Supporting Information

Cp*Ir(III)-catalyzed C–H functionalization of sulfoximines for the synthesis of 1,2-benzothiazines at room temperature

Yogesh N. Aher[†], Dhanaji M. Lade^{†‡}, and Amit B. Pawar^{*†‡}

amitorgchem@gmail.com, amit@iict.res.in

[†]Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

[‡]Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.

Tab	le of Content	S-1		
1.	General Methods	S-2		
2.	Experimental Procedure of the Optimization Study	S-3		
3.	H/D Exchange Experiment	S-4		
4.	Intermolecular Competitive Experiment	S-5		
5.	Procedure for comparing reaction rates of 3ba and 3ha	S-6		
6.	Intramolecular Kinetic Isotope Effect Experiment	S-7		
7.	. Experimental Procedure of Ir-Catalyzed C–H Functionalization			
	of Sulfoximines for the Synthesis of 1,2-Benzothaizines	S-8		
8.	Spectroscopic Data of 1,2-Benzothiazines Obtained in this Study	S-8		
9.	References	S-18		
10.	Appendix	S-19		
	Spectral Copies of ¹ H and ¹³ C NMR of Compounds Obtained in this Study			

1. General Methods

Unless otherwise stated, all commercial reagents and solvents were used without additional purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates. Visualization via TLC was achieved by the use of UV light (254 nm). Column chromatography was undertaken on silica gel (100–200 mesh) using a proper eluent system. NMR spectra were recorded in chloroform-d at 300, 400 or 500 MHz for ¹H NMR spectra and 75, 100 or 125 MHz for ¹³C NMR spectra. Chemical shifts are quoted in parts per million referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, m = multiplet. Coupling constants, J, are reported in hertz. For ¹³C NMR, chemical shifts are reported in parts per million referenced to the center of a triplet at 77.0 ppm of chloroform-d. HRMS spectra were recorded using ESI-TOF techniques. [Cp*Co(CO)I₂] was synthesized according to the literature.¹ sulfoxomines² and diazo compounds³ were prepared according to the procedure described in the literature.

2. Experimental Procedure of the Optimization Study

To a screw capped vial with a spinvane triangular-shaped Teflon stirbar were addedsulfoximne **1a** (15.5 mg, 0.10 mmol), diazo compound **2a** (18.7 mg, 0.12 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), additive, and solvent (0.5 mL) under air atomosphere. The reaction mixture was stirred at room temeperature for 3 h. After indicated time, the reaction mixture was filtered through a pad of celite and the celite pad was washed with CHCl₃ (10 mL × 2). Solvents were removed under reduced pressure and crude yield was measured by ¹H NMR using an internal standard (1,1,2,2-tetrachloroethane).

Table S1. Optimization of the Ir-Catalyzed C-H Functionalization of Sulfoximines^a

	0, Me S ^{NH} + Eto 1a	$\begin{array}{c} & \bigcirc \\ & & \\$	$\begin{array}{c} \text{nol } \% \\ \text{t} \\ \text{vent} \\ \text{cos} \\ c$	e `Me Et
entry	Ag(I) salt (10 mol %)	Additive (equiv.)	Solvent	Yield $(\%)^b$
1	AgSbF ₆	-	TFE	23
2	$AgSbF_6$	AcOH (1.0)	TFE	94
3	-	AcOH (1.0)	TFE	77
4	-	AcOH (2.0)	TFE	90
5	-	PivOH (2.0)	TFE	96 (90)
6	-	AdCO ₂ H (2.0)	TFE	82
7	-	PhCO ₂ H (2.0)	TFE	78
8	-	PivOH (2.0)	MeOH	81
9	-	PivOH (2.0)	1, 2- DCE	18
10	-	PivOH (2.0)	1,4-Dioxane	n.d.
11	-	PivOH (2.0)	THF	n.d.
12	-	NaOAc (2.0)	TFE	12
13	-	KOAc (2.0)	TFE	15
14 ^c	-	PivOH (2.0)	TFE	n.d.
15 ^d	-	PivOH (2.0)	TFE	14
16 ^e	-	PivOH (2.0)	TFE	12
$17^{\rm f}$	-	PivOH (2.0)	TFE	n.d.

