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1. General

The reagents, proteins, and enzymes were purchased from Sigma-Aldrich, Alfa Aeser, and Merck
Novabiochem. The organic solvents used were reagent grade. Thermo Scientific MaxQ 8000
(350 rpm, 25°C) incubator-shaker was used for conducting the reactions. BUCHI Rotavapor R-
210/215 was used to remove organic solvents. CHRiST ALPHA 2-4 LD plus lyophilizer was
used for lyophilization of the aqueous samples. UV spectra were recorded on PerkinElmer
Lambda 25 UV-Vis spectrometer. Circular Dichroism (CD) measurements were recorded on
JASCO J-815 CD spectropolarimeter equipped with Peltier temperature controller. All the
spectra were measured in a cuvette of path length 2 cm at 25 °C with a scan speed of 50 nm/min
and spectral band width of 1 nm. OriginPro 8 software is used for plotting the UV-Vis and CD
spectra. In the enzymatic assay, absorbance was normalized to its values by dividing its
absorbance maxima (OriginPro 8). Thin-layer chromatography (TLC) was performed on silica
gel coated aluminium TLC plates (Merck, TLC Silica gel 60 F,s4) and visualized using a UV
lamp (254 nm). Flash column chromatography was carried out on Combiflash Ry 200 and gravity
columns were performed with glass columns using 230-400 mesh silica gel from Merck. 'H, '°F,
and >C NMR spectra were recorded on Bruker Avance III 400 MHz and Bruker Avance III 500
MHz NMR spectrometer. '"H NMR spectra were referenced to TMS (0 ppm), CDCl; (7.26 ppm)
DMSO-dg (2.50 ppm), and D,0 (4.79 ppm). *C NMR spectra were referenced to CDCl; (77.16
ppm), '°F NMR spectra were referenced to TFA (-75.45 ppm). Peak multiplicities are designated
by the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet;
m, multiplet; bs, broad singlet. All the NMR spectra were recorded at 298 K. Agilent
Technologies 1200 series HPLC paired to Agilent 6130 mass spectrometer (ESI/APCI) was used
to follow the reaction with small molecules and protein. HPLC experiments of compounds were
performed on Poroshell 300SB-C18 column (3.0 x 50 mm x 2.7 p) with the flow rate 0.4
ml/min. Bruker Daltonics MicroTOF-Q-II with electrospray ionization (ESI) was used for the
HRMS data. Matrix-assisted laser desorption/ionization time of flight mass spectrometry was
performed with on Bruker Daltonics UltrafleXtreme. Sinapic acid matrix was used for Lysozyme
C, RNase A, Myoglobin, Ubiquitin, a-Lactalbumin, Cytochrome C and a-Chymotrypsinogen A.
On the other hand, a-cyano-4-hydroxycinnamic acid (HCCA) matrix was used for digest of all
the proteins. Data analysis was performed using flexAnalysis 3.4. Peptide mass and fragment ion
calculator were used for peptide mapping and sequencing (http://db.systemsbiology.net:8080/
proteomicsToolkit/FraglonServlet.html).



2. Methods

2.1. Procedure for protein labeling

In a 1.5 ml eppendorf tube, a protein (1, 7.3 nmol) in phosphate buffer (90 ul, pH 7.8, 0.1 M)
was taken. To the protein solution, aldehyde (2, 2.19 umol) in DMSO (5 pl) and
triethylphosphite (3, 2.19 pumol) in DMSO (5 ul) were added from freshly prepared stock
solutions. The reaction mixture was vortexed (350 rpm) in the incubator-shaker at 25 °C. The
progress of reaction was monitored by MALDI-ToF MS using sinapic acid as matrix or ESI-MS.
The reaction mixture was treated with hydroxylamine hydrochloride (250 pg, 3.65 pmol) in
water (5 ul) for 2 h to quench the excess aldehyde. The excess reagents and salts were removed
using spin concentrator (3 kDa MWCO). The reaction mixture was investigated with mass
spectrometry. The solvent was removed through lyophilization and the sample was subjected to
proteolytic digestion. The peptide mapping of the digest and MS-MS of the labeled peptide(s)
was used to confirm the site of labeling.

2.2. Digestion protocol
Procedure for in-solution digestion of RNase A and Lysozyme C, a-Chymotrypsinogen A
and o -Lactalbumin

All the solutions were prepared freshly before use in reactions.™

Step 1. Protein (0.1 mg, 7.3 nmol) in 100 mM tris (10 pl, pH 7.8) with urea (6 M) was taken in 2
ml Eppendorf tube and vortexed for 30 minutes.

Step 2. Disulfide reduction: To reduce the disulfide bonds, reducing agent (1 pL, 0.2 M DTT in
0.1 M tris) was added to the solution and sample was vortexed for 1 h at 25 °C or 37 °C.

Step 3. Sulfhydryl alkylation: To block the free sulthydryl groups, alkylating agent (4 uL, 0.2
M iodoacetamide in 0.1 M tris) was added to the solution and incubated (in the dark) for 1 h at
ambient temperature.

Step 4. Quenching alkylating reagent: To quench the unreacted iodoacetamide, reducing agent
(DTT, 4 pL) was added again to the mixture and the sample was vortexed at 25 °C for 1 h.
Dilution of the reaction mixture with grade I water reduced the urea concentration to 0.6 M.

Step 5. Enzymatic digestion: To this solution, 10 pL of a-chymotrypsin or trypsin solution [2
ug, based on ratio of chymotrypsin or trypsin/protein (1:50); a-chymotrypsin or trypsin in 1 mM
HCI was dissolved in 0.4 M tris and 0.01 M CaCl,] was added and the mixture was incubated at
37 °C for 18 h. Trifluoroacetic acid (0.5 %) was used to adjust the pH of digested solution to < 6
(verified by pH paper). Subsequently, the sample was subjected to peptide mapping by MS and
sequencing by MS-MS.

Procedure for in-solution digestion of Ubiquitin, Cytochrome C and Myoglobin

Steps 1 and 5 were used for digestion of Ubiquitin, Subtilisin A, Cytochrome C, and Myoglobin.
Steps 2, 3 and 4 are not desired as these proteins do not have disulfide bridges or free sulfhydryl
groups.



2.3. Procedure for late-stage orthogonal tagging of the protein

In a 1.5 ml eppendorf tube, a-Chymotrypsinogen A (1g, 7.3 nmol) in phosphate buffer (90 ul, pH
7.8, 0.1 M) was taken. To the protein solution 4-(4-oxopiperidine-1-carbonyl)benzaldehyde (2j,
2.19 pmol) in DMSO (5 pl) and triethylphosphite (3f, 2.19 pmol) in DMSO (5 pl) were added
from freshly prepared stock solutions. The reaction mixture was vortexed (350 rpm) in the
incubator-shaker at 25 °C. The reaction progress was followed by ESI-MS. After 3 h, the excess
aldehyde 2j and triethylphosphite 3h were removed by spin concentrator (3 kDa MW cut off).
The labeled protein sample (4u) was lyophilized before subjecting it to the late-stage tagging.
The labeled protein (4u) was treated with hydroxylamine derivatives (6, 250 pg, 1.46 pmol in 5
ul DMSO) in phosphate bufter (pH 7.0, 0.1 M, 95 ul) for 2 h. Subsequently, the salts and excess
hydroxylamine derivative were removed by spin concentrators (10 kDa MW cut off). The sample
was used for analysis by MS. The sample was lyophilized and stored at -20 °C.

