar atmosphere. Then, solution of **15** (92 mg, 0.276 mmol) in THF (4.5 mL) was added. The mixture was stirred at room temperature for 16h. After that time, the reaction mixture was filtrated through a celite plug, and purified on column chromatography (hexane) to yield **17** as a white solid (10 mg, 53%). Hexafluorotriphenylene **23**⁴ was isolated as byproduct (8 mg, 9% from precursor **15**).

Data for compound **17**: ¹H NMR (CDCl₃, 300 MHz): δ 1.04 (12H, s, Me), 1.12 (4H, d, J = 12.0 Hz, CH₂), 2.22 (4H, d, J = 11.8 Hz, CH₂), 7.09 (2H, dd, J = 12.4, 8.3 Hz, CH Ar), 7.45 (2H, dd, J = 12.3, 8.1 Hz, CH Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 15.65 (4C, Me), 44.73 (2C, C), 45.94 (4C, C), 50.28 (4C, CH₂), 111.13 (2C, d, J = 18.3 Hz, CH Ar), 116.26 (2C, d, J = 17.5 Hz, CH Ar), 126.91 (2C, C Ar), 136.92 (2C, C Ar), 147.93 (2C, dd, J = 92.3, 13.0 Hz, CF), 151.20 (2C, dd, J = 94.7, 12.2 Hz, CF). ¹⁹F NMR (CDCl₃, 282 MHz) δ -139.33 - -139.83 (m), -141.50 - -141.99 (m). EM (EI+), m/z (%): 412 (M⁺, 100).

HRMS (APCI (M+1)): for $C_{26}H_{24}F_2$ calculated 413.1887, observed 413.1882. M. P. 268.8-270.2 °C.

Synthesis of adduct 18

Scheme S4

Compound **1** (20 mg, 0.045 mmol), Na/Hg (5% Na, 164 mg, 0.361 mmol), CsF (84 mg, 0.552 mmol), 18-Crown-6 (73 mg, 0.276 mmol), and Pd(PPh₃)₄ (15 mg, 0.013 mmol) were placed in an oven-dried shlenck under Ar atmosphere. Then, solution of **16** (138 mg, 0.276 mmol) in THF (4.5 mL) was added. The mixture was stirred at room temperature for 16h. After that time, the reaction mixture was filtrated through a celite plug, and purified on column chromatography (two columns were necessary, first 5:9.5 Et₂O/hexane and second 1:1 CH₂Cl₂/hexane) to yield **18** as a white solid (14 mg, 42%). Hexyloxytriphenylene **24**⁵ was detected as byproduct in the ¹H-NMR crude (3% from precursor **16**).

Data for compound **18**: ¹H NMR (CDCl₃, 300 MHz): δ 0.98 – 0.84 (12H, m, Me), 1.04 (12H, s, Me), 1.15 (4H, d, *J* = 12.1 Hz, CH₂), 1.58 – 1.23 (24H, m, CH₂), 1.92 – 1.73 (8H, m, CH₂), 2.18 (4H, d, *J* = 11.8 Hz, CH₂), 4.13 – 3.90 (8H, m, OCH₂), 6.79 (4H, s, CH Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 14.21 (4C, Me), 15.81 (4C, Me), 22.81(4C, CH₂), 25.94 (4C, CH₂), 29.60 (4C, CH₂), 31.82 (4C, CH₂), 44.90 (2C, C), 45.71 (4C, C), 49.99 (4C, CH₂), 69.74 (2C, OCH₂), 70.19 (2C, OCH₂), 109.01 (2C, CH Ar), 113.63 (2C, CH Ar), 124.68 (2C, C Ar), 132.62 (2C, C Ar), 147.73 (2C, C Ar), 148.86 (2C, C Ar). EM (MALDI-TOF), m/z (%); 740 (100), 741 (55), 742 (12), 743 (9), 744 (3); calculated isotopic ratio: 740 (100), 741 (57), 742 (17), 743 (3), 744 (1). HRMS (MALDI-TOF) for C₅₀H₇₆O₄, calculated 740.574, observed 740.575. M. P. 72.5-73.8 °C.

Compound **1** (20 mg, 0.045 mmol), Na/Hg (5% Na, 168 mg, 0.361 mmol), CsF (84 mg, 0.552 mmol), 18-Crown-6 (73 mg, 0.276 mmol), and Pd(PPh₃)₄ (15 mg, 0.013 mmol) were placed in a oven-dried shlenck under Ar atmosphere. Then, solution of **19** (96 mg, 0.276 mmol) in THF (4 mL) was added. The mixture was stirred at room temperature for 16h. After that time, the reaction mixture was filtrated through a celite plug, and purified on column chromatography (hexanes) to yield **21** as a white solid (11 mg, 57%). Trinaphthylene (**25**)⁶ was isolated as byproduct (28 mg, 26% from precursor **19**). Crystallization from slow diffusion of hexane in chloroform afforded **21** as colorless crystals.

Data for compound **21**: ¹H NMR (CDCl₃, 300 MHz): δ 1.12 (12H, s, Me), 1.48 (4H, d, *J* = 11.8 Hz, CH₂), 2.34 (4H, d, *J* = 11.8 Hz, CH₂), 7.39 (4H, m, CH Ar), 7.77 (2H, m, CH Ar), 7.89 (4H, m, CH Ar), 8.66 (2H, s, CH Ar). ¹³C NMR (CDCl₃, 101 MHz): δ 15.7 (4C, Me), 45.1 (2C, C), 45.8 (4C, C), 51.5 (4C, CH₂), 121.5 (2C, CH Ar), 125.5 (2C, CH Ar), 125.8 (2C, CH Ar), 126.1 (2C, CH Ar), 127.1 (2C, CH Ar), 127.9 (2C, CH Ar), 129.9 (2C, C Ar), 132.2 (2C, C Ar), 133.4 (2C, C Ar), 138.9 (2C, C Ar). EM (EI+), m/z (%): 440 (M+, 26). HRMS: for C₃₄H₃₂ calculated 440,2504, observed 440,2518. M. P. 276.0-277.8 °C.

Synthesis of adduct 22

Scheme S6

Compound **1** (20 mg, 0.045 mmol), Na/Hg (5% Na, 164 mg, 0.361 mmol), CsF (84 mg, 0.552 mmol), 18-Crown-6 (73 mg, 0.276 mmol), and Pd(PPh₃)₄ (15 mg, 0.013 mmol) were placed in an oven-dried shlenck under Ar atmosphere. Then, solution of **20** (179 mg, 0.276 mmol) in THF (4.5 mL) was added. The mixture was stirred at room temperature for 16h. After that time, the reaction mixture was filtrated through a celite plug and purified on column chromatography (2.5:7.5 CH₂Cl₂/hexane) followed by a precipitation in Et₂O (1 mL) to yield **22** as a yellow solid (7 mg, 15%).

