Supporting Information

Transition metal-free one-pot double C-H functionalization of quinolines by disubstituted electron-deficient acetylenes

Table of contents	
General Methods	S2
General Procedures	S2-S3
Characterization data of compounds 3, 4d, 5	S2-S9
Copies of NMR spectra of compounds 3, 4d, 5	S10-S30
Detection of acetaldehyde by mass-spectroscopy (experiment with D_2O)	S31
X-ray diffraction structural analysis data	S32-S35
References	S35

General Methods.

NMR spectra were recorded on a Bruker DPX-400 spectrometer (400.13 MHz for ¹H and 100.62 MHz for ¹³C) and AV-400 spectrometers (40.5 MHz for ¹⁵N) in CDCl₃. The internal standards were HMDS (for ¹H nuclei δ 0.05 ppm) or the residual solvent signals (for ¹³C nuclei δ 77.16 ppm), CH₃NO₂ (for ¹⁵N nuclei δ 0.0 ppm). The signals in the ¹³C NMR spectrum were assigned by the two-dimensional ¹H-¹³C heteronuclear HSQC and HMBC techniques. IR spectra were recorded on a two-beam Bruker Vertex 70 spectrometer, in a microlyaer from chloroform. Mass spectrum of reaction mixture between quinolone 1a and acetylene 2a was recorded on a GCMS-QP5050A spectrometer made by Shimadzu Company. Chromatographic column parameters were as follows: SPBTM-5, length 60 m, internal diameter 0.25 mm, thickness of stationary phase film 0.25 μ m; injector temperature 250 °C, gas carrier – helium, flow rate 0.7 mL/min; detector temperature 250 °C; mass analyzer: quadrupole, electron ionization, electron energy: 70 eV, ion source temperature 200 °C; mass range 34-650 Da. Elemental analysis was carried out on a FLASH EA 1112 Series analyzer. Melting points were determined on a Kofler hot stage apparatus. Commercial samples of quinolines **1a-c** and cyanophenylacetylene **2g** were used. Quinolines 1d, e were prepeared by methylation corresponding hydroxyl and mercapto quinolines.¹ Samples of aroyl(hetaroyl)arylacetylenes **2a-f** were obtained according to method. ² Monitoring of the reaction was carried out using the method of IR spectroscopy to follow the drop of the C=C bond intensity of acetylenes 2 at 2195-2264 cm⁻¹ until it stopped changing or its complete disappearance. The products 3a-p, 4d and 5g-i were separated and purified by column chromatography. Column and thin-layer chromatography were carried out on silica gel (0.06-0.2 mm) with chloroform/toluene/ethanol (20:4:1) mixture as eluent.

General Procedures.

Method A. A mixture of quinoline **1** (1 equiv), acetylene **2** (1 equiv), H_2O (55 equiv, 0.5 mL), KOH (20 mol%) and MeCN (1 mL) was stirred at 55-60 °C for 48 h. After that water layer was separated, organic layer was concentrated under the low pressure and the residue was passed through the chromatography column deliver to the target quinoline **3**.

Method B. A mixture of quinoline 1 (1.5 equiv), acetylene 2 (1 equiv), H_2O (5 equiv) and 20 mol% of KOH was stirred at rt for appropriate time. After that water layer was separated, organic residue was passed through the chromatography column deliver to the target quinoline 3.

Method C. A mixture of quinoline 1 (1 equiv), acetylene 2 (1 equiv), H_2O (5 equiv) and 10 mol% of KOH was stirred at rt for appropriate time. After that water layer was separated, organic residue was passed through the chromatography column deliver to the target quinoline 3.

Phenyl(2-phenylquinolin-3-yl)methanone (3a). Method A: from a mixture of quinoline (1a)

(0.064 g, 0.500 mmol), acetylene **2a** (0.103 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3a** (0.069 g, 45%) was obtained as beige powder, mp 132-133 °C (ethanol).³ Initial acetylene **2a** was recovered (0.013 g, conversion was 87%).

⁷ $\underset{1}{\overset{8}{\text{ sa}}}$ ^{N 2} ^{Ph} Analogously, from a mixture of quinoline **1b** (0.072 g, 0.500 mmol), acetylene **2a** (0.103 g, 0.500 mmol), H₂O (0.045 g, 2.500 mmol) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3a** (0.102 g, 66%) was obtained.

Initial acetylene **2a** was recovered (0.014 g, conversion was 86%).

¹H, ¹³C NMR and IR spectra are similar to the literature data.²

IR (microlayer): 1664 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.31 (s, 1H, H-4), 8.22 (m, 1H, H-8), 7.87 (m, 1H, H-5), 7.80 (m, 1H, H-7), 7.69 [m, 2H, H_o Ph from C(2)-Ph], 7.61 (m, 2H, H_o from Bz), 7.57 (m, 1H, H-6), 7.43 (m, 1H, H_p Ph from Bz), 7.31 (m, 2H, H_m Ph from Bz), 7.27 [m, 3H, H_{m,p} from C(2)-Ph] ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 197.0 (C=O), 157.5 (C-2), 148.5 (C-8a), 139.9 [C_i from C(2)-Ph], 137.6 (C-4), 137.2 (C_i Ph from Bz), 133.4 (C_p Ph from Bz), 133.0 (C-3), 131.2 (C-7), 130.1

(C_o Ph from Bz), 129.8 (C-8), 129.4 [C_o from C(2)-Ph], 128.9 [C_p from C(2)-Ph], 128.5 [C_m from C(2)-Ph; C_m Ph from Bz], 128.2 (C-5), 127.4 (C-6), 125.9 (C-4a) ppm. ¹⁵N NMR (40.55 MHz, CDCl₃): δ -70.7 (N-1) ppm. C₂₂H₁₅NO (309.36): calcd C 85.41, H 4.89, N 4.53; found C 85.46, H 4.58, N 5.21.

Phenyl(2-(p-tolyl)quinolin-3-yl)methanone (3b). Method A: from a mixture of quinoline 1a

(0.064 g, 0.500 mmol), acetylene **2b** (0.110 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3b** (0.047 g, 29%) was obtained as a beige powder, mp 125-127 °C (ethanol). Initial acetylene **2b** was recovered (0.026 g, conversion was 76%).