2.4. Procedure for Fab labeling

In a 1.5 ml eppendorf tube, Trastuzumab Fab (1h, 1.25 nmol) in phosphate buffer (45 ul, pH 7.8,
0.1 M) was taken. Benzaldehyde (2a, 0.37 umol) in DMSO (2.5 ul) and triethylphosphite (3h,
0.37 umol) in DMSO (2.5 pl) were added from freshly prepared stock solutions. The reaction
mixture was vortexed (350 rpm) in the incubator-shaker at 25 °C for 1 h. The progress of
reaction was monitored by MALDI-ToF MS using sinapic acid matrix or ESI-MS. The excess
aldehyde in the reaction mixture was quenched with hydroxylamine hydrochloride (250 ng,
0.625 pmol) in water (5 pl) for 2 h. The excess reagents and salts were removed by spin
concentrators (10 kDa MWCO). The sample was lyophilized and re-suspended in the desired
buffer before digestion, peptide mapping, and sequencing by MS-MS.

2.5. Procedure for synthesis of ADC (Trastuzumab-doxorubicin conjugate)

In a 1.5 ml eppendorf tube, Trastuzumab (1i, 3.35 nmol) in phosphate buffer (90 ul, pH 7.8, 0.1
M) was taken. The reagents 4-acetylbenzaldehyde (2k, 1.01 pumol) in DMSO (5 pl) and
triethylphosphite (3h, 1.01 umol) in DMSO (5 pl) were added from freshly prepared stock
solutions. The reaction mixture was vortexed (350 rpm) in incubator-shaker at 25 °C for 8 h. The
progress of the reaction was monitored by MALDI-ToF MS using sinapic acid matrix. The
excess reagents and salts were removed by spin concentrators (30 kDa MWCO). The
Trastuzumab conjugate (10) was lyophilized and re-suspended in phosphate buffer (90 ul, pH
7.0, 0.1 M). The conjugate solution was treated with O,0'-(propane-1,3-diyl)bis(hydroxylamine)
(11, 1.67 pumol) in water (5 pl). The reaction mixture was vortexed (350 rpm) in incubator-shaker
at 25 °C for 2 h. The excess reagent and salts were removed by spin concentrator (30 kDa
MWCO). The labeled antibody was lyophilized and re-suspended in phosphate buffer (90 pl, pH
7.0, 0.1 M). To this solution, doxorubicin (12, 0.67 pmol in 10 pl water) was added and vortexed
for 8 h. Subsequently, the salts and excess doxorubicin (12) were removed by using the spin
concentrator (30 kDa MWCO) (Note: To ensure the removal of doxorubicin imine adducts from
the mAb, hydrazine (3.35 uM, in 5 pl water) was added to the reaction mixture and vortexed for
2 h. Subsequently, the excess reagent and salts were removed by the spin concentrator (30 kDa
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MWCO), and the solvent was removed by lyophilization. The samples were further used for the
UV-Vis spectroscopy analysis and MTT assay.

2.6. Procedure for MTT assay (Anti-proliferative activity assay)
SKBR3 and MDA-MB-231 cells were seeded in 96-well plates (tissue culture grade, flat bottom)

at 1X104 cells/well in a final volume of 100 pul of culture medium RPMI and L55 respectively.
After seeding for 24 h, cells were treated with various concentrations (0.25-1 uM) of T-Mab (1i),
T-Dox (13) and Dox (12) for next 48 h. All the treatments were given in triplicate. The inhibition
of cell proliferation was assessed using the MTT assay from Sigma Aldrich (Sigma Aldrich,
Saint Louis, USA). Briefly, 100 ul of MTT reagent (final concentration 0.5 mg/ml) was added
after removing the medium and the plates were incubated at 37 °C. After 1 h of incubation, 100
ul of DMSO was added and absorbance was taken on an ELISA plate reader with a test
wavelength of 570 nm and a reference wavelength of 630 nm. Relative growth inhibition rates
for the untreated control were calculated and expressed as % inhibition of cell proliferation.

3. Synthesis of reagents

Synthesis of 4-(4-formylphenoxy)butanoate (S4)

(@]

OHC OHC
\/\)J\ ~_ Acetonitrile, KCO3 Acetonitrile, K,CO3 \©\ o Trifluoroacetic acid \©\
reflux, 8 h, (0.1 M) *H( " HO:DCM (1:1) oy OH
82% yield 12 h, 90 °C, (0.08 M) o
s3 86% yield s4

Synthesis of ethyl 4-(4-formylphenoxy)butanoate (S3)*

OHC\©\
o/~\/A7f0\,/

(¢]
S3

In a 25 ml round bottom flask, p-hydroxybenzaldehyde (S1, 122.1 mg, 1 mmol) was dissolved in
10 ml acetonitrile. To this aldehyde solution, K,CO; (276.4 mg, 2 mmol) and ethyl 4-
bromobutanoate (S2, 0.17 ml, 1.2 mmol) were added and reaction mixture was allowed to reflux
for 8 h. The reaction progress was monitored by thin layer chromatography (TLC). Upon
completion, the reaction mixture was filtered to remove K,COs. The solution was concentrated
under vacuum and the product was purified using flash column chromatography (ethylacetate:n-
hexane 2:98) to afford ethyl 4-(4-formylphenoxy)butanoate (S3) (82% yield). 'H NMR (400
MHz, CDCl3) 6 9.86 (s, 1H), 7.81 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 4.14 (9, J = 7.2
Hz, 2H), 4.09 (t, J = 6.2 Hz, 2H), 2.52 (t, J = 7.2 Hz, 2H), 2.14 (m, J = 6.7 Hz, 2H), 1.25 (t, J =
7.1 Hz, 3H). *C NMR (101 MHz, CDCls) & 190.8, 173.0, 163.9, 132.0, 130.0, 114.8, 67.2, 60.6,
30.6, 24.5, 14.3. MS (ESI) [MH]" calcd. C13H1604 237.1, found 237.1.



Synthesis of 4-(4-formylphenoxy)butanoate (S4)

OHC\©\
O/\/YOH

o
S4

The resulted ester derivative (S3, 194 mg, 0.82 mmol) was dissolved in 10 ml water and DCM
mixture (1:1). To this solution, trifluoroacetic acid (4 equiv.) was added and reaction temperature
was elevated to 90 °C. The reaction mixture was stirred for another 12 h and the hydrolysis of
ester was monitored by TLC. Subsequently, the precipitated crude product was filtered and
subjected to silica-gel flash column chromatography (ethylacetate:n-hexane 35:65) to afford the
pure product S4 (86% yield). '"H NMR (500 MHz, DMSO-de) & 9.86 (s, 1H), 7.86 (d, J = 8.7 Hz,
2H), 7.12 (d, J = 8.7 Hz, 2H), 4.11 (t, J = 6.4 Hz, 2H), 2.39 (t, J= 7.3 Hz, 2H), 1.97 (m, 2H). °C
NMR (126 MHz, DMSO-dg) 6 191.3, 174.0, 163.5, 131.8, 129.6, 114.9, 67.2, 30.0, 24.1. MS
(ESI) [MH]" calcd. Cy13H1304 209.2, found 209.2.

