Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Mild Rhodium(III)-Catalyzed Intramolecular Annulation of Benzamides with Allylic Alcohols to Access Azepinone Derivatives

Augustin Peneau,^a Quentin Tricart,^a Catherine Guillou*^a and Laurent Chabaud*^a

a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France). Fax: +33 (0)1 69 07 72 47; Tel: +33 (0)1 69 82 30 75

E-mail: laurent.chabaud@cnrs.fr, catherine.guillou@cnrs.fr

Supporting Information

Experimental Procedures

Table of contents

1. GENERAL METHODS	S2
2. ALLYLIC ALCOHOL SYNTHESIS AND DERIVATIVES	S2
3- Rh(III)-CATALYZED HECK-TYPE REACTION	S14
4- FUNCTIONALIZATION	\$22

1. GENERAL METHODS

All reactions were carried out under argon with dry solvents unless otherwise noted. Reactions were monitored by thin-layer chromatography on Merck silica gel plates (60F₂₅₄) with a fluorescent indicator. Yields refer to chromatographically or crystalline pure compounds. All commercially available reagents were used without further purification. CH₂Cl₂ and THF were dried by activated alumina. Et₂O extra dry 99.5% was purchased from Sigma-Aldrich. CHCl₃ and 1,2-dichloroethane were distilled over CaCl₂. Anhydrous toluene, 99.8%, Active dry, was purchased from Alfa-Aesar. All separations were carried out under flash chromatographic conditions on silica gel prepacked column Redi Sep (230-400 mesh) at medium pressure (20psi) by using a CombiFlash. All new compounds gave satisfactory spectroscopic analyses (IR, ¹H NMR, ¹³C NMR, HRMS). NMR spectra were determined on Brucker Avance-300 or on Brucker Avance-500. ¹H NMR spectra are reported in parts per million (δ) relative to residual solvent peak. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, sxt = sextet, sept = septuplet, dd = double-doublet, td = triple-doublet, dt = double-triplet, ddd = double double doublet, m = multiplet), coupling constant in Hz, and integration. ¹³C NMR spectra were obtained Brucker Avance-300 (75 MHz) spectrometer and are reported in parts per million (δ) relative to the residual solvent peak. HRMS spectra were obtained on an E.S.I. TOF Thermoquest AQA Navigator spectrometer. Infrared (IR) (v, cm⁻¹) spectra were recorded on a Fourier Perkin-Elmer Spectrum BX FT-IR. Melting points were measured in capillary tubes and are uncorrected.

2. ALLYLIC ALCOHOL SYNTHESIS AND DERIVATIVES

General procedure A

Step 1: Alkylation. To a solution of phenol (1 equiv.) in acetone (5 mL/mmol) is added the allylic bromide (2 equiv.) then K₂CO₃ (2.2 equiv.) under argon at room temperature. The mixture was stirred at 55°C overnight. Then water was added and the aqueous layer extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture purified through silica gel to afford the corresponding ether.

Step 2: Saponification. To a solution of ester (1 equiv.) in ethanol (5.9 mL/mmol) was added a 3M solution of NaOH (3.5 mL/mmol) at room temperature. The mixture was stirred for 2 h, then HCl (2N) was added at 0° C until pH = 2-3. The aqueous layer was extracted with EtOAc and the solvent was evaporated under vacuum. The crude mixture was used without purification.

Step 3: Amide coupling. To a solution of carboxylic acid (1 equiv.) in DMF (3 mL/mmol) was added successively, EDCI (1.1 equiv.), HOBT (1.1 equiv.) and the solution was stirred for 30

min. at room temperature. The amine (1.1 equiv.) was added then the mixture stirred for an additional 10 min. *i*Pr₂NEt (2.3 equiv.) was added at 0°C, then the mixture was stirred at overnight at RT. The reaction mixture was poured into water and the aqueous layer extracted with EtOAc. The organic layer was washed with saturated NaHCO₃, then brine. The solvent was removed under vaccum. The crude mixture purified through silica gel to afford the corresponding amide.

3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxybenzamide (6a)

Prepared according to procedure A from methyl 3-hydroxybenzoate (500 mg, 3.29 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (1.36 g, 6.6 mmol, Z/E = 82/18), K_2CO_3 (1.0 g, 7.24 mmol) in acetone (16.4 mL). The crude mixture purified through silica gel (Hept. to Hept./EtOAc 9/1) to afford the corresponding compound as a colorless oil (m = 627 mg, 68%, E/Z = 82/18).

The methyl ester (1.05 g, 3.77 mmol) was converted into the acid by treatement with NaOH 3M (13.2 mL) in EtOH (22 mL). The resulting crude carboxylic acid (3.77 mmol) was dissolved in DMF (11.5 mL) and reacted with EDCI (805.1 mg, 4.2 mmol), HOBt (567 mg, 4.2 mmol), MeONH₂.HCl (351 mg, 4.2 mmol), and iPr₂NEt (1.53 mL, 8.79 mmol). Purification over silica gel (Hept. to Hept./EtOAc 5/5 to 0/100) afforded the title compound as a colorless oil (m = 399 mg, 41% over 2 steps, E/Z: 82/18). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (E isomer) 9.25 (brs, 1H), 7.31-7.24 (m, 3H), 7.03 (td, J = 6.8, 2.5 Hz, 1H), 5.75 (dt, J = 6.7, 1.7 Hz, 1H), 4.42 (s, 2H), 4.22 (d, J = 6.7 Hz, 2H), 3.84 (s, 3H), 1.73 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) (E isomer) 158.8 (Cq), 133.8 (Cq), 133.0 (Cq), 129.7 (CH), 127.0 (CH), 119.2 (CH), 113.2 (CH), 73.1 (CH₂), 64.4 (CH₃), 58.9 (CH₂), 13.7 (CH₃). IR ν (neat): 3209, 2979-2936, 1735, 1651, 1579, 1235 cm⁻¹. MS (ESI, m/z): 274.10 (100) [M+Na⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₇NO₄Na⁺: 274.1055. found: 274.1046.

N-methoxy-3-((4-methoxy-2-methylbut-2-en-1-yl)oxy)benzamide (6aa)

To a solution of acid (487.1 mg, 2.19 mmol) in MeOH (17 mL) was added concentrated H_2SO_4 (cat.). The reaction was stirred at 65°C overnight. The solvent was evaporated and water was added. The aqueous layers were extracted with EtOAc (x3), then the combined organic layers were washed with water, then brine. The solvent was removed under vacuum and the crude ester was used without further purification.

To a solution of alcohol (158.3 mg, 0.67 mmol) in THF (8.7 mL) was added NaH 60% (53.6 mg, 1.34 mmol). The reaction was stirred at RT for 1h then MeI (83 μ L, 1.34 mmol). After stirring for 2h, the resulting mixture was quenched with sat. NH₄Cl (10 mL) and the aqueous layer was extracted with EtOAc (x3). After drying over MgSO₄, the solvent was removed in vacuo and the residue was purified by flash chromatography (Hept. to Hept./EtOAc 6/4) to

afford the methyl ether as a colorless oil (m = 65.1 mg, 39%) and the acid as colorless oil (39.3 mg, 25%). The ester (65.1 mg, 0.26 mmol) was hydrolyzed by treatment with LiOH (33 mg, 0.78 mmol) in a mixture of MeOH (3.1 mL) and H₂O (0.42 mL) to afford the acid (m = 57.6 mg, 96%).

The combined acids (132.9 mg, 0.563 mmol) were dissolved in DCM (5.6 mL). Then (COCl)₂ (0.058 mL, 0.675 mmol) was added dropwise followed by one drop of DMF. The mixture was stirred for 1h at RT, then the volatil were removed under vacuo. The residue was dissolved into EtOAc (3.4 mL) and water (1.5 mL), then MeONH₂.HCl (51.7 mg, 0.619 mmol) and K₂CO₃ (186.7 mg, 1.35 mmol) were added. The mixture was stirred at RT overnight. The aqueous layer was separated and extracted once with ethyl acetate. The organic layers were combined, washed with brine, and dried over Na₂SO₄. The solution was filtered and concentrated under reduced pressure. The solvent was removed under vacuum and the crude mixture purified through silica gel (Hept. to Hept./EtOAc 5/5) to afford the corresponding amide (m = 121.5 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (E/Z: 80/20) 9.45 (brs, 1H min.), 8.98 (brs, 1H maj.), 7.43-7.22 (m, 3H maj. + 3H min.), 7.05 (m, 1H maj. + 1H min.), 5.73 (m, 1H maj.), 5.67 (m, 1H min.), 4.63 (s, 2H min.), 4.46 (s, 2H maj.), 4.05 (d, J = 8.5 Hz, 2H min.), 4.01 (d, J = 8.5 Hz, 2H maj.), 3.87 (s, 3H maj. + 3H min.), 3.41 (s, 3H min.), 3.34 (s, 3H maj.), 1.81 (s, 3H min.), 1.75 (s, 3H maj.). 13 C NMR (75 MHz, CDCl₃) δ (ppm) ((E/Z: 80/20) 166.3 (Cq, maj.), 158.8 (Cq, maj.), 158.3 (Cq, min.), 136.5 (Cq, min.), 134.7 (Cq, maj.), 133.1 (Cq, maj.), 132.8 (Cq, min.), 129.9 (CH, min.), 129.7 (CH, maj.), 125.3 (CH, min.), 124.8 (CH, maj.), 119.9 (CH, min.), 119.2 (CH, maj.), 113.2 (CH, maj.), 111.6 (CH, min.), 73.1 (CH₂, maj.), 68.4 (CH₂, maj.), 67.9 (CH₂, min.), 66.5 (CH₂, min.), 64.5 (CH₃, maj.), 64.4 (CH₃, min.), 58.4 (CH₃, min.), 58.1 (CH₃, maj.), 20.9 (CH₃, min.), 14.0 (CH₃, maj.). IR υ (neat): 3202, 2979-2818, 1651, 1581 cm⁻ ¹. MS (ESI, m/z): 288.1 (100) [M+Na⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₁₉NO₄Na⁺: 288.1206. found: 288.1212.

(E)-3-((4-((tert-butyldimethylsilyl)oxy)-2-methylbut-2-en-1-yl)oxy)-N-methoxybenzamide (6ab)

To a solution of (E)-3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxybenzamide (154 mg, 0.613 mmol) in dry DMF (5 mL) were added a catalytic amount of DMAP, Et₃N (0.130 mL, 0.919 mmol, 1.5 eq) and TBSCl (101 mg, 0.674 mmol, 1.1 eq). The reaction was stirred at room temperature for 3 hours, then quenched with brine. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with brine, water then dried over MgSO₄. Purification over silica gel (Hept. to Hept/EtOAc, 80/20) afforded the title compound as a colorless oil (117 mg, 52% yield, E/Z = 8/2). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (*E*-isomer) 7.45 – 7.32 (m, 2H), 7.31 – 7.22 (m, 1H), 6.95 (dd, J = 2.5, 8.2 Hz, 1H), 5.81 (t, J = 6.7 Hz), 4.47 (s, 2H), 4.27 (d, J = 4.4 Hz, 2H), 3.87 (s, 3H), 1.79 (s, 3H), 1.00 (s, 9H), 0.26 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): (*E*-isomer) 158.5 (Cq), 151.3 (Cq), 134.4 (Cq), 129.1 (CH), 126.6 (Cq), 119.0 (CH), 116.8 (CH), 112.1 (CH), 72.9 (CH₂), 61.0 (CH₃), 59.0 (CH₂), 26.0 (CH₃), 18.9 (Cq), 14.0 (CH₃). -3.7 (CH₃). IR ν (neat): 3158, 1721, 1557, 1225 cm⁻¹. MS (ESI, m/z): 366.5 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₉H₃₄NO₄Si⁺: 366.2095. found: 366.2090.