^e IR (microlayer): 1664 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.27 (s, 1H, H-4), 8.21 (m, 1H, H-8), 7.85 (m, 1H, H-5), 7.79 (m, 1H, H-7), 7.72 (m, 2H, H_o Ph from Bz), 7.57 (m, 1H, H-6), 7.51 [m, 2H, H_o from C(2)-Ph], 7.46 (m, 1H, H_p Ph from Bz), 7.32 (m, 2H, H_m Ph from Bz), 7.07 [m, 2H, H_m from C(2)-Ph], 2.26 (s, 3H, Me) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 197.1 (C=O), 157.6 (C-2), 148.5 (C-8a), 138.9 (C_i Ph from Bz), 137.5 (C-4), 137.1 [C_i from C(2)-Ph], 137.2 [C_p from C(2)-Ph], 133.4 (C_p Ph from Bz), 133.0 (C-3), 131.2 (C-7), 130.2 (C_o Ph from Bz; C-8), 129.3 [C_{o,m} from C(2)-Ph], 128.5 [C_m Ph from Bz], 128.2 (C-5), 127.2 (C-6), 125.8 (C-4a), 21.3 (Me) ppm.

C₂₃H₁₇NO (323.40): calcd C 85.42, H 5.30, N 4.33; found C 85.31, H 5.21, N 4.19.

(3-Methoxyphenyl)(2-phenylquinolin-3-yl)methanone (3c). Method A: from a mixture of

quinoline **1a** (0.064 g, 0.500 mmol), acetylene **2c** (0.118 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3c** (0.096 g, 56%) was obtained as a beige powder, mp 136-138 °C (ether).

IR (microlayer): 1664 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.29 (s, 1H, H-4), 8.22 (m, 1H, H-8), 7.86 (m, 1H, H-5), 7.78 (m, 1H, H-7), 7.60 [m, 2H, H_o from C(2)-Ph], 7.57 (m, 1H, H-6), 7.35-7.15 [m, 6H, H-2', H-5', H-6', H_{m,p} from 4') 2.74 (c, 3H, OMo) nmm

C(2)-Ph], 7.00 (m, 1H, H-4'), 3.74 (s, 3H, OMe) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 196.7 (C=O), 159.7 (C-3'), 157.2 (C-2), 148.4 (C-8a), 139.9 [C_i from C(2)-Ph], 138.5 (C-1'), 137.6 (C-4), 133.0 (C-3), 131.3 (C-7), 129.8 (C-8), 129.5 (C-5'), 129.4 [C_o from C(2)-Ph], 128.9 [C_p from C(2)-Ph], 128.5 [C_m from C(2)-Ph], 128.2 (C-5), 127.4 (C-6), 125.8 (C-4a), 123.3 (C-6'), 120.2 (C-4'), 113.8 (C-2'), 55.2 (OMe) ppm. C₂₃H₁₇NO₂ (339.39): calcd C 81.40, H 5.05, N 4.13; found C 81.77, H 5.34, N 3.79.

(4-Nitrophenyl)(2-phenylquinolin-3-yl)methanone (3d). Method A: from mixture of

quinoline **1a** (0.064 g, 0.500 mmol), acetylene **2d** (0.126 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3d** (0.033 g, 19%) was obtained as a light-brown powder, mp 184-186 °C (ether).

From mixture of quinoline **1a** (0.064 g, 0.500 mmol), acetylene **2d** (0.126 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) (55-60 °C, 24 h) quinoline **3d** (0.043 g, 24%) was obtained.

IR (microlayer): $1665 (C=O) \text{ cm}^{-1}$.

¹H NMR (400.13 MHz, CDCl₃): δ 8.44 (s, 1H, H-4), 8.25 (m, 1H, H-8), 8.05 (m, 2H, H-3',5'), 7.94 (m, 1H, H-5), 7.86 (m, 1H, H-7), 7.72 (m, 2H, H-2',6'), 7.54 [m, 2H, H_o from C(2)-Ph], 7.64 (m, 1H, H-6), 7.24 [m, 3H, H_{m,p} from C(2)-Ph] ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 195.6 (C=O), 157.1 (C-2), 150.1 (C-4'), 148.8 (C-8a), 141.9 (C-1'), 139.6 [C_i from C(2)-Ph], 138.6 (C-4), 131.8 (C-3), 131.9 (C-7), 130.6 (C-2',6'), 129.9

(C-8), 129.5 [Co from C(2)-Ph], 129.4 [Cp from C(2)-Ph], 128.8 [Cm from C(2)-Ph], 123.5 (C-3',5'), 128.4 (C-5), 127.8 (C-6), 126.0 (C-4a) ppm.

C₂₂H₁₄N₂O₃ (354.37): calcd C 74.57, H 3.98, N 7.91; found C 74.87, H 3.93, N 7.52.

Also here (Z)-3-hydroxy-1(3)-(4-nitrophenyl)-(3)1-phenylprop-2-en-1-one (4d) (0.015 g, 11%) was isolated as a white powder, mp 160-162 (ether).⁴

¹H NMR and IR spectra are similar to the literature data.⁴

IR (microlayer): 1726, 1344, 1523 (NO₂), 1654 (C=O), 3371 (OH) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 16.65 (br. s, 1H, OH), 8.32 (m, 2H, H-3',5'), 8.12 (m, 2H, H-2',6'), 7.99 [m, 2H, H_o from C(1)-Ph], 7.60 [m, 1H, H_p from C(1)-Ph], 7.50 [m, 2H, H_m from C(1)-Ph], 6.88 (s, 1H, H-2) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 186.9 (C-1), 180.8 (C-3), 149.0 (C-4'), 140.1 (C-1'), 134.3 [C_i from C(1)-Ph], 132.3 [C_p from C(1)-Ph], 128.0 (C-2',6'), 127.2 [C_m from C(1)-Ph], 126.6 [C_p from C(1)-Ph], 123.0 (C-3',5'), 93.4 (C-2) ppm.

2-Furyl(2-phenyl-3-quinolinyl)methanone (3e). Method A: from mixture of quinoline 1a

(0.064 g, 0.500 mmol), acetylene 2e (0.098 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3e** (0.033 g, 59%) was obtained as a light-beige powder, mp 120-121 °C (ethanol).

Method C: from a mixture of quinoline 1a (0.129 g, 1.000 mmol), acetylene 2e (0.196 g, 1.000 mmol), H₂O (0.090 g, 5.000 mmol) and KOH (0.006 g, 10 mol%) (rt, 240 h) quinoline **3e** (0.198 g, 66%) was obtained. Initial acetylene **2e** was recovered (0.010 g, conversion was 95%).

IR (microlayer): $1652 (C=O) \text{ cm}^{-1}$.

¹H NMR (400.13 MHz, CDCl₃): δ 8.33 (s, 1H, H-4), 8.18 (m, 1H, H-8), 7.82 (m, 1H, H-5), 7.73 (m, 1H, H-7), 7.65 [m, 2H, H_o from C(2)-Ph], 7.50 (m, 1H, H-6), 7.40 (m, 1H, H-5'), 7.26 [m, 3H, H_{m,p} Ph from C(2)-Ph], 6.88 (m, 1H, H-3'), 6.29 (m, 1H, H-4') ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 183.6 (C=O), 157.0 (C-2), 152.3 (C-2'), 148.3 (C-8a), 147.3 (C-5'), 139.7 [C_i from C(2)-Ph], 137.6 (C-4), 131.8 (C-3), 131.2 (C-7), 129.5 (C-8), 129.0 [C_o from C(2)-Ph], 128.7 [C_p from C(2)-Ph], 128.3 [C_m from C(2)-Ph], 128.1 (C-5), 127.2 (C-6), 125.6 (C-4a), 120.5 (C-3'), 112.4 (C-4') ppm.