Data for compound **22**: ¹H NMR (C₂D₂Cl₄, 400 MHz, 353 K): δ 0.93 (12H, s, 6H), 1.10 (4H, d, *J* = 12.0 Hz, CH₂), 2.24 (4H, d, *J* = 11.7 Hz, CH₂), 6.96 – 6.86 (4H, m, CH Ar), 7.53 – 7.22 (28H, m, CH Ar), 7.86 (2H, s, CH Ar), 8.18 (4H, dd, *J* = 8.1, 3.5 Hz, CH Ar), 8.25 (2H, s, CH Ar). ¹³C NMR (C₂D₂Cl₄, 101 MHz, 353 K): δ 15.72 (4C, Me), 45.63 (2C, C), 46.10 (4C, C), 51.35 (4C, CH₂), 121.17 (2C, CH Ar), 123.34 (4C, CH Ar), 125.41 (2C, CH Ar), 125.96 (4C, CH Ar), 126.75 (2C, CH Ar), 126.93 (2C, CH Ar), 127.80 (2C, CH Ar), 128.26 (2C, CH Ar), 128.94 (4C, CH Ar), 129.03 (4C, CH Ar), 129.24 (4C, C Ar), 130.48 (2C, C Ar), 130.76 (2C, CH Ar), 130.82 (2C, CH Ar), 131.14 (2C, C Ar), 131.84 (2C, C Ar), 131.94 (2C, C Ar), 132.16 (2C, C Ar), 132.29 (4C, C Ar), 132.56 (4C, CH Ar), 132.80 (4C, CH Ar), 134.64 (2C, C Ar), 135.69 (2C, C Ar), 139.04 (2C, C Ar), 141.15 (2C, C Ar), 141.92 (2C, C Ar). EM (MALDI-TOF), m/z (%); 1044 (100), 1045 (94), 1046 (42), 1047 (26), 1048 (13), 1049 (3); calculated isotopic ratio: 1044 (100), 1045 (92), 1046 (42), 1047 (13), 1048 (3), 1049 (3). HRMS (MALDI-TOF) for C₈₂H₆₀, calculated 1044.469, observed 1044.394.

3) ATTEMPTS WITH OTHER PYRAMIDALIZED ALKENES

Scheme S7

The palladium-catalyzed cocyclotrimerization of arynes with alkene 2 was tested with two additional highly reactive alkenes, 27 and 29, generated *in situ* from compounds 26 and 28, respectively. However, preliminary attempts using optimal reaction conditions developed for alkene 2 (see Scheme S2) did not lead to the isolation of the corresponding cocyclotrimerization adducts. This finding could be explain based on the high reactivity of alkenes 27 and 29 compare to alkene 2. In fact, the pyramidalized angle for alkene 2 is 47°.¹ Therefore, it is expected that different reaction conditions would be needed depending on the reactivity of the pyramidalized alkene.

4) REFERENCES

[1] M. Rey-Carrizo, M. Barniol-Xicota, M. Font-Bardia, S. Vázquez, *Angew. Chem. Int. Ed.* 2014, **53**, 8195.

[2] (a) Y. Himeshima, T. Sonoda, H. Kobayashi, *Chem. Lett.* 1983, 1211; (b) D. Peña, A. Cobas, D. Pérez, E. Guitián, L. Castedo, *Synthesis* 2002, 1454; (c) A. Criado, M. J. Gómez-Escalonilla, J. L. G. Fierro, A. Urbina, D. Peña, E. Guitián, F. Langa, *Chem. Commun.* 2010, 46, 7028; (d) A. Criado, D. Peña, A. Cobas, E. Guitián, *Chem. Eur. J.* 2010, 16, 9736; (e) J. M. Alonso, A. E. Díaz-Álvarez, A. Criado, D. Pérez, D. Peña, E. Guitián, *Angew. Chem. Int. Ed.* 2012, 51, 173.

[3] E. Bergmann, O. Bergmann, J. Am. Chem. Soc. 1937, 59, 1441.

[4] (a) D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, *Angew. Chem. Int. Ed.* 1998, **37**, 2659; (b) J. –A. García-Lopez, M. F. Greaney, *Org. Lett.* 2014, **16**, 2338.

[5] W.-H. Soe, C. Manzano, N. Renaud, P. de Mendoza, A. de Abir, F. Ample, M. Hilwa, A. M. Echavarren, N. Chandrasekhar, C. Joachim, *ACS Nano* 2011, **5**, 1436.

[6] A. J. Herbaut, E. Baranoff, RSC Adv. 2016, 6, 10655.

[7] P. Camps, X. Pujol, S. Vázquez, Org. Lett. 2000, 2, 4225

11 (ppiii)

S13

6) X-RAY DIFFRACTION DATA

Analysis of compound 8 (CCDC 1554197)

Crystal data and structure refinement for compound	<i>l</i> 8.	
Identification code	shelx	
Empirical formula	$C_{26}H_{28}$	
Formula weight	340.48	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 15.0392(10) Å	$\alpha = 90^{\circ}$
	b = 7.6824(6) Å	$\beta = 91.082(5)^{\circ}$
	c = 15.9139(11) Å	$\gamma=90^\circ$
Volume	1838.3(2) Å ³	
Z	4	
Density (calculated)	1.230 Mg/m ³	
Absorption coefficient	0.069 mm ⁻¹	
F(000)	736	
Crystal size	0.600 x 0.140 x 0.060 mm ³	

Theta range for data collection	1.354 to 26.413°
Index ranges	-18<=h<=18, -9<=k<=9, -19<=l<=18
Reflections collected	26454
Independent reflections	3755 [R(int) = 0.0731]
Completeness to theta = 25.242°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3755 / 0 / 264
Goodness-of-fit on F ²	1.074
Final R indices [I>2sigma(I)]	R1 = 0.0684, wR2 = 0.1912
R indices (all data)	R1 = 0.1059, wR2 = 0.2170
Largest diff. peak and hole	0.329 and -0.317 e.Å ⁻³

	Х	У	Z	U(eq)
 C(1)	6031(2)	8954(4)	1663(2)	17(1)
C(2)	6157(2)	9106(4)	798(2)	21(1)
C(3)	6711(2)	10348(4)	463(2)	24(1)
C(4)	7156(2)	11489(4)	995(2)	24(1)
C(5)	7054(2)	11357(4)	1849(2)	22(1)
C(6)	6497(2)	10101(4)	2207(2)	16(1)
C(7)	5381(2)	7595(4)	1968(2)	17(1)
C(8)	4446(2)	7830(4)	1533(2)	18(1)
C(9)	3967(2)	6142(4)	1764(2)	18(1)
C(10)	4731(2)	4735(4)	1821(2)	17(1)
C(11)	5581(2)	5742(4)	1625(2)	18(1)
C(12)	3159(2)	5775(4)	1199(2)	23(1)
C(13)	4627(2)	3068(4)	1313(2)	24(1)
C(21)	5823(2)	8758(3)	3485(2)	15(1)
C(22)	5758(2)	8712(4)	4356(2)	18(1)
C(23)	6226(2)	9833(4)	4879(2)	21(1)
C(24)	6786(2)	11066(4)	4526(2)	22(1)
C(25)	6866(2)	11133(4)	3671(2)	20(1)
C(26)	6395(2)	9994(4)	3129(2)	16(1)
C(27)	5264(2)	7487(4)	2962(2)	16(1)
C(28)	5384(2)	5566(4)	3252(2)	18(1)
C(29)	4615(2)	4627(4)	2803(2)	18(1)
C(30)	3854(2)	6042(4)	2742(2)	17(1)
C(31)	4255(2)	7651(4)	3166(2)	17(1)
C(32)	4397(2)	2873(4)	3182(2)	22(1)
C(33)	2938(2)	5582(4)	3069(2)	22(1)

Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 x \ 10^3$) compound **8**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.397(4)
C(1)-C(6)	1.412(4)
C(1)-C(7)	1.518(4)
C(2)-C(3)	1.381(4)
C(2)-H(2)	0.9500
C(3)-C(4)	1.382(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.375(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.406(4)
C(5)-H(5)	0.9500
C(6)-C(26)	1.480(4)
C(7)-C(11)	1.556(4)
C(7)-C(8)	1.565(4)
C(7)-C(27)	1.597(4)
C(8)-C(9)	1.532(4)
C(8)-H(8A)	1.04(3)
C(8)-H(8B)	0.96(3)
C(9)-C(12)	1.524(4)
C(9)-C(30)	1.570(4)
C(9)-C(10)	1.579(4)
C(10)-C(13)	1.521(4)
C(10)-C(11)	1.532(4)
C(10)-C(29)	1.577(4)
C(11)-H(11A)	0.97(3)
C(11)-H(11B)	1.02(3)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(21)-C(22)	1.392(4)
C(21)-C(26)	1.408(4)
C(21)-C(27)	1.525(4)
C(22)-C(23)	1.381(4)

Bond lengths [Å] and angles [°] for compound 8.