^{*a*}Reaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), $[Cp*IrCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %) and additive in solvent (0.5 mL) at room temperature for 3 h. ^{*b*}Yields are based on crude ¹H NMR (internal standard: 1,1,2,2 tetrachloroethane). ^{*c*}Without $[Cp*IrCl_2]_2$. ^{*d*}Using $[Cp*RhCl_2]_2$ (2.5 mol %). ^{*e*}Using $[Ru(p-Cymene)Cl_2]_2$ (2.5 mol %). ^{*f*}Using $[Cp*Co(CO)I_2]$ (5.0 mol %). n.d. = not detected. TFE = 2,2,2-Trifluoroethanol.

3. H/D Exchange Experiment

Iridium-Catalyzed H/D Exchange in NH-Sulfoximine 1a with CD₃COOD as an additive

To a dried screw capped vial with a spinvane triangular-shaped Teflon stirbar were added **1a** (15.5 mg, 0.10 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), CD_3COOD (2.0 equiv) and TFE (0.5 mL). The reaction mixture was stirred at room temperature for 3 h, filtered through a pad of celite and the celite pad was washed with CHCl₃ (10 mL × 2). The solvent was removed under reduced pressure and the extents of deuterium incorporation was measured by ¹H NMR analysis of the crude mixture.

Figure S1. Crude ¹H NMR for H/D exchange experiment of **1a** with CD₃COOD in absence of **2a**.

4. Intermolecular Competitive Experiment

To a dried screw capped vial with a spinvane triangular-shaped Teflon stirbar were added **1b** (16.9 mg, 0.10 mmol), **1h** (20.0 mg, 0.10 mmol), ethyl diazoacetate **2a** (18.7 mg, 0.12 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), PivOH (20.4 mg, 2.0 equiv.), and TFE (0.5 mL) under air atmosphere. The reaction mixture was stirred at room temperature for 3 h, filtered through a pad of celite and then the celite pad was washed with CHCl₃ (10 mL × 2). The combined organic layers were removed under reduced pressure. The solvent was evaporated under reduced pressure and dried under vacuo. The crude ¹H NMR was recorded to determine the ratio of the products **3ba** and **3ha**.

5. Procedure for comparing reaction rates of 3ba and 3ha

RATE of 3ba: To a dried screw capped vial with a spinvane triangular-shaped Teflon stirbar were added **1b** (16.9 mg, 0.10 mmol), ethyl diazoacetate **2a** (18.7 mg, 0.12 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), PivOH (20.4 mg, 2.0 equiv.), and TFE (0.5 mL) under air atmosphere. The reaction mixture was stirred at room temperature for 10 min, filtered through a pad of celite and then the celite pad was washed with CHCl₃ (10 mL × 2). The combined organic layers were removed under reduced pressure. The solvent was evaporated under reduced pressure and dried under vacuo. The crude yield of **3ba** was measured by ¹H NMR using an internal standard (1,1,2,2-tetrachloroethane) which was found to be 38%.

RATE of 3ha: To a dried screw capped vial with a spinvane triangular-shaped Teflon stirbar were added **1h** (20.0 mg, 0.10 mmol), ethyl diazoacetate **2a** (18.7 mg, 0.12 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), PivOH (20.4 mg, 2.0 equiv.), and TFE (0.5 mL) under air atmosphere. The reaction mixture was stirred at room temperature for 10 min, filtered through a pad of celite and then the celite pad was washed with CHCl₃ (10 mL × 2). The combined organic layers were removed under reduced pressure. The solvent was evaporated under reduced pressure and dried under vacuo. The crude yield of **3ha** was measured by ¹H NMR using an internal standard (1,1,2,2-tetrachloroethane) which was found to be 7%.

6. Intramolecular Kinetic Isotope Effect Experiments

To a dried screw capped vial with a spinvane triangular-shaped Teflon stirbar were added $[D_1]$ -1a (15.6 mg, 0.10 mmol), ethyl diazoacetate 2a (18.7 mg, 0.12 mmol), $[Cp*IrCl_2]_2$ (2.0 mg, 2.5 mol %), PivOH (20.4 mg, 2.0 equiv.), and TFE (0.5 mL) under air atmosphere. The reaction mixture was stirred at room temperature for 10 min, filtered through a pad of celite and then the celite pad was washed with CHCl₃ (10 mL × 2). The combined organic layers were removed under reduced pressure. The residue was purified by column chromatography to afford the desired 3aa and $[D_1]$ -3aa. KIE = 1.3.

