Enantioselective Nickel-Catalyzed Arylative Intramolecular 1,4-Allylations

Thi Le Nhon Nguyen,^{†,‡} Celia A. Incerti-Pradillos,^{†,‡} William Lewis,[‡] and Hon Wai Lam^{†,‡,*}

[†]The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom

[‡]School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

Supplementary Information

General Information	2
Preparation of Substrates	3
Enantioselective Nickel-Catalyzed Arylative Intramolecular 1,4-Allylation: General Procedure	:7
Acid-Catalyzed of Hexahydrobenzofuran-5-one 6l into Phenol 8l	.25
Independent Formation of the [2+2] Cycloaddition Products	.26
Further Transformations	.28
NMR Spectra	.30
HPLC traces	.64
References	. 89

General Information

All air-sensitive reactions were carried out under a nitrogen atmosphere using oven-dried apparatus. Unless stated otherwise, all solvents used in reactions were anhydrous. THF, DMF and MeCN were dried and purified by passage through activated alumina columns using a solvent purification system. Anhydrous 1,4-dioxane was obtained from commercial sources. All commercially available reagents were used as received unless otherwise stated. Arylboronic acids were used as received unless the sample contained >10% boroxine as determined by ¹H NMR analysis. In this case, the boronic acid was stirred in a mixture of Et₂O and water for 30 minutes. The organic phase was separated, dried (Na₂SO₄), filtered, and concentrated under reduced pressure to give the corresponding boronic acid which was used without further purification. Petroleum ether refers to 40-60 °C petroleum ether. Flash column chromatography was carried out using silica gel (Fisher Scientific 60Å particle size 35–70 micron) or using a Interchim Puriflash 430 series purification system with IR-50SI 50µm pre-packed columns. Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. The solvent of recrystallization is reported in parentheses. Infrared (IR) spectra were recorded on either a Shimadzu IRAffinity-1 or a Nicolet Avatar 360 FT instrument on the neat compound. ¹H and ¹³C NMR spectra were referenced to external tetramethylsilane via the residual protonated solvent (¹H) or the solvent itself (¹³C). All chemical shifts are reported in parts per million (ppm). For CDCl₃, the shifts are referenced to 7.27 ppm for ¹H NMR spectroscopy and 77.0 ppm for ¹³C NMR spectroscopy. Coupling constants (*J*) are quoted to the nearest 0.1 Hz. Assignments were made using the DEPT sequence with secondary pulses at 90° and 135°. High-resolution mass spectra were recorded using electrospray ionization (ESI). X-ray diffraction data were collected at 120 K on either an Agilent SuperNova diffractometer using MoKa radiation at 0.71 Å or on an Agilent GV1000 using CuKa radiation, and refined in SHELXTL. Chiral HPLC analysis was performed on an Agilent 1290 series or Agilent 1260 series instrument using 4.6×250 mm columns. 2-[2-(Diphenylphosphino)ethyl]pyridine (L1, Sigma-Aldrich product 695599) was used as an achiral ligand to obtain authentic racemic compounds.

S1,¹ S2,¹ S3² were prepared according to previously reported procedures. Substrates 4a–4d were prepared according to previously reported procedures.³

Preparation of Substrates 1a-1b

4-Methyl-*N*-(1-methyl-4-oxocyclohexa-2,5-dien-1-yl)-*N*-(prop-2-yn-1-yl)benzene-1-sulfonamide (S4)

To a solution of sulfonamide **S1**¹ (2.77 g, 10.0 mmol) in DMF (20 mL) at 0 °C under inert atmosphere was added NaH (60% dispersion in mineral oil, 0.60 g, 15 mmol) portionwise. Propargyl bromide (80% in toluene, 1.68 mL, 15.0 mmol) was added and the mixture was stirred for 1 h. The reaction was diluted with EtOAc (30 mL), washed with saturated aqueous NH₄Cl solution (25 mL) and brine/H₂O (1:1, 40 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The mixture was purified by column chromatography (40% EtOAc/petroleum ether) to give *alkyne* **S4** (2.70 g, 87%) as a white solid. $R_f = 0.43$ (40% EtOAc/petroleum ether); m.p. 123-124 °C (Et₂O); IR 3312, 3222, 3051, 2974, 2919, 2112 (C=C), 1670 (C=O), 1629, 1314, 1148, 1088, 1030, 861, 815, 695, 547 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (2H, d, J = 8.0 Hz, Ar**H**), 7.30 (2H, d, J = 8.0 Hz, Ar**H**), 7.03 (2H, d, J = 10.4 Hz, 2 ×

O=CCH=C**H**), 6.17 (2H, d, J = 10.0 Hz, 2 × O=CC**H**), 4.27 (2H, d, J = 2.4 Hz, CH₂), 2.44 (3H, s, ArC**H**₃), 2.36 (1H, t, J = 2.4 Hz, **=**C**H**), 1.61 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 184.3 (C), 151.1 (2 × CH), 144.0 (C), 138.5 (C), 129.6 (2 × CH), 128.0 (2 × CH), 127.7 (2 × CH), 80.3 (C), 73.7 (CH), 60.1 (C), 36.3 (CH₂), 25.8 (CH₃), 21.6 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₇H₁₇NNaO₃S]⁺ [M + Na]⁺: 338.0821, found: 338.0824.

N-(Buta-2,3-dien-1-yl)-4-methyl-*N*-(1-methyl-4-oxocyclohexa-2,5-dien-1-yl)benzene-1-sulfonamide (1a)

To a solution of sulfonamide **S4** (2.90 g, 8.50 mmol) in 1,4-dioxane (45 mL) at room temperature under inert atmosphere was added paraformaldehyde (1.30 g, 42.5 mmol), CuBr (0.61 g, 4.3 mmol), and diisopropylamine (2.4 mL, 17 mmol). The reaction was heated at 90 °C for 1.5 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated under reduced pressure. The mixture was purified by column chromatography (40% EtOAc/petroleum ether) to give *allene* **1a** (1.30 g, 45%) as a pale yellow solid. $R_f = 0.63$ (40% EtOAc/petroleum ether); m.p. 118-120 °C (Et₂O); IR 2979, 2924, 1956 (C=C=C), 1670 (C=O), 1629, 1445, 1309, 1183, 1146, 1085, 864, 812, 699, 648, 330, 529, 513 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (2H, d, *J* = 8.4 Hz, Ar**H**), 7.32 (2H, d, *J* = 8.4 Hz, Ar**H**), 6.94 (2H, d, *J* = 10.0 Hz, 2 × O=CCH=C**H**), 6.17 (2H, d, *J* = 10.0 Hz, 2 × O=CC**H**), 5.31 (1H, quin, *J* = 6.4 Hz, C**H**=C=CH₂), 4.76 (2H, dt, *J* = 6.8, 2.4 Hz, =C**H**₂), 4.01 (2H, dt, *J* = 6.8, 2.8 Hz, NC**H**₂), 2.44 (3H, s, ArC**H**₃), 1.57 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 209.1 (C), 184.5 (C), 151.5 (2 × CH), 143.8 (C), 139.3 (C), 129.7 (2 × CH), 127.8 (2 × CH), 127.3 (2 × CH), 89.4 (CH), 76.7 (C), 60.0 (CH₂), 46.8 (CH₂), 26.0 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₈H₁₉NNaO₃S]⁺ [M+Na]⁺: 352.0978, found: 352.0978.

N-(1-Ethyl-4-oxocyclohexa-2,5-dien-1-yl)-4-methyl-*N*-(prop-2-yn-1-yl)benzene-1-sulfonamide (S5)

To a solution of sulfonamide $S2^1$ (1.06 g, 3.64 mmol) in DMF (7.5 mL) at 0 °C under inert atmosphere was added NaH (60% dispersion in mineral oil, 0.22 g, 5.46 mmol) was added portionwise. Propargyl bromide (80% in toluene, 0.60 mL, 5.5 mmol) was added and the mixture was stirred for 1 h. The mixture was diluted with EtOAc (15 mL), washed with saturated aqueous NH₄Cl solution (20 mL) and brine/H₂O (1:1, 20 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The mixture was purified by column chromatography (30% EtOAc/petroleum ether) to give alkyne S5 (0.92 g, 77%) as a pale yellow solid. $R_f = 0.37$ (30%) EtOAc/petroleum ether); m.p. 92-94 °C (Et₂O); IR 3273, 2970, 2939, 2882, 2118 (C=C), 1665 (C=O), 1628, 1337, 1156, 1088, 904, 811, 649, 543 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (2H, d, J = 8.2 Hz, ArH), 7.29 (2H, d, J = 8.2 Hz, ArH), 6.93 (2H, d, J = 10.2 Hz, $2 \times O=CCH=CH$), 6.24 (2H, d, J = 10.2 Hz, 2 × O=CCH), 4.32 (2H, d, J = 2.4 Hz, NCH₂), 2.44 (3H, s, ArCH₃), 2.36 $(1H, t, J = 2.4 \text{ Hz}, \equiv CH), 2.05 (2H, q, J = 7.2 \text{ Hz}, CH_2CH_3), 0.74 (3H, t, J = 7.2 \text{ Hz}, CH_2CH_3);$ ¹³C NMR (101 MHz, CDCl₃) δ 184.9 (C), 149.1 (2 × CH), 144.0 (C), 138.5 (C), 129.8 (2 × CH), 129.5 (2 × CH), 127.8 (2 × CH), 80.4 (C), 73.7 (CH), 64.5 (C), 36.0 (CH₂), 29.4 (CH₂), 21.6 (CH₃), 8.4 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₈H₁₉NNaO₃S]⁺ [M+Na]⁺: 352.0978, found: 352.0976.

N-(Buta-2,3-dien-1-yl)-*N*-(1-ethyl-4-oxocyclohexa-2,5-dien-1-yl)-4-methylbenzene-1-sulfonamide (1b)

To a solution of alkyne **S5** (0.86 g, 2.63 mmol) in 1,4-dioxane (13 mL) at room temperature under inert atmosphere was added paraformaldehyde (0.40 g, 13.1 mmol), CuBr (188 mg, 1.30 mmol), and diisopropylamine (0.74 mL, 5.25 mmol). The reaction was heated at 90 °C for 1.5 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated under reduced pressure. The mixture was purified by column chromatography (40% EtOAc/petroleum

ether) to give *allene* **1b** (0.30 g, 33%) as a yellow solid. $R_f = 0.56$ (40% EtOAc, 60% petroleum ether); m.p. 110-112 °C (Et₂O); IR 2968, 2934, 2925, 1952 (C=C=C), 1670 (C=O), 1632, 1437, 1305, 1144, 1091, 860, 814, 701, 647, 551, 517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (2H, d, *J* = 8.4 Hz, Ar**H**), 7.28 (2H, d, *J* = 8.4 Hz, Ar**H**), 6.82 (2H, d, *J* = 10.4 Hz, 2 × O=CCH=C**H**), 6.24 (2H, d, *J* = 10.4 Hz, 2 × O=CC**H**), 5.31 (1H, quin, *J* = 6.8 Hz, C**H**=C=CH₂), 4.75 (2H, dt, *J* = 6.4, 2.8 Hz, =C**H**₂), 4.03 (2H, dt, *J* = 6.8, 2.4 Hz, NC**H**₂), 2.42 (3H, s, ArC**H**₃), 2.01 (2H, q, *J* = 7.6 Hz, C**H**₂CH₃), 0.70 (3H, t, *J* = 7.2 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 208.8 (C), 185.0 (C), 149.2 (2 × CH), 143.7 (C), 139.2 (C), 129.62 (2 × CH), 129.56 (2 × CH), 127.2 (2 × CH), 89.5 (CH), 76.7 (C), 64.5 (CH₂), 46.6 (CH₂), 29.5 (CH₂), 21.5 (CH₃), 8.4 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₉H₂₁NNaO₃S]⁺ [M+Na]⁺: 366.1134, found: 366.1132.