4-fluoro-3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxybenzamide (6b)

Prepared according to procedure A from from methyl 4-fluoro-3-hydroxybenzoate (250 mg, 1.47 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (608.8 mg, 2.94 mmol, E/Z = 82/18), K_2CO_3 (446.4 mg, 3.23 mmol) in acetone (7.3 mL). The crude mixture purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a colorless oil (m = 334.2 mg, 77%, E/Z = 82/18).

The methyl ester (294.2 mg, 0.993 mmol), was converted into the acid by treatement with NaOH 3M (3.5 mL) in EtOH (5.8 mL). The resulting crude carboxylic acid (0.953 mmol) was dissolved in DMF (2.86 mL) and reacted with EDCI (200.9 mg, 1.05 mmol), HOBt (141.6 mg, 1.05 mmol), MeONH₂.HCl (79.6 mg, 0.953 mmol), and iPr₂NEt (0.38 mL, 2.19 mmol). Purification over silica gel (Hept. to Hept./EtOAc 3/7 to 0/100) afforded the title compound as a white solid (m = 133.3 mg, 50% over 2 steps). ¹H NMR (300 MHz, MeOD) δ (ppm): (E isomer) 7.50 (dd, J = 8.1, 2.1 Hz, 1H), 7.35 (ddd, J = 8.4, 4.3, 2.1 Hz, 1H), 7.18 (dd, J = 10.9, 8.4 Hz, 1H), 5.77 (m, 1H), 4.83 (s, 3H) 4.56 (s, 2H), 4.17 (d, J = 6.6 Hz, 2H), 3.80 (s, 3H), 1.79 (s, 3H). ¹³C NMR (75 MHz, MeOD): (E isomer) δ (ppm) 166.8 (Cq), 158.5 (Cq, J_{C-F} = 250 Hz), 148.5 (Cq, J_{C-F} = 11 Hz), 134.2 (Cq), 129.7 (Cq), 128.9 (CH), 121.7 (CH, J_{C-F} = 8 Hz), 117.3 (CH, J_{C-F} = 20 Hz), 115.8 (CH), 75.5 (CH₂), 64.6 (CH₃), 59.1 (CH₂), 13.9 (CH₃). IR ν (neat): 3246, 2983-2856, 1657, 1509, 1421, 1268 cm⁻¹. MS (ESI, m/z): 270.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₇O₄F⁺: 270.1142. found: 270.1141. mp = 127-129 °C.

(E)-3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxy-4-nitrobenzamide (6c)

Prepared according to general procedure A from methyl 3-hydroxy-4-nitrobenzoate (300 mg, 1.52 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (632 mg, 3.04 mmol, Z/E = 82/18), K_2CO_3 (462.1 mg, 3.34 mmol) in acetone (7.6 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a white pounder (m = 368.4 mg, 75%, E/Z = 82/18).

The methyl ester (216.3 mg, 0.67 mmol), was converted into the acid by treatement with NaOH 3M (2.35 mL) in EtOH (3.95 mL). The resulting crude carboxylic acid (0.63 mmol) was dissolved in DMF (1.89 mL) and reacted with EDCI (132.3 mg, 0.69 mmol), HOBt (93.2 mg, 0.69 mmol), MeONH₂.HCl (57.6 mg, 0.69 mmol), and iPr₂NEt (0.25 mL, 1.45 mmol). Purification over silica gel (Hept. to Hept./EtOAc 80/20 to 0/100) afforded the title compound as a slightly yellow solid (m = 90.5 mg, 48% over 2 step). ¹H NMR (300 MHz, MeOD) δ (ppm): (E/Z: 88/12) 7.84 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 1.7 Hz, 1H min.), 7.61 (d, J = 1.7 Hz, 1H maj.), 7.42 (dd, J = 8.4, 1.6 Hz, 1H maj.), 5.80 (m, 1H maj.), 5.68 (m, 1H min.), 4.84 (s, 3H maj.), 4.66 (s, 2H maj.), 4.22 (d, J = 7.0 Hz, 2H min.), 4.18 (d, J = 6.6 Hz, 2H maj.), 3.83 (s, 3H maj.), 1.85 (s, 3H min.), 1.78 (s, 3H maj.). ¹³C NMR (75 MHz, MeOD): (E/Z: 88/12) δ (ppm) 152.8 (Cq maj.), 143.6 (Cq maj.), 138.2 (Cq maj.), 134.1 (Cq maj.), 133.6 (Cq maj.),

130.9 (CH min.), 129.3 (CH maj.), 126.4 (CH maj.), 120.4 (CH min.), 120.3 (CH maj.), 115.2 (CH maj.), 115.1 (CH min.), 75.6 (CH₂ maj.), 69.3 (CH₂ min.), 64.6 (CH₃ maj.), 59.1 (CH₂ maj.), 58.8 (CH₂ min.), 21.2 (CH₃ min.), 13.9 (CH₃ maj.). IR ν (neat): 3212, 2991-2849, 1644, 1514, 1256, 997 cm⁻¹ MS (ESI, m/z): 295.1 (55) [M-H]⁻. HMRS (ESI, m/z): Calcd for C₁₃H₁₅N₂O₆⁻: 295.0930. found: 295.0928. mp = 104-108 °C.

3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N,4-dimethoxybenzamide (6d)

Prepared according to general procedure A from methyl 3-hydroxy-4-methoxybenzoate (304.5 mg, 1.67 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (694 mg, 3.34 mmol, E/Z = 82/18), K_2CO_3 (507.2 mg, 3.67 mmol) in acetone (8.3 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a white solid (m = 382.3 mg, 74%, E/Z = 80/20).

The methyl ester (483.8 mg, 1.569 mmol) was converted into the acid by treatement with NaOH 3M (5.5 mL) in EtOH (8.6 mL). The resulting crude carboxylic acid (1.569 mmol) was dissolved in DMF (4.7 mL) and reacted with EDCI (328.8 mg, 1.72 mmol), HOBt (232.4 mg, 1.72 mmol), MeONH₂.HCl (131 mg, 1.569 mmol), and *i*Pr₂NEt (0.63 mL, 3.6 mmol). Purification over silica gel (DCM to DCM/MeOH 95/5) afforded the title compound as a white solid (m = 345.5 mg, 52% over 2 steps). ¹H NMR (300 MHz, MeOD) δ (ppm): (E/Z: 80/20) 7.40-7.33 (m, 2H, maj.+min.), 7.25 (m, 1H, min.), 7.03-6.92 (m, 1H, maj.+min.), 5.74 (m, 1H, maj.), 5.63 (m, 1H, maj.), 4.62 (s, 2H min.), 4.47 (s, 2H maj.), 4.19 (d, J = 7.8 Hz, 2H min.), 4.16 (d, J = 7.8 Hz, 2H maj.), 3.88 (s, 3H min.), 3.86 (s, 3H maj.), 3.79 (s, 3H maj.), 3.77 (s, 3H min.), 1.84 (s, 3H min.), 1.76 (s, 3H maj.). 13 C NMR (75 MHz, MeOD) δ (ppm) 167.6 (Cq), 154.5 (Cq maj.), 152.5 (Cq min.), 149.5 (Cq maj.), 147.8 (Cq min.), 135.2 () Cq min.), 134.6 (Cq maj.), 130.4 (CH min.), 128.3 (CH maj.), 125.7 (Cq min.), 125.2 (Cq maj.), 122.2 (CH maj.), 120.5 (CH min.), 115.3 (CH min.), 114.0 (CH maj.), 112.5 (CH maj.), 112.1 (CH min.), , 75.3 (CH₂ maj.), 65.9 (CH₂ min.), 64.5 (CH₃ maj.), 64.4 (CH₃ min.), 59.2 (CH₂ maj.), 58.8 (CH₂ min.), 56.6 (CH₃ maj.), 56.5 (CH₃ min.), 21.6 (CH₃ min.), 14.1 (CH₃ maj.). IR v (neat): 3207, 2936, 1644, 1498, 1266 cm⁻¹. MS (ESI, m/z): 282.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for $C_{14}H_{20}NO_5$: 282.1341. found: 282.1351. mp = 111-113 °C.

7-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxybenzo[d][1,3]dioxole-5-carboxamide (6e)

Prepared according to general procedure A from methyl 7-hydroxybenzo[d][1,3]dioxole-5-carboxylate (263 mg, 1.34 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (557 mg, 2.86 mmol, E/Z = 82/18), K_2CO_3 (407.4 mg, 2.95 mmol) in acetone (6.7 mL). The crude mixture purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a colorless oil (m = 310.7 mg, 72%, E/Z = 81/19).

The methyl ester (262.4 mg, 0.814 mmol), was converted into the acid by treatement with NaOH 3M (2.85 mL) in EtOH (4.8 mL). The resulting crude carboxylic acid (0.807 mmol) was dissolved in DMF (2.42 mL) and reacted with EDCI (170.2 mg, 0.888 mmol), HOBt (120 mg, 0.888 mmol), MeONH₂.HCl (67.4 mg, 0.807 mmol), and iPr₂NEt (0.32 mL, 1.86 mmol). Purification over silica gel (Hept. to Hept./EtOAc 3/7 to 0/100) afforded the title compound as a colorless oil (m = 126.9 mg, 52% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (*E*-isomer) 9.78 (brs, 1H), 7.02 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 1.6 Hz, 1H), 5.99 (s, 2H), 5.74 (m, 1H), 4.50 (s, 2H), 4.20 (d, J = 6.6 Hz, 2H), 3.80 (s, 3H), 1.72 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) (*E*-isomer) 165.8 (Cq), 148.9 (Cq), 142.2 (Cq), 138.8 (Cq), 133.5 (Cq), 127.6 (CH), 125.8 (Cq), 109.9 (CH), 102.1 (CH₂), 101.5 (CH), 74.6 (CH₂), 64.2 (CH₃), 58.7 (CH₂), 13.7 (CH₃). IR ν (neat): 3212, 2974-2936, 1622, 1486, 1083 cm⁻¹. MS (ESI, m/z): 296.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₁₈O₇⁺: 296.1134. found: 296.1128.