C(22)-H(22)	0.9500
C(23)-C(24)	1.393(4)
C(23)-H(23)	0.9500
C(24)-C(25)	1.369(4)
C(24)-H(24)	0.9500
C(25)-C(26)	1.411(4)
C(25)-H(25)	0.9500
C(27)-C(28)	1.556(4)
C(27)-C(31)	1.563(4)
C(28)-C(29)	1.529(4)
C(28)-H(28A)	1.00(3)
C(28)-H(28B)	1.02(3)
C(29)-C(32)	1.515(4)
C(29)-C(30)	1.581(4)
C(30)-C(33)	1.524(4)
C(30)-C(31)	1.526(4)
C(31)-H(31A)	1.00(3)
C(31)-H(31B)	1.04(3)
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(2)-C(1)-C(6)	118.5(3)
C(2)-C(1)-C(7)	118.2(2)
C(6)-C(1)-C(7)	123.2(3)
C(3)-C(2)-C(1)	122.1(3)
C(3)-C(2)-H(2)	118.9
C(1)-C(2)-H(2)	118.9
C(2)-C(3)-C(4)	119.3(3)
C(2)-C(3)-H(3)	120.3
C(4)-C(3)-H(3)	120.3
C(5)-C(4)-C(3)	119.8(3)
C(5)-C(4)-H(4)	120.1
C(3)-C(4)-H(4)	120.1
C(4)-C(5)-C(6)	122.1(3)

119.0
119.0
118.1(3)
120.9(2)
120.9(3)
112.8(2)
111.0(2)
97.3(2)
115.9(2)
109.0(2)
109.3(2)
102.6(2)
116.5(17)
113.9(17)
109.4(19)
112.3(19)
102(2)
112.9(2)
118.4(2)
109.8(2)
118.6(2)
104.3(2)
90.1(2)
113.2(2)
118.0(2)
109.6(2)
118.6(2)
104.6(2)
90.0(2)
102.9(2)
107.0(19)
108.6(19)
112.6(18)
115.3(18)
110(3)
109.5
109.5
109.5

C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(10)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(22)-C(21)-C(26)	118.2(2)
C(22)-C(21)-C(27)	118.6(2)
C(26)-C(21)-C(27)	123.2(2)
C(23)-C(22)-C(21)	122.7(3)
C(23)-C(22)-H(22)	118.7
C(21)-C(22)-H(22)	118.7
C(22)-C(23)-C(24)	119.1(3)
C(22)-C(23)-H(23)	120.4
C(24)-C(23)-H(23)	120.4
C(25)-C(24)-C(23)	119.4(3)
C(25)-C(24)-H(24)	120.3
C(23)-C(24)-H(24)	120.3
C(24)-C(25)-C(26)	122.2(3)
C(24)-C(25)-H(25)	118.9
C(26)-C(25)-H(25)	118.9
C(21)-C(26)-C(25)	118.4(3)
C(21)-C(26)-C(6)	120.8(2)
C(25)-C(26)-C(6)	120.8(3)
C(21)-C(27)-C(28)	112.7(2)
C(21)-C(27)-C(31)	111.3(2)
C(28)-C(27)-C(31)	97.1(2)
C(21)-C(27)-C(7)	115.9(2)
C(28)-C(27)-C(7)	109.2(2)
C(31)-C(27)-C(7)	109.1(2)
C(29)-C(28)-C(27)	103.0(2)
C(29)-C(28)-H(28A)	112.3(18)
C(27)-C(28)-H(28A)	114.9(18)
C(29)-C(28)-H(28B)	112.1(18)
C(27)-C(28)-H(28B)	108.4(18)

H(28A)-C(28)-H(28B)	106(2)
C(32)-C(29)-C(28)	113.6(2)
C(32)-C(29)-C(10)	118.0(2)
C(28)-C(29)-C(10)	110.0(2)
C(32)-C(29)-C(30)	118.3(2)
C(28)-C(29)-C(30)	104.2(2)
C(10)-C(29)-C(30)	89.8(2)
C(33)-C(30)-C(31)	112.9(2)
C(33)-C(30)-C(9)	117.7(2)
C(31)-C(30)-C(9)	110.5(2)
C(33)-C(30)-C(29)	118.5(2)
C(31)-C(30)-C(29)	104.5(2)
C(9)-C(30)-C(29)	90.1(2)
C(30)-C(31)-C(27)	102.7(2)
C(30)-C(31)-H(31A)	110.7(18)
C(27)-C(31)-H(31A)	107.0(17)
C(30)-C(31)-H(31B)	115.1(16)
C(27)-C(31)-H(31B)	111.5(17)
H(31A)-C(31)-H(31B)	109(2)
C(29)-C(32)-H(32A)	109.5
C(29)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(29)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(30)-C(33)-H(33A)	109.5
C(30)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
C(30)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	12(1)	16(2)	25(2)	0(1)	-1(1)	5(1)
C(2)	17(2)	20(2)	26(2)	-2(1)	-1(1)	0(1)
C(3)	19(2)	29(2)	23(2)	3(1)	2(1)	2(1)
C(4)	17(2)	25(2)	30(2)	8(1)	-1(1)	-5(1)
C(5)	17(2)	20(2)	29(2)	1(1)	-6(1)	-4(1)
C(6)	9(1)	14(1)	27(2)	1(1)	-1(1)	3(1)
C(7)	12(1)	13(1)	26(2)	-1(1)	0(1)	0(1)
C(8)	17(2)	16(2)	20(2)	0(1)	-3(1)	1(1)
C(9)	17(2)	14(2)	24(2)	-3(1)	-3(1)	-1(1)
C(10)	12(1)	13(1)	27(2)	-2(1)	-2(1)	-1(1)
C(11)	14(2)	17(2)	23(2)	-1(1)	0(1)	2(1)
C(12)	18(2)	22(2)	29(2)	-2(1)	-5(1)	-1(1)
C(13)	21(2)	18(2)	33(2)	-6(1)	-1(1)	-1(1)
C(21)	10(1)	12(1)	24(2)	-1(1)	-1(1)	4(1)
C(22)	12(1)	16(2)	26(2)	-1(1)	1(1)	3(1)
C(23)	18(2)	23(2)	21(2)	-5(1)	-1(1)	5(1)
C(24)	15(2)	20(2)	29(2)	-5(1)	-5(1)	-1(1)
C(25)	12(1)	16(2)	31(2)	0(1)	-2(1)	-1(1)
C(26)	11(1)	13(1)	25(2)	-1(1)	-3(1)	4(1)
C(27)	10(1)	14(1)	24(2)	0(1)	-1(1)	1(1)
C(28)	14(2)	14(2)	26(2)	1(1)	0(1)	0(1)
C(29)	14(1)	14(2)	25(2)	-2(1)	-1(1)	3(1)
C(30)	13(1)	12(1)	26(2)	-1(1)	-2(1)	1(1)
C(31)	13(1)	15(2)	21(2)	1(1)	0(1)	1(1)
C(32)	16(2)	18(2)	32(2)	3(1)	-2(1)	0(1)
C(33)	16(2)	18(2)	33(2)	0(1)	2(1)	0(1)

Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound 8. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å ² $x \ 10^3$)	
for compound 8	