Figure S3. ¹H NMR for Intramolecular KIE Study.

7. General Procedure for the Ir-Catalyzed C–H Functionalization of Sulfoximines for the Synthesis of 1,2-Benzothaizines

To a screw capped seal tube vial with a Teflon stirbar were added sulfoximine 1 (0.40 mmol), diazo compound 2 (0.60 mmol, 1.2 equiv), $[Cp*IrCl_2]_2$ (8.0 mg, 2.5 mol %), PivOH (81.6 mg, 2.0 equiv.), and TFE (2.0 mL) under air atmosphere. The reaction mixture was stirred at room temperature for 3 h, filtered through a pad of celite and then the celite pad was washed with CHCl₃ (10 mL × 2). The solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to give the desired 1,2-benzothaizne derivatives.

8. Spectroscopic Data of 1,2-Benzothiazines Obtained in this Study

Ethyl 1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3aa).⁴

Pale yellow solid (95.0 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.0, 1.1 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.42 – 7.36 (m, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.47 (s, 3H), 2.37 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.1, 134.1, 133.0,

126.0, 124.6, 123.4, 116.8, 105.2, 60.8, 45.1, 24.7, 14.2.

Ethyl 1,3,6-trimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ba).⁴

White solid (92.0 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 1H), 7.47 (s, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 3.44 (s, 3H), 2.42 (s, 3H), 2.34 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 151.9, 143.9, 134.3, 127.4, 124.3, 123.5,

114.4, 104.9, 60.7, 45.5, 24.7, 22.1, 14.2.

Ethyl 6-methoxy-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ca).⁴

Light yellow syrup (102.0 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.9 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 6.95 (dd, J = 8.9, 2.4 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 3.41 (s, 3H), 2.36 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 163.0, 153.5,

136.8, 125.7, 115.1, 109.5, 106.2, 104.5, 60.6, 55.4, 45.8, 25.1, 14.2.

Ethyl 1,3-dimethyl-6-phenylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3da).

White solid (119.0 mg, 87%); m.p. 105– 108 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 1.6 Hz, 1H), 7.82 (d, J = 8.3 Hz, 1H), 7.63 – 7.57 (m, 3H), 7.47 (t, J = 7.5 Hz, 2H), 7.44 – 7.39 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.49 (s, 3H), 2.40 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz,

CDCl₃) δ 168.6, 152.8, 146.0, 139.8, 134.7, 128.9, 128.4, 127.4, 125.2, 124.1, 123.1, 115.4, 105.3, 60.8, 45.4, 24.9, 14.3; **HRMS (ESI)** m/z calcd. for C₁₉H₂₀NO₃S [M+H]⁺: 342.1164, found: 342.1161.

Ethyl 6-fluoro-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ea).

White solid (91.0 mg, 80%); m.p. 82– 85 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.8, 5.5 Hz, 1H), 7.51 (dd, J = 11.7, 2.4 Hz, 1H), 7.11 (ddd, J = 8.8, 7.7, 2.5 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.45 (s, 3H), 2.39 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 165.1 (d,

 $J_{C-F} = 251.2 \text{ Hz}$), 154.6, 137.4 (d, $J_{C-F} = 11.0 \text{ Hz}$), 126.5 (d, $J_{C-F} = 10.3 \text{ Hz}$), 114.6 (d, $J_{C-F} = 24.5 \text{ Hz}$), 113.0, 110.5 (d, $J_{C-F} = 25.0 \text{ Hz}$), 104.6, 60.9, 45.6, 25.2, 14.2; **HRMS (ESI)** m/z calcd. for C₁₃H₁₅FNO₃S [M+H]⁺: 284.0757, found: 284.0760.

Ethyl 6-chloro-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3fa).⁴

White solid (100.0 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.35 (dd, J = 8.5, 1.9 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.46 (s, 3H), 2.38 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 154.3, 139.7, 135.9, 126.4, 125.1, 124.3,

114.8, 104.4, 60.9, 45.3, 25.1, 14.2.

Ethyl 6-bromo-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ga).⁴

White solid (110.0 mg, 80%); **H NMR (400 MHz, CDCl₃)** δ 7.97 (d, J = 1.7 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.50 (dd, J = 8.5, 1.8 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.46 (s, 3H), 2.38 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 154.3, 135.8, 129.1, 128.3, 127.3, 124.9,

115.2, 104.2, 60.9, 45.2, 25.1, 14.2.