Preparation of Substrate 5

4-Methyl-4-(penta-3,4-dien-1-yloxy)cyclohexa-2,5-dien-1-one (5)

To a solution of alkyne **S3**² (1.34 g, 7.60 mmol) in 1,4-dioxane (38 mL) at room temperature under inert atmosphere was added paraformaldehyde (1.14 g, 38.0 mmol), CuBr (546 mg, 3.80 mmol), and diisopropylamine (2.13 mL, 15.2 mmol). The reaction was heated at 90 °C for 1.5 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated under reduced pressure. The mixture was purified by column chromatography (20% EtOAc/petroleum ether) to give *allene* **5** (252 mg, 17%) as a yellow oil. $R_f = 0.57$ (20% EtOAc/petroleum ether); IR 2981, 2928, 2967, 1956 (C=C=C), 1669 (C=O), 1631, 1515, 1438, 1382, 1178, 1084, 858, 727, 702, 541, 509, 461 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.81-6.78 (2H, m, 2 × O=CCH=CH), 6.30-6.26 (2H, m, 2 × O=CCH), 5.09 (1H, quin, *J* = 6.8 Hz, CH=C=CH₂), 4.68 (2H, dt, *J* = 6.5, 3.1 Hz, =CH₂), 3.37 (2H, t, *J* = 6.7 Hz, OCH₂), 2.25-2.20 (2H, m, CH₂CH=), 1.43 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 208.9 (C), 185.2 (C), 152.2 (2 × CH), 130.0 (2 × CH), 86.3 (CH), 75.1 (CH₂), 72.4 (C), 65.0 (CH₂), 29.3 (CH₂), 26.4 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₂H₁₄NaO₂]⁺ [M+Na]⁺: 213.0886, found: 213.0885. Enantioselective Nickel-Catalyzed Arylative Intramolecular 1,4-Allylation: General Procedure

An oven-dried microwave vial fitted with a stirrer bar was charged with Ni(OAc)₂·4H₂O (7.5 mg, 0.03 mmol) and (*R*)-Ph-PHOX (**L2**, 12.2 mg, 0.03 mmol). The vial was capped with a crimp cap PTFE seal and purged with a stream of N₂. MeCN (0.9 mL) and 1,4-dioxane (0.6 mL) were added and the mixture was stirred at 80 °C for 15 min. In a separate vial, the allenyl cyclohexa-2,5-dienone **1** or **4** (0.30 mmol) and the arylboronic acid (0.60 mmol) were weighed out and the vial was purged with a stream of N₂. MeCN (0.45 mL) and 1,4-dioxane (0.3 mL) were added. The resulting solution was then transferred to the first microwave vial *via* syringe. The vial originally containing the substrate was rinsed with additional MeCN (0.45 mL) and 1,4-dioxane (0.3 mL), and the rinsing solution was transferred to the first microwave vial *via* syringe. The reaction was stirred at 80 °C for 18 h, cooled to room temperature, filtered through a plug of silica, and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the title compound **2** or **6**.

(3R,3aR,7aR)-7a-Methyl-1-(4-methylbenzenesulfonyl)-3-(1-phenylethenyl)-

2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2a). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1a

^{Ts'} (98.8 mg, 0.30 mmol) and phenylboronic acid (73.1 mg, 0.60 mmol), and purified by column chromatography (20% EtOAc/petroleum ether) to give a colorless solid (93.7 mg, 77%). R_f = 0.36 (20% EtOAc/petroleum ether); m.p. 113-118 °C (Et₂O); $[\alpha]_D^{25}$ +88.9 (*c* 0.54, CHCl₃); IR 2929, 1679 (C=O), 1337, 1038, 1267, 1168, 1149, 1130, 1105, 1066, 898, 775, 581, 542 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.71 (2H, m, Ar**H**), 7.51-7.28 (7H, m, Ar**H**), 7.20 (1H, d, *J* = 10.3 Hz, O=CCH=C**H**), 5.89 (1H, dd, *J* = 10.3, 0.8 Hz, O=CC**H**=), 5.35 (1H, d, *J* = 1.6 Hz, =C**H**₂), 4.90 (1H, d, *J* = 1.6 Hz, =C**H**₂), 3.94-3.87 (2H, m, NC**H**₂), 3.59-3.52 (1H, m, NCH₂C**H**), 2.48-2.42 (1H, m, O=CCH₂C**H**), 2.43 (3H, s, ArC**H**₃), 1.91-1.81 (2H, m, O=CC**H**₂), 1.74 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.0 (C), 149.0 (CH), 144.0 (C), 143.5 (C), 140.2 (C), 136.8 (C), 129.6 (2 × CH), 128.7 (2 × CH), 128.2 (CH), 128.1 (CH), 127.1 (2 × CH), 126.0

 $(2 \times CH)$, 114.9 (CH₂), 63.7 (C), 49.5 (CH₂), 47.3 (CH), 41.7 (CH), 34.1 (CH₂), 28.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for $[C_{24}H_{25}NNaO_3S]^+$ [M+Na]⁺: 430.1447, found: 430.1444. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (minor) = 16.2 min, t_r (major) = 18.4 min, 90% ee.

Slow diffusion of petroleum ether into a solution of **2a** in EtOAc gave crystals that were suitable for X-ray crystallography:

(3R,3aR,7aR)-7a-Ethyl-1-(4-methylbenzenesulfonyl)-3-(1-phenylethenyl)-

2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2b). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1b (102.9

mg, 0.30 mmol) and phenylboronic acid (73.1 mg, 0.60 mmol), and purified by column chromatography (30% EtOAc/petroleum ether) to give a colorless solid (98.6 mg, 78%). R_f = 0.55 (30% EtOAc/petroleum ether); m.p. 173-175 °C (Et₂O); $[\alpha]_{D}^{25}$ +71.0 (c 0.62, CHCl₃); IR 2959, 2929, 2851, 1672 (C=O), 1496, 1385, 1342, 1165, 1105, 1064, 904, 773, 679, 589, 545 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.70 (2H, m, ArH), 7.37-7.28 (7H, m, ArH), 7.15 (1H, d, J = 10.4 Hz, O=CCH=CH), 5.99 (1H, dd, J = 10.4, 0.8 Hz, O=CCH=), 5.34 (1H, d, J = 1.6 Hz, =CH₂), 4.88 (1H, d, J = 1.6 Hz, =CH₂), 3.88-3.81 (2H, m, NCH₂), 3.56-3.49 (1H, m, NCH₂CH), 2.61 (1H, dt, J = 12.8, 5.6 Hz, O=CCH₂CH), 2.42 (3H, s, ArCH₃), 2.39-2.29 (1H, m, O=CCH₂), 2.07 (1H, dq, *J* = 14.0, 7.6 Hz, O=CCH₂), 1.84 (1H, ddd, *J* = 16.4, 5.7, 1.0 Hz, CH₂CH₃), 1.72 (1H, dd, J = 16.4, 12.8 Hz, CH₂CH₃), 0.86 (3H, t, J = 7.6 Hz, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.1 (C), 148.3 (CH), 144.0 (C), 143.5 (C), 140.3 (C), 136.6 (C), 130.0 (CH), 129.6 (2 × CH), 128.8 (2 × CH), 128.2 (CH), 127.2 (2 × CH), 125.9 (2 × CH), 114.8 (CH₂), 67.9 (C), 49.2 (CH₂), 42.1 (CH), 41.5 (CH), 34.1 (CH₂), 33.2 (CH₂), 21.5 (CH₃), 9.9 (CH₃); HRMS (ESI) Exact mass calcd for $[C_{25}H_{27}NNaO_3S]^+$ $[M+Na]^+$: 444.1604, found: 444.1589. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 iso-hexane:i-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (minor) = 13.9 min, t_r (major) = 17.6 min, 92% ee.

Slow diffusion of petroleum ether into a solution of **2b** in EtOAc gave crystals that were suitable for X-ray crystallography:

 (*3R*,*3aR*,*7aR*)-*7a*-Methyl-*3*-(1-phenylethenyl)-*2*,*3*,*3a*,*4*,*5*,*7a*hexahydro-1-benzofuran-5-one (6a). The General Procedure was followed using allenyl cyclohexa-2,5-dienone 4a (52.8 mg, 0.30 mmol) and phenylboronic acid (73.1 mg, 0.60 mmol), and purified by column

chromatography (30% EtOAc/petroleum ether) to give an 11:1 inseparable mixture of *arylative cyclization product* **6a** and *cyclobutane* **3b** as a colorless oil (59.7 mg, 74%, adjusted yield of **6a**). $R_f = 0.23$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25} - 77.8$ (*c* 0.72, CHCl₃); IR 2970, 2927, 1681 (C=O), 1495, 1371, 1049, 901, 779, 705, 531 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (5H, m, Ar**H**), 6.60 (1H, dd, J = 10.4 Hz, O=CCH=C**H**), 5.97 (1H, dd, J = 10.4 Hz, O=CC**H**=), 5.42 (1H, s, =C**H**₂), 4.95 (1H, s, =C**H**₂), 4.24 (1H, app t, J = 8.4 Hz, OC**H**₂), 4.05 (1H, app t, J = 10.0 Hz, OC**H**₂), 3.89 (1H, app q, J = 17.2, 8.5 Hz, OCH₂C**H**), 2.61 (1H, q, J = 8.0 Hz, O=CCH₂C**H**), 2.26 (1H, dd, J = 16.8, 8.4 Hz, O=CC**H**₂), 2.08 (1H, dd, J = 16.8, 6.8 Hz, O=CC**H**₂), 1.49 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.5 (C), 150.1 (CH), 144.0 (C), 141.4 (C), 128.7 (CH), 128.6 (2 × CH), 127.9 (CH), 125.9 (2 × CH), 115.0 (CH₂), 78.6 (C), 69.5 (CH₂), 45.5 (CH), 44.0 (CH), 35.2 (CH₂), 27.3 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₇H₁₈NaO₂]⁺ [M+Na]⁺: 277.1199, found: 277.1193. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 7.2 min, t_r (minor) = 8.4 min, 91% ee.

