Phyllostictine A: Total Synthesis, Structural Verification and Determination of Substructure Responsible for Plant Growth Inhibition

Martin Riemer, ${ }^{a}$ Veselina Uzunova, ${ }^{b}$ Nastja Riemer, ${ }^{a}$ Guy J. Clarkson, ${ }^{a}$ Nicole Pereira, ${ }^{b}$ Richard Napier ${ }^{\text {b }}$ and Michael Shipman*, ${ }^{*}$
${ }^{\text {a }}$ Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K. Fax: +44 2476 524112; Tel: +44 2476523186 ; E-mail: m.shipman@warwick.ac.uk
${ }^{\mathrm{b}}$ School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.

Electronic Supplementary Information

1. General details S2
2. Experimental procedures and characterisation data S3-S18
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S19-S37
4. X-ray data for $\mathbf{5}$ S38
5. Plant growth assays for $\mathbf{1 , 4}$ and synthetic phyllostictine A S39
6. References S40

1. General details

Anhydrous solvents were purchased from Sigma-Aldrich or Acros Organics in Sure-Seal ${ }^{\mathrm{TM}}$ bottles for use as reaction solvents. All other solvents were reagent grade and used as received. Petroleum ether refers to the fraction that boils in the range $40-60^{\circ} \mathrm{C}$. Commercially available starting materials were used without purification unless otherwise stated.

Thin layer chromatography was performed on pre-coated aluminium-backed plates (Merck Silica gel 60 F254), visualised by UV 254 nm and then stained with phosphomolybdic acid (PMA) dip. Flash column chromatography was performed using Aldrich 40-63 $\mu \mathrm{m}$ silica gel.

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker DPX (300 or 400 MHz), or AV $(500 \mathrm{MHz})$ spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) relative to the solvent residual peaks $\left(\mathrm{CDCl}_{3} \delta_{\mathrm{H}}: 7.26 \mathrm{ppm}, \delta_{\mathrm{C}}: 77.16 \mathrm{ppm}\right.$; DMSO- $\left.\mathrm{d}_{6} \delta_{\mathrm{H}}: 2.50 \mathrm{ppm}, \delta_{\mathrm{C}} 39.52 \mathrm{ppm}\right)$. Coupling constants (J) are reported in hertz (Hz). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (b), or combination of these. NMR assignments were deduced using 2D experiments (COSY, HSQC and HMBC).

Low-resolution mass spectra were recorded on an Agilent Technologies 6130 Quadrupole LC-MS instrument. High-resolution mass spectra were recorded using a Bruker MaXis Impact. Infrared spectra were recorded with a Bruker ALPHA Platinum ATR apparatus. Optical rotations $[\alpha]_{D}^{T}$ were measured using an AA-1000 polarimeter. Melting points were recorded with a Gallenkamp MPD350 melting point apparatus.

2. Experimental procedures and characterisation data

3

Dimethyl 2-methoxymaleate, $3^{\mathbf{1 , 2}}$ To a solution of MeOH ($480 \mathrm{mg}, 15.0$ mmol) in THF (50.0 mL) was added n - $\operatorname{BuLi}(2.0 \mathrm{M}$, in n-hexane, $20 \mathrm{~mol} \%$, 1.50 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 minutes at this temperature. A solution of dimethyl acetylenedicarboxylate (freshly distilled, $2.13 \mathrm{~g}, 15.0 \mathrm{mmol})$ in THF (10.0 mL) was added dropwise via syringe pump over 40 minutes. The reaction mixture was slowly allowed to warm up to $0^{\circ} \mathrm{C}$ over ca 4 h . The reaction was quenched with a solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine (1:1, 20 mL). The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica (petroleum ether:EtOAc; 10:1) to afford $3(1.76 \mathrm{~g}, 67 \%)$ as a white solid. Mp $41-42{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{2}: 40{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{C}_{-} \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4(\mathrm{C}=\mathrm{O}), 164.1(\mathrm{OC}=\mathrm{C}), 162.6(\mathrm{C}=\mathrm{O}), 93.2(\mathrm{CH}), 57.1$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.1\left(\mathrm{C}=\mathrm{C}-\mathrm{OCH}_{3}\right), 51.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; IR (film) 2955, 2072, 1878, 1715, 1433, 1142, 691 $\mathrm{cm}^{-1} ;$ MS (ESI +) $m / z 197[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 197.0420$, found 197.0421. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data identical to those reported previously. ${ }^{2}$