(E)-5-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N-methoxy-2-methylbenzamide (6f)

Prepared according to general procedure A from methyl 5-((4-acetoxy-2-methylbut-2-en-1-yl)oxy)-2-methylbenzoate (300 mg, 1.65 mmol), 4-bromo-3-methylbut-2-en-1-yl acetate (683.3 mg, 3.29 mmol, Z/E = 82/18), K_2CO_3 (502 mg, 3.63 mmol) in acetone (8.25 mL). The crude mixture purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a white solid (m = 388 mg, 80%, E/Z = 82/18).

The methyl ester (352.1 mg, 1.20 mmol), was converted into the acid by treatement with NaOH 3M (4.2 mL) in EtOH (7.08 mL). The resulting crude carboxylic acid (1.17 mmol) was dissolved in DMF (3.51 mL) and reacted with EDCI (247.3 mg, 1.29 mmol), HOBt (174.3 mg, 1.29 mmol), MeONH₂.HCl (97.7 mg, 1.17 mmol), and iPr₂NEt (0.47 mL, 2.70 mmol). Purification over silica gel (DCM to DCM/MeOH 95/5) afforded the title compound as a white solid (m = 136.3 mg, 48% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (E/Z: 82/18) 8.79 (brs, 1H), 7.14-7.06 (m, 1H mai. + 1H min.), 6.93-6.82 (m, 2H mai. + 2H min.), 5.73 (m, 1H maj.), 5.65 (m, 1H min.), 4.54 (s, 2H min.), 4.39 (s, 2H maj.), 4.21 (d, J = 6.9 Hz, 2H maj. + 2H min.), 3.85 (s, 3H maj. + 3H min.), 2.36 (s, 3H min.), 2.34 (s, 3H maj.), 1.81 (s, 3H min.), 1.73 (s, 3H maj.). ¹³C NMR (75 MHz, CDCl₃): (E/Z: 82/18) δ (ppm) 167.6 (Cq), 156.2 (Cq), 134.7 (Cq), 133.7 (Cq), 133.2 (Cq), 132.2 (CH min.), 132.0 (CH maj.), 118.0 (CH min.), 117.3 (CH maj.), 113.8 (CH maj.), 113.3 (CH min.), 73.1 (CH₂ maj.), 66.8 (CH₃ min.), 64.4 (CH₃ maj.), 58.7 (CH₂ maj.), 58.2 (CH₂ min.), 21.2 (CH₃ min.), 18.7 (CH₃ min.), 18.5 (CH₃ maj.), 13.8 (CH₃ maj.). IR υ (neat): 3170, 2930, 1647, 1605, 1497, 1228, 1004 cm⁻¹. MS (ESI, m/z): 266.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₂₀NO₄⁺: 266.1392. found: 266.1401. $mp = 141-143 \, ^{\circ}C.$

3-((4-hydroxy-2-methylbut-2-en-1-yl)oxy)-N,4-dimethoxybenzamide (6g)

Prepared according to general procedure A from methyl 3-hydroxy-4-methoxybenzoate (678.4 mg, 4.46 mmol), (*E*)-4-bromo-3-phenylbut-2-en-1-yl acetate¹ (1.32 g, 4.9 mmol, E/Z: 80/20), K_2CO_3 (1.23 g, 8.92 mmol) in acetone (22.3 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 95/5 to 90/10) to afford the corresponding compound as a yellow oil (m = 1.07 g, 70%, E/Z: 80/20).

The methyl ester (100 mg, 0.293 mmol) was converted into the acid by treatement with NaOH 3M (1.0 mL) in EtOH (1.65 mL). The resulting crude carboxylic acid was dissolved in DMF (2.6 mL) and reacted with HATU (368.8 mg, 0.97 mmol), MeONH₂.HCl (81 mg, 0.97 mmol), and iPr₂NEt (0.35 mL, 2.03 mmol). Purification over silica gel (Hept. to Hept./EtOAc 50/50 to 0/100) afforded the title compound as a colorless oil (m = 141.4 mg, 51% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.41-7.21 (m, 9H), 6.97 (m, 1H), 6.22 (t, J = 7.0 Hz, 1H), 4.98 (s, 2H), 4.46 (d, J = 7.0 Hz, 2H), 3.84 (s, 3H), 2.79 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 158.4 (Cq), 139.9 (Cq), 137.3 (Cq), 132.2 (CH), 129.8 (CH), 128.9 (Cq), 128.4 (CH), 127.9 (Cq), 127.7 (CH), 126.3 (CH), 119.9 (CH), 119.7 (CH), 112.7 (CH), 71.8 (CH₂ min.), 65.3 (CH₂ maj.), 64.4 (CH₃ maj.), 59.7 (CH₂ min.), 58.9 (CH₂ maj.). IR υ (neat): 3205, 1652, 1580, 1230 cm⁻¹. MS (ESI, m/z): 296.1 (100) [M-OH⁻]. HMRS (ESI, m/z): Calcd for C₁₈H₁₈NO₃: 296.1287. found: 296.1296.

3-((2-(4-chlorophenyl)-4-hydroxybut-2-en-1-yl)oxy)-N-methoxybenzamide (6h)

Prepared according to general procedure A from methyl 3-hydroxy-4-methoxybenzoate (129 mg, 0.848 mmol), 4-bromo-3-(4-chlorophenyl)but-2-en-1-yl acetate¹ (257.2 mg, 0.848 mmol, E/Z = 82/18), K_2CO_3 (234.4 mg, 1.7 mmol) in acetone (4.2 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 8/2) to afford the corresponding compound as a white solid (m = 291.7 mg, 92%, E/Z = 80/20).

The methyl ester (292 mg, 0.878 mmol) was converted into the acid by treatement with NaOH 3M (7 mL) in EtOH (10 mL). The resulting crude carboxylic acid (0.878 mmol) was dissolved in DMF (6 mL) and reacted with HOBt (148 mg, 0.966 mmol, 1.1 eq), EDCI (148 mg, 0.966 mmol, 1.1 eq), MeONH₂.HCl (80 mg, 0.996 mmol, 1.1 eq), and iPr₂NEt (0.350 mL, 2.02 mmol, 2.3 eq). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a white solid (m = 212 mg, 69% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (*E*/*Z*: 7/3) 7.30 – 7.15 (m, 5H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.99 – 6.88 (m, 2H), 6.14 (t, *J* = 6.8 Hz, 1H, major.), 6.03 (t, *J* = 6.8 Hz, 1H, minor.), 4.91 (s, 2H, major.), 4.67 (s, 2H, minor.), 4.4 (d, *J* = 6.9 Hz, 2H, major.), 4.08 (d, *J* = 6.8 Hz, 2H, minor.), 3.81 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 158.6 (Cq), 158.3 (Cq), 138.2 (Cq), 137.4 (Cq), 136.3 (Cq), 133.6 (Cq), 132.7 (CH), 132.6 (CH), 129.9 (CH), 129.8 (CH), 129.7 (CH), 128.6 (CH), 128.6 (CH), 128.8 (CH), 127.7 (CH), 120.0 (CH), 119.5 (CH), 119.3 (CH), 113.3 (CH), 112.6 (CH), 71.9 (CH₂), 65.0 (CH₂), 64.5 (CH₃), 59.6 (CH₂), 58.9 (CH₂). IR ν (neat): 3208, 2972, 2935, 2245, 1651, 1580, 1483 cm⁻¹. MS (ESI, m/z): 330.1 (100) [M+OH⁻]. HMRS (ESI, m/z): Calcd for C₁₈H₁₇ClNO₃⁺: 330.0897. found: 330.0909. mp = 119-121 °C.

_

¹ C. Wang, Z. Li, Y. Ju and S. Koo, Eur. J. Org. Chem., 2012, 2012, 6976.

4-(3-(methoxycarbamoyl)phenoxy)-3-(4-methoxyphenyl)but-2-en-1-yl acetate (6i)

Prepared according to general procedure A from methyl 3-hydroxy-4-methoxybenzoate (118 mg, 0.773 mmol), 4-bromo-3-(4-methoxyphenyl)but-2-en-1-yl acetate¹ (231.4 mg, 0.773 mmol, E/Z = 82/18), K_2CO_3 (213.6 mg, 1.55 mmol) in acetone (3.9 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 95/5) to afford the corresponding compound as a white solid (m = 161.6 mg, 46%, E/Z = 80/20).

The methyl ester (130 mg, 0.41 mmol) was converted into the acid by treatement with NaOH 3M (3 mL) in EtOH (4 mL). The resulting crude carboxylic acid (0.41 mmol) was dissolved in DMF (5 mL) and reacted with HOBt (70 mg, 0.45 mmol, 1.1 eq), EDCI (70 mg, 0.45 mmol, 1.1 eq), MeONH₂.HCl (38 mg, 0.45 mmol, 1.1 eq), and iPr₂NEt (0.160 mL, 0.95 mmol, 2.3 eq). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a white solid (m = 77 mg, 55% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): (E/Z: 8/2) 10.03 (brs, 1H major.), 9.77 (1H, minor.), 7.44 - 7.14 (m, 4H), 7.06 - 6.73 (m, 4H), 6.16 (t, J = 7.0 Hz, 1H major.), 6.0 (t, J = 7.0 Hz, 1H minor.), 4.93 (brs, 2H, major.), 4.18 (d, J = 6.6 Hz, 2H minor.) 4.69 (brs, 2H, minor.), 4.42 (d, J = 7.3 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): (E/Z: 8/2) 166.0 (Cq), 159.3 (Cq), 158.4 (Cq), 136.7 (Cq), 132.8 (Cq), 132.2 (Cq), 130.5 (CH major.), 129.8 (CH major.), 129.6 (CH minor.), 128.6 (CH minor.), 127.5 (CH major. + minor.), 120.0 (CH major.), 119.9 (CH major.), 113.8 (CH major. + minor.), 112.6 (CH major.), 72.0 (CH₂ minor.), 65.2 (CH₂ major.), 64.4 (CH₃ major.), 59.8 (CH₂ minor.), 58.9 (CH₂ major.), 55.3 (CH₃ major.). IR v (neat): 3320, 2937, 2838, 2251, 1659, 1606, 1582, 1512 cm⁻¹. MS (ESI, m/z): 344.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₉H₂₂NO₅⁺: 344.1492. found: 344.1493. mp = 120-122 °C.

3-((2-cyclopropyl-4-hydroxybut-2-en-1-yl)oxy)-N-methoxybenzamide (6j)

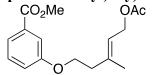
Prepared according to general procedure A from methyl 3-hydroxy-4-methoxybenzoate (301.2 mg, 1.98 mmol), 4-bromo-3-cyclopropylbut-2-en-1-ol¹ (385.1 mg, 1.65 mmol, E/Z = 82/18), K_2CO_3 (547.3 mg, 3.96 mmol) in acetone (9.9 mL). The crude mixture was purified through silica gel (Hept. to Hept./EtOAc 9/1) to afford the corresponding compound as a white solid (m = 303 mg, 50%, E/Z = 80/20).

