## **Supporting Information**

# Mesoporous Imine-Based Organic Polymer: Catalyst-Free Synthesis in Water and Application in CO<sub>2</sub> Conversion

Xiaoxiao Yu,<sup>‡a, b</sup> Zhenzhen Yang,<sup>‡a</sup> Shien Guo<sup>a, b</sup> Zhenghui Liu,<sup>a, b</sup> Hongye Zhang,<sup>a</sup> Bo Yu,<sup>a</sup> Yanfei Zhao,<sup>a</sup> and Zhimin Liu<sup>\*a, b</sup>

<sup>a</sup> Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: liuzm@iccas.ac.cn

## **Table of Contents**

| 1.           | General experimental methods |  |  |  |
|--------------|------------------------------|--|--|--|
| 2.           | Synthetic procedures4        |  |  |  |
| 3.           | Supplementary Figure         |  |  |  |
| Figure S16   |                              |  |  |  |
| Figure S2    |                              |  |  |  |
| Figure S37   |                              |  |  |  |
| Figure S4    |                              |  |  |  |
| Figure S59   |                              |  |  |  |
| Figure S69   |                              |  |  |  |
| Figure S710  |                              |  |  |  |
| Figure S810  |                              |  |  |  |
| Figu         | rre S911                     |  |  |  |
| Figu         | rre S1011                    |  |  |  |
| Tab          | le S112                      |  |  |  |
| Figure S1113 |                              |  |  |  |
| Scheme S1    |                              |  |  |  |
| Sche         | eme S214                     |  |  |  |

| 4.   | Determination of the product yields                                  | 14 |
|------|----------------------------------------------------------------------|----|
| Figu | ıre S12                                                              | 14 |
| Figu | ıre S13                                                              | 15 |
| Figu | ıre S14                                                              | 16 |
| Figu | ıre S15                                                              | 17 |
| Figu | ıre S16                                                              | 18 |
| Figu | ıre S17                                                              | 19 |
| Figu | ıre S18                                                              | 20 |
| Figu | ıre S19                                                              | 21 |
| Figu | ıre S20                                                              | 22 |
| Figu | ıre S21                                                              | 23 |
| Figu | ıre S22                                                              | 24 |
| Figu | ıre S23                                                              | 25 |
| Figu | ıre S24                                                              | 26 |
| Figu | ıre S25                                                              | 27 |
| Figu | ıre S26                                                              | 28 |
| 5.   | <sup>1</sup> H and <sup>13</sup> C NMR data of the isolated products | 29 |

## 1. General experimental methods

#### Materials

All reagents and solvents were purchased from commercial sources and were used without further purification, unless indicated otherwise.

#### Instrumentation

Liquid <sup>1</sup>H and <sup>13</sup>C NMR spectra was recorded on Bruck 400 spectrometer. Solid-state NMR experiments were performed on a Bruker WB Avance II 400 MHz spectrometer. The <sup>13</sup>C CP/MAS NMR spectra were recorded with a 4-mm double-resonance MAS probe and with a sample spinning rate of 10.0 kHz; a contact time of 2 ms (ramp 100) and pulse delay of 3 s were applied. FTIR spectra of the samples were collected on a TENSOR 27 FTIR at a resolution of 2 cm<sup>-1</sup>. Gas sorption isotherms were obtained with Micromeritics TriStar II 3020 and Micromeritics ASAP 2020 M+C accelerated surface area and porosimetry analyzers at certain temperature. The samples were outgassed at 140 °C for 8 h before the measurements. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) method. Field emission scanning electron microscopy (SEM) observations were performed on a Hitachi SU8020 microscope operated at an accelerating voltage of 15.0 kV. (HR) Transmission electron microscopy (TEM) images were obtained with a JEOL JEM-1011 and JEM-2100F instrument operated at 200 kV. The thermal properties of the materials were evaluated using a thermogravimetric analysis (TGA) instrument (STA PT1600 Linseis) over the temperature range of 25 to 800 °C under air with a heating rate of 10 °C/min. X-ray photoelectron spectroscopy (XPS) was performed on an ESCAL Lab 220i-XL spectrometer at a pressure of  $\sim 3 \times 10^{-9}$  mbar (1 mbar = 100 Pa) using Al Ka as the excitation source (1486.6 eV) and operated at 15 kV and 20 mA. The binding energies were referenced to the C<sub>1s</sub> line at 284.8 eV from adventitious carbon. The XRD analysis was performed on a D/MAX-RC diffractometer operating at 30 kV and 100 mA with  $Cu_{Kg}$  radiation. The reaction mixture was analyzed by means of GC (Agilent 4890D) with a FID detector and a polar capillary column (HP-INNOWAX) (30 m  $\times$  0.25 mm  $\times$  0.25 μm). The column oven was temperature-programmed with a 2 min initial hold at 323 K, followed by the temperature increase to 538K at a rate of 20 K/min and kept at 538 K for 10 min. High purity nitrogen was used as a carrier gas.