4

1,3-Dimethoxy-1H-pyrrole-2,5-dione, 4. To a solution of $\mathbf{3}$ ($696 \mathrm{mg}, 4.0 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added aqueous $1 \mathrm{M} \mathrm{NaOH}(8.8 \mathrm{~mL})$. The reaction mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 6 h (conversion monitored by NMR in $\mathrm{D}_{2} \mathrm{O}$ until $>95 \%$ conversion). The reaction mixture was concentrated in vacuo then acidified by addition of aqueous $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(10 \times 50 \mathrm{~mL})$, then the combined organic phases concentrated in vacuo. To the crude acid (610 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added successively $\mathrm{MeONH}_{2}(376 \mathrm{mg}, 8.0 \mathrm{mmol}$ containing 10% of $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine), ${ }^{3} \quad N, N$-dicyclohexylcarbodiimide ($1.81 \mathrm{~g}, 8.8 \mathrm{mmol}$) and 4-dimethylaminopyridine ($98 \mathrm{mg}, 0.8 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature then concentration in vacuo. Purification by column chromatography (petroleum ether:EtOAc; $2: 1 \rightarrow 1: 2)$ gave $4(327 \mathrm{mg}, 52 \%)$ as a white solid. Mp $104-106{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right),{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8$ $(\mathrm{C}=\mathrm{O}), 161.4(\mathrm{C}=\mathrm{O}), 158.4(\mathrm{OC}=\mathrm{C}), 94.3(\mathrm{CH}), 66.0\left(\mathrm{OCH}_{3}\right), 58.7\left(\mathrm{OCH}_{3}\right)$; IR (film) 3106, 2950, 1727, 1636, 1325, 1096, $8213 \mathrm{~cm}^{-1}$; MS (ESI+) m/z $180[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NNaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 180.0267$, found 180.0268 .

5

5-Hydroxy-1,4-dimethoxy-5-methyl-1,5-dihydro-2H-pyrrol-2-one, 5. Dione 4 (90 $\mathrm{mg}, 0.57 \mathrm{mmol})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20.0 \mathrm{~mL})$. A solution of $\mathrm{MeMgBr}(3.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 0.57 \mathrm{~mL}, 1.71 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred until complete consumption of the starting material (by TLC, ca. 25 min) then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10.0 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography (EtOAc) to give 5 ($78 \mathrm{mg}, 79 \%$) as a white solid. Mp $109-111^{\circ} \mathrm{C},{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 5.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.95(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NOCH}_{3}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , acetone$\left.\mathrm{d}_{6}\right) \delta 176.4\left(\mathrm{COCH}_{3}\right), 170.1(\mathrm{C}=\mathrm{O}), 90.7(\mathrm{CH}), 88.6(\mathrm{COH}), 65.7\left(\mathrm{NOCH}_{3}\right), 58.6\left(\mathrm{COCH}_{3}\right), 21.7$ $\left(\mathrm{CH}_{3}\right)$; IR (film) 3301, 2944, 1880, 1700, 1626, 1068, $692 \mathrm{~cm}^{-1} ; \mathbf{M S}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z} 196[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NNaO}_{4}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 196.0580$, found 196.0581.