Synthesis of 6-((4-(4-formylphenoxy)butanoyl)oxy)hexyl 5-((3aS,4S,6aR)-2-oxohexahydro-
1H-thieno[3,4-d]imidazol-4-yl)pentanoate (2i)

H
1,6-dibromohexane QHC Biotin, DBU

o S
OHC
DBU, Acetonitrile \©\ Acetonitrile o%)k O/Hs\/om/\/\\\"Q(NH
o ooy "efux 6, (0.05 M) oﬂsj(o\ﬂ/\sr reflux, 6 h, (0.04 M) 3 H HNJ\\O
67% yield I 32% yield OHC
S5

S4 2

Synthesis of 6-bromohexyl 4-(4-formylphenoxy)butanoate S5
OHC
\Q\OWO\H{\&
[¢]
S5

In a 25 ml round bottom flask, ethyl-4-(4-formylphenoxy)butanoate (S4, 105 mg, 0.5 mmol) was
dissolved in 10 ml acetonitrile. To this solution, DBU (114 pl, 0.75 mmol) and 1,6-
dibromohexane (100 ul, 1 mmol) were added at room temperature and the reaction mixture was
allowed to reflux for 6 h. The reaction was monitored by thin layer chromatography (TLC) and
upon completion, the solution was concentrated under rotary evaporator. The crude reaction
mixture was directly subjected to flash column chromatography (ethylacetate:n-hexane 10:90) to
afford pure compound 6-bromohexyl 4-(4-formylphenoxy)butanoate S5 (72% yield). 'H NMR
(500 MHz, CDCls3) 6 9.88 (s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 4.10 (m, J
= 6.3, 4.0 Hz, 4H), 3.39 (t, J = 6.8 Hz, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.19-2.09 (m, 2H), 1.89-
1.80 (m, 2H), 1.68-1.58 (m, 2H), 1.50-1.42 (m, 2H), 1.37 (m, J = 14.6, 7.3 Hz, 2H). *C NMR
(126 MHz, CDCls3) 6 190.9, 173.1, 163.9, 132.1, 130.1, 114.8, 67.2, 64.6, 33.7, 32.6, 30.7, 28.5,
27.8, 25.2, 24.5. HRMS (ESI) [MNa]" calcd. C17H,3BrO,Na 393.0672, found 393.0684.



Synthesis of 6-((4-(4-formylphenoxy)butanoyl)oxy)hexyl 5-((3aS,4S,6aR)-2-oxohexahydro-
1H-thieno[3,4-d]imidazol-4-yl)pentanoate (2i)
S H

o
oot 0 \v'Q(NH
OHC/©/ 2o 70(\/\ HAN-,

2i

In a 10 ml round bottom flask, biotin (31 mg, 0.13 mmol) was dissolved in 3 ml acetonitrile. To
this solution DBU (27 ul, 0.19 mmol) and 6-bromohexyl 4-(4-formylphenoxy)butanoate S5 (100
mg, 0.27 mmol) were added at room temperature and the reaction mixture was allowed to reflux
for 6 h. Reaction was monitored by thin layer chromatography (TLC) and upon completion, the
solution was concentrated under rotary evaporator. The reaction mixture was re-dissolved in
ethyl acetate followed by extraction with NaHCOj solution (2x10 ml) and water (2x10 ml). The
organic layers were combined and dried with anhydrous Na,SO,. The ethyl acetate solution was
concentrated under vacuum and the resulted biotinylated product (2i) was purified by flash
column chromatography (MeOH:DCM 3:97; 63% yield). *H NMR (500 MHz, CDCl3)  9.87 (s,
1H), 7.81 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 5.81 (bs, 1H), 5.44 (bs, 1H), 4.52-4.46
(m, 1H), 4.34-4.26 (m, 1H), 4.08 (m, 2H), 4.03 (t, J = 6.7 Hz, 2H), 3.14 (m, 1H), 2.89 (dd, J =
12.8, 4.9 Hz, 1H), 2.72 (d, J = 12.8 Hz, 1H), 2.52 (t, J = 7.2 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H),
2.18-2.10 (m, 2H), 1.65 (m, 9H), 1.49-1.39 (m, 2H), 1.36 (m, 4H). *C NMR (126 MHz, CDCl5)
0 190.8, 173.7, 173.0, 163.8, 132.0, 129.9, 114.7, 67.1, 64.5, 64.2, 61.9, 60.1, 55.4, 40.5, 33.9,
30.6, 28.5, 28.4, 28.3, 28.2, 25.5, 24.8, 24.4. HRMS (ESI) [MNa]* calcd. Cy7H3sN,0,SNa
557.2292, found 557.2287.

Synthesis of reagent 4-(4-Oxo-piperidine-1-carbonyl)-benzaldehyde (2j)°

CHO
CHO H

N
. HBTU, DIPEA
DMF, 25 °C, 10 h
COOH 0 23% yield o l\(l
o

(S6) (87) (2j)

In a 25 mL round bottom flask equipped with a magnetic stirring bar was combined 4-
carboxybenzaldehyde (S6, 152 mg, 1 mmol), HBTU (574 mg, 1.5 mmol) and dissolved in 5 ml
DMF solution. To this solution, DIPEA (254 pl, 1.5 mmol) was added and stirred for 10 min. To
the above reaction mixture, 4-piperidone hydrochloride monohydrate (S7, 108 mg, 1 mmol) was
added. The reaction was allowed to stir at 25 °C and the reaction progress was monitored by
TLC. After completion of the reaction, the DMF was removed under vacuum. The resulted solid
was subjected to silica-gel column chromatography. The product 2j was eluted with 1:1 to 4:1
ethyl acetate/hexanes in 23% vyield. *H NMR (500 MHz, CDCl5): & 10.07 (s, 1H), 7.97 (d, 2H),
7.64 (d, 2H), 4.05 (bs, 2H), 3.70 (bs, 2H), 2.62 (bs, 2H), 2.44 (bs, 2H). *C NMR (126 MHz,
CDCl3): & 206.1, 191.4, 169.6, 140.8, 137.4, 130.1, 127.6, 41.6-38.9 (-CH,CH,- peaks
coalesce).> HRMS (ESI) [MNa]* Calcd. C13H14NO3Na 254.0788, found 232.0789.



Synthesis of O-hydroxylamine derivatives

Synthesis of 7-((3-(aminooxy)propyl)thio)-4-methyl-2H-chromen-2-one (6b)

Q\)i
7 o HS 0" o o
TEA, ACN sy
N-OH + Br” "B ————————> W X
25°C, 16 h, (0.5 M) N K,CO3, ACN, reflux Mo~
0 "Br 16 h, (0.2 M) o) S (e e]

(9] 50% yield 95% yield o (812)
(S8) (S9) (810)
H,N-NH,.H,0
CH,Cly, 25°C, 3 h

(0.05 M), 45% yield

HoN_
2 o/\?\s o Yo
b

Synthesis of 2-(3-bromopropoxy)isoindoline-1,3-dione (510)*

o]
N A~C~
O Br

0
$10

In a 250 ml round bottom flask, N-hydroxyphthalimide S8 (4894 mg, 30 mmol) and triethyl
amine (6.09 ml, 60 mmol) were dissolved in ACN (60 ml). To this solution, 1,3-dibromo
propane (S9, 8.34 ml, 60 mmol) was added and stirred at 25 °C for 16 h. The reaction mixture
was concentrated in vacuo and was added 1 N NaOH solution and ethyl acetate. The organic
layer was separated, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo.
The purification of crude mixture was performed by flash column chromatography using ethyl
acetate:hexane (3:97) gave S10 in 50% vyield. *H NMR (400 MHz, CDCls) & 7.85-7.81 (m, 2H),
7.75-7.50 (m, 2H), 4.36 (t, J = 5.8 Hz, 2H), 3.70 (t, J = 6.5 Hz, 2H), 2.27-2.32 (m, J = 6.2 Hz,
2H) ppm. **C NMR (101 MHz, CDCls) & 163.6, 134.7, 128.9, 123.7, 76.1, 31.6, 29.3 ppm. MS
(ESI) [MH]" calcd. C11H1:Br’®NO; 283.9, found 283.9 and calcd. C11H1:Br¥*NO; 285.9, found
285.9.