Ethyl 1,3-dimethyl-6-nitrobenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ha).⁴

Yellow solid (84.0 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 2.1 Hz, 1H), 8.15 (dd, J = 8.7, 2.1 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 4.52 – 4.33 (m, 2H), 3.57 (s, 3H), 2.46 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 156.3, 150.1, 135.6, 125.1, 120.9, 119.74, 2.447, 25.4, 14.2

119.70, 105.4, 61.2, 44.7, 25.4, 14.2.

Ethyl 6-cyano-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ia).

Yellow solid (64.0 mg, 55%); m.p. 175– 178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 1.1 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.60 (dd, J = 8.3, 1.4 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 3.53 (s, 3H), 2.43 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 155.7, 134.7, 129.8,

127.6, 124.4, 118.7, 117.5, 116.8, 104.6, 61.2, 44.7, 25.4, 14.2; **HRMS (ESI)** m/z calcd. for C₁₄H₁₅N₂O₃S [M+H]⁺: 291.0803, found: 291.0807.

Ethyl 6-benzoyl-1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ja).

Yellow Syrup (128.0 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 1.4 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.77 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 4.34 – 4.23 (m, 2H), 3.56 (s, 3H), 2.41 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 2H),

3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 168.0, 153.9, 141.3, 136.4, 134.0, 133.2, 130.1, 128.5, 126.9, 126.2, 123.6, 118.5, 105.5, 60.9, 44.8, 24.9, 14.1; HRMS (ESI) m/z calcd. for C₂₀H₂₀NO₄S [M+H]⁺: 370.1113, found: 370.1104.

Ethyl 1,3-dimethyl-6-vinylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ka).

Pale yellow syrup (92.0 mg, 82%); ¹H NMR (400 MHz, CDCl₃) & 7.72 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 1.4 Hz, 1H), 7.48 (dd, J = 8.4, 1.5 Hz, 1H), 6.74 (dt, J = 18.1, 9.1 Hz, 1H), 5.87 (d, J = 17.6 Hz, 1H), 5.44 (d, J = 10.9 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.46 (s, 3H), 2.37 (s, 3H), 1.40 (t, J = 7.1

Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.6, 142.1, 135.8, 134.7, 123.9, 123.3, 122.8, 117.6, 115.5, 105.1, 60.8, 45.4, 24.9, 14.3; HRMS (ESI) m/z calcd. for C₁₅H₁₈NO₃S [M+H]⁺: 292.1007, found 292.1012.

(*E*)-Ethyl 6-(3-ethoxy-3-oxoprop-1-en-1-yl)-1,3-dimethylbenzo[*e*][1,2]thiazine-4-carbox ylate 1 -oxide (3la).

Yellow solid (125.0 mg, 86%); m.p. 97– 99 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.54 (dd, *J* = 8.4, 1.4 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 3H), 2.39 (s, 3H),

1.41 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 166.1, 153.5, 142.8, 138.8, 134.7, 125.1, 124.1, 121.7, 116.8, 105.0, 60.9, 60.8, 45.1, 25.0, 14.22, 14.19; HRMS (ESI) m/z calcd. for C₁₈H₂₂NO₅S [M+H]⁺: 364.1219, found 364.1216.

Ethyl 1,3,7-trimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ma, major). Ethyl 1,3,5-trimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ma', minor).

White solid (91.0 mg, 81%); m.p. 114– 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.59 (m, 1.14H {major+minor})), 7.55 (s, 1H), 7.45 – 7.37 (m, 1.16H {major+minor}), 7.33 (t, J = 7.6 Hz, 0.17H{minor}), 4.37 (q, J = 7.1 Hz, 2.19H {major+minor}), 3.46 (s, 3H {major}),

3.41 (s, 0.45H {minor}), 2.43 (s, 3H {major}), 2.37 (s, 0.53H {minor}), 2.35 (s, 3H), 1.42 – 1.31 (m, 3.65H {major+minor}); ¹³C NMR (100 MHz, CDCl₃, major+minor) 170.2, 168.7, 151.2, 151.0, 136.3, 135.9, 134.5, 134.1, 132.8, 131.8, 126.2, 124.7, 122.9, 121.0, 120.1, 116.9, 106.4, 105.0, 60.9, 60.7, 45.3, 43.9, 24.7, 23.8, 21.2, 21.0, 14.2, 14.1; HRMS (ESI) m/z calcd. for C₁₄H₁₈NO₃S [M+H]⁺: 280.1007, found 280.1010.