	X	У	Z	U(eq)
H(2)	5851	8329	429	25
H(3)	6786	10417	-128	29
H(4)	7531	12362	770	29
H(5)	7369	12139	2208	26
H(8A)	4130(20)	8980(40)	1687(19)	21
H(8B)	4480(20)	7910(40)	930(20)	21
H(11A)	5620(20)	5810(40)	1020(20)	22
H(11B)	6140(20)	5160(40)	1870(20)	22
H(12A)	3342	5741	611	34
H(12B)	2717	6698	1270	34
H(12C)	2899	4652	1351	34
H(13A)	4639	3343	712	36
H(13B)	4060	2513	1444	36
H(13C)	5117	2272	1456	36
H(22)	5377	7875	4601	21
H(23)	6166	9764	5471	25
H(24)	7110	11853	4876	26
H(25)	7252	11974	3435	23
H(28A)	5980(20)	5040(40)	3120(20)	21
H(28B)	5330(20)	5520(40)	3890(20)	21
H(31A)	4210(20)	7570(40)	3793(19)	20
H(31B)	3990(20)	8830(40)	2960(18)	20
H(32A)	3888	2361	2878	33
H(32B)	4249	3024	3775	33
H(32C)	4912	2100	3139	33
H(33A)	2526	6547	2956	33
H(33B)	2979	5371	3676	33
H(33C)	2718	4530	2785	33

Torsion angles [°] for compound 8

C(6)-C(1)-C(2)-C(3)	-0.7(4)
C(7)-C(1)-C(2)-C(3)	177.6(3)
C(1)-C(2)-C(3)-C(4)	-0.3(5)
C(2)-C(3)-C(4)-C(5)	1.1(5)
C(3)-C(4)-C(5)-C(6)	-0.8(5)
C(4)-C(5)-C(6)-C(1)	-0.2(4)
C(4)-C(5)-C(6)-C(26)	-179.6(3)
C(2)-C(1)-C(6)-C(5)	1.0(4)
C(7)-C(1)-C(6)-C(5)	-177.3(3)
C(2)-C(1)-C(6)-C(26)	-179.6(2)
C(7)-C(1)-C(6)-C(26)	2.1(4)
C(2)-C(1)-C(7)-C(11)	53.5(3)
C(6)-C(1)-C(7)-C(11)	-128.2(3)
C(2)-C(1)-C(7)-C(8)	-54.5(3)
C(6)-C(1)-C(7)-C(8)	123.8(3)
C(2)-C(1)-C(7)-C(27)	-179.9(2)
C(6)-C(1)-C(7)-C(27)	-1.6(4)
C(1)-C(7)-C(8)-C(9)	167.8(2)
C(11)-C(7)-C(8)-C(9)	50.0(3)
C(27)-C(7)-C(8)-C(9)	-63.2(3)
C(7)-C(8)-C(9)-C(12)	-161.7(2)
C(7)-C(8)-C(9)-C(30)	63.8(3)
C(7)-C(8)-C(9)-C(10)	-31.7(3)
C(12)-C(9)-C(10)-C(13)	-0.3(4)
C(8)-C(9)-C(10)-C(13)	-126.9(3)
C(30)-C(9)-C(10)-C(13)	122.6(3)
C(12)-C(9)-C(10)-C(11)	127.0(3)
C(8)-C(9)-C(10)-C(11)	0.5(3)
C(30)-C(9)-C(10)-C(11)	-110.1(2)
C(12)-C(9)-C(10)-C(29)	-122.7(3)
C(8)-C(9)-C(10)-C(29)	110.8(2)
C(30)-C(9)-C(10)-C(29)	0.2(2)
C(13)-C(10)-C(11)-C(7)	161.7(2)
C(29)-C(10)-C(11)-C(7)	-64.1(3)
C(9)-C(10)-C(11)-C(7)	31.1(3)
C(1)-C(7)-C(11)-C(10)	-166.1(2)

_

C(8)-C(7)-C(11)-C(10)	-49.7(3)
C(27)-C(7)-C(11)-C(10)	63.7(3)
C(26)-C(21)-C(22)-C(23)	0.5(4)
C(27)-C(21)-C(22)-C(23)	-178.8(3)
C(21)-C(22)-C(23)-C(24)	0.0(4)
C(22)-C(23)-C(24)-C(25)	-0.4(4)
C(23)-C(24)-C(25)-C(26)	0.3(4)
C(22)-C(21)-C(26)-C(25)	-0.6(4)
C(27)-C(21)-C(26)-C(25)	178.6(2)
C(22)-C(21)-C(26)-C(6)	179.6(2)
C(27)-C(21)-C(26)-C(6)	-1.2(4)
C(24)-C(25)-C(26)-C(21)	0.3(4)
C(24)-C(25)-C(26)-C(6)	-180.0(3)
C(5)-C(6)-C(26)-C(21)	178.7(3)
C(1)-C(6)-C(26)-C(21)	-0.7(4)
C(5)-C(6)-C(26)-C(25)	-1.1(4)
C(1)-C(6)-C(26)-C(25)	179.5(3)
C(22)-C(21)-C(27)-C(28)	-52.4(3)
C(26)-C(21)-C(27)-C(28)	128.4(3)
C(22)-C(21)-C(27)-C(31)	55.4(3)
C(26)-C(21)-C(27)-C(31)	-123.8(3)
C(22)-C(21)-C(27)-C(7)	-179.2(2)
C(26)-C(21)-C(27)-C(7)	1.6(4)
C(1)-C(7)-C(27)-C(21)	-0.2(3)
C(11)-C(7)-C(27)-C(21)	128.3(2)
C(8)-C(7)-C(27)-C(21)	-126.4(2)
C(1)-C(7)-C(27)-C(28)	-128.8(2)
C(11)-C(7)-C(27)-C(28)	-0.3(3)
C(8)-C(7)-C(27)-C(28)	105.0(2)
C(1)-C(7)-C(27)-C(31)	126.3(2)
C(11)-C(7)-C(27)-C(31)	-105.2(3)
C(8)-C(7)-C(27)-C(31)	0.0(3)
C(21)-C(27)-C(28)-C(29)	166.6(2)
C(31)-C(27)-C(28)-C(29)	50.0(3)
C(7)-C(27)-C(28)-C(29)	-63.1(3)
C(27)-C(28)-C(29)-C(32)	-161.5(2)
C(27)-C(28)-C(29)-C(10)	63.6(3)
C(27)-C(28)-C(29)-C(30)	-31.4(3)

C(13)-C(10)-C(29)-C(32)	-0.8(4)
C(11)-C(10)-C(29)-C(32)	-132.4(3)
C(9)-C(10)-C(29)-C(32)	122.1(3)
C(13)-C(10)-C(29)-C(28)	131.9(3)
C(11)-C(10)-C(29)-C(28)	0.2(3)
C(9)-C(10)-C(29)-C(28)	-105.3(2)
C(13)-C(10)-C(29)-C(30)	-123.1(3)
C(11)-C(10)-C(29)-C(30)	105.2(2)
C(9)-C(10)-C(29)-C(30)	-0.2(2)
C(12)-C(9)-C(30)-C(33)	0.0(4)
C(8)-C(9)-C(30)-C(33)	131.7(3)
C(10)-C(9)-C(30)-C(33)	-123.0(3)
C(12)-C(9)-C(30)-C(31)	-131.7(3)
C(8)-C(9)-C(30)-C(31)	0.0(3)
C(10)-C(9)-C(30)-C(31)	105.3(2)
C(12)-C(9)-C(30)-C(29)	122.8(3)
C(8)-C(9)-C(30)-C(29)	-105.5(2)
C(10)-C(9)-C(30)-C(29)	-0.2(2)
C(32)-C(29)-C(30)-C(33)	0.2(4)
C(28)-C(29)-C(30)-C(33)	-127.1(3)
C(10)-C(29)-C(30)-C(33)	122.3(3)
C(32)-C(29)-C(30)-C(31)	126.9(3)
C(28)-C(29)-C(30)-C(31)	-0.4(3)
C(10)-C(29)-C(30)-C(31)	-111.0(2)
C(32)-C(29)-C(30)-C(9)	-121.9(3)
C(28)-C(29)-C(30)-C(9)	110.8(2)
C(10)-C(29)-C(30)-C(9)	0.2(2)
C(33)-C(30)-C(31)-C(27)	162.0(2)
C(9)-C(30)-C(31)-C(27)	-63.9(3)
C(29)-C(30)-C(31)-C(27)	31.8(3)
C(21)-C(27)-C(31)-C(30)	-167.8(2)
C(28)-C(27)-C(31)-C(30)	-50.1(3)
C(7)-C(27)-C(31)-C(30)	63.0(3)

X-Ray analysis of compound 21 (CCDC1554198):

Crystal data and structure refinement for compound 21.