Synthesis of 2-(3-((4-methyl-2-oxo0-2H-chromen-7-yl)thio)propoxy)isoindoline-1,3-dione
(S12)

] /@\)l
X
N
o0 > "Ng o o
(0]
S$12

In a 25 ml round bottom flask, 7-mercapto-4-methylcoumarin S11 (192 mg, 1 mmol), K,CO3;
(276 mg, 2 mmol) and 2-(3-bromopropoxy)isoindoline-1,3-dione S10 (568 mg, 2 mmol) were
dissolved in degassed acetonitrile (5 ml) and refluxed for 16 h. The reaction mixture was
concentrated in vacuo and purified by silica gel flash column chromatography using ethyl
acetate:hexane (7:3) to give S12 in 95% yield. *H NMR (400 MHz, CDCl3) & 7.85-7.7 (m, 2H),
7.81-7.73 (m, 2H), 7.48 (d, J = 8.2 Hz, 1H), 7.26-7.20 (m, 2H), 6.21 (d, J = 0.8 Hz, 1H), 4.36 {t,
J =5.8 Hz, 2H), 3.35 (t, J = 7.1 Hz, 2H), 2.40 (d, J = 0.9 Hz, 3H), 2.17-2.11 (m, 2H). **C NMR
(101 MHz, CDCl3) 6 163.7, 160.7, 154.0, 152.2, 142.6, 134.7, 128.9, 124.8, 123.3, 123.3, 117.4,
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114.7, 114.1, 76.7, 28.6, 27.8, 18.6 ppm. HRMS (ESI) [MH]" calcd. C21H1sNOsS 396.0906,
found 396.0925.

Synthesis of 7-((3-(aminooxy)propyl)thio)-4-methyl-2H-chromen-2-one (6b)

/©\)i
HoNL
Ny~ g o X0

6b

In a 5 ml round bottom flask, 2-(3-((4-methyl-2-oxo-2H-chromen-7-yl)thio)propoxy)isoindoline-
1,3-dione S12 (237 mg, 0.6 mmol) was dissolved in CH,Cl, (12 ml). To this solution, hydrazine
monohydrate (80%, 29 ul, 0.6 mmol) was added and stirred at 25 °C for 3 h. The reaction
mixture was filtered and the filtrate was concentrated. The purification of crude mixture was
performed by reverse phase preparative HPLC to isolate 6b (76 mg, 45% yield). *H NMR (400
MHz, CDCl3) 8 7.44 (d, J = 8.3 Hz, 1H), 7.20-7.11 (m, 2H), 6.18 (d, J = 0.9 Hz, 1H), 3.77 (t, J =
5.9 Hz, 2H), 3.05 (t, J = 7.3 Hz, 2H), 2.38 (d, J = 0.8 Hz, 3H), 2.02-1.90 (m, 2H) ppm. *C NMR
(101 MHz, CDCl3) 6 160.7, 153.9, 152.2, 143.3, 124.6, 123.0, 117.1, 114.0, 113.8, 73.8, 28.9,
27.8, 18.6 ppm. HRMS (ESI) [MH]" calcd. C13H1sNO3S 266.0851, found 266.0841.

Synthesis  of  3-(aminooxy)propyl 5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-
yl)pentanoate (6c)

O
N: § 0
Br/\/\o, o) o
ACN, DBU \\,/NH \ NH,NH,'H,0, DCM

ON-NH 0
(s10) o) N . HN _,\\\/\)LO/\/\O,NHZ
NH o Reflux, 16 h, (0.05 M) 25°C, 2 h, (0.1 M) 4

o)
\\7’ 50% yield s o 71% yield

W (S14) o yiel 6c
A P

S (s13)

Synthesis of 3-((1,3-dioxoisoindolin-2-yl)oxy)propyl 5-(2-oxohexahydro-1H-thieno[3,4-d]-
imidazol-4-yl) pentanoate (S14)

H s o
s14

In a 5 ml round bottom flask, biotin S13 (244 mg, 1mmol), 2-(3-bromopropoxy)isoindoline-1,3-
dione S10 (568 mg, 2 mmol), and DBU (304 ul, 2 mmol) were dissolved in acetonitrile (20 ml)
to reflux. The progress of the reaction was analyzed by TLC. After 16 h, the reaction mixture
was concentrated under vacuum, re-dissolved in ethyl acetate, and subjected to aqueous work up.
The combined organic fractions were dried on anhydrous sodium sulfate, filtered, and
concentrated under vacuum. The purification of crude reaction mixture was performed by flash
column chromatography (MeOH/DCM, 0.5-5%) to result 3-((1,3-dioxoisoindolin-2-
yl)oxy)propyl 5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate S14 (224 mg, 50%
yield). *H NMR (500 MHz, CDCls) § 7.87-7.80 (m, 2H), 7.78-7.71 (m, 2H), 5.95 (s, 1H), 5.46
(s, 1H), 4.48 (dd, J = 15.0, 9.8 Hz, 1H), 4.35-4.26 (m, J = 14.0, 6.2 Hz, 5H), 3.20-3.11 (m, 1H),



2.89 (dd, J = 12.8, 5.0 Hz, 1H), 2.72 (d, J = 12.8 Hz, 1H), 2.34 (t, J = 7.5 Hz, 2H), 2.12-2.05 (m,
2H), 1.80-1.60 (m, 4H), 1.50-1.40 (m, 2H) ppm. *C NMR (126 MHz, CDCls) 5 173.6, 163.7,
163.7, 134.6, 128.9, 123.7, 75.1, 62.0, 60.7, 60.2, 55.5, 40.6, 33.9, 28.4, 28.3, 27.7, 24.8 ppm.
HRMS (ESI) [MH]" calcd. CaiH2sN306S 448.1542, found 448.1548.

Synthesis of 3-(aminooxy)propyl-5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-
yl)pentanoate (6c)

O o
NH H
H\,]\\,/ 7é.»\\/\)ko/\/\oz"“*z

H S
6¢c

Synthetic protocol of molecule (6¢) is same as synthetic protocol of 6b. *H NMR (500 MHz,
D,0) 8 4.63 (dd, J = 7.9, 4.9 Hz, 1H), 4.45 (dd, J = 7.9, 4.5 Hz, 1H), 4.21 (t, J = 6.3 Hz, 2H),
3.90 (t, J = 6.2 Hz, 2H), 3.42-3.31 (m, 1H), 3.02 (dd, J = 13.1, 5.0 Hz, 1H), 2.80 (d, J = 13.0 Hz,
1H), 2.44 (t, J = 7.3 Hz, 2H), 2.08-1.94 (m, 2H), 1.84-1.55 (m, 4H), 1.53-1.37 (m, 2H) ppm **C
NMR (126 MHz, D,0) 6 176.9, 165.3, 72.4, 62.1, 62.0, 60.3, 55.3, 39.7, 33.7, 27.9, 27.6, 26.7,
24.1 ppm. HRMS (ESI) [MH]" calcd. C13H24N304S 318.1488, found 318.1467.