¹⁵N NMR (40.55 MHz, CDCl₃): δ -70.7 (N-1) ppm.

C₂₀H₁₃NO₂ (299.32): calcd C 80.25, H 4.38, N 4.68; found C 80.60, H 4.20, N 4.70.

Method B: from a mixture of quinoline 1a (0.097 g, 0.750 mmol), acetylene 2e (0.098 g, 0.500 mmol), H₂O (0.045 g, 2.500 mmol) and KOH (0.006 g, 20 mol%) (rt, 144 h) quinoline 3e (0.059 g, 39%) and 1,4-dihydroquinoline 5e (11%, ¹H NMR) were obtained. Initial acetylene 2e was recovered (0.016 g, conversion was 84%).

2-(3-(Furan-2-carbonyl)-2-phenyl-1,4-dihydroquinolin-4-yl)acetaldehyde (5e).

10^[] 4a ^{8a} N H IR (microlayer): 1648, 1707 (C=O), 3274 (NH) cm⁻¹ ¹H NMR (400.13 MHz, CDCl₃): δ 9.82 (t, ³*J*_{H9 H10} = 5.4 Hz, 1H, H-10), 7.37 (m, 2H, H_o from Ph), 7.30-7.20 (m, 3H, H_{m,p} from Ph; 1H H-5; 1H H-7; 1H NH), 7.10 (t, ${}^{3}J_{H6,H7} = 7.7$ Hz, ${}^{3}J_{H5,H6} = 7.7$ Hz, 1H, H-6), 6.98 (d, ${}^{3}J_{H7,H8} = 8.2$ Hz, 1H, H-8), 6.94 (m, 1H, H-5'), 6.56 (m, 1H, H-3'), 6.02 (m, 1H, H-4'), 4.42 $(t, {}^{3}J_{H4,H9} = 6.4 \text{ Hz}, 1\text{H}, \text{H-4}), 2.76, 2.61 (2m, 2H, H-9) \text{ ppm}.$

(2-Phenylquinolin-3-yl)(thiophen-2-yl)methanone (3f). Method A: from mixture of quinoline

1a (0.064 g, 0.500 mmol), acetylene **2f** (0.106 g, 0.500 mmol), H_2O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3f** (0.093 g, 59%) was obtained as a brown powder, mp 130-132 °C (ethanol).

Method C: from a mixture of quinoline **1a** (0.129 g, 1.000 mmol), acetylene **2f** (0.212 g, 1.000 mmol), H_2O (0.090 g, 5.000 mmol) and KOH (0.006 g, 10 mol%) (rt, 240 h) quinoline **3f** (0.227 g, 72%) was obtained.

Initial acetylene **2f** was recovered (0.011 g, conversion was 95%).

IR (microlayer): 1641 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.29 (s, 1H, H-4), 8.19 (m, 1H, H-8), 7.81 (m, 1H, H-5), 7.74 (m, 1H, H-7), 7.66 [m, 2H, H_o from C(2)-Ph], 7.55 (m, 1H, H-5'), 7.51 (m, 1H, H-6), 7.26 [m, 1H, H-3'; 3H, H_{m,p} Ph from C(2)-Ph], 6.89 (m, 1H, H-4') ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 188.0 (C=O), 156.8 (C-2), 148.3 (C-8a), 144.3 (C-2'), 139.6 [C_i from C(2)-Ph], 137.1 (C-4), 135.3 (C-5'), 135.2 (C-3'), 132.6 (C-3), 131.1 (C-7), 129.6 (C-8), 129.2 [C_o from C(2)-Ph], 128.8 [C_p from C(2)-Ph], 128.3 [C_m from C(2)-Ph], 128.1 (C-5), 128.0 (C-4'), 127.3 (C-6), 125.6 (C-4a) ppm.

 $C_{20}H_{13}NOS$ (315.39): calcd C 76.16, H 4.15, N 4.44, S 10.17; found C 75.89, H 4.03, N 4.71, S 9.90.

(6-Chloro-2-phenylquinolin-3-yl)(phenyl)methanone (3g). Method A: from a mixture of quinoline 1c (0.082 g, 0.500 mmol), acetylene 2a (0.103 g, 0.500 mmol), H_2O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline 3g (0.048 g, 28%) was obtained as a white powder, mp 161-163 °C (ethanol).^{2b,d} Initial acetylene 2a was recovered (0.019 g, conversion was 82%).

¹H, ¹³C NMR and IR spectra are similar to the literature data.^{2b,d}

IR (microlayer): $1666 (C=O) \text{ cm}^{-1}$.

¹H NMR (400.13 MHz, CDCl₃): δ 8.22 (s, 1H, H-4), 8.16 (m, 1H, H-8), 7.87 (d, ⁴*J*_{H5,H7} = 2.0 Hz, 1H, H-5), 7.74 (dd, ³*J*_{H7,H8} = 9.0 Hz, 1H, H-7), 7.69 (m, 2H, H_o Ph from Bz), 7.59 [m, 2H, H_o from C(2)-Ph], 7.47 (m, 1H, H_p Ph from Bz), 7.32 (m, 2H, H_m Ph from Bz), 7.26 [m, 3H, H_{m,p} from C(2)-Ph] ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 196.7 (C=O from Bz), 157.8 (C-2), 146.8 (C-8a), 139.5 [C_i from C(2)-Ph], 136.9 (C_i Ph from Bz), 136.6 (C-4), 133.8 (C-6), 133.6 (C_p Ph from Bz), 133.2 (C-3), 132.2 (C-8), 131.4 (C-7), 130.1 [C_o from C(2)-Ph], 129.4 [C_m from C(2)-Ph], 129.2 [C_p from C(2)-Ph], 128.6 (C_{o,m} Ph from Bz], 126.8 (C-5), 126.6 (C-4a) ppm.

 $C_{22}H_{14}CINO\ (343.81)$: calcd C 76.86, H 4.10, Cl 10.31, N 4.07; found C 76.63, H 3.96, Cl 10.26, N 4.29.

Method C: from a mixture of quinoline **1c** (0.163 g, 1.000 mmol), acetylene **2a** (0.206 g, 1.000 mmol), H₂O (0.045 g, 2.500 mmol) and KOH (0.006 g, 10 mol%) in MeCN (0.1 mL for homogenization of reaction mixture) (rt, 336 h) quinoline **3g** (0.037 g, 11%) and 1,4-dihydroquinoline **5g** (0.048 g, 12%) were obtained. Initial acetylene **2a** was recovered (0.048 g, conversion was 77%).