Ethyl 1,3-dimethylnaphtho[2,3-*e*][1,2]thiazine-4-carboxylate 1-oxide (3na, major).⁴ Ethyl 2,4-dimethylnaphtho[1,2-*e*][1,2]thiazine-1-carboxylate 4-oxide (3na', minor).⁴

Yellow solid (108.0 mg, 86%); ¹H NMR (500 MHz, CDCl₃, 3na+3na') δ 8.40 (s, 1H), 8.16 (s, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.95 – 7.78 (m, 4H), 7.66 (d, J = 8.6 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.55 – 7.44 (m, 2H), 4.45 (q, J = 7.1 Hz, 2H), 4.33 – 4.16 (m, 2H), 3.53 (s, 3H), 3.45 (s, 3H),

1.44 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃, 3na+3na') δ 170.6, 168.9, 154.0, 151.1, 135.7, 135.3, 133.8, 130.9, 129.4, 129.1, 128.7, 128.5, 128.4, 128.2, 127.8, 126.7, 126.6, 126.4, 125.0, 122.7, 119.3, 118.1, 114.8, 105.8, 105.4, 60.9, 60.8, 45.3, 44.5, 25.0, 24.1, 14.3, 13.9.

Ethyl 8-bromo-1,3-dimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (30a).⁴

Yellow solid (115.0 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.1 Hz, 2H), 7.40 (t, J = 8.1 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 2.34 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 150.8, 137.3, 133.2, 131.7, 124.3, 118.7, 116.9, 105.2, 61.1, 49.7,

24.3, 14.2.

Ethyl 8-methoxy-1,3-dimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3pa).

White solid (104.0 mg, 88%); m.p. 81– 83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, J = 8.3 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 3.64 (s, 3H), 2.33 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 155.8, 151.1, 135.9,

133.6, 116.7, 106.9, 106.7, 104.9, 60.8, 56.2, 48.2, 24.4, 14.2; **HRMS (ESI)** m/z calcd. for C₁₄H₁₈NO₄S [M+H]⁺: 296.0957, found: 296.0959.

Ethyl 1-ethyl-3-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3qa).⁴

Yellow syrup (97.0 mg, 87%); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (t, J = 8.0 Hz, 2H), 7.58 (t, J = 7.8, 1H), 7.38 (t, J = 7.6 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.74 – 3.63 (m, 1H), 3.56 – 3.45 (m, 1H), 2.38 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ

168.7, 152.9, 135.5, 133.1, 125.9, 124.6, 123.8, 113.8, 104.6, 60.8, 51.0, 24.9, 14.2, 8.3.

Ethyl 1-isopropyl-3-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ra).⁴

White solid (93.0 mg, 79%); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, J = 8.4, 1.0 Hz, 2H), 7.57 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.39 – 7.32 (m, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.79 – 3.64 (m, 1H), 2.38 (s, 3H), 1.47 (d, J = 6.9 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H); ¹³C NMR (125

MHz, CDCl₃) δ 168.9, 153.8, 136.3, 133.2, 125.7, 124.4, 124.4, 112.9, 104.2, 60.7, 57.7, 25.1, 16.7, 14.3, 13.6.

Ethyl 1-cyclopropyl-3-methylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3sa).⁴

Light yellow syrup (94.0 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 0.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 2.83 – 2.75 (m, 1H), 2.38 (s, 3H), 1.81 – 1.69 (m, 1H), 1.45 – 1.30 (m, 5H), 1.28 – 1.17 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 168.8, 152.1, 134.4, 132.7, 125.8, 124.4, 123.6, 117.5, 105.2, 60.7, 32.6, 24.9, 14.2, 6.9, 4.9.

Methyl 1,3-dimethylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ab).⁴

White solid (94.0 mg, 94%); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 1.0 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.59 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.44 – 7.37 (m, 1H), 3.89 (s, 3H), 3.47 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 152.7, 134.2, 133.1, 126.1, 124.7, 123.4, 116.8,

104.9, 51.7, 45.1, 24.9.