### 2. Synthetic procedures

(1) Synthetic procedure for Imine-POP



Typically, 1,2,4,5-benzenetetramine tetrahydrochloride (1 mmol), benzene-1,3,5-tricarbaldehyde (1.3 mmol) and H<sub>2</sub>O (50 mL) were added successively to a 100 mL autoclave with a Teflon inner tube. The mixture was stirred at 25 °C for 2 h and then 120 °C for 24 h. After cooling to room temperature, the solid was collected by filtration and washed by distilled water, tetrahydrofuran (THF) and ethanol (100 mL\*3 for each liquid). After extracted in a Soxhlet extractor with methanol (70 mL), H<sub>2</sub>O (70 mL) and THF (70 mL) for 48 h, the sample was collected and dried in vacuum oven at 140 °C for 24 h. The sample, denoted as **Imine-POP**, was brown solid, and its yield was 85%.

#### (2) Reaction of the monomers to produce N,N-dibenzylidenebenzene-1,2-diamine



1,2-Benzenediamine dihydrochloride (1 mmol), benzaldehyde (2 mmol) and  $H_2O$  (50 mL) were added successively to a 100 mL autoclave with a Teflon inner tube. The mixture was stirred at 25 °C for 2 h and then 120 °C for 24 h. After cooling to room temperature, the reaction system was extracted with chloroform (100 mL\*2). The solvent was partly removed by rotary evaporation, and the residue was detected by GC-MS as shown below, indicating the formation of N,N-dibenzylidenebenzene-1,2diamine.

#### GC spectrum



**MS** spectrum



#### (3) Synthetic procedure for Imine-POP@Pd

To an CH<sub>2</sub>Cl<sub>2</sub> (10 mL) dispersion of **Imine-POP** (0.1 g), 2 mL of CH<sub>2</sub>Cl<sub>2</sub> solution of Pd(OAc)<sub>2</sub> (0.03 g, 0.13 mmol) was added under N<sub>2</sub> atmosphere and stirred for 12 h at room temperature. Then the solid was filtered, washed with dichloromethane (10\*25 mL) and dried under vacuum at 60 °C for 24 h. The resultant sample was denoted as **Imine-POP@Pd**. The Al<sub>2</sub>O<sub>3</sub>@Pd, TiO<sub>2</sub> @Pd and C@Pd were prepared in the same way using various supports.

#### (4) General procedure for the N-formylation reaction

Typically, amine (i.e., **1a-1n**, 1 mmol), **Imine-POP@Pd** (30 mg),  $K_3PO_4$  (0.3 mmol) and DMI (4 mL) were successively added into a stainless steel autoclave with a Teflon tube (25 mL inner volume) under N<sub>2</sub> atmosphere. The autoclave was sealed and charged with CO<sub>2</sub> up to 3 MPa and then H<sub>2</sub> to total pressure of 6 MPa at room temperature. The autoclave was moved to an oil bath of 100 °C and stirred for 24 h. After reaction, the autoclave was cooled down to room temperature. The yield of **2a** was determined by GC using biphenyl as an internal standard, and the yields of **2b~2n** were determined by NMR using CH<sub>3</sub>NO<sub>2</sub> as an internal standard and CDCl<sub>3</sub> as the solvent.

#### (5) Isolation of the products

After reaction, the catalyst was removed by filtration, and the filtrate was collected into separating funnel.  $H_2O$  (4 mL), which has good miscibility with DMI, and ethyl acetate (4 mL), which can solve the product well, were added into the separating funnel. The  $H_2O$  layer was extracted by ethyl acetate (4 mL \*5) and all the ethyl acetate solution of the product was gathered and dried by  $Na_2SO_4$ . The

solvent was removed by rotary evaporateion and the pure product was obtained by column chromatography on silica gel using n-hexane/ethyl acetate as eluent.