(3R,3aR,7aR)-7a-Ethyl-3-(1-phenylethenyl)-2,3,3a,4,5,7a-

hexahydro-1-benzofuran-5-one (6b). The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4b** (57.1 mg, 0.30 mmol) and phenylboronic acid (73.1 mg, 0.60 mmol), and purified by column

6b 17:1 chromatography (30% EtOAc/petroleum ether) to give a 17:1 inseparable mixture of arylative cyclization product **6b** and cyclobutane **3c** as a colorless oil (65.2 mg, 78%, adjusted yield of **6b**). $R_f = 0.29$ (20% EtOAc/petroleum ether); [α] $_D^{25}$ -68.8 (*c* 0.64, CHCl₃); IR 2965, 2932, 1682 (C=O), 1494, 1380, 1052, 906, 777, 703, 634 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (5H, m, Ar**H**), 6.58 (1H, dd, J = 10.4 Hz, O=CCH=CH), 6.06 (1H, dd, J = 10.4 Hz, O=CCH=), 5.43 (1H, s, $=CH_2$), 4.94 (1H, s, $=CH_2$), 4.20 (1H, app t, J = 7.2 Hz, OCH_2), 4.00 (1H, app t, J = 10.0 Hz, OCH_2), 3.80 (1H, app q, J = 8.5 Hz, OCH_2CH), 2.67 (1H, app q, J = 7.8 Hz, $O=CCH_2CH$), 2.27 $(1H, dd, J = 16.8, 7.6 Hz, O=CCH_2)$, 2.07 $(1H, dd, J = 16.8, 6.8 Hz, O=CCH_2)$, 1.88-1.71 (2H, m, m)CH₂CH₃), 0.95 (3H, J = 7.6 Hz, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.7 (C), 149.2 (CH), 144.1 (C), 141.4 (C), 129.8 (CH), 128.6 (2 × CH), 127.9 (CH), 125.9 (2 × CH), 115.0 (CH₂), 81.6 (C), 69.1 (CH₂), 45.9 (CH), 41.1 (CH), 35.6 (CH₂), 33.1 (CH₂), 8.6 (CH₃); HRMS (ESI) Exact mass calcd for $[C_{18}H_{21}O_2]^+$ $[M+H]^+$: 269.1536, found: 269.1527. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (98:2 iso-hexane:i-PrOH, 1 mL/min, 230 nm, 25 °C); t_r (major) = 21.6 min, t_r (minor) = 27.6 min, 92% ee.

(3R,3aR,7aR)-3-(1-Phenylethenyl)-7a-(propan-2-yl)-2,3,3a,4,5,7a-hexahydro-1-

benzofuran-5-one (6c). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone **4c** (61.3 mg, 0.30 mmol) and phenylboronic acid (73.1 mg, 0.60 mmol), and purified by column chromatography

(20% EtOAc/petroleum ether) to give a colorless oil (65.0 mg, 77%). $R_f = 0.36$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25}$ -83.0 (*c* 0.53, CHCl₃); IR 2961, 2877, 1683 (C=O), 1495, 1385, 1256, 1041, 934, 906, 778, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.16 (5H, m, Ar**H**), 6.46 (1H, d, *J* = 10.2 Hz, O=CCH=C**H**), 6.02 (1H, d, *J* = 10.2 Hz, O=CC**H**=), 5.33 (1H, s, =C**H**₂), 4.82 (1H, s, =C**H**₂) 4.04 (1H, app t, *J* = 8.2 Hz, OC**H**₂), 3.78 (1H, app t, *J* = 8.2 Hz, OC**H**₂), 3.58 (1H, q, *J* = 8.8 Hz, OCH₂C**H**), 2.62 (1H, q, *J* = 7.6 Hz, O=CCH₂C**H**) 2.17 (1H, dd, *J* = 16.8, 6.1 Hz, O=CC**H**₂), 2.01-1.88 (2H, m, O=CC**H**₂ and C**H**(CH₃)₂), 0.91 (3H, d, *J* = 6.8 Hz, C**H**₃), 0.87 (3H, d, *J* = 6.8 Hz, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.7 (C), 148.1 (CH), 144.1 (C), 141.4 (C), 130.7 (CH), 128.6 (2 × CH), 127.9 (CH), 125.8 (2 × CH), 115.0 (CH₂), 83.9 (C), 68.7 (CH₂), 46.7 (CH), 39.2 (CH), 36.4 (CH₂), 17.35 (CH₃), 17.31 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₉H₂₃O₂]⁺ [M+H]⁺: 283.1693, found: 283.1689. Enantiomeric excess was determined by

HPLC with a Chiralpak AD-H column (98:2 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 9.4 min, t_r (minor) = 11.9 min, 94% ee.

Reaction Conducted on 2.00 mmol Scale:

An oven-dried microwave vial fitted with a stirrer bar was charged with Ni(OAc)₂·4H₂O (24.8 mg, 0.10 mmol) and (*R*)-Ph-PHOX (**L2**, 40.7 mg, 0.10 mmol). The vial was capped with a crimp cap PTFE seal and purged with a stream of N₂. Deoxygenated MeCN (1.5 mL) and 1,4-dioxane (1.0 mL) were added and the mixture was stirred at 80 °C for 15 min. In a separate vial, the allenyl cyclohexa-2,5-dienone **4c** (408.6 mg, 2.00 mmol) and phenylboronic acid (487.2 mg, 4.00 mmol) were weighed out and the vial was purged with a stream of N₂. Deoxygenated MeCN (0.75 mL) and 1,4-dioxane (0.5 mL) were added. The resulting solution was then transferred to the first microwave vial *via* syringe. The vial originally containing the substrate was rinsed with additional deoxygenated MeCN (0.75 mL) and 1,4-dioxane (0.5 mL), and the rinsing solution was transferred to the first microwave vial *via* syringe. The vial originally containing the substrate was rinsed with additional deoxygenated MeCN (0.75 mL) and 1,4-dioxane (0.5 mL), and the rinsing solution was transferred to the first microwave vial *via* syringe. The reaction was stirred at 80 °C for 42 h, cooled to room temperature, filtered through a plug of silica, and concentrated under reduced pressure. The residue was purified by column chromatography to give the title compound **6c** as a colorless oil (355.0 mg, 63%). Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (98:2 *iso*hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 9.4 min, t_r (minor) = 11.9 min, 94% ee.

(3R,3aR,7aR)-7a-Phenyl-3-(1-phenylethenyl)-2,3,3a,4,5,7a-

hexahydro-1-benzofuran-5-one (6d). The General Procedure was followed using allenyl cyclohexa-2,5-dienone 4d (35.8 mg, 0.15 mmol) and phenylboronic acid (36.6 mg, 0.30 mmol), and purified by column chromatography (20% EtOAc/petroleum ether) to give a 20:1

inseparable mixture of *arylative cyclization product* **6d** and *cyclobutane* **3d** as colorless oil (39.4 mg, 80%, adjusted yield of **6d**). $R_f = 0.36$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25}$ +39.3 (*c* 0.61, CHCl₃); IR 2925, 2886, 1682 (C=O), 1492, 1446, 1381, 1289, 1256, 1051, 928, 779, 762, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.21 (10H, m, Ar**H**), 6.58 (1H, dd, J = 10.2, 1.2 Hz,

O=CCH=C**H**), 6.10 (1H, d, J = 10.2 Hz, O=CC**H**=), 5.42 (1H, s, C**H**₂), 4.99 (1H, s, C**H**₂), 4.47 (1H, app t, J = 8.6 Hz, OC**H**₂), 4.38 (1H, app t, J = 8.6 Hz, OC**H**₂), 3.74 (1H, q, J = 8.0 Hz, OCH₂C**H**), 2.92 (1H, dt, J = 9.8, 6.4 Hz, O=CCH₂C**H**), 2.39 (1H, dd, J = 16.2, 10.2 Hz, O=CC**H**₂), 2.16 (1H, dd, J = 16.2, 6.4 Hz, O=CC**H**₂); ¹³C NMR (101 MHz, CDCl₃) δ 198.9 (C), 147.9 (CH), 144.2 (C), 144.0 (C), 141.0 (C), 128.7 (CH), 128.6 (2 × CH), 128.5 (2 × CH), 127.9 (CH), 127.7 (CH), 125.8 (2 × CH), 125.0 (2 × CH), 115.0 (CH₂), 82.8 (C), 69.9 (CH₂), 46.4 (CH), 44.6 (CH), 35.2 (CH₂); HRMS (ESI) Exact mass calcd for [C₂₂H₂₀NaO₂]⁺ [M+Na]⁺: 339.1356, found: 339.1351. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 8.6 min, t_r (minor) = 9.3 min, 92% ee.

(3R,3aR,7aR)-3-[1-(4-Ethenylphenyl)ethenyl]-7a-methyl-1-(4-

methylbenzenesulfonyl)-2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2c). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone **1a** (98.8 mg, 0.30 mmol) and 4-vinylphenylboronic acid (88.8 mg, 0.60 mmol), and purified by column chromatography (30%

EtOAc/petroleum ether) to give a colorless solid (82.2 mg, 63%). $R_f = 0.44$ (30% EtOAc/petroleum ether); m.p. 163-165 °C (Et₂O); $[\alpha]_D^{25} -81.4$ (*c* 0.59, CHCl₃); IR 3008, 2972, 1679 (C=O), 1332, 1148, 1133, 1114, 1071, 1056, 989, 906, 849, 681, 583 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (2H, d, *J* = 8.2 Hz, Ar**H**), 7.38 (2H, d, *J* = 8.2 Hz, Ar**H**), 7.30-7.27 (4H, m, Ar**H**), 7.20 (1H, d, *J* = 10.0 Hz, O=CCH=C**H**), 6.70 (1H, dd, *J* = 17.6, 10.8 Hz, C**H**=CH₂), 5.89 (1H, d, *J* = 10.0 Hz, O=CCH=), 5.75 (1H, dd, *J* = 17.6, 0.6 Hz, CH=C**H**₂), 5.37 (1H, d, *J* = 1.4 Hz, C=C**H**₂), 5.27 (1H, dd, *J* = 10.8, 0.6 Hz, CH=C**H**₂), 4.89 (1H, d, *J* = 1.4 Hz, C=C**H**₂), 3.92-3.87 (2H, m, NC**H**₂), 3.58-3.52 (1H, m, NCH₂C**H**), 2.49-2.44 (1H, m, O=CCH₂C**H**), 2.43 (3H, s, ArC**H**₃), 1.89-1.80 (2H, m, O=CC**H**₂), 1.74 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.0 (C), 149.0 (CH), 143.6 (2 × C), 139.6 (C), 137.6 (C), 136.8 (C), 136.0 (CH), 129.6 (2 × CH), 128.1 (CH), 127.1 (2 × CH), 126.5 (2 × CH), 126.2 (2 × CH), 114.7 (CH₂), 114.5 (CH₂), 63.7 (C), 49.5 (CH₂), 47.4 (CH), 41.6 (CH), 34.1 (CH₂), 28.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₆H₂₇NNaO₃S]⁺ [M+Na]⁺: 456.1604, found: 456.1595. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 0.2 mL/min, 254 nm, 25 °C); t_r (major) = 90.9 min, t_r (minor) = 94.7 min, 99% ee.