Synthesis of 3-(aminooxy)propyl 3,5-bis(trifluoromethyl)benzoate (6d)

CF3

CF,
OH
Fsc/@ﬁ(
(815) © TEA, ACN Hydraznne hydrate
_ TEAACN _ o,
B o 7 Reflux, 8 h, (0.2 M) FaC CH,Cly, 3, (0.1 M) ) FsC NH2
SOy 73% yield 81% yleld
S16
o

(s10)

Synthesis of 3-((1,3-dioxoisoindolin-2-yl)oxy)propyl 3,5-bis(trifluoromethyl)benzoate (S16)

CF3

o

S16

In a 25 ml round bottom flask, 3,5-bis(trifluoromethyl)benzoic acid S15 (258 mg, 1 mmol), 2-(3-
bromopropoxy)isoindoline-1,3-dione S10 (312 mg, 1.1 mmol) and TEA (418 pl, 3 mmol) were
dissolved in acetonitrile (5 ml) to reflux. Progress of the reaction was followed by TLC. After 8
h, reaction mixture was concentrated and purification of crude by flash column chromatography
(ethyl acetate:hexane 2:98) gave  3-((1,3-dioxoisoindolin-2-yl)oxy)propyl 3,5-
bis(trifluoromethyl)benzoate S16 (335 mg, 73% vyield). *H NMR (400 MHz, CDCls) & 8.51 (s,
2H), 8.05 (s, 1H), 7.90-7.70 (m, 4H), 4.70 (t, J = 6.3 Hz, 2H), 4.39 (t, J = 6.0 Hz, 2H), 2.29 (m, J
= 6.1 Hz, 2H) ppm. *C NMR (101 MHz, CDCls) & 164.0, 163.7, 134.7, 132.5, 132.3 (q, J = 34.1
Hz, 2C), 130.1-129.8 (m, 2C), 129.0, 126.6-126.4 (m, 1C), 124.4, 123.7, 123.0 (q, J = 272.8 Hz,
2C), 74.9, 62.7, 27.8 ppm. °F NMR (376 MHz, CDCls) & -62.94 ppm [Trifluoro acetic acid
(TFA) was used as an internal standard, -75.70 ppm]. HRMS (ESI) [MH]" calcd. Cy0H14FsNOs
462.0776, found 462.0775.
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Synthesis of 3-(aminooxy)propyl 3,5-bis(trifluoromethyl)benzoate (6d)

CF3

FsC OO,
© 6d

In a 5 ml round bottom flask with 3-((1,3-dioxoisoindolin-2-yl)oxy)propyl 3,5-
bis(trifluoromethyl)benzoate S16 (138 mg, 0.3 mmol) in DCM (3 ml) was added hydrazine
monohydrate (80%, 37 ul, 0.75 mmol) and stirred at room temperature. The progress of the
reaction was followed by TLC. After 3 h, the reaction mixture was filtered. The filtrate was
concentrated in vacuo to result 3-(aminooxy)propyl 3,5-bis(trifluoromethyl)benzoate 6d (80 mg,
81% yield). 'H NMR (400 MHz, CDCls) & 8.48 (s, 2H), 8.07 (s, 1H), 5.42 (bs, 2H), 4.50 (t, J =
6.5 Hz, 2H), 3.83 (t, J = 6.1 Hz, 2H), 2.11 (m, J = 6.3 Hz, 2H) ppm. **C NMR (101 MHz,
CDCl3) & 164.1, 132.9, 132.6 (q, J = 33.9 Hz, 2C), 130.0-129.7 (m, 2C), 126.6-126.3 (m, 1C),
123.02 (g, J = 273.0 Hz, 2C), 72.2, 63.6, 27.9 ppm. *°F NMR (376 MHz, CDCls) & -62.54 ppm
[TFA was used as an internal standard, -75.70 ppm]. HRMS (ESI) [MH]" calcd. C1,H:2,FsNO3
332.0731, found 332.0699.
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4. Additional results and discussions

4.1. Optimization of reaction conditions
Table S1. Screening the reactivity of nucleophiles with protein derived imines

Ph Nu
N°-NH,
NY 1 { 4NH\2 ﬁ‘{ ) NHZ \{ - t 4NH\
> /‘, Ph-CHO (22, 21.9 mM) St A »ﬂr’7 y o
- Nu (3, 21.9 mM) 7 LA
»_..\gr /%NH Buffer?, 25 °C, 10 h ?ﬁ v, '\ /*‘lr )\NU ;«* Lo /%N)\N”
HgNh i "‘ UN “NH, HNZ /_i "‘ HNZ _i\?gu H
N*N
Lysozyme C (1a, 73 uM) 4a-f 5a-f
Entry Nu Observation”
1 PhCCH, Cul -
2 NaBH;CN Heterogeneous mixture
3 NCCH,CN <5% (4c), <5% (5c)
4 ‘Bu-NC 14% (4d, and 5d)
5 H-P(O)(OCH,CF3), -
6 H-P(O)(O'Pr), -
7 H-P(O)(O'Bu), -
8 H-P(O)(OPh), -
9 P(OPh);3 -
10 P(OMe); 40% (4e), 14% (5e)
11 H-P(O)(OMe), 41% (4e), 14% (5e)
12 H-P(O)(OEt), 41% (4f)
13 P(OEt); 42% (4f)

® Phosphate buffer (pH = 7.8, 0.1 M)/DMSO 9:1. ° % conversion are based on MALDI-ToF MS
data. ¢ No reaction was observed.
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Table S2. Optimization of stoichiometry of the aldehyde (2a) and triethylphosphite (3h)

. . e
N "?(&/‘v Ph-CHO (2a) tr &gj)&, (3&&‘ )

‘i}iy} '(\M i, Buff:""(?its)?"’gh:Oh ‘i;i” ;\\&'{/‘%:B\R/tooa ‘;i' A :\j /%:h P\’:%Et
ﬂgmszfj?dﬁu N-NH, HN /__j\?cju H o OR HNZ __f\'?(v;u‘ R OH
Lysozyme C (1a, 73 uM) 4 5f
Entry 2a (equiv.) 3h (equiv.) 4f (Y%oconversion)®
1 10 300 0
2 25 300 <5
3 50 300 16
4 100 300 22
5 100 100 <5
6 100 200 <5
7 200 300 18
8 300 300 42
9 300 500 30

% Phosphate buffer (pH = 7.8, 0.1 M)/DMSO 9:1. ° % conversions are based on ESI-MS data.

We noticed that the stoichiometry of the reagents plays a crucial role in the conversion and
selectivity of protein labeling (Table S2). The screening of reaction with the varying
stoichiometry of reagents 2a and 3h (entries 1-7, Table S2) resulted in low conversions (0-22%
conversion). We hypothesized that the protein labeling might be adversely affected due to a
competing reaction between aldehyde and triethylphosphite. The conversions improved
considerably (42% conversion) with 300 equivalents of reagents 2a and 3h (entry 8). Further

increase in the stoichiometry of 3h led to reduced conversions.
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Table S3. Effect of pH and buffer salts on the reaction

% o o2

S5 «&‘ ) Ph-GHO (22) ,\g.f,., o :};5 ,\g.{b,@, . Wfd 4 ).