2-(3-Benzoyl-6-chloro-2-phenyl-1,4-dihydroquinolin-4-yl)acetaldehyde (5g). Yellow powder,

mp 195-197 °C (acetone).

IR (microlayer): 1717 (C=O), 3271 (NH) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 9.83 (t, ³*J*_{H 9,H10} = 5.4 Hz, 1H, H-10), 7.26 [m, 2H, H_o from C(2)-Ph], 7.22 (d, ⁴*J*_{H5,H7} = 1.5 Hz, 1H, H-5), 7.19 (dd, ³*J*_{H7,H8} = 8.4 Hz, 1H, H-7), 7.15 (m, 2H, H_o Ph from Bz), 7.08 [m, 1H, H_p from C(2)-Ph], 7.02 [m, 1H, H_p Ph from Bz; 2H, H_m from C(2)-Ph], 7.27 (m, 2H, H_m Ph from Bz), 6.85 (d, ³*J*_{H7,H8} = 8.4 Hz, 1H, H-8), 6.18 (br. s, 1H, NH), 4.61 (t, ${}^{3}J_{H4,H9}$ = 6.4 Hz, 1H, H-4), 2.75, 2.63 (2m, 2H, H-9) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 201.5 (C-10), 195.7 (C=O from Bz), 151.5 (C-8a), 140.8 (C_i Ph from Bz), 135.8 (C-2), 135.5 [C_i from C(2)-Ph], 130.4 [C_n from C(2)-Ph], 130.3 (C_n Ph from Bz), 129.8 (C_o Ph from Bz), 129.1 [C_m from C(2)-Ph], 129.1 (C-6), 128.5 (C_m Ph from Bz; C-5), 127.6 (C-7), 127.5 [C_o from C(2)-Ph], 127.2 (C-4a), 116.2 (C-8), 106.6 (C-3), 52.0 (C-9), 35.0 (C-4) ppm.

C₂₄H₁₈ClNO₂ (387.86): calcd C 74.32, H 4.68, Cl 9.14, N 3.61; found C 73.95, H 4.86, Cl 8.77, N 3.30.

(6-Chloro-2-phenylquinolin-3-yl)(furan-2-yl)methanone (3h). Method A: from a mixture of quinoline 1c (0.082 g, 0.500 mmol), acetylene 2e (0.098 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3h** (0.033 g, 20%) as a light-beige powder, mp 129-130 °C (ethanol) and 1,4-dihydroquinoline **5h** (6%, ¹H NMR) were obtained. Initial acetylene 2e was recovered (0.033 g, conversion was 66%). 8a ÌΝ 2

IR (microlayer): $1655 (C=O) \text{ cm}^{-1}$.

¹H NMR (400.13 MHz, CDCl₃): δ 8.32 (s, 1H, H-4), 8.15 (d, ³J_{H7 H8} = 9.0 Hz, 1H, H-8), 7.89 (d, ${}^{4}J_{\text{H5,H7}} = 2.0 \text{ Hz}, 1\text{H}, \text{H-5}), 7.74 \text{ (dd, } {}^{3}J_{\text{H7,H8}} = 9.0 \text{ Hz}, {}^{4}J_{\text{H5,H7}} = 2.0 \text{ Hz}, 1\text{H}, \text{H-7}), 7.64 \text{ (m, 2H, H}_{o}$ from Ph), 7.46 (d, ${}^{3}J_{\text{H4',H5'}} = 1.5$ Hz, 1H, H-5'), 7.32 (m, 3H, H_{m,p} from Ph), 6.95 (d, ${}^{3}J_{\text{H3',H4'}} = 3.6$ Hz, 1H, H-3'), 6.40 (dd, ${}^{3}J_{H4',H5'} = 1.5$ Hz, ${}^{3}J_{H3',H4'} = 3.6$ Hz, 1H, H-4') ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 183.6 (C=O), 157.6 (C-2), 152.4 (C-2'), 147.7 (C-5'), 146.9 (C-8a), 139.5 (C_i from Ph), 136.8 (C-4), 133.2 (C-6), 133.8 (C-3), 132.4 (C-8), 131.4 (C-7), 129.2 (C_{o,p} from Ph), 128.8 (C_m from Ph), 126.8 (C-5), 126.5 (C-4a), 120.8 (C-3'), 112.7 (C-4') ppm.

C₂₀H₁₂ClNO₂ (333.77): calcd C 71.97, H 3.62, Cl 10.62, N 4.20; found C 71.68, H 3.63, Cl 10.81, N 4.06.

Method C: from a mixture of quinoline 1c (0.163 g, 1.000 mmol), acetylene 2e (0.196 g, 1.000 mmol), H₂O (0.090 g, 5.000 mmol) and KOH (0.006 g, 10 mol%) in MeCN (0.2 mL for homogenization of reaction mixture) (rt, 336 h) quinoline 3h (0.035 g, 10%) and 1,4dihydroquinoline **5h** (0.080 g, 21%) were obtained. Initial acetylene **2e** was recovered (0.101 g, conversion was 49%).

2-(6-Chloro-3-(furan-2-carbonyl)-2-phenyl-1,4-dihydroquinolin-4-yl)acetaldehyde (5h). Yellow powder, mp 148-150 °C (acetone).

8

1

IR (microlayer): 1716 (C=O), 3299 (NH) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 9.84 (t, ³*J*_{H9,H10} = 5.4 Hz, 1H, H-10), 7.34 [m, 2H, H_o from C(2)-Ph], 7.25-7.15 [m, 3H H_{m,p} from C(2)-Ph; 2H H-5, H-7], 6.93 (m, 1H, H-5'), 6.86 (d, ${}^{3}J_{H7,H8} = 8.2$ Hz, 1H, H-8), 6.85 (br. s, 1H, NH), 6.54 (m, 1H, H-3'), 6.01 (m, 1H, H-4'), 4.53 (t, ${}^{3}J_{\text{H4,H9}} = 6.4 \text{ Hz}, 1\text{H}, \text{H-4}, 2.77, 2.68 (2\text{m}, 2\text{H}, \text{H-9}) \text{ ppm}.$

¹³C NMR (100.62 MHz, DMSO-d₆): δ 201.8 (C-10), 180.9 (C=O), 152.8 (C-8a), 152.3 (C-2'), 144.6 (C-5'), 136.1 (C-2), 135.6 [C_i from C(2)-Ph], 129.8 [C_p from C(2)-Ph], 129.4 [C_o from C(2)-Ph], 127.9 [C_m from C(2)-Ph], 127.4 (C-5), 127.1 (C-6), 126.9 (C-7), 126.8 (C-4a), 117.5 (C-3'), 115.7 (C-8), 111.2 (C-4'), 103.5 (C-3), 51.7 (C-9), 33.8 (C-4) ppm.