Identification code	shelx	
Empirical formula	C ₃₄ H ₃₂ , CHCl ₃	
Formula weight	559.96	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 9.5957(2) Å	$\alpha = 73.4440(10)^{\circ}$
	b = 12.2865(3) Å	$\beta = 72.2900(10)^{\circ}$
	c = 13.2430(3) Å	$\gamma = 73.1600(10)^{\circ}$
Volume	1389.98(6) Å ³	
Z	2	
Density (calculated)	1.338 Mg/m ³	

Absorption coefficient	0.354 mm ⁻¹
F(000)	588
Crystal size	0.420 x 0.400 x 0.200 mm ³
Theta range for data collection	1.653 to 30.546°
Index ranges	-13<=h<=13, -17<=k<=17, -18<=l<=18
Reflections collected	63677
Independent reflections	8507 [R(int) = 0.0514]
Completeness to theta = 25.242°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8507 / 0 / 482
Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0472, wR2 = 0.1146
R indices (all data)	R1 = 0.0743, wR2 = 0.1279
Largest diff. peak and hole	0.443 and -0.384 e.Å ⁻³

	X	У	Z.	Uiso*/Ueq	Occ. (<1)
C1	0.40274 (13)	0.33423 (11)	0.27405 (10)	0.0124 (2)	
C2	0.31290 (13)	0.44681 (11)	0.28672 (10)	0.0127 (2)	
C3	0.16243 (13)	0.45746 (12)	0.33915 (11)	0.0149 (3)	
H3	0.1023 (16)	0.5330 (13)	0.3433 (12)	0.018*	
C4	0.09465 (13)	0.36117 (11)	0.38401 (10)	0.0140 (2)	
C5	-0.06095 (14) 0.37329 (13)	0.43617 (11)	0.0180 (3)	
H5	-0.1229 (17)	0.4524 (14)	0.4373 (13)	0.022*	
C6	-0.12152 (15) 0.27737 (13)	0.47864 (12)	0.0207 (3)	
H6	-0.2269 (18)	0.2846 (14)	0.5156 (13)	0.025*	
C7	-0.03025 (15) 0.16505 (13)	0.47316 (12)	0.0228 (3)	
H7	-0.0725 (18)	0.0961 (15)	0.5035 (14)	0.027*	
C8	0.11949 (15)	0.15029 (13)	0.42426 (12)	0.0203 (3)	
H8	0.1875 (18)	0.0726 (14)	0.4195 (13)	0.024*	
C9	0.18544 (14)	0.24864 (11)	0.37663 (10)	0.0147 (3)	
C10	0.33756 (14)	0.23933 (12)	0.32014 (11)	0.0156 (3)	
H10	0.3964 (16)	0.1600 (14)	0.3136 (12)	0.019*	
C11	0.56535 (13)	0.31389 (10)	0.21008 (10)	0.0120 (2)	
C12	0.67071 (13)	0.21984 (11)	0.27667 (11)	0.0139 (2)	
H12A	0.6837 (15)	0.2446 (13)	0.3378 (13)	0.017*	
H12B	0.6266 (16)	0.1504 (13)	0.3112 (12)	0.017*	
C13	0.81461 (13)	0.19249 (11)	0.18949 (10)	0.0139 (2)	
C14	0.91893 (15)	0.07755 (12)	0.22462 (13)	0.0199 (3)	
H14A	1.0042 (19)	0.0544 (15)	0.1697 (14)	0.03*	
H14B	0.8679 (19)	0.0106 (15)	0.2498 (14)	0.03*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) for compound **21**

	X	у	Z.	Uiso*/Ueq	Occ. (<1)
H14C	0.9551 (18)	0.0803 (14)	0.2861 (14)	0.03*	
C15	0.58841 (13)	0.24829 (11)	0.12016 (11)	0.0135 (2)	
H15A	0.5431 (16)	0.1787 (13)	0.1531 (12)	0.016*	
H15B	0.5375 (16)	0.2915 (13)	0.0625 (12)	0.016*	
C16	0.75934 (13)	0.21178 (11)	0.08364 (11)	0.0142 (2)	
C17	0.81243 (15)	0.11437 (13)	0.02211 (13)	0.0202 (3)	
H17A	0.7691 (18)	0.1357 (14)	-0.0407 (14)	0.03*	
H17B	0.7832 (18)	0.0439 (16)	0.0662 (14)	0.03*	
H17C	0.9169 (19)	0.0958 (15)	-0.0026 (14)	0.03*	
C21	0.53137 (13)	0.54121 (11)	0.18107 (10)	0.0126 (2)	
C22	0.38029 (13)	0.55049 (11)	0.24398 (10)	0.0123 (2)	
C23	0.29694 (13)	0.65784 (11)	0.26493 (11)	0.0144 (3)	
H23	0.1947 (17)	0.6648 (13)	0.3105 (12)	0.017*	
C24	0.35420 (13)	0.75942 (11)	0.22431 (10)	0.0141 (3)	
C25	0.26714 (15)	0.86982 (11)	0.24489 (11)	0.0171 (3)	
H25	0.1664 (17)	0.8724 (13)	0.2888 (13)	0.02*	
C26	0.32594 (15)	0.96654 (12)	0.20174 (11)	0.0184 (3)	
H26	0.2651 (17)	1.0407 (14)	0.2157 (13)	0.022*	
C27	0.47428 (15)	0.95818 (12)	0.13660 (12)	0.0192 (3)	
H27	0.5170 (17)	1.0274 (14)	0.1036 (13)	0.023*	
C28	0.56050 (15)	0.85325 (12)	0.11619 (12)	0.0185 (3)	
H28	0.6596 (18)	0.8457 (13)	0.0706 (13)	0.022*	
C29	0.50296 (14)	0.75102 (11)	0.15923 (11)	0.0142 (2)	
C30	0.58719 (14)	0.64085 (11)	0.14029 (11)	0.0150 (3)	
H30	0.6902 (17)	0.6382 (13)	0.0983 (12)	0.018*	