PR e PR o WG e W
,t,'z';j\,gz S "‘ g W HZNQ 3 8 OEt LN f\;‘(ru H OEt  pp : N :j\;‘(}u H  OEt
Lysozyme C (1a, 73 uM) 5f EtO” I "OEt 6f
Entry Buffer Conversion”
1 Phosphate buffer (pH 7.8, 0.1 M) 4f (42%)
2 Phosphate buffer (pH 7.0, 0.1 M) 4f (39%)
3 Phosphate buffer (pH 6.0, 0.1 M) 4f (0%)
4 Sodium bicarbonate buffer (pH 7.0, 0.1 M) Complex spectra
5 Tris buffer (pH 7.8, 0.1 M) 4f (44%), 5f (22%), 6f (5%)
6 HEPES buffer (pH 7.8, 0.1 M) 4f (42%), 5f (39%), 6f (6%)
7 PBS buffer (pH 9.0, 0.1 M) 4f (46%), 5f (16%)

2 Buffer (0.1 M)/DMSO 9:1. ® % Conversion based on ESI-MS and MALDI-ToF-MS data.

Next, we investigated the impact of buffer on the reaction (Table S3). The transformation in the
phosphate buffer with pH range 7.8-7.0 renders the mono-labeled product 4f in good conversion
(entries 1 and 2). On the other hand, the protein remains unaltered at pH 6.0 owing to the
decreased nucleophilicity of triethylphosphite (entry 3). We also noted an interesting effect of the
buffer salt on the reaction (entries 4-6). In particular, high conversions were observed in both tris
and HEPES buffer but at the cost of selectivity. We noted a similar trend at pH 9.0 in PBS buffer
(entry 7, Table S3). We selected the phosphate buffer (pH 7.8, 0.1 M) conditions for further

experiments as it delivers good conversions while retaining excellent site-selectivity.
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4.2. Stability of triethylphosphite in aqueous condition

H
\/0\,3:,1/0\/ H,0 b
| E—— /\0/6\0/\

™
3h 3g

Peaks from buffer
In Phosphate buffer (pH 7.8, 0.1 M ):D,0 (9:1): 30 minutes

_~Peaks from buffer
39)
@g) ||, ¢
13.6 ppr\n 9.6 ppm

/
mmwmmmmmwmmmmmwnmmmmwmmmmwmwwwU mmmJ M A

In Phosphate buffer (pH 7.8, 0.1 M ):D,0 (9:1): 5 minutes

Unidentified—| (3h)

peak 1?8.5 ppm
Peaks from buffer
(39)
(39) 9.6 ppm Peaks from buffer
13.6 pr'n Y
T T T T T T T T T T T T T T T T T T T
150 140 130 120 110 100 90 80 70 0 50 40 30 20 10 0 -10 -20 -30

6!
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Figure S1. *P-NMR analysis of the triethylphosphite.

P NMR of triethylphosphite (3h, & 137.5 ppm) confirms that it is stable in CDCl; for 12 h.
However, it converts rapidly into diethylphosphite (3g) within 30 minutes in phosphate buffer
(pH 7.8, 0.1 M). It indicates that the active nucleophilic species in the reaction is
diethylphosphite (3g).
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4.3. Plausible mechanism

o o]
Ry 'Ry R ~NHz R:™ Rg R“/NHQ
s171L s18 s17 ﬂ s18
Ry
R R44<R2 N R
2 N= =N, s R
R \ SN
o ReRs Eto.__K °R, SToRs H20 0.0 H Ragro Re——N
R, e $19 EtO.;.OEt 22— p __s19 ‘
3 . -F I Ll bt
EtO/P\OEtH / t O‘\rH\ Pathway 1 Ot Pathway 2 OEt EtO\/F\,\”l_| \ -
CH3CH,OH EH OH, h 39 EtO o Re 20
3 S22 S P
s21 s20 " Heig OFt
2

R:s R
/=N, Re—=N 4/ s21
EtO.;.OH

Rs_ R4 N

P’ —s19 EO; 1)

OEt EtO” O~

$23 S24
Initially, we anticipated that the phospha-Mannich reaction would involve nucleophilic addition
of triethylphosphite (3h) to the imine S19 (pathway 1).° However, the *'P NMR investigations
suggest that 3h converts completely to diethylphosphite (3g) in the aqueous buffer. It suggests
that the pathway 2 is operative under the given conditions where 3g reacts with imine and
renders the product S21 through $22.° The participation of phosphite (S23) is ruled out by *'P
NMR.
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5. Effect of labeling on the structure of protein
a) b)

O
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Figure S2: Effect of the reaction conditions on the secondary structure of protein in phosphate
buffer (pH 7.8, 0.1 M). (a) Circular Dichroism (CD) spectra of Lysozyme C (1a, black line),
mono-labeled Lysozyme C (4f, red line) at concentration 5 uM. (b) Circular Dichroism (CD)
spectra of Ubiquitin (1b, black line), mono-labeled Ubiquitin (40, red line) at concentration 3
uM. (c) Circular Dichroism (CD) spectra of RNase A (1c, black line), mono-labeled RNase A
(4p, red line) at concentration 5 uM. (d) Circular Dichroism (CD) spectra of a-lactalbumin (1d,
black line), mono-labeled a-lactaloumin (4q, red line) at concentration 5 uM. (e) Circular
Dichroism (CD) spectra of Cytochrome C (1e, black line), mono-labeled Cytochrome C (4r, red
line) at concentration 5 uM. (f) Circular Dichroism (CD) spectra of Myoglobin (1f, black line),
mono-labeled Myoglobin (4s, red line) at concentration 5 uM. (g) Circular Dichroism (CD)
spectra of a-chymotrypsinogen A (1g, black line), mono-labeled a-chymotrypsinogen A (4t, red
line) at concentration 5 pM.
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6. Enzymatic assay
6.1. Enzymatic assay of Lysozyme C’

Lysozyme C activity before and after the labeling was checked by Micrococcus lysodeikticus
(ML) lysis at 450 nm (A4s0) using quartz cuvette (path length, 1 c¢cm at 25 °C). Potassium
phosphate buffer (pH 6.2, 0.1 M) was prepared by dissolving potassium phosphate, monobasic in
the Millipore Grade | water. The pH was adjusted to 6.2 at 25 °C using 1 M potassium hydroxide
(KOH) solution. Micrococcus lysodeikticus cell wall suspension [0.01% (w/v)] was prepared in
phosphate buffer. The change in absorbance at 450 nm of this suspension versus a buffer blank
was in agreement with the literature (0.6-0.7) after adjustment using the appropriate amount of
buffer. Freshly prepared Lysozyme C and labeled Lysozyme C solutions (10 pg/l ml, in
phosphate buffer) were used for the assay. 100 pl of Lysozyme C solution and Micrococcus
lysodeikticus suspension (1 ml) were mixed by inversion. The sample was immediately used for
recording the absorbance at 450 nm. The protocol was repeated for measuring the absorption of
Micrococcus lysodeikticus and labeled Lysozyme C mixture. The enzymatic activity of
Lysozyme C remains unperturbed after the chemical modification.

10p—=—» = = o o o o o .
3 —a— Micrococcus lysodekticus (ML)
° o @ - 4f+ML
] ~--4A---1a+ML
g 0.8 1 .
T 06 ®..
o 0 Q.
© e
E ‘0.
J .,
2 0.4 o
0 2 4 6 8 10
Time (min)

Figure S3: Normalized UV-Vis spectra. Comparison of enzymatic activity between native
Lysozyme C (1a) and labeled Lysozyme C (4f). The enzymatic activity of Lysozyme C remains
unperturbed after the chemical modification. Absorbance was normalized to its values by
dividing its absorbance maxima (OriginPro 8).
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6.2. Enzymatic assay of RNase A®

RNase A activity before and after the labeling was checked by Ribonucleic acid (RNA, 16)
hydrolysis at 300 nm (Asq) using quartz cuvette (path length, 1 cm at 25 °C). Sodium acetate
buffer (pH 5.0, 0.1 M) was prepared by using the Millipore Grade | water (pH was adjusted with
2 M acetic acid). Ribonucleic acid [RNA, 0.1% (w/v), 1 mg/ml] solution was prepared in sodium
acetate buffer. Change in absorption at 300 nm of the RNA was performed using RNA solution
and blank. Freshly prepared RNase A and labeled RNase A solutions (10 pg/1 ml, in Millipore
Grade | water) were used for the assay. RNA (500 pl) and RNase A (500 pl) solutions were
mixed by inversion and immediately recorded at 300 nm for 1 h. Similarly, absorption of a
mixed solution of RNA and labeled RNase A were performed. The enzymatic activity of RNase
A remains unperturbed after the chemical modification.