The methyl ester (145 mg, 0.476 mmol) was converted into the acid by treatement with NaOH 3M (1.6 mL) in EtOH (2.6 mL). The resulting crude carboxylic acid (0.446 mmol) was dissolved in DMF (1.34 mL) and reacted with HATU (186.3 mg, 0.49 mmol), MeONH₂.HCl (40.9 mg, 0.49 mmol), and iPr₂NEt (0.18 mL, 1.02 mmol). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a white solid (m = 95.5 mg, 77% over 2 steps). ¹H NMR

(300 MHz, MeOD) δ (ppm): (*E/Z*: 80/20) 7.43-7.25 (m, 3H, maj.+min.), 7.17-7.07 (m, 1H, maj.+min.), 5.81 (t, J = 6.5 Hz, 1H, min.), 5.57 (t, J = 6.8 Hz, 1H, maj.), 4.60 (s, 2H maj.), 4.36 (s, 2H min.), 4.34 (d, J = 6.9 Hz, 2H min.), 4.19 (d, J = 6.9 Hz, 2H maj.), 3.80 (s, 3H maj.+min.), 1.54 (m, 1H maj.+min.), 0.67 (m, 2H maj.+min.), 0.48 (m, 2H maj.+min.). ¹³C NMR (75 MHz, MeOD) δ (ppm) 160.5 (Cq), 134.5 (Cq maj.), 131.4 (Cq maj.), 131.0 (CH maj.), 128.1 (CH maj.), 120.6 (CH maj.), 120.5 (CH min.), 114.5 (CH maj.), 114.3 (CH min.), 71.3 (CH₂ min.), 67.1 (CH₂ maj.), 64.5 (CH₃ maj.), 59.3 (CH₂ min.), 59.0 (CH₂ maj.), 16.3 (CH maj.), 11.5 (CH min.), 6.21 (CH₂ maj.), 5.45 (CH₂ min.). IR ν (neat): 3212, 3004-2938, 1653, 1581, 1234 cm⁻¹. MS (ESI, m/z): 300.1 (100) [M+Na⁺]. HMRS (ESI, m/z): Calcd for C₁₅H₁₉NO₄Na: 300.1212. found: 300.1225. mp = 109-111 °C. (decomp.)

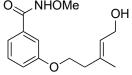
Methyl (*E*)-3-((4-bromobut-2-en-1-yl)oxy)benzoate (S1)

To a solution of phenol (100 mg, 0.657 mmol) in acetone (3.3 mL) is added K_2CO_3 (99.7 mg, 0.722 mmol) then (*E*)-1,4-dibromobut-2-ene (280.2 mg, 1.31 mmol) under argon at room temperature. The mixture was stirred at 25°C overnight. Then water was added and the aqueous layer extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture purified through silica gel (Hept. to Hept./EtOAc 95/5 to 90/10) to afford the corresponding ether as a white solid (m = 106.1 mg, 57%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) : 7.64 (td, J = 7.6, 1.5 Hz, 1H), 7.54 (dd, J = 2.7, 1.5 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.09 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 6.15-5.92 (m, 2H), 4.59 (d, J = 4.6 Hz, 2H), 3.98 (d, J = 7.3 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 166.8 (Cq), 158.3 (Cq), 131.5 (Cq), 129.5 (CH), 129.4 (CH), 122.3 (CH), 120.0 (CH), 114.8 (CH), 67.3 (CH₂), 52.1 (CH₃), 31.4 (CH₂). IR ν (neat): 3066-2835, 1705, 1442 cm⁻¹. MS (ESI, m/z): 285.1 (100) [M+H]⁺. HMRS (ESI, m/z): Calcd for C₁₂H₁₄BrO₃⁺: 285.0126. found: 285.0140. mp = 65-67 °C.


(E)-3-((4-hydroxybut-2-en-1-yl)oxy)-N-methoxybenzamide (6k)

The methyl ester **S1** (106.1 mg, 0.372 mmol) was converted into the acid by treatement with NaOH 3M (1.3 mL) in THF (2.0 mL). The resulting crude carboxylic acid (71.4 mg, 0.343 mmol) was dissolved in DMF (1.0 mL) and reacted with HATU (143.3 mg, 0.377 mmol), MeONH₂.HCl (31.5 mg, 0.377 mmol), and iPr₂NEt (0.137 mL, 0.742 mmol). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a colorless oil (m = 42.4 mg, 48% over 2 steps). ¹H NMR (300 MHz, MeOD) δ (ppm) : 7.40-7.28 (m, 3H), 7.11 (d, J = 8.4 Hz, 1H), 6.06-5.85 (m, 2H), 4.59 (d, J = 4.5 Hz, 2H), 4.10 (d, J = 3.9 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 167.6 (Cq), 160.4 (Cq), 134.3 (CH), 131.0 (CH), 126.6 (CH), 120.5 (CH), 119.8 (CH), 114.5 (CH), 69.3 (CH₂), 64.5 (CH₃), 62.9 (CH₂). IR ν (neat): 3208, 2960-2930, 1734, 1650, 1568 cm⁻¹. MS (ESI, m/z): 238.1 (100) [M+H]. HMRS (ESI, m/z): Calcd for C₁₂H₁₆NO₄+: 238.1079. found: 238.1078.

(E)-5-hydroxy-3-methylpent-2-en-1-yl acetate (S2)


To a solution of (E)-5-((tert-butyldimethylsilyl)oxy)-3-methylpent-2-en-1-ol² (310 mg, 1.35 mmol) in DCM (20 mL) were added DMAP (Cat. amount) and Et₃N (0.375 mL, 2.69 mmol). The reaction mixture was cooled with an ice-bath, then Ac₂O (0.150 ml, 1.61 mmol) was added. After stirring 2 hours at this temperature, the reaction mixture was quenched with saturated NH₄Cl and the aqueous layer was extracted with DCM (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture was immediately dissolved in THF (10 mL) and TBAF (1M in THF, 1.2 ml) was added dropwise. After stirring at room temperature for 3 hours, brine was added and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture was through silica gel (Hept. to Hept./EtOAc, 60/40) to give the desired product as a colorless oil (m = 142 mg, 67% yield over two steps). Analytical data matched with those reported in the literature.³

Methyl (E)-3-((5-acetoxy-3-methylpent-3-en-1-yl)oxy)benzoate (S3)

To a solution of (E)-5-hydroxy-3-methylpent-2-en-1-yl acetate (131 mg, 0.83 mmol) in THF (20 mL), were added methyl 3-hydroxybenzoate (126 mg, 0.83 mmol) and PPh₃ (282 mg, 1.07 mmol). The reaction mixture was cooled with an ice-bath and DEAD (0.168 ml, 1.07 mmol) was added dropwise. The reaction was allowed to reach room temperature and stirred overnight. Brine was added and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture was through silica gel (Hept. to Hept./EtOAc, 70/30) to give the desired product as a colorless oil (m = 185 mg, 59% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.66 (dd, J = 1.5, 7.6 Hz, 1H), 7.60-7.57 (m, 1H), 7.37 (t, J = 15.9 Hz, 1H), 7.12 (dd, J = 1.5) = 2.6, 8.2 Hz, 1H), 5.5 (dd, J = 6.6, 7.5 Hz, 1H), 4.65 (d, J = 7.20 Hz, 2H), 4.14 (t, J = 6.8 Hz, 2H), 3,95 (s, 3H), 2.57 (t, J = 6.9 Hz, 2H), 2.09 (s, 3H), 1.83 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 171.1 (Cq), 166.9 (Cq), 158.8 (Cq), 138.3 (Cq), 131.4 (Cq), 129.4 (CH), 122.1 (CH), 120.8 (CH), 120.0 (CH), 114.7 (CH), 66.5 (CH₂), 61.2 (CH₂), 52.2 (CH₃), 38.8 (CH₂), 21.0 (CH₃), 16.9 (CH₃). IR υ (neat): 3223, 2943-2916, 1702, 1644, 1595, 1198 cm⁻¹. MS (ESI, m/z): 293.1 (100) [M+H $^{+}$]. HMRS (ESI, m/z): Calcd for $C_{16}H_{21}O_{5}^{+}$: 293.1384. found: 293.1391.

(E)-3-((5-hydroxy-3-methylpent-3-en-1-yl)oxy)-N-methoxybenzamide (6l)

The methyl ester (185 mg, 0.63 mmol) was converted into the acid by treatement with NaOH 3M (3 mL) in EtOH (5 mL). The resulting crude carboxylic acid (0.63 mmol) was dissolved in

³ Saikia, A. K, et al.; Tetrahedron Letters, **2013**, 54 (12), 1576 - 1578

S11

² Bajpai, R.; Curran, D.; J. Am. Chem. Soc, **2011**, 133 (50), 20435 - 20443

DMF (4 mL) and reacted with HATU (264 mg, 0.69 mmol), MeONH₂.HCl (58 mg, 0.69 mmol), and iPr₂NEt (0.253 mL, 1.46 mmol). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a colorless oil (m = 140 mg, 684% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.27 – 7.18 (m, 3H), 6.96 – 6.92 (m, 1H), 5.41 (dt, J = 1.60, 6.9 Hz, 1H), 4.1 (d, J = 6.8 Hz, 2H), 3.99 (t, J = 6.7 Hz, 2H), 3.78 (s, 3H), 2.39 (t, J = 6.8 Hz, 2H), 1.64 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 165.9 (Cq), 159.0 (Cq), 135.5 (Cq), 133.0 (Cq), 129.7 (CH), 125.8 (CH), 119.3 (CH), 118.9 (CH), 113.0 (CH), 66.6 (CH₂), 64.4 (CH₂), 59.2 (CH₃), 38.7 (CH₂), 16.6 (CH₃). IR ν (neat): 3217, 2981-2946, 1789, 1641, 1559, 1225 cm⁻¹. MS (ESI, m/z): 266.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₂₀NO₄⁺: 266.1387. found: 266.1388.

(E)-4-((tert-butyldimethylsilyl)oxy)-2-methylbut-2-enoic acid (S4)

To a solution of 4-hydroxytiglic acid (414 mg, 3.56 mmol) in DCM (20 mL), were added DMAP (cat. amount), Et₃N (1.5 ml, 10.68 mmol) and portionwise TBSCl (1.18 g, 7.83 mmol). The solution was stirred at room temperature for 2 hours, then quenched with saturated NaHCO₃. The aqueous layer was extracted with DCM (x3) and the combined organic layers were washed with saturated NH₄Cl, water and brine. Solvent was removed under vacuum and the crude bis-protected product was dissolved in THF (20 mL). The solution was cooled at 0°C with an ice-bath, then AcOH (1 mL) was added. After stirring 2 hours at this temperature, the reaction mixture was quenched with saturated NaHCO3 and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture purified through silica gel to afford the corresponding acid as colorless oil (m= 281 mg, 33% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 6.84 (dt, J = 1.6, 5.6 Hz, 1H), 4.29 (dd, J = 1.5, 5.6 Hz, 2H), 1.73 (d, J = 1.6) = 1.4 Hz, 3H), 0.82 (s, 9H), 0.0 (s, 6H). 13 C NMR (75 MHz, CDCl₃) δ (ppm): 172.6 (Cq), 144.4 (CH), 126.3 (Cq), 60.6 (CH₂), 25.9 (Cq), 18.3 (CH₃), 12.3 (CH₃), -5.2 (CH₃). IR υ (neat): 3200, 1670, 1633 cm⁻¹. MS (ESI, m/z): 231.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₁H₂₃O₃Si⁺: 231.1411. found: 231.1423.