C₂₂H₁₆ClNO₃ (377.82): calcd C 69.94, H 4.27, Cl 9.38, N 3.71; found C 69.56, H 4.13, Cl 9.76, N 3.36.

(6-Chloro-2-phenylquinolin-3-yl)(thiophen-2-yl)methanone (3i). Method A: from a mixture of quinoline 1c (0.082 g, 0.500 mmol), acetylene 2f (0.106 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline 3i (0.054 g, 31%) as a

light-beige powder, mp 181-182 °C (ethanol), and 1,4dihydroquinoline **5i** (4%, ¹H NMR) were obtained. Initial acetylene **2f** was recovered (0.049 g, conversion was 54%).

IR (microlayer): 1641 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.28 (s, 1H, H-4), 8.16 (d, ³*J*_{H7,H8} = 9.0 Hz, 1H, H-8), 7.87 (d, ⁴*J*_{H5,H7} = 2.0 Hz, 1H, H-5), 7.75 (dd, 1H, H-7), 7.67 (m, 2H, H_o from Ph), 7.65 (d, ³*J*_{H3',H4'} = 5.0 Hz, 1H, H-3'),

7.35 (m, 3H, $H_{m,p}$ from Ph), 7.31 (d, 1H, H-5'), 6.99 (dd, ${}^{3}J_{H4',H5'} = 3.8$ Hz, 1H, H-4') ppm. ${}^{13}C$ NMR (100.62 MHz, CDCl₃): δ 188.5 (C=O), 157.3 (C-2), 146.9 (C-8a), 144.2 (C-2'), 139.4 (C_i from Ph), 136.3 (C-4), 135.7 (C-5'), 135.6 (C-3'), 133.6 (C-6), 133.3 (C-3), 132.3 (C-8), 131.4 (C-7), 129.3 (C_{o,p} from Ph), 128.7 (C_m from Ph), 128.4 (C-4'), 126.8 (C-5), 126.4 (C-4a) ppm.

 $C_{20}H_{12}ClNOS$ (349.83): calcd C 68.67, H 3.46, Cl 10.13, N 4.00, S 9.17; found: C 68.37, H 3.31, Cl 10.41, N 4.24, S 8.82.

Method C: from a mixture of quinoline **1c** (0.163 g, 1.000 mmol), acetylene **2f** (0.212 g, 1.000 mmol), H_2O (0.090 g, 5.000 mmol) and KOH (0.006 g, 10 mol%) in MeCN (0.2 mL for homogenization of reaction mixture) (rt, 336 h) quinoline **3i** (0.045 g, 52%) and 1,4-dihydroquinoline **5i** (0.044 g, 46%) were obtained. Initial acetylene **2f** was recovered (0.124 g, conversion was 42%).

2-(6-Chloro-2-phenyl-3-(thiophene-2-carbonyl)-1,4-dihydroquinolin-4-yl)acetaldehyde (5i). **a** 4' 5' Dark-yellow powder, mp 152-154 °C (ether).

IR (microlayer): 1718 (C=O), 3288 (NH) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 9.80 (t, ³*J*_{H9,H10} = 5.4 Hz, 1H, H-10), 7.29 [m, 2H, H_o from C(2)-Ph], 7.22 (d, ⁴*J*_{H5,H7} = 1.5 Hz, 1H, H-5), 7.20-7.10 [m, 3H H_{*m,p*} from C(2)-Ph; 2H, H-3', H-7], 7.00 (br. s, 1H, NH), 6.89 (d, ³*J*_{H7,H8} = 8.4 Hz, 1H, H-8), 6.86 (m, 1H, H-5'), 6.50 (m, 1H, H-4'), 4.49 (t, ³*J*_{H4,H9} = 6.4 Hz, 1H, H-4), 2.73, 2.65 (2m, 2H, H-9) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 201.6 (C-10), 187.4 (C=O), 149.9 (C-8a), 145.4 (C-2'), 136.0 (C-2), 135.6 [C_i from C(2)-Ph], 132.8 (C-3'), 131.5 (C-5'), 130.4 [C_p from C(2)-Ph], 129.4 [C_o from C(2)-Ph], 128.9 (C-6), 128.7 [C_m from C(2)-Ph], 128.3 (C-5), 127.6 (C-7), 126.9 (C-4a), 126.7 (C-4'), 116.4 (C-8), 106.6 (C-3), 51.8 (C-9), 35.4 (C-4) ppm.

 $C_{22}H_{16}ClNO_2$ (393.89): calcd C 67.08, H 4.09, Cl 9.00, N 3.56, S 8.14; found C 67.47, H 4.46, Cl 8.67, N 3.30, S 8.17.

(6-Methoxy-2-phenylquinolin-3-yl)(phenyl)methanone (3j).

Method A: from a mixture of quinoline **1d** (0.080 g, 0.500 mmol), acetylene **2a** (0.103 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3j** (0.105 g, 62%) was obtained as a white powder, mp 157-159 °C (hexane). Initial acetylene **2a** was recovered (0.016 g, conversion was 84%). IR (microlayer): 1663 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.17 (s, 1H, H-4), 8.10 (d, ³*J*_{H7,H8} = 9.2 Hz, 1H, H-8), 7.67 [m, 2H, H_o Ph from C(2)-Ph], 7.58 (m, 2H, H_o from Bz), 7.44 (dd, ³*J*_{H7,H8} = 9.2 Hz, ⁴*J*_{H5,H7} = 2.6 Hz, 1H, H-7), 7.40 (m, 1H, H_p Ph from Bz), 7.33-7.17 [m, 5H, H_{p,m,m}⁻ Ph from Bz and C(2)-Ph], 7.09 (d, ⁴*J*_{H5,H7} = 2.6 Hz, 1H, H-5), 3.87 (s, 3H, OMe) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 197.2 (C=O), 158.4 (C-6), 155.0 (C-2), 144.6 (C-8a), 139.8 [C_i from C(2)-Ph], 137.1 (C_i from Bz), 136.3 (C-4), 133.3 (C_p from Bz), 133.0 (C-3), 131.1 (C-8), 130.0 [C_o from C(2)-Ph], 129.2 [C_m from C(2)-Ph], 128.6 [C_p from C(2)-Ph], 128.4 (C_{o,m} from Bz), 126.9 (C-4a), 124.1 (C-7), 105.3 (C-5), 55.7 (OMe) ppm.

C₂₃H₁₇NO₂ (339.39): calcd C 81.40, H 5.05, N 4.13; found C 81.01, H 4.79, N 3.79.

(6-Methoxy-2-phenylquinolin-3-yl)(3-methoxyphenyl)methanone (3k).