	x	у	Z,	Uiso*/Ueq	Occ. (<1)
C31	0.63492 (13)	0.42672 (10)	0.15748 (10)	0.0120 (2)	
C32	0.70195 (13)	0.43296 (11)	0.03392 (10)	0.0136 (2)	
H32A	0.6301 (16)	0.4380 (12)	-0.0062 (12)	0.016*	
H32B	0.7453 (16)	0.5032 (13)	-0.0016 (12)	0.016*	
C33	0.82798 (13)	0.32241 (11)	0.03197 (10)	0.0136 (2)	
C34	0.94274 (15)	0.32537 (13)	-0.07616 (11)	0.0192 (3)	
H34A	0.9001 (18)	0.3266 (14)	-0.1357 (14)	0.029*	
H34B	1.0270 (18)	0.2570 (15)	-0.0788 (13)	0.029*	
H34C	0.9843 (18)	0.3939 (15)	-0.0985 (14)	0.029*	
C35	0.78461 (13)	0.40429 (11)	0.19039 (11)	0.0137 (2)	
H35A	0.8275 (16)	0.4744 (13)	0.1577 (12)	0.016*	
H35B	0.7742 (16)	0.3900 (13)	0.2682 (13)	0.016*	
C36	0.88330 (13)	0.30325 (11)	0.13779 (11)	0.0139 (2)	
C37	1.04975 (14)	0.28896 (13)	0.12704 (13)	0.0200 (3)	
H37A	1.1136 (18)	0.2254 (15)	0.0878 (14)	0.03*	
H37B	1.0762 (18)	0.2703 (14)	0.1943 (14)	0.03*	
H37C	1.0831 (18)	0.3645 (15)	0.0862 (14)	0.03*	
C40	0.3441 (2)	0.27165 (19)	0.57125 (18)	0.0248 (6)	0.758 (5)
H40	0.309 (2)	0.2901 (19)	0.5062 (19)	0.03*	0.758 (5)
Cl41	0.46921 (15)	0.13392 (15)	0.58104 (11)	0.0452 (3)	0.758 (5)
Cl42	0.18552 (19)	0.27006 (17)	0.68161 (14)	0.0411 (4)	0.758 (5)
Cl43	0.43489 (9)	0.37886 (13)	0.56581 (10)	0.0400 (3)	0.758 (5)
C50	0.3820 (8)	0.2198 (6)	0.6275 (7)	0.034 (2)	0.242 (5)
H50	0.427 (8)	0.205 (6)	0.688 (6)	0.041*	0.242 (5)
Cl51	0.4555 (5)	0.0991 (4)	0.5688 (3)	0.0396 (7)	0.242 (5)

C152	0.1873 (8)	0.2395 (6)	0.6702 (6)	0.0596 (16)	0.242 (5)
C153	0.4299 (3)	0.3473 (3)	0.5356 (4)	0.0395 (9)	0.242 (5)
Atomi	c displacement	t parameters (1	Å2)		

<i>U</i> 11	<i>U</i> 22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	<i>U</i> 23	
C1 0.0118 (5)	0.0140 (6)	0.0117 (6)	-0.0023 (4)	-0.0029 (4)	-0.0038 (5)	
C2 0.0123 (5)	0.0138 (6)	0.0126 (6)	-0.0030 (4)	-0.0030 (5)	-0.0036 (5)	
C3 0.0127 (5)	0.0147 (6)	0.0163 (7)	-0.0002 (5)	-0.0034 (5)	-0.0049 (5)	
C4 0.0130 (5)	0.0177 (6)	0.0119 (6)	-0.0037 (5)	-0.0025 (5)	-0.0043 (5)	
C5 0.0134 (6)	0.0222 (7)	0.0178 (7)	-0.0031 (5)	-0.0028 (5)	-0.0055 (6)	
C6 0.0149 (6)	0.0294 (8)	0.0177 (7)	-0.0085 (5)	0.0011 (5)	-0.0067 (6)	
C7 0.0223 (7)	0.0236 (8)	0.0231 (8)	-0.0118 (6)	0.0023 (6)	-0.0073 (6)	
C8 0.0207 (6)	0.0179 (7)	0.0216 (7)	-0.0070 (5)	0.0003 (5)	-0.0062 (6)	
C9 0.0157 (6)	0.0161 (6)	0.0132 (6)	-0.0051 (5)	-0.0025 (5)	-0.0039 (5)	
C10 0.0156 (6)	0.0142 (6)	0.0165 (7)	-0.0023 (5)	-0.0023 (5)	-0.0055 (5)	
C11 0.0112 (5)	0.0109 (6)	0.0133 (6)	-0.0017 (4)	-0.0024 (4)	-0.0032 (5)	
C12 0.0136 (5)) 0.0127 (6)	0.0136 (6)	-0.0011 (5)	-0.0036 (5)	-0.0017 (5)	
C13 0.0127 (5)	0.0126 (6)	0.0155 (6)	0.0007 (4)	-0.0047 (5)	-0.0035 (5)	
C14 0.0169 (6)	0.0150 (7)	0.0250 (8)	0.0015 (5)	-0.0072 (6)	-0.0033 (6)	
C15 0.0112 (5)) 0.0147 (6)	0.0156 (6)	-0.0021 (5)	-0.0023 (5)	-0.0066 (5)	
C16 0.0123 (5)) 0.0138 (6)	0.0161 (6)	0.0009 (4)	-0.0033 (5)	-0.0064 (5)	
C17 0.0178 (6)	0.0192 (7)	0.0243 (8)	0.0013 (5)	-0.0047 (6)	-0.0117 (6)	
C21 0.0121 (5)	0.0129 (6)	0.0127 (6)	-0.0008 (4)	-0.0041 (5)	-0.0036 (5)	
C22 0.0118 (5)) 0.0131 (6)	0.0125 (6)	-0.0020 (4)	-0.0036 (4)	-0.0035 (5)	
C23 0.0118 (5)) 0.0150 (6)	0.0156 (6)	-0.0006 (5)	-0.0025 (5)	-0.0050 (5)	
C24 0.0148 (6)) 0.0129 (6)	0.0143 (6)	0.0003 (5)	-0.0052 (5)	-0.0043 (5)	
C25 0.0174 (6)	0.0156 (6)	0.0173 (7)	0.0008 (5)	-0.0048 (5)	-0.0061 (5)	

<i>U</i> 11	<i>U</i> 22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	<i>U</i> 23
C26 0.0235 (6)	0.0126 (6)	0.0196 (7)	0.0004 (5)	-0.0081 (5)	-0.0057 (5)
C27 0.0258 (7)	0.0126 (6)	0.0212 (7)	-0.0050 (5)	-0.0083 (6)	-0.0031 (5)
C28 0.0186 (6)	0.0155 (7)	0.0207 (7)	-0.0044 (5)	-0.0034 (5)	-0.0037 (5)
C29 0.0159 (6)	0.0119 (6)	0.0150 (6)	-0.0024 (5)	-0.0054 (5)	-0.0021 (5)
C30 0.0128 (5)	0.0139 (6)	0.0170 (6)	-0.0021 (5)	-0.0012 (5)	-0.0046 (5)
C31 0.0103 (5)	0.0116 (6)	0.0132 (6)	-0.0013 (4)	-0.0023 (4)	-0.0030 (5)
C32 0.0111 (5)	0.0135 (6)	0.0133 (6)	-0.0005 (4)	-0.0017 (5)	-0.0023 (5)
C33 0.0102 (5)	0.0160 (6)	0.0131 (6)	-0.0008 (4)	-0.0010 (4)	-0.0048 (5)
C34 0.0146 (6)	0.0229 (7)	0.0161 (7)	-0.0013 (5)	0.0000 (5)	-0.0054 (6)
C35 0.0122 (5)	0.0135 (6)	0.0160 (6)	-0.0025 (4)	-0.0035 (5)	-0.0043 (5)
C36 0.0101 (5)	0.0144 (6)	0.0162 (6)	-0.0003 (4)	-0.0033 (5)	-0.0039 (5)
C37 0.0126 (6)	0.0219 (7)	0.0254 (8)	-0.0013 (5)	-0.0062 (5)	-0.0060 (6)
C40 0.0194 (9)	0.0339 (13)) 0.0175 (11	1) 0.0027 (8) -0.0056 (8	3) -0.0074 (9)
Cl41 0.0427 (5)	0.0413 (7)	0.0326 (5)	0.0137 (4)	-0.0067 (3)	-0.0049 (4)
Cl42 0.0221 (3)	0.0531 (9)	0.0315 (4)	0.0013 (5)	0.0032 (3)	-0.0041 (5)
Cl43 0.0283 (3)	0.0533 (6)	0.0443 (5)	-0.0096 (3)) -0.0133 (3) -0.0142 (4)
C50 0.035 (4)	0.029 (4)	0.036 (5)	0.005 (3)	-0.013 (3)	-0.012 (3)
Cl51 0.0550 (14) 0.0305 (17	7) 0.0339 (14) -0.0037 (12	2) -0.0189 (1	0) -0.0052 (11)
Cl52 0.0403 (16) 0.054 (3)	0.072 (3)	-0.0155 (10	6) 0.0152 (1	.6) -0.0206 (18)
C153 0.0345 (10) 0.0386 (1	4) 0.0407 (1	6) -0.0073 (9	9) -0.0034 (1	0) –0.0086 (11)
Geometric para	meters (Å, °))			