Slow diffusion of petroleum ether into a solution of 2c in EtOAc gave crystals that were suitable for X-ray crystallography:

(3R,3aR,7aR)-3-[1-(3,4-Dichlorophenyl)ethenyl]-7a-methyl-1-(4-

(5K,5aK,7aK)-5-[1-(5,4-Dictior ophenyi)ethenyi)-7a-methyi-1-(4methylbenzenesulfonyl)-2,3,3a,4,5,7a-hexahydro-1*H***-indol-5-one (2d). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1a** (98.8 mg, 0.30 mmol) and 3,4dichlorophenylboronic acid (114.5 mg, 0.60 mmol), and purified by column

chromatography (30% EtOAc/petroleum ether) to give a colorless solid (73.2 mg, 51%). $R_f = 0.46$ (30% EtOAc/petroleum ether); m.p. 179-181 °C (Et₂O); $[\alpha]_D^{25}$ –61.5 (*c* 0.78, CHCl₃); IR 2957, 2852, 1679 (C=O), 1472, 1307, 1169, 1150, 1066, 893, 862, 663, 580 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (2H, d, *J* = 8.4 Hz, Ar**H**), 7.42 (1H, d, *J* = 8.4 Hz, Ar**H**), 7.39 (1H, d, *J* = 2.4 Hz, Ar**H**), 7.30 (2H, d, *J* = 8.0 Hz, Ar**H**), 7.20 (1H, d, *J* = 10.2 Hz, O=CCH=C**H**), 7.14 (1H, dd, *J* = 8.0, 2.4 Hz, Ar**H**), 5.91 (1H, d, *J* = 10.2 Hz, O=CCH=), 5.38 (1H, d, *J* = 1.2 Hz, =C**H**₂), 4.97 (1H, d, *J* = 2.0 Hz, =C**H**₂), 3.87 (1H, dd, *J* = 8.9, 7.3 Hz, NC**H**₂), 3.82-3.77 (1H, m, NC**H**₂), 3.56-3.51 (1H, m, NCH₂C**H**), 2.47-2.41 (4H, m, O=CCH₂C**H** and ArC**H**₃), 1.82 (2H, d, *J* = 9.3 Hz, O=CC**H**₂), 1.74 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (C), 148.9 (CH), 143.7 (C), 142.0 (C), 140.3 (C), 136.7 (C), 133.1 (C), 132.4 (C), 130.7 (CH), 129.7 (2 × CH), 128.1 (CH), 127.9 (CH), 127.1 (2 × CH), 125.3 (CH), 116.6 (CH₂), 63.8 (C), 49.4 (CH₂), 47.3 (CH), 41.6 (CH), 34.2 (CH₂), 28.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₄H₂₄Cl₂NO₃S]⁺ [M+H]⁺: 476.0848, found: 476.0842. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (minor) = 18.7 min, t_r (major) = 23.7 min, 87% ee.

Slow diffusion of petroleum ether into a solution of **2d** in EtOAc gave crystals that were suitable for X-ray crystallography:

Note: The *meta*-chloro group is disordered over two possible positions. The occupancies of the two components were refined competitively, converging to a ratio of 0.95:0.05. This disorder is not shown above, for clarity.

Me N Ts

(3R,3aR,7aR)-3-[1-(3-Bromo-5-methylphenyl)ethenyl]-7a-methyl-1-(4-

methylbenzenesulfonyl)-2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2e). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone **1a** (98.8 mg, 0.30 mmol) and 3-bromo-5-

methylphenylboronic acid (128.9 mg, 0.60 mmol), and purified by column chromatography (30% EtOAc/petroleum ether) to give a colorless solid (84.0 mg, 56%). $R_f = 0.49$ (30% EtOAc/petroleum ether); m.p. 139-142 °C (Et₂O); $[\alpha]_D^{25}$ -70.6 (*c* 0.51, CHCl₃); IR 2963, 2923, 2863, 1682 (C=O), 1597, 1563, 1337, 1306, 1163, 1133, 1106, 1058, 985, 889, 852, 808, 682, 658, 581, 544 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (2H, d, *J* = 8.3 Hz, Ar**H**), 7.32-7.27 (3H, m, Ar**H**), 7.23 (1H, s, Ar**H**), 7.21 (1H, d, *J* = 10.3 Hz, O=CCH=C**H**), 7.02 (1H, s, Ar**H**), 5.91 (1H, d, *J* = 10.3 Hz, O=CCH=), 5.34 (1H, d, *J* = 1.6 Hz, =CH₂), 4.91 (1H, d, *J* = 1.6 Hz, =CH₂), 3.94-3.74 (2H, m, NCH₂), 3.61-3.41 (1H, m, NCH₂CH), 2.51-2.40 (4H, m, O=CCH₂C**H** and ArCH₃), 2.33 (3H, m, ArCH₃), 1.92-1.79 (2H, m, O=CCH₂), 1.74 (3H, s, NCCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 197.9 (C), 149.0 (CH), 143.6 (C), 142.9 (C), 142.2 (C), 140.5 (C), 136.7 (C), 131.9 (CH), 129.6 (2 × CH), 128.1 (C), 127.1 (2 × CH), 126.1 (CH), 125.6 (CH₃), 21.2 (CH₃), 21.2 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₅H₂₆BrNNaO₃S]⁺ [M+Na]⁺: 522.0709, found: 522.0713. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (minor) = 12.7 min, t_r (major) = 16.7 min, 88% ee.

(3*R*,3a*R*,7a*R*)-3-[1-(3-Methoxy-5-methylphenyl)ethenyl]-7a-methyl-1-(4methylbenzenesulfonyl)-2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2f). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1a (98.8 mg, 0.30 mmol) and 3-methoxy-5-

bromophenylboronic acid (99.6 mg, 0.60 mmol), and purified by column chromatography (30% EtOAc/petroleum ether) to give a colorless solid (97.1 mg, 72%). $R_f = 0.48$ (30% EtOAc/petroleum ether); m.p. 55-60 °C (Et₂O); $[\alpha]_{D}^{25}$ -92.3 (c 0.39, CHCl₃); IR 2935, 2253, 1681 (C=O), 1589, 1333, 1292, 1150, 1111, 1059, 985, 907, 728, 662, 582 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (2H, d, J = 8.0 Hz, ArH), 7.29 (2H, d, J = 8.0 Hz, ArH), 7.20 (1H, d, J = 10.4 Hz, O=CCH=CH),6.70 (1H, s, ArH), 6.65 (2H, dd, J = 10.0, 2.0 Hz, ArH), 5.90 (1H, d, J = 10.4 Hz, O=CCH=), 5.34 $(1H, d, J = 1.2 \text{ Hz}, =CH_2), 4.86 (1H, d, J = 1.6 \text{ Hz}, =CH_2), 3.89-3.82 (2H, m, NCH_2), 3.79 (3H, s, s)$ OCH₃), 3.57-3.50 (1H, m, NCH₂CH), 2.52-2.46 (1H, m, O=CCH₂CH), 2.43 (3H, s, ArCH₃), 2.33 $(3H, s, ArCH_3)$, 1.91 (1H, dd, J = 16.4, 5.6 Hz, O=CCH₂), 1.81 (1H, dd, J = 16.4, 12.4 Hz, O=CCH₂), 1.73 (3H, s, NCCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.2 (C), 159.7 (C), 149.0 (CH), 144.0 (C), 143.5 (C), 141.6 (C), 139.8 (C), 136.8 (C), 129.6 (2 × CH₂), 128.1 (CH), 127.1 (2 × CH₂), 119.4 (CH), 114.8 (CH₂), 113.8 (CH), 109.5 (CH), 63.7 (C), 55.2 (CH₃), 49.5 (CH₂), 47.4 (CH), 41.7 (CH), 34.2 (CH₂), 28.7 (CH₃), 21.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₆H₂₉NNaO₄S]⁺ [M+Na]⁺: 474.1710, found: 474.1690. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 iso-hexane:i-PrOH, 1.5 mL/min, 210 nm, 25 °C); t_r (minor) = 16.5 min, t_r (major) = 26.1 min, 90% ee.

Me Ts

(3R,3aR,7aR)-7a-Methyl-1-(4-methylbenzenesulfonyl)-3-[1-(naphthalen-2-

yl)ethenyl]-2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2g). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1a (98.8 mg, 0.30 mmol) and 2-naphthylboronic acid (103.2 mg, 0.60 mmol), and purified by column chromatography (20%

EtOAc/petroleum ether) to give a colorless solid (109.7 mg, 80%). $R_f = 0.51$ (30% EtOAc/petroleum ether); m.p. 174-177 °C (Et₂O); $[\alpha]_D^{25}$ –65.8 (*c* 0.79, CHCl₃); IR 2921, 1678 (C=O), 1391, 1151, 1057, 864, 788, 707, 676, 647, 623, 585, 550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.80 (3H, m, Ar**H**), 7.76-7.73 (3H, m, Ar**H**), 7.51-7.43 (3H, m, Ar**H**), 7.32-7.30 (2H, m, Ar**H**), 7.20 (1H, d, J = 10.4 Hz, O=CCH=C**H**), 5.88 (1H, dd, J = 10.4, 0.8 Hz, O=CC**H**=), 5.49 (1H, d, J = 1.6 Hz, =C**H**₂), 5.00 (1H, d, J = 2.0 Hz, =C**H**₂), 4.08-4.02 (1H, m, NC**H**₂), 3.95 (1H, dd, J = 9.2, 7.2 Hz, NC**H**₂), 3.61 (1H, dd, J = 10.8, 9.2 Hz, NCH₂C**H**), 2.53-2.46 (1H, m, O=CCH₂C**H**), 2.44 (3H, m, ArC**H**₃), 1.96-1.83 (2H, m, O=CC**H**₂), 1.77 (3H, s, NCHC**H**₃); ¹³C NMR (101 MHz,

CDCl₃) δ 197.9 (C), 149.0 (CH), 144.0 (C), 143.6 (C), 137.6 (C), 136.8 (C), 133.2 (C), 133.0 (C), 129.6 (2 × CH), 128.5 (CH), 128.1 (2 × CH), 127.6 (CH), 127.1 (2 × CH), 126.5 (CH), 126.3 (CH), 124.9 (CH), 124.2 (CH), 115.4 (CH₂), 63.8 (C), 49.5 (CH₂), 47.4 (CH), 41.8 (CH), 34.2 (CH₂), 28.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₈H₂₈NO₃S]⁺ [M+H]⁺: 458.1784, found: 458.1773. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (95:5 *iso*-hexane:EtOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 46.5 min, t_r (minor) = 54.1 min, 87% ee. Slow diffusion of petroleum ether into a solution of **2g** in EtOAc gave crystals that were suitable for X-ray crystallography:

Note: The alkene-naphthyl group is disordered over two positions. The occupancies of the two components was refined competitively, converging to a ratio of 0.84:0.16. This disorder is not shown above, for clarity.

(3R,3aR,7aR)-7a-Methyl-1-(4-methylbenzenesulfonyl)-3-[1-(thiophen-3-

yl)ethenyl]-2,3,3a,4,5,7a-hexahydro-1*H*-indol-5-one (2h). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 1a (98.8 mg, 0.30 mmol) and 3-thienylboronic acid (76.8 mg, 0.60 mmol),

and purified by column chromatography (20% EtOAc/petroleum ether) to give a yellow solid (86.8 mg, 70%). $R_f = 0.50$ (30% EtOAc/petroleum ether); m.p. 118-121 °C (Et₂O); $[\alpha]_D^{25}$ -67.7 (*c* 0.65, CHCl₃); IR 2969, 2927, 1678 (C=O), 1337, 1150, 1131, 1111, 1068, 794, 670, 582, 547 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (2H, d, J = 8.3 Hz, Ar**H**), 7.31-7.29 (3H, m, Ar**H**), 7.22 (1H, d, J = 10.3 Hz, O=CCH=C**H**), 7.18 (1H, dd, J = 2.9, 1.4 Hz, Ar**H**), 7.13 (1H, dd, J = 5.1, 1.4 Hz, Ar**H**), 5.92 (1H, dd, J = 10.3, 0.8 Hz, O=CCH=), 5.45 (1H, d, J = 0.8 Hz, =C**H**₂), 4.87 (1H, s, =C**H**₂), 3.85-3.77 (2H, m, NC**H**₂), 3.60-3.55 (1H, m, NCH₂C**H**), 2.64-2.58 (1H, m, O=CCH₂C**H**), 2.42 (3H, s, ArC**H**₃), 1.90 (1H, dd, J = 16.6, 6.0 Hz, O=CC**H**₂), 1.82 (1H, dd, J = 16.6, 12.3 Hz, O=CC**H**₂), 1.76 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.1 (C),

148.9 (CH), 143.6 (C), 141.4 (C), 138.2 (C), 136.8 (C), 129.6 (2 × CH), 128.1 (CH), 127.1 (2 × CH), 126.3 (CH), 125.6 (CH), 120.6 (CH), 113.3 (CH₂), 63.8 (C), 49.2 (CH₂), 47.7 (CH), 42.0 (CH), 34.3 (CH₂), 28.7 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for $[C_{22}H_{23}NNaO_{3}S_{2}]^{+}$ [M+Na]⁺: 436.1012, found: 436.0987. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (minor) = 23.8 min, t_r (major) = 25.6 min, 92% ee.