1

1,4-Dimethoxy-5-methylene-1,5-dihydro-2H-pyrrol-2-one, 1. Alcohol 5 (53 mg, $0.31 \mathrm{mmol})$ was dissolved in a solution of TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \% \mathrm{TFA}, 1 \mathrm{~mL})$ and stirred at room temperature for 30 min . The reaction mixture was concentrated in vacuo and the crude material purified by column chromatography (petroleum ether:EtOAc; 1:1) to give $\mathbf{1}(45 \mathrm{mg}, 94 \%)$ as a colourless oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(500 \mathrm{MHz}$, acetone- $\left.\mathrm{d}_{6}\right) \delta 5.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}-H_{\text {trans }}\right), 4.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}-H_{c i s}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NOCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (126 MHz , acetone- $\left.\mathrm{d}_{6}\right) \delta 167.4(\mathrm{C}=\mathrm{O}), 163.8\left(\mathrm{COCH}_{3}\right), 139.7$ $\left(C=\mathrm{CH}_{2}\right), 92.2(\mathrm{CH}), 90.3\left(\mathrm{CH}_{2}\right), 64.1\left(\mathrm{NOCH}_{3}\right), 58.5\left(\mathrm{COCH}_{3}\right)$; IR (film) 3109, 2986, 1714, 1600, 1441, 1107, $980 \mathrm{~cm}^{-1}$; MS (ESI +) $m / z 178[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 178.0475, found 178.0475.

(Z)-7

Methyl (\boldsymbol{Z})-2-methyldec-2-enoate, $\mathbf{7 .}^{4}$ A solution of KHMDS (1.0 M in THF, $4.75 \mathrm{~mL}, 4.75 \mathrm{mmol}$) was added dropwise to a stirred solution of methyl 2-(bis(2,2,2-trifluoroethoxy)phosphoryl)propanoate ${ }^{5}$ (6) ($1.73 \mathrm{~g}, 5.00$ mmol) and 18 -crown-6 ($1.28 \mathrm{~g}, 4.85 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and stirring was continued for 20 minutes. A solution of freshly distilled octanal ($608 \mathrm{mg}, 4.75 \mathrm{mmol}$) in THF (10.0 mL) was added dropwise to the reaction mixture. After stirring for 1.5 h , the mixture was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and allowed to warm to room temperature. The mixture was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), the combined organic phases dried over MgSO_{4} then concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether: $\mathrm{Et}_{2} \mathrm{O} ; 100: 1$) to give (Z)-7 ($850 \mathrm{mg}, 90 \%$) as a colourless oil. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.93 (tq, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.44\left(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CH}=\mathrm{C}), 1.89\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.42-1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33-1.24\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{x} \mathrm{CH}_{2}\right)$, $0.88\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7\left(\mathrm{CO}_{2} \mathrm{Me}\right), 144.0(\mathrm{CH}=\mathrm{C})$, $126.8(\mathrm{CH}=\mathrm{C}), 51.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2955, 2927, 2857, 1720, $1460,1259 \mathrm{~cm}^{-1}$. Data identical to those reported previously. ${ }^{4}$

The reaction was performed under the same conditions but on four times the scale, KHMDS (18.7 mL), methyl 2-(bis(2,2,2-trifluoroethoxy)phosphoryl)propanoate ${ }^{5}$ (6) (6.83 g, 19.7 mmol), octanal $(2.40 \mathrm{~g}, 18.7 \mathrm{mmol})$ and 18 -crown-6 $(5.04 \mathrm{~g}, 20.5 \mathrm{mmol})$ to obtain (Z)-7 (3.35 g, 89\%).