C1—C10 1.3813 (17)	C21—C31 1.5217 (17)
C1—C2 1.4276 (17)	C22—C23 1.3852 (17)
C1—C11 1.5184 (16)	C23—C24 1.4084 (18)
C2—C3 1.3844 (17)	C23—H23 0.977 (15)

C2—C22 1.4848 (17)	C24—C29 1.4170 (17)
C3—C4 1.4093 (18)	C24—C25 1.4239 (18)
С3—НЗ 0.947 (15)	C25—C26 1.3647 (19)
C4—C9 1.4168 (18)	C25—H25 0.961 (15)
C4—C5 1.4251 (17)	C26—C27 1.4140 (19)
C5—C6 1.3650 (19)	C26—H26 0.963 (16)
С5—Н5 0.983 (16)	C27—C28 1.3654 (19)
C6—C7 1.412 (2)	C27—H27 0.982 (16)
С6—Н6 0.971 (16)	C28—C29 1.4176 (18)
C7—C8 1.3663 (19)	C28—H28 0.953 (16)
С7—Н7 0.974 (17)	C29—C30 1.4088 (18)
C8—C9 1.4228 (18)	C30—H30 0.972 (15)
C8—H8 0.995 (16)	C31—C35 1.5531 (16)
C9—C10 1.4111 (17)	C31—C32 1.5536 (18)
C10—H10 0.988 (15)	C32—C33 1.5353 (17)
C11—C15 1.5492 (17)	C32—H32A 0.970 (15)
C11—C12 1.5556 (17)	C32—H32B 0.998 (15)
C11—C31 1.5986 (17)	C33—C34 1.5161 (18)
C12—C13 1.5280 (18)	C33—C36 1.5790 (17)
C12—H12A 0.994 (15)	C34—H34A 0.988 (17)
C12—H12B 0.993 (15)	C34—H34B 0.983 (17)
C13—C14 1.5175 (18)	C34—H34C 0.967 (17)
C13—C36 1.5714 (17)	C35—C36 1.5275 (18)
C13—C16 1.5788 (17)	C35—H35A 0.991 (15)
C14—H14A 0.949 (18)	C35—H35B 0.973 (15)
C14—H14B 1.003 (17)	C36—C37 1.5216 (16)

- C14—H14C 0.990 (17) C37—H37A 1.008 (17)
- C15—C16 1.5297 (16) C37—H37B 0.948 (17)
- C15—H15A 0.999 (15) C37—H37C 1.019 (17)
- C15—H15B 0.974 (15) C40—Cl43 1.753 (3)
- C16—C17 1.5186 (18) C40—Cl42 1.760 (3)
- C16—C33 1.5697 (18) C40—Cl41 1.765 (2)
- C17—H17A 0.977 (17) C40—H40 0.96 (2)
- C17—H17B 0.960 (18) C50—Cl51 1.737 (8)
- C17—H17C 0.936 (17) C50—Cl52 1.744 (10)
- C21—C30 1.3800 (18) C50—Cl53 1.771 (8)
- C21—C22 1.4256 (16) C50—H50 0.97 (8)
- C10-C1-C2 118.40 (11) C22-C23-C24 122.63 (11)
- C10-C1-C11 118.31 (11) C22-C23-H23 119.8 (9)
- C2—C1—C11 123.27 (11) C24—C23—H23 117.5 (9)
- C3—C2—C1 118.90 (11) C23—C24—C29 118.44 (11)
- C3—C2—C22 120.79 (11) C23—C24—C25 122.33 (12)
- C1—C2—C22 120.31 (10) C29—C24—C25 119.23 (12)
- C2—C3—C4 122.80 (12) C26—C25—C24 120.37 (12)
- C2—C3—H3 118.3 (9) C26—C25—H25 122.6 (9)
- C4—C3—H3 118.8 (9) C24—C25—H25 117.0 (9)
- C3—C4—C9 118.37 (11) C25—C26—C27 120.40 (12)
- C3—C4—C5 122.36 (12) C25—C26—H26 119.3 (9)
- C9—C4—C5 119.28 (12) C27—C26—H26 120.3 (9)
- C6—C5—C4 120.24 (13) C28—C27—C26 120.42 (13)
- C6—C5—H5 121.7 (9) C28—C27—H27 118.4 (9)
- C4—C5—H5 118.0 (9) C26—C27—H27 121.2 (9)

C5—C6—C7 120.40 (12)	C27—C28—C29 120.76 (13)
C5—C6—H6 120.9 (10)	C27—C28—H28 122.0 (9)
C7—C6—H6 118.7 (10)	C29—C28—H28 117.2 (9)
C8—C7—C6 120.84 (13)	C30—C29—C24 118.24 (11)
C8—C7—H7 118.2 (10)	C30—C29—C28 122.92 (12)
С6—С7—Н7 120.9 (10)	C24—C29—C28 118.83 (11)
C7—C8—C9 120.19 (13)	C21—C30—C29 123.21 (11)
С7—С8—Н8 123.1 (9)	C21—C30—H30 121.1 (9)
C9—C8—H8 116.7 (9)	C29—C30—H30 115.6 (9)
C10—C9—C4 118.24 (11)	C21—C31—C35 111.31 (10)
C10—C9—C8 122.75 (12)	C21—C31—C32 112.27 (10)
C4—C9—C8 119.00 (11)	C35—C31—C32 97.66 (9)
C1—C10—C9 123.17 (12)	C21—C31—C11 115.84 (9)
C1—C10—H10 120.7 (9)	C35—C31—C11 108.98 (9)
C9—C10—H10 116.1 (9)	C32—C31—C11 109.24 (10)
C1—C11—C15 110.72 (9)	C33—C32—C31 102.48 (10)
C1—C11—C12 112.34 (10)	C33—C32—H32A 113.6 (9)
C15—C11—C12 97.69 (10)	C31—C32—H32A 114.5 (9)
C1—C11—C31 116.32 (10)	C33—C32—H32B 109.8 (8)
C15—C11—C31 109.00 (10)	C31—C32—H32B 111.2 (8)
C12—C11—C31 109.16 (9)	H32A—C32—H32B 105.3 (12)
C13—C12—C11 102.55 (10)	C34—C33—C32 113.21 (11)
C13—C12—H12A 114.8 (8)	C34—C33—C16 118.00 (11)
C11—C12—H12A 113.9 (8)	C32—C33—C16 109.81 (9)
C13—C12—H12B 111.2 (8)	C34—C33—C36 118.75 (10)
C11—C12—H12B 109.5 (8)	C32—C33—C36 104.45 (10)