Slow diffusion of petroleum ether into a solution of **2h** in EtOAc gave crystals that were suitable for X-ray crystallography:

Note: The thiophene ring of the molecule starting from S31 is disordered over two orientations, resulting in split positions for the sulfur and one of the carbon atoms of this ring. The occupancies of the disordered atoms were refined competitively, converging to a ratio of 0.63:0.37. This disorder is not shown above, for clarity.

(3R,3aR,7aR)-4-[1-(7a-Methyl-5-oxo-2,3,3a,4,5,7a-hexahydro-1-benzofuran-

3-yl)ethenyl]phenyl acetate (6e). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 4-acetoxyphenylboronic acid (108.0 mg, 0.60 mmol), and purified by

column chromatography (30% EtOAc/petroleum ether) to give a colorless solid (64.1 mg, 68%). $R_f = 0.25$ (30% EtOAc/petroleum ether); m.p. 88-93 °C (Et₂O); $[\alpha]_D^{25}$ -87.2 (*c* 0.78, CHCl₃); IR 2969, 2928, 2881, 1747 (C=O), 1681 (C=O), 1506, 1370, 1196, 1170, 1014, 911, 855, 790, 655 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.38 (2H, m, Ar**H**), 7.10-7.07 (2H, m, Ar**H**), 6.61 (1H, d, J = 10.2 Hz, O=CCH=C**H**), 5.97 (1H, d, J = 10.2 Hz, O=CC**H**=), 5.41 (1H, d, J =0.8 Hz, =C**H**₂), 4.97 (1H, d, J = 1.6 Hz, =C**H**₂), 4.24 (1H, dd, J = 8.8, 7.6 Hz, OC**H**₂), 4.03 (1H, dd, J = 10.4, 9.2 Hz, OC**H**₂), 3.83 (1H, dd, J = 17.6, 8.8 Hz, OCH₂C**H**), 2.63 (1H, td, J = 8.4, 6.8 Hz, O=CCH₂CH), 2.32 (3H, s, O=CCH₃), 2.27 (1H, dd, J = 16.9, 7.9 Hz, O=CCH₂), 2.10 (1H, d, J = 16.9, 6.8 Hz, O=CCH₂), 1.50 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.4 (C), 169.3 (C), 150.4 (CH), 150.2 (C), 143.2 (C), 139.2 (C), 128.9 (CH), 127.0 (2 x CH), 121.7 (2 x CH), 115.5 (CH₂), 78.8 (C), 69.6 (CH₂), 45.7 (CH), 44.1 (CH), 35.4 (CH₂), 27.2 (CH₃), 21.1 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₉H₂₀NaO₄]⁺ [M+Na]⁺: 335.1254, found: 335.1253. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH), 1 mL/min, 254 nm, 25 °C); t_r (major) = 13.9 min, t_r (minor) = 24.1 min, 92% ee.

(3R,3aR,7aR)-3-[1-(4-Chlorophenyl)ethenyl]-7a-methyl-2,3,3a,4,5,7a-

hexahydro-1-benzofuran-5-one (6f). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 4a (52.8 mg, 0.30 mmol) and 4-chlorophenylboronic acid (93.8 mg, 0.60 mmol), and purified by column chromatography (30% EtOAc/petroleum ether) to give a colorless oil (47.4 mg, 55%). $R_f = 0.39$ (30% EtOAc/petroleum ether); [α]_D²⁵ -73.5 (*c* 0.49, CHCl₃); IR 3054, 2978, 1683 (C=O), 1492, 1264, 1120, 1012, 838, 785, 732, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (4H, s, Ar**H**), 6.60 (1H, d, J = 10.0 Hz, O=CCH=CH), 5.98 (1H, d, J = 10.4 Hz, O=CCH=), 5.41 (1H, d, J = 1.2 Hz, $=CH_2$), 4.98 (1H, d, J = 1.6 Hz, $=CH_2$), 4.23 (1H, dd, J = 8.8, 7.2 Hz, OCH_2), 4.03 (1H, app t, J = 10.4, 8.8 Hz, OCH₂), 3.81 (1H, q, J = 8.4 Hz, OCH₂CH), 2.60 (1H, td, J = 8.0, 6.8 Hz, $O=CCH_2CH$, 2.23 (1H, dd, J = 16.8, 8.0 Hz, $O=CCH_2$), 2.08 (1H, dd, J = 16.8, 6.8 Hz, $O=CCH_2$), 1.49 (3H, s, OCCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.2 (C), 150.1 (CH), 143.0 (C), 139.9 (C), 133.8 (C), 128.85 (CH), 128.77 (2 × CH), 127.3 (2 × CH), 115.6 (CH₂), 78.7 (C), 69.5 (CH₂), 45.5 (CH), 44.1 (CH), 35.3 (CH₂), 27.1 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₇H₁₇ClNaO₂]⁺ [M+Na]⁺: 311.0809, found: 311.0798. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (98:2 iso-hexane:i-PrOH, 1.5 mL/min, 230 nm, 25 °C); tr (major) = 20.2 min. t_r (minor) = 33.0 min. 90% ee.

(3R,3aR,7aR)-7a-Methyl-3-[1-(3-methylphenyl)ethenyl]-

2,3,3a,4,5,7a-hexahydro-1-benzofuran-5-one (6g). The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 3-methylphenylboronic acid (71.5 mg, 0.60 mmol), and purified by column chromatography (30%)

EtOAc/petroleum ether) to give a 10:1 inseparable mixture of *arylative cyclization product* **6g** and *cyclobutane* **3b** as colorless oil (56.1 mg, 66%, adjusted yield of **6g**). $R_f = 0.39$ (30% EtOAc/petroleum ether); $[\alpha]_{\rm D}^{25}$ -88.2 (*c* 0.68, CHCl₃); IR 3053, 2971, 1681 (C=O), 1413, 1266,

1119, 1036, 901, 872, 791, 732, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.22 (1H, m, Ar**H**), 7.19-7.17 (2H, m, Ar**H**), 7.14-7.11 (1H, m, Ar**H**), 6.61 (1H, d, *J* = 10 Hz, O=CCH=C**H**), 5.98 (1H, d, *J* = 10 Hz, O=CC**H**=), 5.40 (1H, s, =C**H**₂), 4.93 (1H, d, *J* = 1.6 Hz, =C**H**₂), 4.24 (1H, dd, *J* = 8.8, 7.2 Hz, OC**H**₂), 4.05 (1H, dd, *J* = 10.4, 8.4 Hz, OC**H**₂), 3.89 (1H, dd, *J* = 17.2, 8.8 Hz, OCH₂C**H**), 2.62 (1H, td, *J* = 8.8, 6.8 Hz, O=CCH₂C**H**), 2.38 (3H, s, ArC**H**₃), 2.28 (1H, dd, *J* = 16.8, 8.4 Hz, O=CC**H**₂), 2.10 (1H, dd, *J* = 16.8, 6.8 Hz, O=CC**H**₂), 1.50 (3H, s, OCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.7 (C), 150.1 (CH), 144.2 (C), 141.5 (C), 138.2 (C), 128.8 (CH), 128.7 (CH), 128.5 (CH), 126.7 (CH), 123.0 (CH), 114.8 (CH₂), 78.7 (C), 69.6 (CH₂), 45.7 (CH), 44.0 (CH), 35.3 (CH₂), 27.4 (CH₃), 21.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₈H₂₁O₂]⁺ [M+H]⁺: 269.1536, found: 269.1540. Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 14.7 min, t_r (minor) = 18.1 min, 93% ee.

(3R,3aR,7aR)-3-[1-(2-Fluorophenyl)ethenyl]-7a-methyl-2,3,3a,4,5,7a-

hexahydro-1-benzofuran-5-one (6h). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone 4a (52.8

mg, 0.30 mmol) and 2-fluorophenylboronic acid (83.9 mg, 0.60 mmol), and purified by column chromatography (20% EtOAc/petroleum ether) to give a colorless oil (47.4 mg, 58%). $R_f = 0.34$ (20% EtOAc/petroleum ether); $[\alpha]_{D}^{25}$ -84.6 (c 0.52, CHCl₃); IR 2971, 2929, 1682 (C=O), 1630, 1486, 1448, 1371, 1268, 1209, 1153, 1118, 1088, 1033, 906, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (2H, m, ArH), 7.16-7.12 (1H, m, ArH), 7.09-7.03 (1H, m, ArH), 6.62 (1H, d, J = 10.2 Hz, O=CCH=CH), 5.98 (1H, d, J = 10.2 Hz, O=CCH=), 5.37 (1H, d, J = 1.2 Hz, $=CH_2$), 5.11 (1H, d, J = 1.6 Hz, $=CH_2$), 4.27 (1H, dd, J = 8.4, 6.8 Hz, OCH_2), 4.03 (1H, ddd, J = 10.4, 8.4, 1.2 Hz, OCH₂), 3.98-3.91 (1H, m, OCH₂CH), 2.56 (1H, dt, J = 8.4, 6.8 Hz, $O=CCH_2CH_2$, 2.37 (1H, dd, J = 16.8, 8.8 Hz, $O=CCH_2$), 2.18 (1H, dd, J = 16.8, 6.8 Hz, $O=CCH_2$), 1.46 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.8 (C), 159.6 (C, d, J^{l} = 252.5 Hz), 150.2 (CH), 140.9 (C), 129.9 (CH, d, $J^3 = 4$ Hz), 129.7 (C, d, $J^3 = 13.1$ Hz), 129.4 (CH, d, $J^3 = 8.1$ Hz), 128.6 (CH), 124.5 (CH, d, $J^4 = 4.0$ Hz), 118.5 (CH₂, d, $J^4 = 1.0$ Hz), 116.0 (CH, d, $J^2 = 23.2$ Hz), 78.6 (C), 69.9 (CH₂), 46.2 (CH, d, $J^4 = 2.0$ Hz), 44.2 (CH), 35.4 (CH₂), 27.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₇H₁₇FNaO₂]⁺ [M+Na]⁺: 295.1105, found: 295.1109. Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column (90:10 iso-hexane:i-PrOH), 1 mL/min, 254 nm, 25 °C); t_r (major) = 12.9 min, t_r (minor) = 24.2 min, 89% ee.