1'00‘L\H"—l’\u——4_Hﬂ_.

S

8 —a— Ribonucleic acid (RNA)

® ® 4p+RNA

% 0.961 o 4 1c+RNA

2

] o

n

< 0.92- ®.

o L

g ® e

€ 0.88- L A

S ®
0 2 4 6 8 10

Time (min.)

Figure S4. Normalized UV-Vis spectra. Comparison of enzymatic activity between native
RNase A (1c) and labeled RNase A (4p). The enzymatic activity of RNase A (1c) remains
unperturbed after the chemical modification. Absorbance was normalized to its values by
dividing its absorbance maxima (OriginPro 8).
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7. MS data of proteins
7.1. Screening of nucleophiles
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Figure S5. MALDI-ToF MS spectra of various nucleophiles with Lysozyme C (1a) and
benzaldehyde (2a). (a) Reaction with NaBH3;CN (3a). (b) Reaction with malononitrile (3c). (c)

Reaction with 'BuNC (3d). (d) Reaction with trimethylphosphite (3f). (e) Reaction with
triethylphosphite (3h).
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Figure S6. Site-selective native Lysozyme C modification. (a) ESI-MS spectra for Lysozyme
C 1a (1 equiv.) and mono-labeled Lysozyme C 4f. (b) MALDI-ToF MS spectra of Lysozyme C
(1a) and mono-labeled Lysozyme C 4f. (¢) MALDI-ToF MS-MS spectrum of labeled
RNRCKGTDVQAW (R112-M123). Site of modification is K116 in mono-labeled Lysozyme C

4f.
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7.2. Scope of aldehydes
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Figure S7. Deconvoluted ESI-MS spectra of the labeled proteins with various aldehydes. (a)
Labeling of Lysozyme C (1a) with 4-chlorobenzaldehyde (2e). (b) Labeling of Lysozyme C (1a)
with 4-bromobenzaldehyde (2f). (c) Labeling of Lysozyme C (1a) with 4-hydroxybenzaldehyde
(29). (d) Labeling of Lysozyme C (1a) with 4-methoxybenzaldehyde (2h).
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Figure S8. MALDI-ToF MS spectra for site-selective modification of native Lysozyme C (1a)
with 3,4-difluorobenzaldehyde (2d).

5 (4n)
O 14964,803
¢ 6000 |
3 1
£
4 CHO
5000_ e \/\)CL
A0
HN o) WO
s ¢}
J (1a) H (2i)
4000 14308.621
30004
-
o
1 3
2000 s s
J 3 ©
x
Ll
2 ||z
1 = 9
H
1000 o
o
11000 12000 13000 14000 15000 16000 17000 18000 19000

mz

Figure S9. MALDI-ToF MS spectra for site-selective modification of native Lysozyme C (1a)
with biotinylated aldehyde (2i).
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7.3. Scope of protein
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Figure S10. Site-selective native Ubiquitin modification. (a) ESI-MS spectra for Ubiquitin 1b
(1 equiv.) and mono-labeled Ubiquitin 40. (b) MALDI-ToF MS-MS spectrum of labeled
AGKQL (A46-L50). Site of modification is K48 in mono-labeled Ubiquitin 4o.
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Figure S11. Site-selective native RNase A modification. (a) ESI-MS spectra for RNase A 1c (1
equiv.) and mono-labeled RNase A 4p. (b) MALDI-ToF MS-MS spectrum of labeled
TKDRCKPVNTF (T36-F46). Site of modification is K37 in mono-labeled RNase A 4p.
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Figure S12. Site-selective native a-lactalboumin modification. (a) ESI-MS spectra for o-
lactalbumin 1d (1 equiv.) and mono-labeled o-lactalbumin 4qg. (b) MALDI-ToF MS-MS
spectrum of labeled DKVGINY (D97-Y103). Site of modification is K98 in mono-labeled a-
lactalbumin 4q.
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Figure S13. Site-selective native Cytochrome C modification. (a) ESI-MS spectra for
Cytochrome C le (1 equiv.) and mono-labeled Cytochrome C 4r. (b) MALDI-ToF MS-MS
spectrum of labeled GRKTGQAPGF (G37-F46). Site of modification is K39 in mono-labeled

Cytochrome C 4r.
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Figure S14. Site-selective native Myoglobin modification. (a) ESI-MS spectra for Myoglobin
1f and mono-labeled Myoglobin 4s. (b) MALDI-ToF MS-MS spectrum of labeled RNDIAAKY
(R139-Y146). Site of modification is K145 in mono-labeled Myoglobin 4s.
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Figure S15. Site-selective native a-chymotrypsinogen A modification. (a) ESI-MS spectra for
a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled a-chymotrypsinogen A 4t. (b) MALDI-
ToF MS-MS spectrum of labeled DQGSSSEKIQKL (D72-L83). Site of modification is K79 in
mono-labeled a-chymotrypsinogen A 4t.
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8. Late-stage orthogonal tagging of the labeled protein

» CHO 1) P(OEt); (300 equiv.)
IEE Phosphate buffer?

L ,‘-( 3" 0 - {" )
P ) 25°C, 4 h, [73 uM] PA0 o R
g o 1 5 / 7 3 N\ '
:\»., W \’NX/HINHZ 28% conversion !h. " g3 (;MN #70
¥R 2 ¥R H N
Ao S 2 Ry ONH o> AN
A N"To g N2 N -
S 5 Phosphate buffer® - ©

0 7an
a-Chymotrypsinogen A i _ 37°C, 2 h, [73 mM] ac
(19, 73 uM) 2j (300 equiv.)
R3/O\NH2 =
(0]
O,
_NH, \H o g .
[ j "0 \\l’ H . e NHp
= \ 5 S
rj@\ NH HN)@.\\ \/\AO,HSO/NHz
6a [eiNe) s 2 b 3 )
. 6b 6c L |
(7a, 100% conversion) (7b, 100% conversion) (7¢, 100% conversion) 3 (7d, 100% conversion)

a Phosphate buffer (pH 7.8, 0.1 M)/DMSO 9:1. ® Phosphate buffer (pH 6.0, 0.1 M)/DMSO 9:1. Hydroxylamine derivatives (200 equiv.)

Scheme S1. Late-stage modification of a-chymotrypsinogen A (1g) with hydroxylamine
derivatives.
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Figure S16. Fluorescence emission spectra of a-chymotrypsinogen A (1g, black line), labeled a-
chymotrypsinogen A (7b, red line) in phosphate buffer (0.1 M, pH 7.0) at concentration 1 mg/ml.
The fluorescence spectra of coumarin labeled a-chymotrypsinogen A (7b) results emission at
434 nm upon excitation at 336 nm.
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Figure S17. **F-NMR probe labeled o-chymotrypsinogen A (7d, shows a sharp signal at -62.65
ppm by °F NMR spectroscopy [TFA (0.2 mM) as internal standard at -75.45 ppm, phosphate
buffer (0.1 M, pH 7.0):D,0 (9:1)].
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Figure S18. ESI-MS spectra for a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled o-
chymotrypsinogen A 4u.
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Figure S19. (a) ESI-MS spectra for a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled a-
chymotrypsinogen A 7a. (b) MALDI-ToF MS-MS spectrum of labeled DQGSSSEKIQKL (D72-
L83). Site of modification is K79 in mono-labeled a-chymotrypsinogen A 7a.
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Figure S20. (a) ESI-MS spectra for a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled a-
chymotrypsinogen A 7b. (b) MALDI-ToF MS-MS spectrum of doubly charged labeled
DQGSSSEKIQKL (D72-L83). Site of modification is K79 in mono-labeled a-chymotrypsinogen