Method A: from a mixture of quinoline **1d** (0.080 g, 0.500 mmol), acetylene **2c** (0.118 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 24 h) quinoline **3k** (0.083 g, 45%) was obtained as a white powder, mp 185-187 °C (MeCN). Initial acetylene **2c** was recovered (0.004 g, conversion was 97%).

IR (microlayer): 1664 (C=O) cm⁻¹.

⁸ 1 ¹H NMR (400.13 MHz, CDCl₃): δ 8.19 (s, 1H, H-4), 8.11 (d, ${}^{3}J_{H7,H8} = 9.2$ Hz, 1H, H-8), 7.58 [m, 2H, H_o Ph from C(2)-Ph], 7.46 (dd, ${}^{3}J_{H7,H8} = 9.2$ Hz, ${}^{4}J_{H5,H7} = 2.6$ Hz, 1H, H-7), 7.32-7.17 [m, 3H, H-2', H-5', H-6'; 3H, H_{m,p} from C(2)-Ph], 7.12 (d, ${}^{4}J_{H5,H7} = 2.6$ Hz, 1H, H-5), 7.00 (m, 1H, H-4'), 3.92 (s, 3H, OMe), 3.75 (s, 3H, OMe') ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 197.1 (C=O), 159.7 (C-3'), 158.5 (C-6), 155.1 (C-2), 144.7 (C-8a), 139.9 [C_i from C(2)-Ph], 138.6 (C-1'), 136.3 (C-4), 133.2 (C-3), 131.2 (C-8), 129.5 (C-5'), 129.3 [C_o from C(2)-Ph], 128.7 [C_p from C(2)-Ph], 128.5 [C_m from C(2)-Ph], 126.9 (C-4a), 124.2 (C-7), 123.3 (C-6'), 120.2 (C-4'), 113.8 (C-2'), 105.4 (C-5), 55.8 (OMe), 55.6 (OMe') ppm.

C₂₄H₁₉NO₃ (369.42): calcd C 78.03, H 5.18, N 3.79; found C 78.04, H 5.00, N 3.64.

(6-Methoxy-2-phenylquinolin-3-yl)(thiophen-2-yl)methanone (3l).

Method A: from a mixture of quinoline **1d** (0.080 g, 0.500 mmol), acetylene **2f** (0.106 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3l** (0.092 g, 53%) was obtained as a white powder, mp 188-190 °C (MeCN). IR (microlayer): 1640 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.24 (s, 1H, H-4), 8.10 (d, ³*J*_{H7,H8} = 9.2 Hz, 1H, H-8), 7.65 [m, 2H, H_o from C(2)-Ph], 7.60 (d, ⁴*J*_{H4',H5'} =

4.8 Hz, 1H, H-5'), 7.45 (m, ${}^{3}J_{H7,H8} = 9.2$ Hz, ${}^{4}J_{H5,H7} = 2.3$ Hz, 1H, H-7), 7.35-7.25 [m, 1H, H-3'; 3H, H_{*m,p*} Ph from C(2)-Ph], 7.12 (d, ${}^{4}J_{H5,H7} = 2.3$ Hz, 1H, H-5), 6.95 (m, 1H, H-4'), 3.92 (s, 3H, OMe) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 189.2 (C=O), 158.5 (C-6), 154.6 (C-2), 144.7 (C-8a), 144.5 (C-2'), 139.8 [C_i from C(2)-Ph], 135.9 (C-4), 135.5 (C-5'), 135.3 (C-3'), 133.0 (C-3), 131.2 (C-8), 129.2 [C_o from C(2)-Ph], 128.7 [C_p from C(2)-Ph], 128.6 [C_m from C(2)-Ph], 128.2 (C-4'), 126.9 (C-4a), 124.2 (C-7), 105.3 (C-5), 55.8 (OMe) ppm.

 $C_{21}H_{15}NO_2S$ (345.42): calcd C 73.02, H 4.38, N 4.06, S 9.28; found C 72.97, H 4.25, N 3.98, S 9.65.

(5-(Methylthio)-2-phenylquinolin-3-yl)(phenyl)methanone (3m).

 $\begin{array}{c} \text{SMe} & \text{Ph} \\ 5 & 4a & 4 \\ 6 & & 3 \\ 7 & 8a & N^2 & \text{Ph} \end{array}$

Method A: from a mixture of quinoline 1e (0.088 g, 0.500 mmol), acetylene 2a (0.103 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline 3m (0.090 g, 51%) was obtained as a yellow oil (80% purity according 1H NMR). Initial acetylene 2a was recovered (0.004 g, conversion was 96%).

IR (microlayer): 1663 (C=O) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.75 (s, 1H, H-4), 8.04 (d, ³*J*_{H7,H8} = 8.4 Hz, 1H, H-8), 7.74 (t, ³*J*_{H7,H8} = 8.4 Hz, ³*J*_{H6,H7} = 8.4 Hz, 1H, H-7), 7.71 [m, 2H, H_o Ph from C(2)-Ph], 7.61 (m, 2H, H_o from Bz), 7.48 (d, ³*J*_{H6,H7} = 8.4 Hz, 1H, H-6), 7.46 (m, 1H, H_p Ph from Bz), 7.35-7.25 [m, 2H, H_m Ph from Bz; 3H, H_{m,p} from C(2)-Ph], 2.58 (s, 3H, SMe) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 196.8 (C=O), 157.6 (C-2), 148.6 (C-8a), 139.5 [C_i from C(2)-Ph], 137.3 (C-5), 137.0 (C_i Ph from Bz), 134.3 (C-4), 133.4 (C_p Ph from Bz), 132.5 (C-3), 130.9 (C-7), 130.1 [C_o from C(2)-Ph], 129.3 [C_m from C(2)-Ph], 129.0 [C_p from C(2)-Ph], 128.5 (C_{o,m} Ph from Bz), 127.2 (C-8), 124.8 (C-6), 124.7 (C-4a), 16.5 (SMe) ppm.

(5-(Methylthio)-2-phenylquinolin-3-yl)(thiophen-2-yl)methanone (3n).

Method A: from a mixture of quinoline **1e** (0.088 g, 0.500 mmol), acetylene **2f** (0.106 g, 0.500 mmol), H₂O (0.5 mL) and KOH (0.006 g, 20 mol%) in MeCN (1 mL) (55-60 °C, 48 h) quinoline **3n** (0.068 g, 38%) was obtained as a white powder, mp 138-140 °C (acetone). Initial acetylene **2f** was recovered (0.026 g, conversion was 75%). IR (microlayer): 1642 (C=O) cm⁻¹.