(3*R*,3a*R*,7a*R*)-3-[1-(Furan-3-yl)ethenyl]-7a-methyl-2,3,3a,4,5,7a-hexahydro-1-

benzofuran-5-one benzoate (6i). The title compound was prepared according to the General Procedure using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 3-furylboronic acid (67.1 mg, 0.60 mmol), and purified by column

chromatography (40% EtOAc/petroleum ether) to give a colorless oil (50.8 mg, 69%). $R_f = 0.37$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} -44.4$ (*c* 1.08, CHCl₃); IR 3055, 2975, 1682 (C=O), 1418, 1375, 1265, 1028, 732, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (1H, s, Ar**H**), 7.39-7.38 (1H, m, Ar**H**), 6.59 (1H, d, *J* = 10.2 Hz, O=CCH=C**H**), 6.52-6.51 (1H, m, Ar**H**), 5.98 (1H, d, *J* = 10.2 Hz, O=CCH=), 5.40 (1H, s, =C**H**₂), 4.89 (1H, d, *J* = 1.2 Hz, =C**H**₂), 4.15 (1H, dd, *J* = 9.2, 7.6 Hz, OC**H**₂), 4.02-3.98 (1H, m, OC**H**₂), 3.55 (1H, dd, *J* = 17.6, 8.8 Hz, OCH₂C**H**), 2.73 (1H, dt, *J* = 9.2, 6.8 Hz, O=CCH₂C**H**), 2.32 (1H, dd, *J* = 17.2, 6.8 Hz, O=CC**H**₂), 2.18 (1H, dd, *J* = 16.8, 6.8 Hz, O=CC**H**₂), 1.51 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.2 (C), 150.2 (CH), 143.7 (CH), 138.5 (CH), 134.9 (C), 129.2 (CH), 127.6 (C), 112.4 (CH₂), 108.0 (CH), 78.8 (C), 68.9 (CH₂), 45.4 (CH), 44.5 (CH), 35.2 (CH₂), 26.8 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₅H₁₇O₃]⁺ [M+H]⁺: 245.1172, found: 245.1172. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 8.3 min, t_r (minor) = 15.6 min, 93% ee.

(3*R*,3a*R*,7a*R*)-3-[1-(4-Acetylphenyl)ethenyl]-7a-methyl-2,3,3a,4,5,7a-hexahydro-1-benzofuran-5-one (6j) and methyl 4-[(*S*)-4-hydroxy-3-(5-hydroxy-2-methylphenyl)but-1-en-2-yl]benzoate (8j)

The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 4-acetylphenylboronic acid (96.4 mg, 0.60 mmol). Purification by column chromatography (40% EtOAc/petroleum ether) gave **6j** as a colorless oil (45.0 mg, 51%) followed by **8j** as a colorless oil (14.6 mg, 16%).

Data for **6j**; $R_f = 0.17$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} - 87.0$ (*c* 0.69, CHCl₃); IR 3055, 2974, 1681 (C=O), 1626, 1604, 1358, 1265, 1046, 1013, 848, 787, 732, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (2H, m, Ar**H**), 7.49-7.46 (2H, m, Ar**H**), 6.61 (1H, d, J = 10.2 Hz,

O=CCH=C**H**), 5.98 (1H, d, J = 10.2 Hz, O=CC**H**=), 5.52 (1H, d, J = 0.7 Hz, =C**H**₂), 5.07 (1H, d, J = 1.5 Hz, =C**H**₂), 4.25 (1H, dd, J = 8.7, 7.3 Hz, OC**H**₂), 4.09-3.99 (1H, m, OC**H**₂), 3.88 (1H, dd, J = 17.3, 8.7 Hz, OCH₂C**H**), 2.71-2.55 (1H, m, O=CCH₂C**H**), 2.61 (3H, s, O=CC**H**₃), 2.22 (1H, dd, J = 16.9, 7.7 Hz, O=CC**H**₂), 2.07 (1H, dd, J = 16.9, 6.8 Hz, O=CC**H**₂), 1.50 (3H, s, OCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.1 (C), 197.4 (C), 150.2 (CH), 146.1 (C), 143.4 (C), 136.5 (C), 128.9 (CH), 128.7 (2 × CH), 126.2 (2 × CH), 117.0 (CH₂), 78.8 (C), 69.5 (CH₂), 45.4 (CH), 44.2 (CH), 35.4 (CH₂), 27.1 (CH₃), 26.6 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₉H₂₀NaO₃]⁺ [M+Na]⁺: 319.1305, found: 319.1306. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH), 1 mL/min, 254 nm, 25 °C); t_r (major) = 12.9 min, t_r (minor) = 24.1 min, 89% ee.

Data for **8***j*: $R_f = 0.12$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} +11.1$ (*c* 0.36, CHCl₃); IR 3339 (OH), 3054, 2926, 1674 (C=O), 1603, 1265, 1057, 1013, 846, 733, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (2H, d, *J* = 8.6 Hz, Ar**H**), 7.38 (2H, d, *J* = 8.6 Hz, Ar**H**), 7.03 (1H, d, *J* = 8.2 Hz, Ar**H**), 6.80 (1H, d, *J* = 2.7 Hz, Ar**H**), 6.63 (1H, dd, *J* = 8.2, 2.7 Hz, Ar**H**), 5.61 (1H, s, =C**H**₂), 5.35 (1H, s, ArO**H**), 5.27 (1H, s, =C**H**₂), 4.30 (1H, t, *J* = 6.5 Hz, ArC**H**), 4.02-3.96 (1H, m, C**H**₂OH), 3.95-3.86 (1H, m, C**H**₂OH), 2.57 (3H, s, ArC**H**₃), 2.29 (3H, s, ArC**H**₃), 1.79 (1H, br t, *J* = 5.8 Hz, CH₂O**H**); ¹³C NMR (101 MHz, (CDCl₃) δ 197.9 (C), 154.2 (C), 147.3 (C), 146.6 (C), 138.9 (C), 136.1 (C), 131.8 (CH), 128.5 (2 × CH and C), 126.5 (2 × CH), 116.2 (CH₂), 114.1 (CH), 113.9 (CH), 64.5 (CH₂), 48.0 (CH), 26.6 (CH₃), 18.8 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₉H₂₁O₃]⁺ [M+H]⁺: 297.1485, found: 297.1484. Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column (90:10 *iso*-hexane:*i*-PrOH), 1.5 mL/min, 254 nm, 25 °C); t_r (minor) = 44.7 min, t_r (major) = 50.0 min, 92% ee.

(*3R*,3*aR*,7*aR*)-7*a*-Methyl-3-(1-[4-(trimethylsilyl)phenyl]ethenyl)-2,3,3*a*,4,5,7*a*-hexahydro-1benzofuran-5-one (6k) and 3-[(*S*)-1-hydroxy-3-[4-(trimethylsilyl)phenyl]but-3-en-2-yl]-4methylphenol (8k)

The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 4-(trimethylsilyl)phenylboronic acid (116.5 mg, 0.60 mmol). Purification by column

chromatography (30% EtOAc/petroleum ether) gave **6k** as a colorless solid (33.8 mg, 35%) followed by **8k** as a white amorphous solid (14.1 mg, 14%).

Data for **6k**: $R_f = 0.44$ (30% EtOAc/petroleum ether); m.p. 90-93 °C (Et₂O); $[\alpha]_D^{25} -63.2$ (*c* 0.76, CHCl₃); IR 2955, 1683 (C=O), 1387, 1248, 1154, 1117, 1035, 828, 733, 701, 664 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (2H, d, *J* = 8.2 Hz, Ar**H**), 7.37 (2H, d, *J* = 8.2 Hz, Ar**H**), 6.61 (1H, d, *J* = 10.2 Hz, O=CCH=C**H**), 5.58 (1H, d, *J* = 10.2 Hz, O=CC**H**=), 5.44 (1H, d, *J* = 0.5 Hz, =C**H**₂), 4.95 (1H, d, *J* = 1.5 Hz, =C**H**₂), 4.25 (1H, dd, *J* = 8.8, 7.3 Hz, OC**H**₂), 4.06 (1H, dd, *J* = 10.3, 8.8 Hz, OC**H**₂), 3.91 (1H, dd, *J* = 17.4, 8.4 Hz, OCH₂C**H**), 2.63 (1H, td, *J* = 8.4, 6.8 Hz, O=CCH₂C**H**), 2.27 (1H, dd, *J* = 16.8, 8.4 Hz, O=CC**H**₂), 2.08 (1H, dd, *J* = 16.8, 6.8 Hz, O=CC**H**₂), 1.50 (3H, s, C**H**₃), 0.28 (9H, s, Si(C**H**₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.7 (C), 150.1 (CH), 144.1 (C), 141.7 (C), 140.3 (C), 133.7 (2 × CH), 128.8 (CH), 125.3 (2 × CH), 115.0 (CH₂), 78.7 (C), 69.6 (CH₂), 45.5 (CH), 44.0 (CH), 35.3 (CH₂), 27.4 (CH₃), -1.2 (3 × CH₃); HRMS (ESI) Exact mass calcd for [C₂₀H₂₇O₂Si]⁺ [M+H]⁺: 327.1775, found: 327.1756. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 7.2 min, t_r (minor) = 11.7 min, 93% ee.

Data for **8k**: $R_f = 0.32$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} - 28.6$ (*c* 0.14, CHCl₃); IR 3382 (OH), 2957, 2926, 1723, 1462, 1381, 1264, 1248, 1124, 1075, 840, 829, 735, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (2H, d, *J* = 8.3 Hz, Ar**H**), 7.34 (2H, d, *J* = 8.3 Hz, Ar**H**), 7.05 (1H, d, *J* = 8.0 Hz, Ar**H**), 6.87 (1H, d, *J* = 3.0 Hz, Ar**H**), 6.63 (1H, dd, *J* = 8.0, 2.5 Hz, Ar**H**), 5.59 (1H, s, =C**H**₂), 5.13 (1H, s, =C**H**₂), 4.97 (1H, br s, O**H**), 4.32 (1H, t, *J* = 6.5 Hz, ArC**H**₃), 0.25 (9H, s, Si(C**H**₃)₃); ¹³C NMR (126 MHz, CDCl₃) δ 154.0 (C), 147.8 (C), 141.9 (C), 139.9 (C), 139.5 (C), 133.4 (2 × CH), 131.7 (CH), 128.7 (C), 125.5 (2 × CH), 114.8 (CH₂), 114.1 (CH), 113.6 (CH), 64.4 (CH₂), 48.2 (CH), 18.2 (CH₃), -1.2 (3 × CH₃); HRMS (ESI) Exact mass calcd for [C₂₀H₂₆NaO₂Si]⁺ [M+Na]⁺: 349.1594, found: 349.1599. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH), 1 mL/min, 280 nm, 25 °C); t_r (major) = 8.8 min, t_r (minor) = 13.5 min, 94% ee.

(3*R*,3a*R*,7a*R*)-3-[1-(7a-Methyl-5-oxo-2,3,3a,4,5,7a-hexahydro-1-benzofuran-3yl)ethenyl]benzonitrile (6l) and 3-[(*S*)-4-hydroxy-3-(5-hydroxy-2-methylphenyl)but-1-en-2yl]benzonitrile (8l)

The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4a** (105.6 mg, 0.60 mmol) and 3-cyanophenylboronic acid (176.3 mg, 1.20 mmol). Purification by column chromatography (40% EtOAc/petroleum ether) gave **6l** as a colorless oil (46.9 mg, 28%) followed by **8l** as a white amorphous solid (99.3 mg, 59%).