8

Methyl (2S,3S)-2,3-dihydroxy-2-methyldecanoate, 8. Methanesulfonamide $(1.52 \mathrm{~g}, 16.0 \mathrm{mmol})$ and AD-Mix- $\alpha(21.3 \mathrm{~g})$ were dissolved in ${ }^{t} \mathrm{BuOH}(50.0$ $\mathrm{mL})$ and water $(50.0 \mathrm{~mL})$ at room temperature. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $(Z)-7(4.20 \mathrm{~g}, 21.2 \mathrm{mmol})$ in $\mathrm{MeCN}(3.00$ $\mathrm{mL})$ and ${ }^{t} \mathrm{BuOH}(3.00 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was allowed to warm up to ambient temperature and stirred for 0.5 h at the same temperature after addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}(25 \mathrm{~g})$. The reaction mixture was extracted with ethyl acetate (3 x 100 mL). The combined organic phases were washed with aq $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ and brine (2 x 20 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $3: 1 \rightarrow 2: 1)$ to give $(2 S, 3 S)-\mathbf{8}(4.13 \mathrm{~g}, 84 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}-7.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.58(\mathrm{dd}, J=$ $10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.64-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(\mathrm{OH})-\mathrm{CH}_{3}\right), 1.32-1.24\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 77.4\left(\mathrm{C}(\mathrm{OH})-\mathrm{C}(\mathrm{OH})-\mathrm{CO}_{2} \mathrm{Me}\right), 76.3\left(\mathrm{C}(\mathrm{OH})-\mathrm{C}(\mathrm{OH})-\mathrm{CO}_{2} \mathrm{Me}\right), 52.9$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.6(\mathrm{C}(\mathrm{OH})-$ $\left.C H_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 3467, 2953, 2924, 2856, 1732, 1456, $1246 \mathrm{~cm}^{-1} ;$ MS (ESI+) m / z $254.8[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS $(\mathrm{ESI}+)$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 255.1567$, found 255.1566.

Methyl (2R,3R)-2,3-dihydroxy-2-methyldecanoate, ent-8.
Methanesulfonamide ($27.0 \mathrm{mg}, 0.28 \mathrm{mmol}$) and AD-Mix- $\beta(254 \mathrm{mg}$) were dissolved in ${ }^{t} \mathrm{BuOH}(0.50 \mathrm{~mL})$ and water $(0.50 \mathrm{~mL})$ at room temperature. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $(Z)-7(75.0 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ in $\mathrm{MeCN}(0.10 \mathrm{~mL})$ and ${ }^{t} \mathrm{BuOH}(0.1 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was allowed to warm up to ambient temperature and stirred for 0.5 h at the same temperature after addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.5 \mathrm{~g})$. The reaction mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with aq 1 M $\mathrm{NaOH}(5 \mathrm{~mL})$ and brine (2 x 5 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $3: 1 \rightarrow 2: 1$) to give $(2 R, 3 R)-\mathbf{8}(46$ $\mathrm{mg}, 52 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}+8.3\left(c 0.3, \mathrm{CHCl}_{3}\right)$; spectroscopic data as previously described.

Asymmetric dihydroxylation: determination of ee. The ee was determined by chiral HPLC of the benzylated product 9, methyl ($2 S, 3 S$)-2,3-dihydroxy-2-methyldecanoate and ent-9, methyl $(2 R, 3 R)$ -2,3-dihydroxy-2-methyldecanoate. 9 was analysed by chiral HPLC on an Agilent Technologies 1200 Series HPLC, using HPLC grade hexanes and propan-2-ol as the eluent, and detection by UV at 254 nm . Chiralcel OD column ($0.46 \mathrm{~cm} ø \mathrm{x} 25 \mathrm{~cm}$), 97:3 hexane:propan-2-ol, $\mathrm{T}=25^{\circ} \mathrm{C}$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$. The "racemic" trace was produced by mixing quantities of the R and S enantiomers.

"racemic" mixture

	and			
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	$\begin{gathered} \text { e } \begin{array}{c} \text { Width } \\ {[\text { min }]} \end{array} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
$1 \quad 12.584 \mathrm{BB}$	0.3550	715.92059	29.20230	48.1654
215.639 BB	0.4031	770.46021	23.89963	51.8346
Totals :		1486.38080	53.10193	

Single enantiomer, (2S,3S)-9

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	12.712	MM	0.2916	5.79434	3.31229e-1	
2	15.809	BV	0.4080	459.79474	14.19091	98.