⁸ ¹H NMR (400.13 MHz, CDCl₃): δ 8.80 (s, 1H, H-4), 8.02 (d, ${}^{3}J_{H7,H8} = 8.4$ Hz, 1H, H-8), 7.74 (t, ${}^{3}J_{H7,H8} = 8.4$ Hz, ${}^{3}J_{H6,H7} = 8.4$ Hz, 1H, H-7), 7.69 [m, 2H, H_o from C(2)-Ph], 7.65 (m, 1H, H-5'), 7.47 (d, ${}^{3}J_{H6,H7} = 8.4$ Hz, 1H, H-6), 7.33 [m, 3H, H_{m,p} from C(2)-Ph; 1H, H-3'], 6.99 (m, 1H, H-4'), 2.59 (s, 3H, SMe) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 188.8 (C=O), 157.3 (C-2), 148.8 (C-8a), 144.5 (C-2'), 139.5 [C_i from C(2)-Ph], 137.4(C-5), 135.6 (C-5'), 135.4 (C-3'), 134.1 (C-4), 132.4 (C-3), 131.0 (C-7), 129.3 [C_o from C(2)-Ph], 129.2 [C_p from C(2)-Ph], 128.7 [C_m from C(2)-Ph], 128.4 (C-4'), 127.3 (C-8), 125.1 (C-6), 124.8 (C-4a), 16.7 (SMe) ppm.

 $C_{21}H_{15}NOS_2$ (361.48): calcd C 69.78, H 4.18, N 3.87, S 17.74; found C 70.19, H 4.07, N 3.55, S 17.48.

2-Phenylquinoline-3-carbonitrile (30). From a mixture of quinoline 1a (0.129 g, 1.000 mmol),

acetylene **2g** (0.127 g, 1.000 mmol), H₂O (0.090 g, 5.000 mmol) and KOH (0.012 g, 20 mol%) in MeCN (0.5 mL for the homogenization of reaction mixture) (55-60 °C, 6 h) quinoline **3o** (0.042 g, 18%) was obtained as a white powder, mp 197-198 °C (ethanol).^{2b,d}

¹H, ¹³C NMR and IR spectra are similar to the literature data.^{2b,d} IR (microlayer): 1618 (C=C), 2219 (CN) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.66 (s, 1H, H-4), 8.19 (m, 1H, H-8), 7.99 (m, 2H, H_o from Ph), 7.87 (m, 1H, H-7), 7.90 (m, 1H, H-5), 7.65 (m, 1H, H-6), 7.56 (m, 3H, H_{m,p} from Ph) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 158.2 (C-2), 148.9 (C-8a), 144.3 (C-4), 137.8 (C_i from Ph), 133.1 (C_p from Ph), 130.2 (C-7), 130.1 (C-8), 129.3 (C_o from Ph), 128.9 (C_m from Ph), 128.2 (C-5), 127.9 (C-6), 125.2 (C-4a), 118.1 (CN), 105.8 (C-3) ppm.

C₁₆H₁₀N₂ (230.27): calcd C 83.46, H 4.38, N 12.17; found C 83.21, H 4.12, N 12.57.

6-Chloro-2-phenylquinoline-3-carbonitrile (3p). From a mixture of quinoline 1c (0.163 g,

1.000 mmol), acetylene **2g** (0.127 g, 1.000 mmol), H₂O (0.090 g, 5.000 mmol) and KOH (0.012 g, 20 mol%) in MeCN (0.5 mL for the homogenization of reaction mixture) (55-60 °C, 16 h) quinoline **3p** (0.047 g, 18%) was obtained as a white powder, mp 197-198 °C (ethanol).^{2b,d} ¹H, ¹³C NMR and IR spectra are similar to the literature data.^{2b,d}

IR (KBr): 1691 (C=C), 2217 (CN) cm⁻¹.

¹H NMR (400.13 MHz, CDCl₃): δ 8.54 (s, 1H, H-4), 8.12 (d, ³*J*_{H7,H8} = 8.8 Hz, 1H, H-8), 7.97 (m, 2H, H_o from Ph), 7.79 (d, ³*J*_{H7,H8} = 8.8 Hz, 1H, H-7), 7.86 (s, 1H, H-5), 7.54 (m, 3H, H_{m,p} from Ph) ppm.

¹³C NMR (100.62 MHz, CDCl₃): δ 158.3 (C-2), 147.2 (C-8a), 143.2 (C-4), 137.4 (C_i from Ph), 134.2 (C-6), 134.0 (C_p from Ph), 130.5 (C-7), 131.7 (C-8), 129.3 (C_o from Ph), 128.9 (C_m from Ph), 126.4 (C-5), 125.7 (C-4a), 117.6 (CN), 106.8 (C-3) ppm.

 $C_{16}H_9ClN_2$ (264.71): calcd C 72.60, H 3.43, Cl 13.39, N, 10.58; found C 72.48, H 3.37, N 13.39, Cl 10.72.

S12

S13

S15

¹H NMR spectrum of **3**i

S23

S26

¹H NMR spectrum of **30**

Detection of acetaldehyde by mass-spectroscopy (experiment with D₂O)

The reaction between quinoline **1a** (0.194 g, 1.500 mmol), acetylene **2a** (0.206 g, 1.000 mmol), D_2O (0.107 g, 5.000 mmol) and KOH (0.006 g, 10 mol%) (rt, 144 h) was carried out in a 10 mL tightly closed with rubber cap flask filled with argon. To get the gas analytical sampling, the reaction mixture was cooled in liquid nitrogen, evacuated, and heated. Detection of acetaldehyde in the gas phase was carried out in the Shumadzu Mass-spectrometer. After standard treatment of reaction mixture quinoline **3a** (0.059 g, 19%) was obtained.

X-ray diffraction structural analysis data

The X-ray diffraction structural analysis was carried out on a Bruker D8 Venture monocrystal diffractometer with a Photon 100 detector using ω -2 θ scanning. The reflection intensities were integrated using the Bruker SAINT monitoring program. X-ray absorption by the crystal was taken into account by analysis of the intensities of equivalent reflections. After averaging the intensities of equivalent reflections, only independent reflections were used. The search for a model was carried out using the SHELXS program⁵ and direct methods, which gave the coordinates of all the non-hydrogen atoms. The structures obtained were refined by method of least squares using the SHELXL program.4 The complete information on the crystal structures of quinolines **3e,l** and 1,4-dihydroquinoline **5g** were deposited at the Cambridge Crystallographic Data Center (deposits CCDC 1482718, 1838494 and 1482717, respectively).