A T7hb.
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Figure S21. (a) ESI-MS spectra for a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled a-
chymotrypsinogen A 7c. (b) MALDI-ToF MS-MS spectrum of doubly charged labeled
DQGSSSEKIQKL (D72-L83). Site of modification is K79 in mono-labeled a-chymotrypsinogen
A 7c. (c) MALDI-ToF MS-MS spectrum of labeled DQGSSSEKIQKL (D72-L83). Site of
modification is K79 in mono-labeled a-chymotrypsinogen A 7c.
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Figure S22. (a) ESI-MS spectra for a-chymotrypsinogen A 1g (1 equiv.) and mono-labeled o-
chymotrypsinogen A 7d. b) MALDI-ToF MS-MS spectrum of doubly charged labeled
DQGSSSEKIQKL (D72-L83). Site of modification is K79 in mono-labeled a-chymotrypsinogen

A 7d.
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9. Reactions with Fab and monoclonal antibody

9.1. Labeling of Trastuzumab-Fab

P(OEt); (3h)
a
K183 Phosphate buffer K1?P3/
P/ 25 °C 1h 4
NH, Ph

34% conversion® Y NH
Trastuzumab-Fab

Py

(1h, 12.5 uM) ) EtO 6 OEt
. a

(pdb file: 1n8z) mono-labeled Trastuzumab-Fab

a Phosphate buffer (pH=7.8, 0.1 M)/DMSO = 9:1. ® %conversion were based on the ESI-MS data.

Scheme S2. Labeling of the Trastuzumab-Fab (1h) with benzaldehyde (2a).
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Figure S23. Site-selective native Trastuzumab-Fab modification. (a) ESI-MS spectra for
Trastuzumab-Fab 1h (1 equiv.) and mono-labeled Trastuzumab-Fab S17. (b) MALDI-ToF MS-
MS spectrum of labeled SLSSTLTLSKADY (S174-Y186) of light chain fragment of
Trastuzumab-Fab. Site of modification is K183 in mono-labeled Trastuzumab-Fab S17.
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2 (3.7 mM) N Phosphate buffer® N
25°C,2h
W _3h@ETmM) o e . o W
NH, Phosphate buffera NH Ry NHy NH
25°C,4h
Trastuzumab-Fab _P ) P
(1h, 12.5 pM) EtO 5 OEt EtO” 11 "OEt
- o
(pdb file: 1n8z) (8a, 25%)° ©
O.
Ry” "NH,=
_NH
o §
_NH
0o s 2
6a 6b
(9a, 28% conversion)® (9b, 20% conversion)°®

2 Phosphate buffer (pH=7.8, 0.1 M)/DMSO = 9:1. ® Phosphate buffer (pH=7.0, 0.1 M)/DMSO = 9:1.
¢ %conversion were based on the ESI-MS data.

Scheme S3. Tagging of Trastuzumab-Fab (1g) with hydroxylamine derivatives.
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Figure S24. ESI-MS spectra for Trastuzumab-Fab 1h and mono-labeled Trastuzumab-Fab 9a
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Figure S25. ESI-MS spectra for Trastuzumab-Fab 1h and mono-labeled Trastuzumab-Fab 9b
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9.2. Synthesis of antibody-drug conjugate (T-Dox, 13)

H2N NH2

3h (10 mM) Phosphate buffer®
Phosphate buffer? ) 25 °C,3h
NH2 25°C,8h H 2) Doxorubicin (12)

R; Phosphate buffer®

Trastuzumab 25°C, 8h

(T-Mab, 1i,33.6 uM) R = CH3 (2k 9 3) NHoNHp, 3 h T-Dox (13)
""" Ho_ T TTTTTTh
OH O D OR,= o Rs= oH O
oH : O\/\/o 4
Neses) ‘O‘O

H,N O 'OH O o_: Xy }s%/©)\ HaN fon o O
P2 >~ Eto*g OEt
w : P
! Ho N 3 E10” 11 OFt HO
‘ G, Doxorubicin (12) | CHs

2 Phosphate buffer (pH=7.8, 0.1 M)/DMSO = 9:1. ® Phosphate buffer (pH=7.0, 0.1 M)/DMSO = 9:1. ® %conversion were based on the LC-MS data.
Scheme S4. Synthesis of trastuzumab-doxorubicin conjugate (ADC, 13).

9.2.1. Calculation of drug to antibody ratio (DAR)®

UV spectra were recorded on Agilent Carry 5000 UV-Vis spectrophotometer, operating at 25 °C.
Sample buffer (phosphate buffer, pH 7.8, 0.1 M) was used as blank for baseline correction.
Calculation of DAR follows the formula below with €50 = 215380 M™ cm™ for Trastuzumab (T-
Mab), £495 = 8030 M™ cm™ for doxorubicin and 0.006 as a correction factor for DOX absorption
at 280 nm. Correction factors are calculated based on the UV-Vis spectroscopy. DAR was
calculated as follows:

AbS 495/ €495

DAR = bsyeg — 0.0117 X AbS305)/ Zpm0

AbS4g5: 0.016, Aszgo: 0.43.

DAR =0.92
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Figure S26. UV-Vis spectra for the determination of DAR for ADC (13) prepared with Dox
(12).
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9.2.2. Anti-proliferative activity test (MTT assay)
(a) (b)

60-
B3 T-Dox (13) 100 £3 T-Dox (13)

B3 T-Mab (1i) D Dox (12)

% inhibition
% inhibition

N o 0

Drug concentration (uM)

Figure S27: (a) Synthesis of antibody drug conjugate of Trastuzumab (1i) through doxorubicin
(12) conjugation. (b) Inhibition of cell proliferation by T-Dox (13) in cancer cell lines SKBR3
(HER2 positive) and MDA-MB-231 (HER2 negative). Cells were treated with various
concentrations of T-Dox (13) and T-Mab (1i) and inhibition of cell proliferation was screened
after 48 h using MTT assay. The percentage inhibition was calculated using cells only as
control.*shows significant inhibition and the error bars denotes standard error of the mean. (c)
Selective inhibition of cancer cell proliferation by T-Dox in comparison with doxorubicin.
Inhibition of cell proliferation by T-Dox (13) in comparison with equivalent concentrations of
doxorubicin in SKBR3 (HER2 positive) and MDA-MB-231(HER2 negative) cancer cells. Cells
were treated with T-Dox at 2 uM concentration or equivalent doxorubicin (12) for 48 h.
Inhibition of cell growth measured by % inhibition of cell proliferation using cell only as control.

B3 T-Dox (13)
[ Control
E3 T-Mab (1i)
@ Dox (12)

% inhibition

Drug concentraion (pM)

Figure S28. The anti-proliferative activity of the T-Mab (1i), T-Dox (13) with HER2 positive
SKBR3 cells at 48 h.

The control experiments for the non-selective binding of Dox (12) with antibody performed by
mixing 200 equivalents of Dox (12) with T-Mab (1i) and incubated for the 8 h. The sample was
treated with hydrazine for 2 h. The excess Dox (12) and hydrazine were washed with water (40
ml) by 30 using spin concentrator (30 kDa MWCO). Further sample (control) was subjected to
MTT assay with HER2 positive SKBR3 cells. The MTT suggest that the control samples do not
show any effect on the cell proliferation activity.
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10. NMR data of small molecules
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