#### (6) Recycling of Imine-POP@Pd

After reaction, the catalyst was separated by centrifugation, washed with dichloromethane, ethanol, deionized water, ethanol successively and then dried under vacuum at 60 °C for 24 h. The recycled catalyst was reused for the next run.

## 3. Supplementary Figure



Figure S1 FTIR spectrum of Imine-POP. The spectrum was recorded as KBr pellets.



Figure S2 CP/MAS <sup>13</sup>C NMR spectrum for Imine-POP.



Figure S3 PXRD-pattern of Imine-POP.



Figure S4 (a) SEM and (b) TEM image of Imine-POP. Scale bar, (a) 300 nm, (b) 20 nm.



Figure S5 TGA analysis on Imine-POP and Imine-POP@Pd in air, with a ramping rate of 10 °C min.



Figure S6 BET plots of (a) Imine-POP and (b) Imine-POP@Pd.



Figure S7 (HR)TEM of Imine-POP@Pd, Scale bar 25 nm.



Figure S8 EDS profile of Imine-POP@Pd



Figure S9 Compositional EDS mapping of Imine-POP@Pd using scanning transmission electron microscopy. Scale bar 10 nm.



**Figure S10** Recyclability test of **Imine-POP@Pd**. Reaction conditions: morpholine, 1 mmol; **Imine-POP@Pd**, 30 mg (Pd 2.3 mol%); K<sub>3</sub>PO<sub>4</sub>, 0.3 mmol; CO<sub>2</sub>, 3 MPa; H<sub>2</sub>, 3 MPa; DMI, 4 mL; 100 °C, 24 h. Conversion and yield were determined by GC using biphenyl as an internal standard.

## Table S1 Base and catalyst screening<sup>a</sup>

| $0 \qquad NH + CO_2 + H_2 \xrightarrow{Catalyst} 0 \qquad N \xrightarrow{O} H$ 1a $2a$ |                                 |                                    |                      |  |  |
|----------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------------|--|--|
| Entry                                                                                  | Base                            | Catalyst                           | Yield/% <sup>b</sup> |  |  |
| 1                                                                                      | K <sub>3</sub> PO <sub>4</sub>  | Imine-POP@Pd                       | 97                   |  |  |
| 2                                                                                      | t-BuOK                          | Imine-POP@Pd                       | 59                   |  |  |
| 3                                                                                      | КОН                             | Imine-POP@Pd                       | 91                   |  |  |
| 4                                                                                      | Cs <sub>2</sub> CO <sub>3</sub> | Imine-POP@Pd                       | 36                   |  |  |
| 5                                                                                      | DBU                             | Imine-POP@Pd                       | 23                   |  |  |
| 6°                                                                                     | $K_3PO_4$                       | Al <sub>2</sub> O <sub>3</sub> @Pd | 12                   |  |  |
| 7 °                                                                                    | $K_3PO_4$                       | TiO <sub>2</sub> @Pd               | 87                   |  |  |
| 8 c                                                                                    | $K_3PO_4$                       | C@Pd                               | 43                   |  |  |
| 9 <sup>d</sup>                                                                         | K <sub>3</sub> PO <sub>4</sub>  | Imine-POP@Pd                       | 78                   |  |  |
| 10 <sup>e</sup>                                                                        | K <sub>3</sub> PO <sub>4</sub>  | Imine-POP@Pd                       | 32                   |  |  |
| 11 <sup>e</sup>                                                                        | K <sub>3</sub> PO <sub>4</sub>  | Imine-POP@Pd                       | 69                   |  |  |

<sup>a</sup> Reaction condition: **1a**, 1 mmol; **Imine-POP@Pd**, 30 mg (Pd was 2.3 mol% based on **1a**); K<sub>3</sub>PO<sub>4</sub>, 0.3 mmol or other base 1 mmol; CO<sub>2</sub> 3 MPa, H<sub>2</sub> 3 MPa; DMI, 4 mL; 100 °C, 24 h. <sup>b</sup> Determined by GC using biphenyl as the internal standard. <sup>c</sup> **Support@Pd** (Pd was 2.3 mol% based on **1a**). <sup>d</sup> The Pd content was 2.7 wt%, and the Pd loading was 2.3 mol% based on **1a**. <sup>e</sup> The Pd loading was 0.77 mol% (entry 10) and 1.53 mol% (entry 11).