3-(methoxycarbamoyl)phenyl (E)-4-((tert-butyldimethylsilyl)oxy)-2-methylbut-2-enoate (6m)

To a solution of (E)-4-((tert-butyldimethylsilyl)oxy)-2-methylbut-2-enoic acid (150 mg, 0.632 mmol) in DMF (5 mL), were added 3-hydroxy-N-methoxybenzamide (140 mg, 0.837 mmol), EDCI·HCl (143 mg, 0.921 mmol) and DMAP (153 mg, 1.25 mmol). The reaction mixture was stirred at room temperature overnight, then quench with brine and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with water, brine then dried over Na₂SO₄. The solvent was removed under vacuum and the crude mixture purified through silica gel (Hept. to EtOAc) to afford the corresponding acid as a colorless oil (m= 220 mg, 92% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.26 (brs, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 2.0 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 7.16 – 7.10 (m, 1H), 6.92 (dt, J = 1.6, 5.5 Hz, 1H), 4.32 (dd, J = 1.4, 5.5 Hz, 2H), 3.71 (s, 3H), 1.8 (d, J = 1.5 Hz, 3H), 0.81 (s, 9H), 0.0 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 166.1 (Cq), 165.5 (Cq), 151.1 (Cq), 144.6 (CH),

133.4 (Cq), 129.7 (CH), 126.3 (Cq), 125.4 (CH), 124.4 (CH), 120.8 (CH), 64.5 (CH₃), 60.6 (CH₂), 25.9 (Cq), 18.4 (CH₃), 12.8 (CH₃), -5.3 (CH₃). IR υ (neat): IR υ (neat): 3203, 2987-2899 1798, 1563, 1226 cm⁻¹. MS (ESI, m/z): 380.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₉H₃₀NO₅Si⁺: 380.1888. found: 380.1889.

3-((4-hydroxy-2-methylbut-2-en-1-yl)(methyl)amino)-N-methoxybenzamide (6n)

Prepared according to procedure A from methyl 3-(methylamino)benzoate (197 mg, 1.19 mmol) and 4-bromo-3-methylbut-2-en-1-yl acetate (296 mg, 1.43 mmol, Z/E = 82/18), K_2CO_3 (493 mg, 3.57 mmol) in acetone (7 mL). The crude mixture purified through silica gel (Hept. to Hept./EtOAc 9/1) to afford the corresponding compound as a colorless oil (m = 260 mg, 75%, E/Z = 82/18).

The methyl ester (250 mg, 0.86 mmol) was converted into the acid by treatement with NaOH 3M (3 mL) in EtOH (5 mL). The resulting crude carboxylic acid (0.86 mmol) was dissolved in DMF (3 mL) and reacted with HATU (358 mg, 0.94 mmol), MeONH₂.HCl (79 mg, 0.94 mmol), and iPr₂NEt (0.340 mL, 1.97 mmol). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a colorless oil (m = 137 mg, 60% over 2 steps, E/Z : 82/18). ¹H NMR (300 MHz, MeOD) δ (ppm): (*E*-isomer) 7.23 (t, *J* = 7.9 Hz, 1H), 7.06 (dd, *J* = 1.6, 2.7 Hz, 1H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.87 (dd, *J* = 2.7, 8.4 Hz, 1H), 5.4 (dt, *J* = 1.8, 6.7 Hz, 1H), 4.13 (d, *J* = 6.7 Hz, 1H), 3.88 (brs, 2H), 3.79 (s, 3H), 2.99 (s, 3H), 1.66 (s, 3H). ¹³C NMR (75 MHz, MeOD) δ (ppm): (*E*-isomer) 167.3 (Cq), 149.7 (Cq), 133.5 (Cq), 132.2 (Cq), 128.8 (CH), 123.6 (CH), 115.1 (CH), 113.9 (CH), 109.9 (CH), 62.8 (CH₂), 58.8 (CH₃), 57.6 (CH₂), 37.1 (CH₃), 12.9 (CH₃). IR ν (neat): 3223, 2978-2927, 1753, 1648, 1432, 1223 cm⁻¹. MS (ESI, m/z): 265.3 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₂₁N₂O₃⁺: 265.3325. found: 265.3328.

(E)-3-((4-((tert-butyldimethylsilyl)oxy)-2-methylpent-2-en-1-yl)oxy)-N-methoxybenzamide (S5)

To a solution of methyl 3-hydroxybenzoate (256 mg, 1.86 mmol) in THF (15 mL) were added (E)-4-((tert-butyldimethylsilyl)oxy)-2-methylpent-2-en-1-ol (428 mg, 1.86 mmol) and triphenylphosphine (585 mg, 2.23 mmol). The reaction mixture was cooled with an ice-bath, then DEAD (0.350 mL, 2.23 mmol) was added dropwise. The reaction mixture was allowed to reach room temperature and stirred overnight. Solvent was removed under vacuum and purification over silica gel (Hept. to Hept/EtOAc, 85/15) afforded the title compound as a colorless oil (m = 530 mg mg, 78%).

The methyl ester (554 mg, 1.52 mmol) was converted into the acid by treatement with NaOH 3M (6 mL) in EtOH (8 mL). The resulting crude carboxylic acid (1.52 mmol) was dissolved in DMF (5 mL) and reacted with HOBt (254 mg, 1.66 mmol, 1.1 eq), EDCI (250 mg, 1.66 mmol, 1.1 eq), MeONH₂.HCl (138 mg, 1.66 mmol, 1.1 eq), and iPr₂NEt (0.660 mL, 3.49 mmol, 2.3

eq). Purification over silica gel (Hept. to EtOAc) afforded the title compound as a colorless oil (m = 260 mg, 45% over 2 steps). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 8.77 (brs, 1H), 7.35 – 7.14 (m, 3H), 7.02 (d, J = 7.8 Hz, 1H), 5.54 (d, J = 8.2 Hz, 1H), 4.55 (dd, J = 6.7, 8.1 Hz, 1H), 4.37 (s, 2H), 3.84 (s, 3H), 1.68 (s, 3H), 1.16 (d, J = 6.3 Hz, 3H), 0.83 (s, 9H), 0.00 (s, 3H), -0.02 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ (ppm): 166.4 (Cq), 159.0 (Cq), 134.0 (CH), 133.1 (Cq), 129.7 (CH), 128.9 (Cq), 118.9 (CH), 113.6 (CH), 73.5 (CH₂), 65.5 (CH₃), 64.7 (CH), 25.9 (CH₃), 24.4 (CH₃), 18.2 (Cq), 13.9 (CH₃), -4.5 (CH₃), -4.9 (CH₃). IR ν (neat): 3197, 2955, 2925, 2856, 1650, 1582 cm⁻¹. MS (ESI, m/z): 380.6 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₂₀H₃₄NO₄Si⁺: 380.2252. found: 380.2255.

(E)-3-((4-hydroxy-2-methylpent-2-en-1-yl)oxy)-N-methoxybenzamide (60)

A solution of the corresponding protected alcohol (53.2 mg, 0.151 mmol) in EtOH (4.4 mL) was treated with conc. HCl (0.096 mL) at 0°C. The reaction mixture was allowed to reach room temperature and stirred overnight. After quenching with saturated NaHCO₃, solvent was removed under reduced pressure. DCM was added and the organic layer was washed with water, dried over MgSO₄ and reduced under vacuum. Purification over silica gel (Hept. to EtOAc) afforded the title compound as a colorless oil (m = 19.8 mg, 49%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.52 (brs, 1H, NH), 7.40 – 7.23 (m, 3H), 7.08 – 7.01. (m, 1H), 5.6 (d, J = 8.6 Hz, 1H), 4.65 (qd, J = 6.3, 8.6 Hz, 1H), 4.40 (s, 2H), 3.86 (s, 3H), 2.13 (brs, 1H, OH), 1.76 (d, J = 1.4 Hz, 3H), 1.27 (d, J = 6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 158.8 (Cq), 132.4 (Cq), 132.1 (Cq), 129.7 (CH), 119.2 (CH), 113.3 (Cq), 73.2 (CH₂), 64.4 (CH), 23.4 (CH₃), 13.9 (CH₃). IR ν (neat): 3206, 2960-2923, 1734, 1650, 1232 cm⁻¹. MS (ESI, m/z): 266.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₂₀NO₄⁺: 266.1387. Found: 266.1386.

3- Rh(III)-CATALYZED HECK-TYPE REACTION

OMe ONH
$$(2.5 \text{ mol})$$

$$($$

General procedure B

A seal tube was charged with a stirbar, amide (1 equiv.), [RhCp*Cl2]2 (0.025 equiv.) and CsOAc (2 equiv.). The tube was purged three times by vacuum and argon, then *t*AmOH (0.2 M) was added. The vial was sealed and stirred at the indicated temperature for the indicated time. The reaction mixture was concentrated in vacuo. The crude residue was used without purification. The cyclic hemiaminal can be isolated by purification over silica gel.

The crude hemiaminal (1 equiv.) was dissolved in CH₂Cl₂ (10 mL/mmol), then TFA (6 equiv.) was added dropwise at 0°C. The reaction was stirred at RT until completion. The solvent was removed under vacuo and the residue purified aluminium oxide to afford the cyclic enamide.

N-methoxy-3-methyl-3-vinyl-2,3-dihydrobenzofuran-4-carboxamide (10)

A seal tube was charged with a stirbar, amide (44.2 mg, 0.17 mmol), [Cp*RhCl₂]₂ (2.6 mg, 0.00425 mmol), AgSbF₆ (4.3 mg, 0.017 mmol) and PivOH (34.7 mg, 0.34 mmol). The tube was purged three times with argon followed by addition of 1,4-dioxane (0.85 mL). The reaction mixture was stirred at RT overnight. The solvent was then removed under vacuo and the residue purified over silica gel (Hept. to Hept./EtOAc 5/5) to afford the titled compound as a colorless oil (m = 20.4 mg, 51%) and recovered starting material (14.4 mg, 32%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.61 (brs, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.94 (dd, J = 7.9, 0.9 Hz, 1H), 6.91 (dd, J = 7.9, 0.9 Hz, 1H), 6.12 (dd, J = 17.4, 10.6 Hz, 1H), 5.21 (d, J = 10.6 Hz, 1H), 5.11 (d, J = 17.4, 0.9 Hz, 1H), 4.36 (d, J = 8.6 Hz, 1H), 4.21 (d, J = 8.6 Hz, 1H), 3.84 (s, 3H), 1.58 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 160.5 (Cq), 142.2 (Cq), 131.8 (Cq), 130.3 (Cq), 128.9 (CH), 120.3 (CH), 114.6 (CH₂), 112.7 (CH), 64.5 (CH₃), 48.8 (Cq), 23.1 (CH₃). IR υ (neat): 3198, 2968-2815, 1657, 1438 cm⁻¹. MS (ESI, m/z): 234.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₆NO₃⁺: 234.1130. found: 234.1131.