Data for **6**I: $R_f = 0.23$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} -80.0$ (*c* 0.35, CHCl₃); IR 3058, 2972, 2230 (C=N), 1681 (C=O), 1482, 1373, 1266, 1119, 1036, 904, 805, 732, 703, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.59 (3H, m, Ar**H**), 7.49 (1H, t, *J* = 8.0 Hz, Ar**H**), 6.61 (1H, d, *J* = 10.0 Hz, O=CCH=C**H**), 6.00 (1H, d, *J* = 10.0 Hz, O=CC**H**=), 5.49 (1H, s, =C**H**₂), 5.10 (1H, d, *J* = 1.6 Hz, =C**H**₂), 4.25 (1H, dd, *J* = 8.8, 7.2 Hz, OC**H**₂), 4.02 (1H, t, *J* = 9.6 Hz, OC**H**₂), 3.80 (1H, q, *J* = 8.8 Hz, OCH₂C**H**), 2.63 (1H, dt, *J* = 8.4, 7.2 Hz, O=CCH₂C**H**), 2.21 (1H, dd, *J* = 16.8, 7.6 Hz, O=CC**H**₂), 2.09 (1H, dd, *J* = 16.8, 6.8 Hz, O=CC**H**₂), 1.51 (3H, s, OCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 197.8 (C), 150.2 (CH), 142.7 (C), 142.4 (C), 131.4 (CH), 130.5 (CH), 129.6 (CH), 129.3 (CH), 128.9 (CH), 118.5 (C), 117.5 (CH₂), 112.9 (C), 78.9 (C), 69.5 (CH₂), 45.4 (CH), 44.2 (CH), 35.5 (CH₂), 27.0 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₈H₁₇NNaO₂]⁺ [M+Na]⁺: 302.1151, found: 302.1149. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH), 1 mL/min, 254 nm, 25 °C); t_r (major) = 16.9 min, t_r (minor) = 28.0 min, 89% ee.

Data for **8**I: $R_f = 0.16$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} -4.7$ (*c* 0.86, CHCl₃); IR 3436 (OH), 2926, 2230, 1667, 1620, 1587, 1501, 1292, 1265, 1056, 1015, 907, 808, 735, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (1H, td, *J* = 1.8, 0.5 Hz, Ar**H**), 7.51 (1H, d, *J* = 1.7 Hz, Ar**H**), 7.49 (1H, d, *J* = 1.7 Hz, Ar**H**), 7.37-7.34 (1H, m, Ar**H**), 7.01 (1H, dd, *J* = 8.2, 0.8 Hz, Ar**H**), 6.76 (1H, d, *J* = 2.7 Hz, Ar**H**), 6.62 (1H, dd, *J* = 8.2, 2.7 Hz, Ar**H**), 5.51 (1H, s, =C**H**₂), 5.25 (1H, d, *J* = 0.9 Hz, =C**H**₂), 4.21 (1H, td, *J* = 6.6, 1.2 Hz, ArC**H**), 3.98-3.86 (2H, m, C**H**₂OH), 2.26 (3H, s, ArC**H**₃), the two O**H** protons were not observed clearly); ¹³C NMR (101 MHz, CDCl₃) δ 154.3 (C), 146.3 (C), 143.1 (C), 138.4 (C), 131.9 (CH), 131.0 (CH), 130.8 (CH), 130.1 (CH), 129.2 (CH), 128.4 (C),

118.7 (C), 116.5 (CH₂), 114.04 (CH), 114.02 (CH), 112.3 (C), 64.3 (CH₂), 48.0 (CH), 18.7 (CH₃); HRMS (ESI) Exact mass calcd for $[C_{18}H_{17}NNaO_2]^+$ $[M+Na]^+$: 302.1151, found: 302.1146. Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column (90:10 *iso*-hexane:*i*-PrOH), 1.5 mL/min, 254 nm, 25 °C); t_r (minor) = 34.0 min, t_r (major) = 41.5 min, 91% ee.

(3R,3aR,7aR)-3-[1-(7a-Methyl-5-oxo-2,3,3a,4,5,7a-hexahydro-1-benzofuran-3-

yl)ethenyl]benzoate (6m) and ethyl 3-[(S)-4-hydroxy-3-(5-hydroxy-2-methylphenyl)but-1-en-2-yl]benzoate (8m)

The General Procedure was followed using allenyl cyclohexa-2,5-dienone **4a** (52.8 mg, 0.30 mmol) and 3-ethoxycarbonylphenylboronic acid (116.4 mg, 0.60 mmol). Purification by column chromatography (30% EtOAc/petroleum ether) gave **6m** as pale yellow oil (62.7 mg, 64%) followed by **8m** as a white amorphous (21.2 mg, 22%).

Data for **6m**: $R_f = 0.23$ (30% EtOAc/petroleum ether); $[\alpha]_D^{25} -58.7$ (*c* 0.75, CHCl₃); IR 3055, 2980, 1715 (C=O), 1684 (C=O), 1289, 1265, 1024, 906, 875, 732, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (1H, t, *J* = 1.9 Hz, Ar**H**), 7.99 (1H, dt, *J* = 7.7, 1.4 Hz, Ar**H**), 7.59 (1H, ddd, *J* = 7.8, 2.0, 1.2 Hz, Ar**H**), 7.44 (1H, td, *J* = 8.0, 0.4 Hz, Ar**H**), 6.61 (1H, d, *J* = 10.0 Hz, O=CCH=C**H**), 5.98 (1H, d, *J* = 10.4 Hz, O=CC**H**=), 5.50 (1H, dd, *J* = 1.2 Hz, =C**H**₂), 5.03 (1H, d, *J* = 1.6 Hz, =C**H**₂), 4.40 (2H, q, *J* = 7.2 Hz, C**H**₂CH₃), 4.26 (1H, dd, *J* = 8.8, 7.2 Hz, OC**H**₂), 4.05 (1H, dd, *J* = 10.4, 8.8 Hz, OC**H**₂), 3.91 (1H, dd, *J* = 17.2, 8.8 Hz, OCH₂C**H**), 2.63 (1H, td, *J* = 8.4, 6.8 Hz, O=CCH₂C**H**), 2.24 (1H, dd, *J* = 16.8, 8.0 Hz, O=CC**H**₂), 2.07 (1H, dd, *J* = 16.8, 6.8 Hz, O=CC**H**₂), 1.50 (3H, s, OCC**H**₃), 1.42 (3H, t, *J* = 7.2 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.3 (C), 166.3 (C), 150.2 (CH), 143.3 (C), 141.6 (C), 130.9 (C), 130.4 (CH), 129.0 (CH), 128.8 (CH), 128.8 (CH), 126.8 (CH), 116.1 (CH₂), 78.8 (C), 69.6 (CH₂), 61.1 (CH₂), 45.5 (CH), 44.0 (CH), 35.4 (CH₂), 27.3 (CH₃), 14.3 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₀H₂₂NaO₄]⁺ [M+Na]⁺: 349.1410, found: 349.1409. Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (98:2 *iso*-hexane:*i*-PrOH, 0.5 mL/min, 230 nm, 25 °C); t_r (major) = 103.5 min, t_r (minor) = 121.8 min, 91% ee.

Data for **8m**: $R_f = 0.21$ (40% EtOAc/petroleum ether); $[\alpha]_D^{25} + 36.4$ (*c* 0.33, CHCl₃); IR 3369 (OH), 2925, 2855, 1715 (C=O), 1462, 1368, 1290, 1264, 1020, 907, 735, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (1H, t, *J* = 2.0 Hz, Ar**H**), 7.91 (1H, dt, *J* = 7.6, 1.2 Hz, Ar**H**), 7.50 (1H, ddd, *J* = 6.8, 2.0, 0.8 Hz, Ar**H**), 7.34 (1H, t, *J* = 7.6 Hz, Ar**H**), 7.03 (1H, d, *J* = 8.0 Hz, Ar**H**), 6.81 (1H, d, *J* = 2.8 Hz, Ar**H**), 6.62 (1H, dd, *J* = 8.4, 2.8 Hz, Ar**H**), 5.60 (1H, s, =C**H**₂), 5.23 (1H, s, =C**H**₂), 4.39-4.30 (3H, m, C**H**₂CH₃ AND CH₂O**H**), 4.00 (1H, dd, *J* = 11.2, 6.8 Hz, C**H**₂O**H**), 3.90 (1H, dd, *J* = 11.6, 6.4 Hz, C**H**₂O**H**), 2.32 (3H, s, ArC**H**₃), 1.72 (1H, br s, O**H**), 1.39 (3H, t, *J* = 6.8 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (C), 154.1 (C), 147.2 (C), 141.9 (C), 139.1 (C), 131.8 (CH), 130.6 (CH), 130.5 (C), 128.7 (CH), 128.6 (C), 128.4 (CH₃), 14.3 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₀H₂₃O₄]⁺ [M+H]⁺: 327.1591, found: 327.1598. Enantiomeric excess was determined by HPLC with OD-H (90:10 *iso*-hexane:*i*-PrOH), 1 mL/min, 280 nm, 25 °C); t_r (major) = 18.2 min, t_r (minor) = 37.0 min, 91% ee.

Acid-Catalyzed of Hexahydrobenzofuran-5-one 6l into Phenol 8l

An oven-dried microwave vial fitted with a stirrer bar was charged with 6,5-bicycle **6l** (14.0 mg, 0.05 mmol) and *p*-toluenesulfonic acid monohydrate (4.8 mg, 0.025 mmol), then capped with a crimp cap PTFE seal and purged with a stream of N₂. THF (0.5 mL) was added and the mixture was stirred at 80 °C for 6 h. The reaction was cooled to room temperature, filtered through a plug of silica and concentrated under reduced pressure. The residue was purified by column chromatography to give phenol **8l** as a colorless oil (9.1 mg, 65%).

Independent Formation of the [2+2] Cycloaddition Products

(\pm) -(3a1R,4aR,7aR)-7a-Methyl-1-tosyl-1,2,3a1,4,4a,7a-hexahydro-5*H*-cyclobuta[de]quinolin-5-one (3a)

An oven-dried microwave vial fitted with a stirrer bar was charged with allenyl cyclohexa-2,5dienone **1a** (98.8 mg, 0.30 mmol) and the vial was capped and purged with a stream of N₂. MeCN (1.8 mL) and 1,4-dioxane (1.2 mL) were added. The reaction was stirred at 80 °C for 24 h, cooled to room temperature, filtered through a plug of silica using EtOAc as eluent, and concentrated under reduced pressure. ¹H NMR analysis of the residue using an internal standard showed **3a** was formed in 44% yield. Full experimental characterization of **3a** was performed on material obtained by the procedure described below:

An oven-dried microwave vial fitted with a stirrer bar was charged with allenyl cyclohexa-2,5dienone **1a** (98.8 mg, 0.30 mmol) and the vial was capped and purged with a stream of N₂. MeCN (1.8 mL) and 1,4-dioxane (1.2 mL) were added followed by AcOH (28 μ L). The reaction was stirred at 80 °C for 64 h, cooled to room temperature, filtered through a plug of silica using EtOAc as eluent, and concentrated under reduced pressure. The residue was purified by column chromatography (30% EtAc/petroleum ether) to give the *cyclobutane* **3a** as a colorless solid (43.4 mg, 44%). R_f = 0.30 (30% EtOAc/petroleum ether); m.p. 110-112 °C (Et₂O); IR 2919, 2850, 1664 (C=O), 1595, 1450, 1339, 1167, 1154, 1143, 928, 850, 813, 749, 720, 675, 617, 544 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (2H, m, Ar**H**), 7.33-7.30 (2H, m, Ar**H**), 6.57 (1H, dd, *J* = 10.8, 2.0 Hz, O=CCH=C**H**), 5.93 (1H, d, *J* = 10.4 Hz, O=CC**H**=), 5.36 (1H, quin d, *J* = 2.4, 0.8 Hz, NCH₂C**H**=), 4.74-4.68 (1H, m, NC**H**₂), 3.75-3.69 (1H, m, NC**H**₂), 3.27-3.21 (2H, m, CHC**H**₂C=CH), 3.05-3.01 (1H, m, O=CC**H**CH₂), 2.64-2.59 (1H, m, O=CCHC**H**), 2.45 (3H, s, ArC**H**₃), 1.55 (3H, s, NCC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.1 (C), 151.4 (CH), 143.5 (C), 139.8 (C), 135.1 (C), 129.7 (2 × CH), 129.3 (CH), 126.9 (2 × CH), 112.0 (CH), 55.8 (C), 48.7 (CH), 46.5 (CH₂), 40.4 (CH), 38.7 (CH₂), 25.9 (CH₃), 21.6 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₈H₂₀NO₃S]⁺ [M+H]⁺: 330.1158, found: 330.1160.