**Figure S11** The NMR spectrum of control experiment for mechanism study. Reaction conditions: **Imine-POP@Pd**, 30 mg (Pd 2.3 mol%); K<sub>3</sub>PO<sub>4</sub>, 0.3 mmol; CO<sub>2</sub>, 3 MPa; H<sub>2</sub>, 3 MPa; DMI, 4 mL; 100 °C, 24 h.

Scheme S1 Control Experiment for Mechanism Study. (1) Imine-POP@Pd (Pd was 2.3 mol% based on 1a); K<sub>3</sub>PO<sub>4</sub>, 0.3 mmol; CO<sub>2</sub> 3 MPa, H<sub>2</sub> 3 MPa; DMI, 4 mL; 100 °C, 24 h. HCOOH was determined by NMR. (2) 1a, 1 mmol; HCOOH 10 mmol, Imine-POP@Pd (Pd was 2.3 mol% based on 1a); K<sub>3</sub>PO<sub>4</sub>, 0.3 mmol; DMI, 4 mL; 100 °C, 24 h. The yield of 2a was determined by GC using biphenyl as the internal standard.



Scheme S2 Possible reaction mechanism for the Imine-POP@Pd catalyzed N-formylation reaction of amines with  $CO_2/H_2$ .

## 4. Determination of the product yields

The structure of **2a** was characterized by comparing the retention time with the authentic compound and GC-MS. The yield was determined by GC using biphenyl as the internal standard and calculated through the calibartion curves as shown below. For **2b-2n**, NMR yields were given. The <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectra of the reaction mixture and MS spectra of the product were shown below.



Figure S12 Working Curves to determine concentrations of morpholine and N-formylmorpholine



Figure S13 GC spectra of reaction solution of morpholine (1a) reacting with  $CO_2/H_2$  and MS spectrum of 2a.





**Figure S14** NMR spectrum of reaction solution of 1b reacting with  $CO_2/H_2$  (1b: 0.0747 g;  $CH_3NO_2$ : 0.0190 g) and MS spectrum of 2b.





**Figure S15** NMR spectrum of reaction solution of 1c reacting with  $CO_2/H_2$  (1c: 0.0773 g;  $CH_3NO_2$ : 0.0584 g) and MS spectrum of 2c.





**Figure S16** NMR spectrum of reaction solution of 1d reacting with  $CO_2/H_2$  (1d: 0.1073 g;  $CH_3NO_2$ : 0.0245 g) and MS spectrum of 2d.



**Figure S17** NMR spectrum of reaction solution of 1e reacting with  $CO_2/H_2$  (1e: 0.0884 g;  $CH_3NO_2$ : 0.0563 g) and MS spectrum of 2e.





**Figure S18** NMR spectrum of reaction solution of 1f reacting with  $CO_2/H_2$  (1f: 0.1814 g;  $CH_3NO_2$ : 0.0360 g) and MS spectrum of 2f.





Figure S19 NMR spectrum of reaction solution of 1g reacting with CO<sub>2</sub>/H<sub>2</sub> (1g: 0.1626 g; CH<sub>3</sub>NO<sub>2</sub>: 0.0590 g ) and MS spectrum of 2g.





Figure S20 NMR spectrum of reaction solution of 1h reacting with  $CO_2/H_2$  (1h: 0.1407 g;  $CH_3NO_2$ : 0.0157 g ) and MS spectrum of 2h.





Figure S21 NMR spectrum of reaction solution of 1i reacting with  $CO_2/H_2$  (1i: 0.1328 g;  $CH_3NO_2$ : 0.0272 g ) and MS spectrum of 2i.

\_\_\_\_\_H О\_\_\_\_H 2j



Figure S22 NMR spectrum of reaction solution of 1j reacting with CO<sub>2</sub>/H<sub>2</sub> (1j: 0.1078 g; CH<sub>3</sub>NO<sub>2</sub>: 0.0424 g) and MS spectrum of 2j.





Figure S23 NMR spectrum of reaction solution of 1k reacting with CO<sub>2</sub>/H<sub>2</sub> (1k:0.0992 g; CH<sub>3</sub>NO<sub>2</sub>: 0.0278 g ) and MS spectrum of 2k.