3-hydroxy-4a-methyl-3,4,4a,5-tetrahydrobenzofuro[4,3-cd]azepin-1(2H)-one (11)

Prepared according to general procedure B from amide (39.4 mg, 0.156 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.4 mg, 0.0039 mmol) and CsOAc (60.2 mg, 0.313 mmol) in t-AmOH (0.78 mL). The solvent was removed under vacuum and the crude mixture purified through silica gel (Hept. to Hept./EtOAc 5/5) to afford the corresponding compound as a white solid (m = 25.6 mg, 90%, dr = 88/12). ¹H NMR (300 MHz, DMSO) δ (ppm): (dr 88/12) 8.34 (d, J = 5.7 Hz, 1H min.), 7.88 (d, J = 4.1 Hz, 1H maj.), 7.25 (t, J = 7.8 Hz, 1H maj.), 7.13 (dd, J = 7.6, 1.0 Hz, 1H maj.), 6.95 (dd, J = 7.9, 1.0 Hz, 1H maj.), 6.89 (dd, J = 7.0, 2.1 Hz, 1H min.), 6.38 (d, J = 5.4 Hz, 1H)maj.), 5.69 (d, J = 4.2 Hz, 1H min.), 4.91-4.81 (m, 1H maj.+ 1H min.), 4.40 (d, J = 8.7 Hz, 1H maj.), 4.35 (d, J = 8.7 Hz, 1H min.), 4.28 (d, J = 8.7 Hz, 1H maj.), 4.35 (d, J = 8.7 Hz, 1H min.), 4.18 (d, J = 8.7 Hz, 1 H maj.), 2.19 (dd, J = 13.4, 3.5 Hz, 1 H maj.), 2.00 (dd, J = 14.0, 10.4 Hz, 1.00 Hz1H maj.), 1.22 (s, 3H maj.), other signals of the minor isomer are masked by the major diastereomer. ¹³C NMR (75 MHz, DMSO) δ (ppm) (dr 88/12) 166.1 (Cq maj.), 158.2 (Cq maj.), 133.1 (Cq maj.), 131.3 (Cq maj.), 128.8 (CH maj.), 127.7 (CH min.), 120.8 (CH min.), 120.3 (CH maj.), 112.0 (CH maj.), 111.6 (CH min.), 85.5 (CH₂ maj.), 85.1 (CH₂ min.), 77.4 (CH maj.), 74.6 (CH min.), 49.1 (CH₂ maj.), 47.4 (CH₂ min.), 42.3 (Cq min.), 41.5 (Cq maj.), 30.1 (CH₃ maj.), 29.0 (CH₃ min.). IR υ (neat): 3171, 2955-2892, 1657, 1628, 1584 cm⁻¹. MS (ESI, m/z): 220.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₄NO₃⁺: 220.0974. found: 220.0967. mp = 125-129 °C.

4a-methyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7a)

Prepared according to general procedure B from hemiaminal (16.4 mg, 0.0748 mmol), TFA (0.035 mL, 0.448 mmol) in DCM (0.75 mL). The reaction mixture was stirred for 10 min at RT. Purification through Al₂O₃ (Hept. to Hept./EtOAc 5/5) to afford the corresponding compound as a white solid (m = 12.8 mg, 85% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.09 (brs, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.26 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 5.97 (dd, J = 8.5, 4.9 Hz, 1H), 5.13 (d, J = 8.7 Hz, 1H), 4.47 (d, J = 8.6 Hz, 1H), 4.39 (d, J = 8.6 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 167.7 (Cq), 158.1 (Cq), 135.0 (Cq), 128.7 (CH), 123.1 (CH), 122.4 (CH), 118.5 (CH), 113.8 (CH), 83.8 (CH₂), 44.6 (Cq), 25.1 (CH₃). IR υ (neat): 3248, 2972-2878, 1635, 1586 cm⁻¹. MS (ESI, m/z): 202.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₂H₁₂NO₂⁺: 202.0868. found: 202.0872. mp = 179-181 °C.

7-fluoro-4a-methyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7b)

Prepared according to general procedure B from amide (28.9 mg, 0.107 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (1.65 mg, 0.00267 mmol) and CsOAc (41.2 mg, 0.21 mmol) in *t*-AmOH (0.54 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.05 mL, 0.64 mmol) in DCM (0.84 mL). Purification through alumina (Hept. to Hept./EtOAc 5/5) to afford the corresponding compound as a white solid (m = 13.8 mg, 75% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.92 (brs, 1H), 7.56 (dd, J = 8.7, 4.3 Hz, 1H), 7.05 (dd, J = 10.0, 8.7 Hz, 1H), 5.97 (dd, J = 8.7, 5.8 Hz, 1H), 5.12 (d, J = 8.7 Hz, 1H), 4.57 (d, J = 8.5 Hz, 1H), 4.48 (d, J = 8.6 Hz, 1H), 1.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 166.5 (Cq), 151.6 (Cq), 148.2 (Cq), 143.9 (Cq, $J_{C-F} = 10.2$ Hz), 138.3 (Cq, $J_{C-F} = 4.8$ Hz), 124.1 (CH, $J_{C-F} = 7$ Hz), 123.4 (CH), 117.5 (CH), 116.4 (CH, $J_{C-F} = 18$ Hz), 85.1 (CH₂), 45.5 (Cq), 25.1 (CH₃). IR ν (neat): 3195, 3057-2881, 1602 cm⁻¹. MS (ESI, m/z): 261.1 (100) [M+CH₃CN+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₁₄N₂O₂F⁺: 261.1039. found: 261.1050. mp = 156-159 °C.

4a-methyl-7-nitro-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7c)

Prepared according to general procedure B from amide (20.6 mg, 0.0695 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.00 mg, 0.00323 mmol) and CsOAc (26.7 mg, 0.139 mmol) in *t*-AmOH (0.35 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.032 mL, 0.417 mmol) in DCM (0.56 mL). Purification

through alumina (DCM/MeOH 95/5) to afford the corresponding compound as a slightly yellow solid (m = 12.3 mg, 72% over 2 steps). 1 H NMR (300 MHz, DMSO) δ (ppm): 9.86 (d, J = 5.6 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 5.97 (dd, J = 8.7, 5.5 Hz, 1H), 5.30 (d, J = 8.6 Hz, 1H), 4.81 (d, J = 9.1 Hz, 1H), 4.69 (d, J = 9.1 Hz, 1H), 1.35 (s, 3H). 13 C NMR (75 MHz, DMSO) δ (ppm) 164.4 (Cq), 152.9 (Cq), 139.9 (Cq), 133.7 (Cq), 133.1 (Cq), 123.8 (CH), 123.7 (CH), 121.7 (CH), 117.1 (CH), 85.9 (CH₂), 43.5 (Cq), 24.3 (CH₃). IR υ (neat): 3218, 3075-2963, 1644, 1603, 1217 cm⁻¹. MS (ESI, m/z): 247.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for $C_{12}H_{11}N_{2}O_{4}^{+}$: 247.0719. found: 247.0721. mp = 226-228 °C (decomp.).

7-methoxy-4a-methyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7d)

Prepared according to general procedure B from amide (26.8 mg, 0.0953 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (1.5 mg, 0.00238 mmol) and CsOAc (36.6 mg, 0.19 mmol) in *t*-AmOH (0.48 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.065 mL, 0.57 mmol) in DCM (0.95 mL). Purification through alumina (Hept. to EtOAc) to afford the corresponding compound as a white solid (m = 13 mg, 59%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.62 (d, J = 8.6 Hz, 1H), 7.34 (brs, 1H), 6.89 (d, J = 8.7 Hz, 1H), 5.93 (dd, J = 8.7, 5.8 Hz, 1H), 5.09 (d, J = 8.7 Hz, 1H), 4.53 (d, J = 8.5 Hz, 1H), 4.42 (d, J = 8.5 Hz, 1H), 3.94 (s, 3H), 1.43 (s 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 166.8 (Cq), 148.2 (Cq), 145.5 (Cq), 135.7 (Cq), 124.6 (CH), 123.2 (CH), 120.1 (Cq), 117.6 (CH), 111.8 (CH), 84.3 (CH₂), 56.1 (CH₃), 45.5 (Cq), 25.2 (CH₃). IR υ (neat): 3206, 2959-2924, 1639, 1612, 1287 cm⁻¹. MS (ESI, m/z): 232.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₄NO₃⁺: 232.0974. found: 232.0984. mp = 60-62 °C.

2a-methyl-2a,5-dihydro-[1,3]dioxolo[4',5':6,7]benzofuro[4,3-cd]azepin-6(2H)-one (7e)

Prepared according to general procedure B from amide (39.7 mg, 0.134 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.07 mg, 0.00335 mmol) and CsOAc (51.6 mg, 0.269 mmol) in *t*-AmOH (0.67 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.091 mL, 0.804 mmol) in DCM (0.91 mL). Purification through alumina (Hept. to EtOAc) to afford the corresponding compound as a white solid (m = 18 mg, 81% over 2 steps). ¹H NMR (300 MHz, DMSO) δ (ppm): 9.39 (d, J = 5.7 Hz, 1H), 6.87 (s, 1H), 6.07 (d, J = 9.7 Hz, 1H), 5.87 (dd, J = 8.7, 5.8 Hz, 1H), 5.12 (d, J = 8.7 Hz, 1H), 4.56 (d, J = 8.7 Hz, 1H), 4.41 (d, J = 8.8 Hz, 1H), 1.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 165.1 (Cq), 149.0 (Cq), 139.0 (Cq), 133.0 (Cq), 132.9 (Cq), 123.6 (CH), 121.4 (Cq), 116.1 (CH), 102.2 (CH), 101.5 (CH₂), 85.0 (CH₂), 44.0 (Cq), 24.8 (CH₃). IR υ (neat): 3188, 3047-2900, 1627, 1614, 1432 cm⁻¹. MS (ESI, m/z): 246.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₂NO₄⁺: 246.0766. found: 246.0768. mp = 195-200 °C.

4a,9-dimethyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7f)

Prepared according to general procedure B from amide (23.9 mg, 0.09 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (1.4 mg, 0.00225 mmol) and CsOAc (34.5 mg, 0.18 mmol) in *t*-AmOH (0.45 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.041 mL, 0.54 mmol) in DCM (0.72 mL). Purification through alumina (Hept. to EtOAc) to afford the corresponding compound as a colorless oil (m = 11.6 mg, 75% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.31 (brs, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 5.91 (dd, J = 8.3, 5.0 Hz, 1H), 5.2 (d, J = 8.3 Hz, 1H), 4.46 (d, J = 8.5 Hz, 1H), 4.41 (d, J = 8.5 Hz, 1H), 2.49 (s, 3H), 1.45 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 168.1 (Cq), 155.8 (Cq), 136.0 (Cq), 132.0 (Cq), 131.7 (CH), 126.2 (Cq), 123.2 (CH), 121.9 (CH), 112.1 (CH), 84.6 (CH₂), 44.4 (Cq), 23.9 (CH₃), 20.8 (CH₃). IR υ (neat): 3183, 2926-2894, 1644, 1574 cm⁻¹. MS (ESI, m/z): 216.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₄NO₂⁺: 216.1025. found: 216.1025.