The determination of the unit cell and the data collection for 2-furyl(2-phenyl-3quinolinyl) methanone (**3e**) was performed at 100.0(2) K using the ω - φ scan technique. A specimen of <u>C₂₀H₁₃NO₂</u>, approximate dimensions 0.070 mm x 0.360 mm x 0.970 mm, clear, colorless, irregular crystal was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using an monoclinic unit cell with *P2*₁/*c* space group yielded a total of 46541 reflections to a maximum θ angle of 27.53° (0.77 Å resolution), of which 3373 were independent (average redundancy 13.798, completeness = 99.9%, Rint = 5.89%, Rsig = 2.29%) and 2950 (87.46%) were greater than 2 σ (F2). The final cell constants of **a** = 12.1150(9) Å, **b** = 16.3598(14) Å, **c** = 7.7826(6) Å, β =108.183(3)°, Z= 4, volume = 1465.5(2) Å³, are based upon the refinement of the XYZ-centroids of 9941 reflections above 20 σ (I) with 4.979° < 2 θ < 54.95°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.848. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9194 and 0.9939. The structure was solved and refined using the Bruker SHELXTL Software Package.⁵ The H atoms were determined from a difference Fourier synthesis.

Figure 1. X-ray structure of 2-furyl(2-phenyl-3-quinolinyl)methanone **3e**. Thermal ellipsoids set at 50% probability.

Figure 2. X-ray data on unit cell of 2-furyl(2-phenyl-3-quinolinyl) methanone (3e).

The final anisotropic full-matrix least-squares refinement on F2 with 208 variables converged at R1 = 3.98%, for the observed data and wR2 = 10.48% for all data. The goodness-of-fit was 1.061. The largest peak in the final difference electron density synthesis was 0.40 e-/Å3 and the largest hole was -0.230 e-/Å3 with an RMS deviation of 0.057 e-/Å3. On the basis of the final model, the calculated density was 1.357 g/cm3 and F(000), 624 e-. CCDC 1482718.

The determination of the unit cell and the data collection for (5-(methylthio)-2phenylquinolin-3-yl)(thiophen-2-yl)methanone (**3l**) was performed on a Bruker D8 VENTURE PHOTON 100 CMOS diffractometer with MoK_{α} radiation ($\lambda = 0.71073$) at 297.0(2) K using the ω - ϕ scan technique. A specimen of C₂₁H₁₅N₁O₂S₁, approximate dimensions 0.51 mm x 0.56 mm x 0.79 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using an orthorombic unit cell with *Pna2₁* space group yielded a total of 27881 reflections to a maximum θ angle of 26.12° (0.81 Å resolution), of which 3426 were independent (completeness = 99.8%, Rint = 3.40%, Rsig = 2.09%) and 3060 (89.3%) were greater than 2 σ (F2). The final cell constants of **a** = 10.0386(7) Å, **b** = 16.6863(11) Å, **c** = 10.3764(7) Å, Z= 4, volume = 1738.1(2) Å³. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.9568. The structure was solved and refined using the Bruker SHELXTL Software Package.⁵ The H atoms were determined from a difference Fourier synthesis.

Figure 3. X-ray structure of (5-(methylthio)-2-phenylquinolin-3-yl)(thiophen-2-yl)methanone (31). Thermal ellipsoids set at 50% probability.

The final anisotropic full-matrix least-squares refinement on F2 with 227 variables converged at R1 = 3.06%, for the observed data and wR2 = 7.17% for all data. The goodness-of-fit was 1.093. The largest peak in the final difference electron density synthesis was 0.130 e-/Å³ and the largest hole was -0.220 e-/Å³. On the basis of the final model, the calculated density was 1.320 g/cm³ and F(000), 720 e-. CCDC 1838494.

The determination of the unit cell and the data collection for 2-(3-benzoyl-6-chloro-2phenyl-1,4-dihydro-4-quinolinyl)acetaldehyde (5g) was performed at 296.15(2) K using the $\omega - \phi$ scan technique. A specimen of C₂₄H₁₈ClNO₂, approximate dimensions 0.103 mm x 0.121 mm x 0.430 mm, lustrous, clear, needle crystal was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using an monoclinic unit cell with $P2_1/n$ space group yielded a total of 66778 reflections to a maximum θ angle of 26.1° (0.77 Å resolution), of which 3714 were independent (average redundancy 11.108, completeness = 99.7%, Rint = 10.04%, Rsig = 2.99%) and 2619 (87.46%) were greater than $2\sigma(F2)$. The final cell constants of $\mathbf{a} = 10.9587(3)$ Å, $\mathbf{b} = 7.7456(2)$ Å, $\mathbf{c} = 22.4121(7)$ Å, $\beta = 100.151(1)^{\circ}$, Z = 4, volume = 1872.60(9) Å³, are based upon the refinement of the XYZ-centroids of 8797 reflections above 20 σ (I) with 4.654° < 2 θ < 56.75°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.896. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.968 and 0.977. The structure was solved and refined using the Bruker SHELXTL Software Package.⁵ The H atoms were determined from a difference Fourier synthesis.

Figure 4. X-ray structure of 2-(3-benzoyl-6-chloro-2-phenyl-1,4-dihydro-4-quinolinyl) acetaldehyde (**5g**). Thermal ellipsoids set at 50% probability.

The final anisotropic full-matrix least-squares refinement on F2 with 254 variables converged at R1 = 4.32%, for the observed data and wR2 = 13.97% for all data. The goodness-of-fit was 1.112. The largest peak in the final difference electron density synthesis was 0.23 e-/Å3 and the largest hole was -0.210 e-/Å3 with an RMS deviation of 0.046 e-/Å3. On the basis of the final model, the calculated density was 1.372 g/cm3 and F(000), 804 e-. CCDC 1482717.

References

¹ H. Y. Zhao, Y. M. Li, T. J. Gong and Q. X. Guo, Chinese Chem. Lett., 2011, 22, 1013.

² A. S. Zanina, S. I. Shergina, I. E. Sokolov and I. L. Kotlyarevskii, *Russ. Chem. Bull.*, 1990, **39**, 2307 (*Izv. AN, Ser. Khim.* 1990, 2551).

^{3 (}*a*) R.-G. Xing, Y.-N. Li, Q. Liu, Y.-F. Han, X. Wei, J. Li and B. Zhou, *Synthesis*, 2011, 2066; (*b*) P.-J. Tsai, C.-B. Kao, W.-R. Chiow and C.-P. Chuang, *Synthesis*, 2014, 175. (*c*) R. R. Rajawinslin, S. D. Gawande, V. Kavala, Y.-H. Huang, C.-W.Kuo, T.-S. Kuo, M.-L. Chen, C.-H. He and C.-F. Yao, *RSC Adv.*, 2014, **4**, 37806; (*d*) C.-Y. Lu and C.-P. Chuang, *Synthesis*, 2015, 3687; (*e*) N. Anand, T. Chanda, S. Koley, S. Chowdhury and M. S. Singh, *RSC Adv.*, 2015, **5**, 7654.

⁴ K. Miyauchi, K. Hori, T. Hirai, M. Takebayashi and T. Ibata, *Bull. Chem. Soc. Jpn.*, 1981, **54**, 2142.

⁵ G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, A64, 112.