Slow diffusion of petroleum ether into a solution of **3a** in EtOAc gave crystals that were suitable for X-ray crystallography:

(±)-(3a1R,4aR,7aR)-7a-Methyl-3a1,4,4a,7a-tetrahydrocyclobuta[de]chromen-5(2H)-one (3b)

An oven-dried microwave vial fitted with a stirrer bar was charged with allenyl cyclohexa-2,5dienone **4a** (17.6 mg, 0.10 mmol), then capped with a crimp cap PTFE seal and purged with a stream of N₂. MeCN (0.6 mL) and 1,4-dioxane (0.4 mL) were added and the mixture was stirred at 80 °C for 18 h. The reaction was cooled to room temperature, filtered through a plug of silica using EtOAc as eluent, and concentrated under reduced pressure. The residue was purified by column chromatography to give the *cyclobutane* **3b** as a colorless oil (4 mg, 25%). $R_f = 0.21$ (20% EtOAc/petroleum ether); IR 2962, 2926, 1714, 1669 (C=O), 1258, 1081, 1015, 863, 791, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (1H, dd, J = 10.6, 1.8 Hz, O=CCH=CH), 6.05 (1H, dd, J =10.6, 0.6 Hz, O=CCH=), 5.38-5.35 (1H, m, OCH₂CH=), 4.37-4.32 (1H, m, OCH₂), 4.19-4.14 (1H, m, OCH₂), 3.45-3.36 (1H, m, O=CCHCH₂), 3.34-3.31 (1H, m, O=CCHCH), 3.15-3.10 (1H, m, O=CCH), 2.72-2.67 (1H, m, O=CCHCH₂), 1.36 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 199.2 (C), 152.0 (CH), 134.7 (C), 130.9 (CH), 113.3 (CH), 67.6 (C), 63.8 (CH₂), 46.7 (CH), 40.8 (CH), 39.8 (CH₂), 27.2 (CH₃); HRMS (ESI) Exact mass calcd for [C₁₁H₁₂NaO₂]⁺ [M+Na]⁺: 199.0730, found: 199.0730.

Further Transformations

(±)-(3*R*,3a*R*,7*S*,7a*R*)-7,7a-Dimethyl-3-(1-phenylethenyl)-1-(4-methylbenzenesulfonyl)octahydro-5*H*-indol-5-one (11)

An oven-dried microwave vial fitted with a stirrer bar was charged with rac-2a (40.7 mg, 0.10 mmol) and Ni(acac)₂ (2.6 mg, 0.01 mmol). The vial was capped with a crimp cap PTTE seal and purged with a stream of nitrogen. THF (1 mL) was added and the mixture was stirred at 0 °C for 20 min. A solution of Me₃Al (2.0 M in hexane, 0.1 mL, 0.2 mmol) was then added and the reaction was stirred at 0 °C for 45 min. The reaction was diluted with EtOAc (5 mL) and washed with saturated aqueous Rochelle salt solution (1 mL). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The mixture was purified by column chromatography (30% EtOAc/pentane) to give the *title compound* **11** (32.2 mg, 76%) as a colorless solid. $R_f = 0.53$ (30%) EtOAc/pentane); m.p. 160-163 °C (Et₂O); IR 2957, 2925, 1709 (C=O), 1323, 1158, 1097, 907, 778, 728, 676, 584, 547 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (2H, d, J = 8.0 Hz, ArH), 7.36-7.29 (5H, m, ArH), 7.26-7.24 (2H, m, ArH), 5.34 (1H, d, J = 1.6 Hz, $=CH_2$), 4.94 (1H, d, J = 1.9 Hz, =CH₂), 3.88 (1H, dd, J = 8.8, 6.4 Hz, NCH₂), 3.69-3.65 (1H, m, O=CCH₂CHCH), 3.64-3.59 (1H, m, NCH₂), 3.28-3.21 (1H, m, CH₃CH), 2.82 (1H, dd, J = 14.8, 4.8 Hz, CH₃CHCH₂), 2.46 (3H, s, ArCH₃), 2.30-2.25 (1H, m, NCH₂CH), 2.03-1.96 (2H, m, O=CCH₂CHCH and CH₃CHCH₂), 1.84 (1H, ddd, J = 16.4, 7.8, 1.9 Hz, O=CCH₂CHCH), 1.52 (3H, s, NCCH₃), 0.96 (3H, d, J = 7.6 Hz, CH₃CH); ¹³C NMR (101 MHz, CDCl₃) δ 211.0 (C), 144.7 (C), 143.5 (C), 140.5 (C), 137.7 (C), 129.7 (2 x CH), 128.7 (2 x CH), 128.1 (CH), 127.4 (2 x CH), 126.0 (2 x CH), 115.1 (CH₂), 71.4 (C), 49.3 (CH₂), 46.3 (CH), 44.1 (CH₂), 42.3 (CH), 38.0 (CH), 37.2 (CH₂), 24.8 (CH₃), 21.5 (CH₃), 17.5 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₅H₃₀NO₃S]⁺ [M+H]⁺: 424.1941, found: 424.1951.

To a solution of ketone 2e (49.9 mg, 0.10 mmol) in undried MeOH (1 mL) at -10 °C was added CeCl₃·7H₂O (44.7 mg, 0.12 mmol), followed by NaBH₄ (20.1 mg, 0.53 mmol) portionwise. The reaction was stirred at -10 °C for 50 min, quenched carefully with 1 M aqueous HCl solution (0.5 mL), diluted with H₂O (5 mL), and extracted with EtOAc (3 x 5 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The mixture was purified by column chromatography (30% EtOAc/petroleum ether) to give the allylic alcohol 12 (49.8 mg, 99%) as a white solid. $R_f = 0.26$ (30% EtOAc/petroleum ether); m.p. 74-77 °C (Et₂O); [α] ²⁵_D -30.8 (*c* 0.52, CHCl₃); IR 3490 (OH), 2924, 1596, 1561, 1443, 1326, 1145, 1111, 1090, 962, 853, 759, 707, 678, 582, 546 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (2H, d, J = 8.4 Hz, Ar**H**), 7.32-7.25 (5H, m, ArH), 7.06-7.05 (1H, m, ArH), 6.24 (1H, dd, J = 10.2, 2.0 Hz, HOCHCH=CH), 5.69 (1H, dt, J = 10.2, 1.5 Hz, HOCHCH=), 5.32 (1H, d, J = 1.5 Hz, =CH₂), 4.90 (1H, d, J =1.8 Hz, =CH₂), 3.95-3.92 (1H, m, HOCH), 3.81-3.77 (1H, m, NCH₂), 3.75-3.68 (1H, m, NCH₂CH), 3.41 (1H, dd, J = 10.8, 8.4 Hz, NCH₂), 2.43 (3H, s, ArCH₃), 2.34 (3H, s, ArCH₃), 1.98-1.92 (1H, m, HOCHCH₂CH), 1.61 (3H, s, NCCH₃), 1.46-1.40 (1H, m, HOCHCH₂), 1.12 (1H, d, J = 7.2 Hz, OH), 0.71 (1H, ddd, J = 13.6, 12.4, 10.4 Hz, HOCHCH₂); ¹³C NMR (101 MHz, CDCl₃) δ 143.5 (C), 143.0 (C), 142.7 (C), 140.3 (C), 137.2 (C), 132.8 (CH), 131.6 (CH), 130.5 (CH), 129.3 (2 x CH), 127.4 (2 x CH), 126.2 (CH), 125.6 (CH), 122.5 (C), 115.4 (CH₂), 66.7 (CH), 65.0 (C), 48.8 (CH₂), 45.9 (CH), 41.2 (CH), 29.7 (CH₂), 29.6 (CH₃), 21.5 (CH₃), 21.2 (CH₃); HRMS (ESI) Exact mass calcd for [C₂₅H₂₉BrNO₃S]⁺ [M+H]⁺: 502.1046, found: 502.1028.

NMR Spectra

HPLC traces

RT [min]	Туре	Width [min]	Area	Height	Area%
13.919	BB	0.3938	48.109	1.8000	3.83
17.580	BB	0.4958	1207.651	37.0929	96.17

RT [min]	Туре	Width [min]	Area	Height	Area%
7.207	BB	0.1906	7222.781	582.6636	95.74
8.414	BB	0.2150	321.366	22.7287	4.26

Meas. R	Area 🖇	Width	Symmetr.
21.589	95.794	0.881	0.397
27.638	4.206	1.253	0.474

Reaction on a 0.30 mmol scale:

Reaction on a 2.00 mmol scale:

0			0 N		
RT [min]	Туре	Width [min]	Area	Height	Area%
90.877	MF	2.3392	12070.413	85.9994	99.43
94.676	FM	1.8634	68.674	0.6142	0.57

is i finnit	Type	widen [min]	Alea	neight	Alea /o
16.464	BB	0.5045	501.405	14.8294	51.91
26.155	BB	0.7526	464.575	9.2714	48.09

Meas.	R Area	% Width	Symmetr.
20.619	50.066	1.003	0.413
33.395	49.934	1.897	0.380

Meas. R	Area %	Width	Symmetr.
20.146 33.033	94.973 5.027	0.997 1.577	0.437

79

3.74

15.623

MM

Signal:	DAD1 A, Sig=254,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
44.656	MM	1.8209	178.184	1.6309	4.08
49.952	MM	1.9676	4186.523	35.4628	95.92

Meas. R	Area 🖇	Width	Symmetr.
103.536 121.790	95.277 4.723	5.353 4.575	0.347 0.510

References

- 1. Tello-Aburto, R.; Kalstabakken, K. A.; Harned, A. M. Org. Biomol. Chem. 2013, 11, 5596.
- 2. Keilitz, J.; Newman, S. G.; Lautens, M. Org. Lett. 2013, 15, 1148.
- 3. He, Z.-T.; Tang, X.-Q.; Xie, L.-B.; Cheng, M.; Tian, P.; Lin, G.-Q. Angew. Chem., Int. Ed. 2015, 54, 14815.