4a-phenyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7g)

Prepared according to general procedure B from amide (52.2 mg, 0.166 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.5 mg, 0.0041 mmol) and CsOAc (63.9 mg, 0.333 mmol) in *t*-AmOH (0.83 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.077 mL, 0.99 mmol) in DCM (1.6 mL). Purification through alumina (Hept. to Hept./EtOAc : 5/5) to afford the corresponding compound as a yellow oil (m = 21 mg, 48%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.52 (d, J = 7.7 Hz, 1H), 7.42 (brs, 1H), 7.28 (t, J = 8.3 Hz, 1H), 7.20-7.09 (m, 3H), 7.05 (d, J = 8.7 Hz, 1H), 6.98 (m, , 2H), 6.01 (dd, J = 8.5, 5.5 Hz, 1H), 5.47 (d, J = 8.5 Hz, 1H), 4.67 (d, J = 8.6 Hz, 1H), 4.63 (d, J = 8.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 167.1 (Cq), 158.9 (Cq), 144.4 (Cq), 133.3 (Cq), 129.4 (CH), 129.1 (Cq), 128.6 (CH), 127.1 (CH), 125.7 (CH), 124.3 (CH), 122.7 (CH), 118.9 (CH), 113.9 (CH), 85.9 (CH₂), 52.3 (Cq). IR ν (neat): 3058, 2956-2871, 1726, 1592, 1266 cm⁻¹. MS (ESI, m/z): 264.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₇H₁₄NO₂⁺: 264.1025. found: 264.1019.

4a-(4-chlorophenyl)-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7ha)

Prepared according to general procedure B from amide (64 mg, 0.184 mmol, E/Z = 70/30), [RhCp*Cl₂]₂ (2.8 mg, 0.0046 mmol) and CsOAc (73.0 mg, 0.368 mmol) in *t*-AmOH (0.4 mL). The solvent was removed under vacuum and the crude mixture was treated with TFA (0.035 mL, 0.448 mmol) in DCM (1.2 mL). The reaction mixture was stirred for 3 hours at RT. Purification through Al₂O₃ (DCM to DCM/MeOH 98/2) to afford the corresponding compound

as a colorless oil (m = 19.6 mg, 36%).). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 7.57 (d, J = 7.8 Hz, 1H), 7.54 (brs, 1H, NH), 7.35 (t, J = 7.9 Hz, 1H), 7.17 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 7.9 Hz, 1H), 6.97 (d, J = 8.6 Hz, 2H), 6.08 (dd, J = 5.6, 8.5 Hz, 1H), 5.5 (d, J = 8.5 Hz, 1H), 4.67 (d, J = 1.5 Hz, 2H). 13 C NMR (75 MHz, CDCl₃) δ (ppm): 167.0 (Cq), 158.8 (Cq), 142.8 (Cq), 133.0 (Cq), 129.6 (CH), 128.9 (Cq), 128.8 (CH), 127.2 (CH), 124.7 (CH), 122.8 (CH), 118.3 (CH), 114.1 (CH), 85.7 (CH₂), 51.9 (Cq). IR ν (neat): 3213, 3061, 2951, 2886, 1641, 1588, 1489 cm⁻¹. MS (ESI, m/z): 298.0 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₂H₁₃CINO₂⁺: 298.0629. found: 298.0626.

3-(4-chlorophenyl)-4,5-dihydropyrano[4,3,2-de]isoquinolin-6(2H)-one (7hb)

Purification through Al₂O₃ (DCM to DCM/MeOH 98/2) to afford the corresponding compound as a colorless oil (m = 19.6 mg, 37%).). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 7.98 (brs, 1H, NH), 7.82 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.29 (d, J = 8.7 Hz, 2H), 7.2 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 8.6 Hz, 2H), 4.56 (q, J = 8.6, 21.1 Hz, 2H), 3.66 (dd, J = 1.8, 15.9 Hz, 1H), 3.33 (d, J = 15.8 Hz, 1H). 13 C NMR (75 MHz, CDCl₃) δ (ppm): 169.1 (Cq), 163.4 (Cq), 159.8 (Cq), 139.8 (Cq), 134.0 (Cq), 131.8 (Cq), 130.5 (CH), 129.5 (CH), 127.3 (CH), 126.7 (Cq), 124.6 (CH), 115.6 (CH), 84.8 (CH₂), 48.6 (Cq), 46.1 (CH₂).IR ν (neat): 3247, 3102, 2882, 1679, 1597, 1492 cm⁻¹. MS (ESI, m/z): 298.0 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₂H₁₃ClNO₂⁺: 298.0629. found: 298.0627.

4a-(4-methoxyphenyl)-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7i)

Prepared according to general procedure B from amide (45.3 mg, 0.132 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.0 mg, 0.00329 mmol) and CsOAc (50.6 mg, 0.264 mmol) in *t*-AmOH (0.66 mL). The solvent was removed under vacuum and the crude mixture was treated with TFA (0.035 mL, 0.448 mmol) in DCM (0.8 mL). The reaction mixture was stirred for 3 hours at RT. Purification through Al₂O₃ (DCM to DCM/MeOH 95/5) to afford the corresponding compound as a colorless oil (m = 25.5 mg, 66% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.52 (d, J = 7.9 Hz, 1H), 7.30 (brs, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 6.9 (d, J = 8.8 Hz, 1H), 6.68 (d, J = 8.8 Hz, 1H), 6.0 (dd, J = 5.6, 8.5 Hz, 1H), 5.46 (d, J = 8.5 Hz, 1H), 4.62 (d, J = 2.1 Hz, 2H), 3.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 167.2 (Cq), 158.9 (Cq), 158.6 (Cq), 136.5 (Cq), 133.7 (Cq), 129.3 (CH), 129.0 (Cq), 126.9 (CH), 124.2 (CH), 122.7 (CH), 119.1 (Cq), 114.0 (CH), 113.9 (CH), 86.0 (CH₂), 55.3 (CH₃), 51.8 (Cq). IR ν (neat): 3327, 2928, 2845, 1661, 1654, 1593, 1513 cm⁻¹. MS (ESI, m/z): 294.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₈H₁₆NO₃⁺: 294.1125. found: 294.1132.

4a-cyclopropyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7j)

Prepared according to general procedure B from amide (24.7 mg, 0.089 mmol, E/Z = 80/20),

[RhCp*Cl₂]₂ (1.4 mg, 0.0022 mmol) and CsOAc (34.2 mg, 0.178 mmol) in *t*-AmOH (0.45 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.041 mL, 0.534 mmol) in DCM (0.89 mL). Purification through alumina (DCM to DCM/MeOH : 99/1) to afford the corresponding compound as a colorless oil (m = 15 mg, 74%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.71 (brs, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.27 (t, J = 8.1 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 5.99 (dd, J = 8.9, 5.8 Hz, 1H), 4.85 (d, J = 8.9 Hz, 1H), 4.56 (d, J = 8.3 Hz, 1H), 4.29 (d, J = 8.4 Hz, 1H), 1.19 (m, 1H), 0.42 (m, 2H), 0.25 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 167.8 (Cq), 158.8 (Cq), 132.4 (Cq), 128.9 (CH), 124.1 (CH), 122.5 (CH), 117.2 (Cq), 114.0 (CH), 113.8 (CH), 82.2 (CH₂), 48.8 (Cq), 19.4 (CH), 1.3 (CH₂), 1.04 (CH₂). IR ν (neat): 3234, 3065-2884, 1649, 1591 cm⁻¹. MS (ESI, m/z): 228.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₄H₁₄NO₂⁺: 228.1025. found: 228.1032.

4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (7k)

Prepared according to general procedure B from amide (32.3 mg, 0.136 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (2.1 mg, 0.0034 mmol) and CsOAc (52.2 mg, 0.272 mmol) in *t*-AmOH (0.68 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.063 mL, 0.816 mmol) in DCM (1.4 mL). Purification through alumina (Hept. to Hept./EtOAc : 5/5 then EtOAc) to afford the corresponding compound as a white solid (m = 13 mg, 51%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.73 (brs, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 6.0 (ddd, J = 8.4, 5.5, 2.8 Hz, 1H), 5.09 (dd, J = 8.4, 2.4 Hz, 1H), 4.92 (dd, J = 10.1, 8.4 Hz, 1H), 4.54 (tdd, J = 10.1, 9.5, 2.6 Hz, 1H), 4.37 (dd, J = 9.5, 8.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 168.0 (Cq), 158.4 (Cq), 130.3 (Cq), 128.8 (CH), 124.6 (CH), 122.0 (CH), 115.1 (CH), 113.4 (CH), 76.8 (CH₂), 39.1 (CH). IR ν (neat): 3230, 3094-2894, 1721, 1670, 1638, 1592 cm⁻¹. MS (ESI, m/z): 188.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₁H₁₀NO₂⁺: 188.0712. found: 188.0705. mp = 160-164 °C.

3a-methyl-2,3,3a,6-tetrahydro-7*H*-chromeno[5,4-*cd*]azepin-7-one (7l)

Prepared according to general procedure B from amide (29.5 mg, 0.111 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (1.7 mg, 0.0028 mmol) and CsOAc (42.6 mg, 0.222 mmol) in *t*-AmOH (0.56 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.051 mL, 0.66 mmol) in DCM (1.1 mL). Purification through alumina (DCM to DCM/MeOH : 99/1) to afford the corresponding compound as a yellow oil (m = 19 mg, 80%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.17 (brs, 1H), 7.55 (dd, J = 7.7, 1.5 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 7.04 (dd, J = 8.0, 1.5 Hz, 1H), 6.04 (dd, J = 8.4, 4.6 Hz, 1H), 5.18 (d, J = 8.4 Hz, 1H), 4.14 (dd, J = 5.6, 4.8 Hz, 2H), 2.16 (m, 1H), 2.04 (m, 1H), 1.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.4 (Cq), 152.6 (Cq), 133.1 (Cq), 131.1 (Cq), 127.0 (CH), 124.9 (CH), 124.3 (CH), 123.4 (CH), 121.5 (CH), 62.6 (CH₂), 39.1 (CH₂), 33.5 (Cq), 25.1 (CH₃). IR ν (neat): 3195, 2929, 1635, 1574, 1250 cm⁻¹. MS (ESI,

m/z): 216.1 (100) [M+H $^+$]. HMRS (ESI, m/z): Calcd for $C_{13}H_{14}NO_2^+$: 216.1025. found: 216.1035.