H12A—C12—H12B 104.9 (12)	(
C14—C13—C12 113.41 (11)	(
C14—C13—C36 117.88 (10)	
C12—C13—C36 110.03 (10)	
C14—C13—C16 118.37 (11)	(
C12—C13—C16 104.56 (9)]
C36—C13—C16 89.80 (9)	
C13—C14—H14A 115.2 (10)	
C13—C14—H14B 112.3 (9)	
H14A—C14—H14B 103.9 (14)	(
C13—C14—H14C 110.2 (10)	(
H14A—C14—H14C 107.7 (13)	
H14B—C14—H14C 106.9 (13)	
C16—C15—C11 102.81 (9)	
C16—C15—H15A 111.0 (8)	
C11—C15—H15A 108.8 (8)	(
C16—C15—H15B 115.4 (8)	
C11—C15—H15B 115.2 (8)	
H15A—C15—H15B 103.8 (11)	
C17—C16—C15 113.31 (10)	
C17—C16—C33 117.83 (11)	(
C15—C16—C33 110.06 (10)	
C17—C16—C13 118.51 (11)	
C15—C16—C13 104.18 (10)	
C33—C16—C13 90.20 (9)	
C16—C17—H17A 111.0 (10)	(

C16—C33—C36 89.86 (9) C33-C34-H34A 112.8 (10) C33—C34—H34B 115.0 (10) H34A-C34-H34B 102.7 (13) C33—C34—H34C 111.9 (10) H34A—C34—H34C 106.0 (13) H34B—C34—H34C 107.7 (13) C36-C35-C31 102.87 (10) C36—C35—H35A 110.1 (9) C31—C35—H35A 108.8 (8) C36—C35—H35B 114.6 (9) C31—C35—H35B 114.3 (8) H35A-C35-H35B 106.1 (12) C37—C36—C35 113.13 (11) C37—C36—C13 118.07 (10) C35—C36—C13 109.89 (10) C37—C36—C33 118.63 (11) C35—C36—C33 104.27 (9) C13-C36-C33 90.13 (9) C36—C37—H37A 112.1 (9) C36—C37—H37B 114.0 (10) H37A-C37-H37B 106.1 (13) C36—C37—H37C 110.8 (9) H37A-C37-H37C 108.4 (13) H37B—C37—H37C 105.1 (13) Cl43—C40—Cl42 110.34 (15)

C16—C17—H17B 112.1 (10)	Cl43—C40—Cl41 110.22 (13)
H17A—C17—H17B 106.5 (13)	Cl42—C40—Cl41 110.67 (14)
C16—C17—H17C 112.1 (10)	Cl43—C40—H40 109.0 (13)
H17A—C17—H17C 108.0 (14)	Cl42—C40—H40 107.4 (13)
H17B—C17—H17C 106.7 (14)	Cl41—C40—H40 109.2 (13)
C30—C21—C22 118.43 (11)	Cl51—C50—Cl52 109.2 (5)
C30—C21—C31 118.24 (10)	Cl51—C50—Cl53 111.6 (5)
C22—C21—C31 123.33 (11)	Cl52—C50—Cl53 109.7 (5)
C23—C22—C21 119.01 (11)	Cl51—C50—H50 107 (4)
C23—C22—C2 120.32 (11)	Cl52—C50—H50 112 (4)
C21—C22—C2 120.67 (11)	Cl53—C50—H50 107 (4)
C10—C1—C2—C3 -3.58 (18)	C26—C27—C28—C29 0.4 (2)
C11—C1—C2—C3 174.86 (11)	C23—C24—C29—C30 –1.28 (18)
C10—C1—C2—C22 176.55 (11)	C25—C24—C29—C30 179.76 (11)
C11—C1—C2—C22 -5.01 (18)	C23—C24—C29—C28 178.75 (11)
C1—C2—C3—C4 2.18 (19)	C25—C24—C29—C28 -0.21 (18)
C22—C2—C3—C4 –177.95 (11)	C27—C28—C29—C30 179.82 (13)
C2—C3—C4—C9 1.16 (19)	C27—C28—C29—C24 -0.22 (19)
C2—C3—C4—C5 –178.89 (12)	C22—C21—C30—C29 1.05 (19)
C3—C4—C5—C6 –179.85 (12)	C31—C21—C30—C29 –178.35 (11)
C9—C4—C5—C6 0.10 (19)	C24—C29—C30—C21 0.68 (19)
C4—C5—C6—C7 1.2 (2)	C28—C29—C30—C21 -179.35 (12)
C5—C6—C7—C8 –0.8 (2)	C30—C21—C31—C35 52.89 (15)
C6—C7—C8—C9 –0.9 (2)	C22—C21—C31—C35 –126.49 (12)
C3—C4—C9—C10 –2.99 (18)	C30—C21—C31—C32 –55.43 (14)

C5—C4—C9—C10 177.06 (12) C22—C21—C31—C32 125.19 (12)

- C3—C4—C9—C8 178.23 (12)
- C5-C4-C9-C8-1.72 (18)
- C7-C8-C9-C10-176.61 (13)
- C7—C8—C9—C4 2.1 (2)
- C2-C1-C10-C9 1.76 (19)
- C11-C1-C10-C9-176.76(11)
- C4-C9-C10-C1 1.57 (19)
- C8—C9—C10—C1 -179.70 (12)
- C10-C1-C11-C15 54.31 (15)
- C2-C1-C11-C15-124.14 (12)
- C10-C1-C11-C12-53.76 (15)
- C2-C1-C11-C12 127.80 (12)
- C10-C1-C11-C31 179.43 (10)
- C2—C1—C11—C31 0.99 (17)
- C1-C11-C12-C13 166.02 (10)
- C15-C11-C12-C13 49.82 (11)
- C31-C11-C12-C13-63.42 (12)
- C11-C12-C13-C14-161.50 (10)
- C11-C12-C13-C36 64.07 (12)
- C11-C12-C13-C16-31.15 (12)
- C1-C11-C15-C16-167.47 (10)
- C12-C11-C15-C16-50.01 (11)
- C31—C11—C15—C16 63.37 (12)
- C11-C15-C16-C17 161.65 (11)
- C11-C15-C16-C33-64.03 (12)
- C11—C15—C16—C13 31.48 (12)

- C30-C21-C31-C11 178.12 (10)
- C22—C21—C31—C11 -1.25 (17)
- C1—C11—C31—C21 2.09 (15)
- C15-C11-C31-C21 128.08 (10)
- C12-C11-C31-C21-126.29 (11)
- C1-C11-C31-C35 128.51 (11)
- C15-C11-C31-C35-105.50(11)
- C12-C11-C31-C35 0.13 (13)
- C1-C11-C31-C32-125.87 (10)
- C15-C11-C31-C32 0.13 (12)
- C12-C11-C31-C32 105.76 (11)
- C21-C31-C32-C33 166.63 (9)
- C35-C31-C32-C33 49.79 (11)
- C11-C31-C32-C33-63.45 (11)
- C31-C32-C33-C34-161.83 (10)
- C31-C32-C33-C16 63.96 (12)
- C31-C32-C33-C36-31.21 (11)
- C17—C16—C33—C34 0.10 (16)
- C15-C16-C33-C34-131.90 (11)
- C13-C16-C33-C34 122.90 (11)
- C17-C16-C33-C32 131.86 (11)
- C15—C16—C33—C32 -0.15 (14)
- C13-C16-C33-C32-105.34 (10)
- C17-C16-C33-C36-122.81 (11)
- C15—C16—C33—C36 105.18 (10)
- C13—C16—C33—C36 -0.01 (8)

- C14—C13—C16—C17 0.27 (17)
- C12—C13—C16—C17 -127.09 (12)
- C36-C13-C16-C17 122.24 (12)
- C14—C13—C16—C15 127.26 (12)
- C12—C13—C16—C15 -0.10 (13)
- C36—C13—C16—C15 -110.76 (10)

- C21—C31—C35—C36 -167.71 (10)
- C32-C31-C35-C36-50.13 (11)
- C11—C31—C35—C36 63.31 (12)
- C31—C35—C36—C37 161.74 (11)
- C31—C35—C36—C13 -63.94 (12)
- C31—C35—C36—C33 31.49 (12)