Ethyl 3-ethyl-1-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ac).

White solid (98.0 mg, 88%); m.p. 100– 103 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 0.9 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.42 – 7.37 (m, 1H), 4.44 – 4.32 (m, 2H), 3.47 (s, 3H), 2.70 – 2.42 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.5 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 168.8, 156.4, 134.2, 133.0, 126.1, 124.6, 123.5, 116.9, 104.8, 60.9, 45.2, 30.9, 14.2, 13.1; HRMS (ESI) m/z calcd. for C₁₄H₁₈NO₃S [M+H]⁺: 280.1007, found: 280.1013.

Ethyl 1-methyl-3-propylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ad).

White solid (105.0 mg, 90%); m.p. 112– 115 °C; ¹H NMR (400 MHz, **CDCl₃**) δ 7.76 (dd, J = 8.0, 0.8 Hz, 1H), 7.67 – 7.53 (m, 2H), 7.40 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 4.45 – 4.30 (m, 2H), 3.47 (s, 3H), 2.72 – 2.43 (m, 2H), 1.87 – 1.65 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 168.8, 154.9, 134.1, 133.0, 126.1, 124.6, 123.5, 117.0, 105.5, 60.9, 45.2, 39.3, 22.0, 14.2, 13.9; **HRMS (ESI)** m/z calcd. for C₁₅H₂₀NO₃S [M+H]⁺: 294.1164, found: 294.1169.

Ethyl 3-isopropyl-1-methylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ae).

White solid (104.0 mg, 89%); m.p. 95– 97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 1H), 7.61 – 7.52 (m, 2H), 7.38 (ddd, J = 8.2, 6.5, 1.8 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 3.45 (s, 3H), 3.08 – 2.95 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.23 (d, J = 4.3 Hz, 3H), 1.22 (d, J = 4.3 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 169.1, 158.7, 134.2, 132.9, 126.1, 124.4, 123.6, 117.0, 104.3, 60.9, 45.2, 34.1, 21.4, 20.7, 14.2; **HRMS (ESI)** m/z calcd. for C₁₅H₂₀NO₃S [M+H]⁺: 294.1164, found: 294.1165.

Methyl 3-cyclopropyl-1-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3af).

Light orange syrup (93.0 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.1, 0.6 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.35 (ddd, J = 8.1, 6.7, 1.6 Hz, 1H), 3.92 (s, 3H), 3.38 (s, 3H), 2.28 – 2.17 (m, 1H), 1.23 – 1.17 (m, 1H), 1.15 – 1.08 (m, 1H), 0.92 – 0.78 (m, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 169.5, 156.5, 134.4, 133.0, 125.7, 124.4, 123.4, 117.1, 104.8, 51.9, 45.0, 15.6, 9.2, 7.7; **HRMS (ESI)** m/z calcd. for C₁₄H₁₆NO₃S [M+H]⁺: 278.0851, found: 278.0855.

Ethyl 3-(chloromethyl)-1-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ag).

Yellow syrup (99.0 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 1H), 7.68 – 7.62 (m, 1H), 7.50 (t, J = 7.7 Hz, 1H), 4.58 (d, J = 11.1 Hz, 1H), 4.47 (d, J = 11.1 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 3.53 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 149.1, 133.4,

133.2, 127.6, 125.7, 123.4, 118.3, 106.9, 61.4, 46.1, 44.9, 14.1; **HRMS (ESI)** m/z calcd. for C₁₃H₁₅NO₃SCl [M+H]⁺: 300.0461, found: 300.0463.

Ethyl 1-methyl-3-phenylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ah).⁴

Yellow solid (120.0 mg, 92%); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.84 (dd, J = 8.0, 0.9 Hz, 1H), 7.67 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.52 – 7.46 (m, 1H), 7.44 – 7.36 (m, 3H), 4.03 – 3.95 (m, 1H), 3.94 – 3.86 (m, 1H), 3.61 (s, 3H), 0.81 (t, J = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 153.0, 140.5, 133.9, 133.3, 128.9, 128.3, 128.1, 126.7, 124.9, 123.4, 117.3, 105.7, 60.9, 45.1, 13.3.

Ethyl 1-methyl-3-(thiophen-2-yl)benzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ai).