4a-methyl-2,4a-dihydrobenzofuro[4,3-cd]azepine-1,5-dione (7m)

Prepared according to general procedure B from 3-(methoxycarbamoyl)phenyl (*E*)-4-((*tert*-butyldimethylsilyl)oxy)-2-methylbut-2-enoate (30 mg, 0.079 mmol), [RhCp*Cl₂]₂ (1.2 mg, 0.002 mmol) and CsOAc (30.4 mg, 0.217 mmol) in *t*-AmOH (0.39 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.036 mL, 0.474 mmol) in DCM (0.79 mL). Purification through alumina (DCM to DCM/MeOH : 99/1) to afford the corresponding compound as a yellow oil (m = 4.1 mg, 25%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.79 (dd, J = 7.9, 1.2 Hz, 1H), 7.48 (brs, 1H), 7.45 (t, J = 8.0, Hz, 1H), 7.36 (dd, J = 7.9, 1.0 Hz, 1H), 6.09 (dd, J = 8.6, 5.8 Hz, 1H), 5.48 (d, J = 8.5 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.6 (Cq), 166.4 (Cq), 150.8 (Cq), 131.8 (Cq), 129.1 (Cq), 127.8 (Cq), 125.5 (CH), 125.2 (CH), 114.8 (CH), 112.9 (CH), 45.9 (Cq), 23.5 (CH₃). IR ν (neat): 3235, 3075-2855, 1814, 1647, 1600 cm⁻¹. MS (ESI, m/z): 216.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₂H₁₀NO₃⁺: 216.0661. found: 216.0665.

4a,6-dimethyl-2,4a,5,6-tetrahydro-1*H*-azepino[5,4,3-*cd*|indol-1-one (7n)

Prepared according to general procedure B from amide (28.7 mg, 0.108 mmol, E/Z = 80/20), [RhCp*Cl₂]₂ (3.3 mg, 0.0054 mmol) and CsOAc (41.7 mg, 0.217 mmol) in *t*-AmOH (0.54 mL). The solvent was removed under vacuum. The crude residue was used without further purification and treated with TFA (0.05 mL, 0.65 mmol) in DCM (1.1 mL). Purification through alumina (Hept. to Hept./EtOAc : 5/5) to afford the corresponding compound as a yellow oil (m = 18.7 mg, 80%, over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.37 (dd, J = 7.8, 0.8 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 5.90 (dd, J = 8.7, 5.6 Hz, 1H), 5.07 (d, J = 8.7 Hz, 1H), 3.44 (d, J = 8.5 Hz, 1H), 3.17 (d, J = 8.5 Hz, 1H), 2.80 (s, 3H), 1.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 168.4 (Cq), 150.6 (Cq), 137.6 (Cq), 128.4 (CH), 120.0 (CH), 119.8 (CH), 111.1 (CH), 69.3 (CH₂), 43.2 (Cq), 35.8 (CH₃), 24.2 (CH₃). IR ν (neat): 3203, 2925-2857, 1726, 1645, 1593 cm⁻¹. MS (ESI, m/z): 215.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₅N₂O⁺: 215.1184. found: 215.1177.

3-methyl-3-(2-oxopropyl)-2,3-dihydrobenzofuran-4-carboxamide (7ob)

Prepared according to general procedure B from amide (68 mg, 0.256 mmol), [RhCp*Cl₂]₂ (4 mg, 0.0064mmol) and CsOAc (98.0 mg, 0.512 mmol) in *t*-AmOH (0.6 mL). The solvent was

removed under vacuum and the crude mixture was treated with TFA (0.122 mL, 1.024 mmol) in DCM (3.4 mL). The reaction mixture was stirred for 3 hours at RT. Purification through Al₂O₃ (DCM to DCM/MeOH 98/2) to afford the corresponding compound as a colorless oil (m = 44.8 mg, 61%). Traces of cyclized compound **70a** were detected in the crude mixture ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.18 (t, J = 7.84 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 5.99 (brs, 1H, NH), 5.86 (brs, 1H, NH), 4.57 (d, J = 9.1 Hz, 1H), 4.37 (d, J = 9.0 Hz, 1H), 3.47 (d, J = 17.8 Hz, 1H), 3.03 (d, J = 17.7 Hz, 1H), 2.09 (s, 3H), 1.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 207.7 (Cq), 170.88 (Cq), 160.58 (Cq), 133.18 (Cq), 132.18 (Cq), 128.6 (CH), 119.2 (CH), 112.7 (CH), 82.7 (CH₂), 50.9 (CH₂), 44.6 (Cq), 30.9 (CH₃), 23.9 (CH₃). IR ν (neat): 3345, 3193, 2694, 2884, 1710, 1658, 1585, 1439 cm⁻¹. MS (ESI, m/z): 234.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₆NO₃⁺: 234.1125. found: 234.1126.

4- FUNCTIONALIZATION

2,4a-dimethyl-4a,5-dihydrobenzofuro[4,3-cd]azepin-1(2H)-one (12)

To a solution of amide (23 mg, 0.114 mmol) in THF (1.48 mL) was added NaH (60 %w/w, 9.1 mg, 0.228 mmol) portionwise at 0°C. The solution was stirred at 0°C for 30 min then MeI (14.2 μL, 0.228 mmol) was added. The mixture was stirred 1h at RT then saturated NH₄Cl was added. The aqueous layer was extracted with EtOAc, then the combined organic layers were washed with water and brine. The solvent was removed under vacuum and the crude mixture purified through silica gel (Hept. to Hept./EtOAc 5/5) to afford the methylated amide as a colorless oil (m = 21.4 mg, 87%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.52 (d, J = 7.89 Hz, 1H), 7.23 (t, J = 7.95 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 5.89 (d, J = 8.6 Hz, 1H), 5.26 (d, J = 8.6 Hz, 1H), 4.48 (d, J = 8.7 Hz, 1H), 4.41 (d, J = 8.5 Hz, 1H), 3.31 (s, 3H), 1.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 166.4 (Cq), 157.4 (Cq), 136.0 (Cq), 129.3 (CH), 128.8 (Cq), 128.6 (CH), 122.6 (CH), 122.0 (CH), 112.6 (CH), 84.3 (CH₂), 43.5 (Cq), 37.6 (CH₃), 24.4 (CH₃). IR ν (neat): 2962-2887, 1635, 1589, 1355 cm⁻¹. MS (ESI, m/z): 216.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₃H₁₄NO₂⁺: 216.1025. found: 216.1018.

4a-methyl-3,4,4a,5-tetrahydrobenzofuro[4,3-cd]azepin-1(2H)-one (13)

The enamide (26.7 mg, 0.132 mmol) was dissolved in ethanol (1.3 mL) and 10% Pd/C (5 mg) was added. The suspension was stirred overnight at RT under hydrogen (1 atm). The suspension was filtered through celite and washed with ethanol. The crude mixture purified through silica gel (Hept. to EtOAc) to afford the corresponding compound as a white solid (m = 25.6 mg, 99%). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 7.37 (d, J= 7.7 Hz, 1H), 7.26 (dd, J= 7.7, 7.7 Hz, 1H), 7.20 (brs, 1H), 6.94 (d, J= 7.9 Hz, 1H), 4.39 (d, J= 8.4 Hz, 1H), 4.23 (d, J= 8.5 Hz, 1H), 3.49-3.21 (m, 2H), 2.21 (ddd, J= 14.1, 12.9, 4.8 Hz, 1H), 1.94 (ddd, J= 14.1, 3.2, 2.6 Hz), 1.36 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ (ppm) 171.6 (Cq), 158.6 (Cq), 133.1 (Cq), 129.8 (Cq),

129.1 (CH), 121.4 (CH), 112.6 (CH), 86.1 (CH₂), 45.2 (Cq), 42.6 (CH₂), 41.3 (CH₃), 30.8 (CH₃). IR υ (neat): 3262, 2976-2870, 1652, 1583, 1243 cm⁻¹. MS (ESI, m/z): 204.1 (100) [M+H⁺]. HMRS (ESI, m/z): Calcd for C₁₂H₁₄NO₂⁺: 204.1025. found: 204.1021. mp = 147-149 °C.

Tert-butyl 4a-methyl-3,4,4a,5-tetrahydrobenzofuro[4,3-cd]azepine-2(1H)-carboxylate (14)

To a solution of 4a-methyl-3,4,4a,5-tetrahydrobenzofuro[4,3-cd]azepin-1(2H)-one (51 mg, 0.250 mmol) in THF (10 mL) was added LiAlH₄ (10 mg, 0.263 mmol). The reaction was refluxed overnight. After cooling with an ice-bath, NaOH (3N, 0.250 mL), then water (0.250 mL) and finally NaOH (3N, 0.750 mL) were added dropwise. The reaction mixture was filtered over a pad of celite and solvent was removed under vacuum. The crude amine was dissolved in DCM (10 mL), then a catalytic amount of DMAP, Et₃N (0.05 mL, 0.378 mmol) and Boc₂O (66 mg, 0.302 mmol) were added. After stirring for 3 hours, the reaction mixture was quenched with saturated NH₄Cl. Purification over alumina (DCM to DCM/MeOH, 98/2) afforded the title compound as a colorless oil (m = 60.3 mg, 83% over two steps). ¹H NMR (300 MHz, CDCl₃) δ (ppm) (2 rotamers): 7.04 – 6.56 (m, 3H), 5.11 (d, J = 15.4 Hz, 1H, minor.) 4.64 (d, J = 15.6Hz, 1H, major.), 4.42 (td, J = 3.3, 14.5 Hz, 1H, major.), 4.06 (dd, J = 5.0, 15.2 Hz, 1H, minor.), 4.04 - 3.64 (m, 3H), 2.96 (t, J = 13.3 Hz, 1H, minor.), 2.85 (t, J = 13.5 Hz, 1H, major.), 1.95(td, J = 12.7, 13.7 Hz, 1H, major.), 1.73 (td, J = 11.7, 16.4 Hz, 1H, minor.), 1.46 (s, 9H, minor.),1.44 (s, 9H, major.), 1.28 (d, J = 11.7 Hz, 1H, minor.), 1.19 (d, J = 14.5 Hz, 1H, major.), 1.03 (s, 3H, minor.), 1.00 (s, 3H, major.). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) (2 rotamers): 160.4 (Cq), 154.7 (Cq), 138.1 (Cq), 137.9 (Cq), 133.1 (Cq), 128.5 (Cq), 128.2 (CH), 120.9 (CH), 119.9 (CH), 109.5 (CH), 109.3 (CH), 84.8 (CH₂), 84.6 (CH₂), 79.1 (Cq), 51.9 (CH₂), 51.4 (CH₂), 46.1 (CH₂), 45.7 (Cq), 38.1 (CH₂), 36.8 (CH₂), 28.3 (CH₃), 28.2 (Cq), 27.6 (CH₃), 23.3 (CH₃), 23.0 (CH₃). IR υ (neat): 2973, 2929, 1762, 1689, 1594, 1450, 1409 cm⁻¹ MS (ESI, m/z): 190.1 (100) [M-Boc+H⁺]. HMRS (ESI, m/z): Calcd for $C_{12}H_6NO^+$ (M-Boc+H⁺): 190.1226. Found: 190.1227.