**Figure S24** NMR spectrum of reaction solution of 11 reacting with  $CO_2/H_2$  (11:0.1329 g;  $CH_3NO_2$ : 0.0176 g) and MS spectrum of 21.





**Figure S25** NMR spectrum of reaction solution of 1m reacting with CO<sub>2</sub>/H<sub>2</sub> (1m:0.1168 g; CH<sub>3</sub>NO<sub>2</sub>: 0.0306 g) and MS spectrum of 2m.





Figure S26 NMR spectrum of reaction solution of 1n reacting with CO<sub>2</sub>/H<sub>2</sub> (1n:0.1309 g; CH<sub>3</sub>NO<sub>2</sub>: 0.0153 g ) and MS spectrum of 2n.

## 5. <sup>1</sup>H and <sup>13</sup>C NMR data of the isolated products

 $\mathcal{H}_{5}$  N  $\mathcal{H}_{5}$ 

H **2f**; N,N-dihexylformamide; Purification by column chromatography on silica gel using n-hexane/ ethyl acetate (50:1) as eluent. Light yellow liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 0.84-0.86 (m, 6H), 1.25 (s, 12H), 1.47-1.48 (m, 4H), 3.14 (t,  ${}^{3}J$  = 7.2 Hz, 2H), 3.23 (t,  ${}^{3}J$  = 7.2 Hz, 2H), 7.99 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz) δ 13.83, 13.87, 22.41, 22.44, 26.04, 26.51, 27.17, 28.54, 31.27, 31.42, 42.02, 47.34, 162.54. M (C<sub>13</sub>H<sub>27</sub>NO) = 213.2, EI-MS found 213.1 [M], 198.1 [M-CH<sub>3</sub>], 184.1 [M-CHO].





**2g**; N-methyl-N-benzylformamide; Purification by column chromatography on silica gel using n-hexane/ ethyl acetate (50:1) as eluent. Yellow liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  2.78, 2.84 (s, 3H), 4.39 (s, 1H), 4.52 (s, 1H), 7.19-7.37 (m, 5H), 8.16, 8.28 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  29.42, 33.98, 47.75, 53.45, 127.36, 127.60, 128.06, 128.22, 128.66, 128.87, 135.77, 136.03, 162.52, 162.69. M (C<sub>9</sub>H<sub>11</sub>NO) = 149.1, EI-MS found 149.1 [M], 134.0 [M-CH<sub>3</sub>], 120.1 [M-CHO].





**2k**; N-cyclohexylformamide; Purification by column chromatography on silica gel using n-hexane/ ethyl acetate (20:1) as eluent. Colourless liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.11-1.40 (m, 6H), 1.68-1.73 (m, 2H), 1.86-1.94 (m, 2H), 3.81-3.89 (m, 1H), 5.54 (s, 1H), 8.09 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$  24.70, 25.40, 33.02, 34.68, 47.05, 50.90, 160.23. M (C<sub>7</sub>H<sub>13</sub>NO) = 127.1, EI-MS found 127.0 [M], 97.9 [M-CHO], 84.0 [M-NCHO].





**21**; N-benzylformamide; Purification by column chromatography on silica gel using n-hexane/ ethyl acetate (50:1) as eluent. Light yellow liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  4.42 (d, <sup>3</sup>*J* = 8 Hz, 2H), 6.39 (s, 1H), 7.24-7.32 (m, 5H), 8.17 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100.6 MHz)  $\delta$ 

 $<^{4.429}_{4.409}$ -8.174 -8.174 -7.319 -7.314 -7.314 -7.314 -7.295 -7.295 -7.233 -6.3334 <sup>1</sup>H NMR (CDCI<sub>3</sub>, 400 MHz) NH H -88.0 1-00-Z 1.00-1 5.86-6.0 5.5 5.0 f1 (ppm) 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -137.671 128.750 -127.749 -127.626 -161.219-42.113 -77.549 -77.125 -76.701 <sup>13</sup>C NMR (CDCI<sub>3</sub>, 100.6 MHz) NH H 210 190 170 150 130 110 90 f1 (ppm) 80 70 20 10 -10 60 50 40 30 0

42.11, 127.63, 127.75, 128.75, 137.67, 161.22. M (C<sub>8</sub>H<sub>9</sub>NO) = 135.1, EI-MS found 135.0 [M], 106.0 [M-CHO].