Pale yellow solid (73.0 mg, 55%); m.p. 133–136 °C; ¹H NMR (400 MHz, **CDCl**₃) δ 7.80 (t, J = 7.6 Hz, 2H), 7.64 (t, J = 7.8 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 5.2 Hz, 1H), 7.34 (d, J = 3.6 Hz, 1H), 7.03 (t, J = 4.2 Hz, 1H), 4.33 – 4.06 (m, 2H), 3.58 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C

NMR (125 MHz, CDCl₃) δ 169.0, 143.4, 142.7, 133.6, 133.3, 128.3, 127.6, 127.1, 126.8, 124.6, 123.4, 117.8, 105.4, 61.5, 44.8, 13.7; HRMS (ESI) m/z calcd. for C₁₆H₁₆NO₃S₂ [M+H]⁺: 334.0572, found: 334.0572.

Ethyl 3-(furan-2-yl)-1-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3aj).⁴

Yellow solid (100.0 mg, 79%); ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.66 – 7.59 (m, 1H), 7.47 (dd, J = 1.7, 0.8 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 6.97 (dd, J = 3.4, 0.7 Hz, 1H), 6.50 (dd, J = 3.4, 1.8 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.57 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 168.7, 152.2, 143.8, 138.5, 133.4, 133.2, 126.8, 124.6, 123.4, 118.2, 112.6, 111.8, 104.5, 61.3, 44.8, 14.1.

tert-Butyl 1,3-dimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3ak).

White solid (110.0 mg, 94%); m.p. 120– 123 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 3.48 (s, 3H), 2.35 (s, 3H), 1.60 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 150.2, 134.2, 133.0, 125.9, 124.3,

123.5, 116.8, 106.9, 81.4, 45.4, 28.2, 24.4; **HRMS (ESI)** m/z calcd. for C₁₅H₂₀NO₃S [M+H]⁺: 294.1164, found: 294.1165.

Allyl 1,3-dimethylbenzo[*e*][1,2]thiazine-4-carboxylate 1-oxide (3al).

Pale yellow syrup (100.0 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 0.8 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.58 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.40 (td, J = 7.7, 0.9 Hz, 1H), 6.13 – 5.98 (m, 1H), 5.41 (ddd, J = 17.2, 2.8, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 4.81 (dt, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 4.81 (dt, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 4.81 (dt, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 4.81 (dt, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.30 (dd, J = 5.9, 1.4 Hz, 1H), 5.41 (dd, J = 5.9, 1.4 (dd, J = 5.9,

1.2 Hz, 2H), 3.47 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 152.7, 134.2, 133.1, 131.9, 126.1, 124.7, 123.4, 118.9, 116.8, 104.8, 65.6, 45.2, 24.9; HRMS (ESI) m/z calcd. for C₁₄H₁₆NO₃S [M+H]⁺: 278.0851, found: 278.0856.

1-(1,3-Dimethyl-1-oxidobenzo[*e*][1,2]thiazin-4-yl)ethanone (3am).

Light brown solid (64.0 mg, 68%); m.p. 111– 113 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.0, 0.9 Hz, 1H), 7.59 (ddd, J = 8.4, 7.4, 1.3 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 3.52 (s, 3H), 2.51 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.4, 147.9, 133.4, 133.0, 126.2,

124.0, 123.6, 117.3, 114.3, 45.0, 32.9, 23.9; **HRMS (ESI)** m/z calcd. for C₁₂H₁₃NO₂S [M+H]⁺: 236.0745, found: 236.0749.

(1-Methyl-1-oxido-3-phenylbenzo[*e*][1,2]thiazin-4-yl)(phenyl)methanone (3an).

White solid (71.0 mg, 49%); m.p. 195– 196 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.0, 0.9 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.63 – 7.57 (m, 1H), 7.54 – 7.46 (m, 3H), 7.33 – 7.27 (m, 1H), 7.21 – 7.09 (m, 5H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.8,

150.5, 139.3, 139.2, 134.2, 133.2, 132.6, 129.5, 129.5, 129.1, 128.0, 127.9, 126.8, 125.1, 123.3, 117.8, 111.3, 44.8; **HRMS (ESI)** m/z calcd. for $C_{22}H_{18}NO_2S$ [M+H]⁺: 360.1058, found: 360.1056.

5-Methyl-8,9-dihydrodibenzo[c,e][1,2]thiazin-10(7H)-one 5-oxide (3ao).⁴

White solid (75.0 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ 9.10 (d, J = 8.2 Hz, 1H), 7.79 (dd, J = 8.0, 1.2 Hz, 1H), 7.69 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.50 – 7.42 (m, 1H), 3.41 (s, 3H), 2.88 – 2.73 (m, 2H), 2.63 – 2.55 (m, 2H), 2.09 – 1.95 (m, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 166.2, 4.126 δ , 122 2, 118 ϵ , 109 5, 44 δ , 20 4, 25 2, 20 δ

134.2, 133.9, 127.4, 126.8, 123.2, 118.6, 108.5, 44.8, 39.4, 35.2, 20.8.

5,8,8-Trimethyl-8,9-dihydrodibenzo[c,e][1,2]thiazin-10(7H)-one 5-oxide (3ap).

White solid (68.0 mg, 62%); m.p. 98–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.22 (dd, *J* = 8.6, 0.7 Hz, 1H), 7.79 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.69 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.46 (ddd, *J* = 8.2, 7.3, 1.1 Hz, 1H), 3.42 (s, 3H), 2.71, 2.65 (ABq, *J* = 17.7 Hz, 2H), 2.48, 2.44 (ABq, *J* = 16.7 Hz, 2H), 1.10

(s, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 164.6, 134.0, 133.9, 127.0, 126.7, 123.2, 118.3, 107.1, 53.1, 48.7, 44.9, 31.5, 28.4, 27.7; HRMS (ESI) m/z calcd. for C₁₅H₁₈NO₂S [M+H]⁺: 276.1058, found: 276.1061.

Dimethyl (1,3-dimethyl-1-oxidobenzo[e][1,2]thiazin-4-yl)phosphonate (3aq).⁴

Yellow syrup (98.0 mg, 81%); ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.68 – 7.58 (m, 1H), 7.43 (t, J = 7.5 Hz, 1H), 3.75 (d, J = 11.4 Hz, 3H), 3.72 (d, J = 11.4 Hz, 3H), 3.43 (s, 3H), 2.64 (d, J = 1.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.7 (d, J_{C-P} =

19.2 Hz), 136.0 (d, $J_{C-P} = 14.7$ Hz), 132.8, 126.6, 126.1, 122.7, 117.3 (d, $J_{C-P} = 11.2$ Hz), 94.9 (d, $J_{C-P} = 200.3$ Hz), 51.93 (d, $J_{C-P} = 2.2$ Hz), 51.88 (d, $J_{C-P} = 2.1$ Hz), 43.4, 26.8.

Ethyl 1-methylbenzo[e][1,2]thiazine-4-carboxylate 1-oxide (3ar).⁴

Light yellow solid (70.0 mg, 70%); ¹H NMR (500 MHz, CDCl₃) δ 8.81 (d, J = 8.4 Hz, 1H), 8.27 (s, 1H), 7.82 (dd, J = 8.0, 1.1 Hz, 1H), 7.69 (ddd, J = 8.6, 7.2, 1.4 Hz, 1H), 7.51 – 7.44 (m, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.46 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 150.0,

134.1, 133.7, 126.8, 125.8, 123.9, 117.6, 102.6, 60.1, 45.8, 14.4.

9. References

- (1) (a) B. Sun, T. Yoshino, S. Matsunaga and M. Kanai, *Adv. Synth. Catal.*, 2014, 356, 1491; (b) S. A. Frith and J. Spencer, *Inorganic Syntheses.*, 1990, 28, 273.
- (2) (a) M. Zenola, R. Doran, L. Degennaro, R. Luisi and J. A. Bull, *Angew. Chem., Int. Ed.,* 2016, 55, 7203; (b) A. Tota, M. Zenzola, S. J. Chawner, S. St. John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro and J. A. Bull, *Chem. Commun.*, 2017, 53, 348.
- (3) (a) P. Meffre, S. Hermann, P. Durand, G. Reginato and A. Riu, *Tetrahedron*, 2002, 58, 5159; (b) A. M. P. Koskinen and L.Muñoz, *J. Chem. Soc.*, *Chem. Commun.*, 1990, 652.
- (4) Y. Cheng and C. Bolm, Angew. Chem., Int. Ed., 2015, 54, 12349.

Appendix I

Spectral Copies of ¹H and ¹³C NMR of Compounds Obtained in this study

S-22

S-40