Totals :
465.5890814 .52214

9

Methyl (2S,3S)-3-(benzyloxy)-2-hydroxy-2-methyldecanoate, 9. To a stirred solution of $\mathbf{8}(4.13 \mathrm{~g}, 17.8 \mathrm{mmol})$ in dioxane $(135 \mathrm{~mL})$ were added $5 \AA$ molecular sieve (3.6 g), 2,4,6-tris(benzyloxy)-1,3,5-triazine (2.60 g , 6.57 mmol) and dropwise $\mathrm{TfOH}(534 \mathrm{mg}, 3.56 \mathrm{mmol})$. After stirring for 16 h at room temperature, the reaction was quenched by addition of saturated aq. NaHCO_{3} solution (50 mL). The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), the combined organic phases dried over MgSO_{4} and the solvent removed in vacuo. The crude product was purified by column chromatography (petroleum ether: EtOAc; 19:1 $\rightarrow 2: 1$) to give: methyl ($2 S, 3 S$)-2,3-bis(benzyloxy)-2methyldecanoate (10) ($1.12 \mathrm{~g}, 15 \%$) as a yellow oil; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.17(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{ArH}$), $4.51-4.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOBn}), 3.62(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OBn})-\mathrm{CH}_{3}\right), 1.32-1.12\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.80\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}^{2}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$; $9(3.17 \mathrm{~g}, 55 \%$, as mixture of isomers $5: 1)$ as a yellow oil: $[\boldsymbol{\alpha}]_{D}^{32}-6.3\left(c 0.2, \mathrm{CHCl}_{3}\right)$, NMR-data for the major isomer ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.77$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.52(\mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOBn}), 3.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OH})-\mathrm{CH}_{3}\right)$, $1.31-1.23\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$-NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.9\left(\mathrm{CO}_{2} \mathrm{Me}\right), 138.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 128.5(\mathrm{CH}(\mathrm{Ar}-\mathrm{o}), 127.9(\mathrm{CH}(\mathrm{Ar}-\mathrm{m})), 127.8(\mathrm{CH}(\mathrm{Ar}-\mathrm{p})$, $85.0\left(\mathrm{CH}(\mathrm{OBn}), 78.3(\mathrm{COH}), 75.0\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 52.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.4\right.$ $\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{C}(\mathrm{OBn})-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2953, 2926, 2856, 1732, 1453, 1254, $1077 \mathrm{~cm}^{-1}$; MS (ESI +) $m / z 346[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 345.2036$, found 345.2037 , and unreacted $\mathbf{8}(1.24 \mathrm{~g}, 30 \%)$ as a colourless oil. The overall conversion to 9 could be improved ($4.73 \mathrm{~g} \mathrm{82} \mathrm{\%)}$) by deprotecting $\mathbf{1 0}$ to $\mathbf{8}$ as detailed below, then resubjecting the combined quantities of $\mathbf{8}$ to the benzylation conditions (two further rounds).

Synthesis of ent-9, methyl (2R,3R)-3-(benzyloxy)-2-hydroxy-2methyldecanoate. To a stirred solution of ent $\mathbf{- 8}(42 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dioxane $(2.00 \mathrm{~mL})$ were added molecular sieves $(5 \AA, 50.0 \mathrm{mg})$, TriBOT (24.0 $\mathrm{mg}, 0.06 \mathrm{mmol}$) and TfOH ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$). After stirring for 16 h at room temperature, the reaction was quenched by addition of saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$,). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography on silica (PE:EA, 19:1 to $10: 1$ to $5: 1$ to $3: 1$ to 2:1) to give ent- 9 ($25 \mathrm{mg}, 43 \%$, mixture of isomers $5: 1$) as a yellow oil. : $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}+9.2\left(c 0.4, \mathrm{CHCl}_{3}\right)$, spectroscopic data as previously described.

Recovery of methyl (2S,3S)-2,3-dihydroxy-2-methyldecanoate, $\mathbf{8}$ from 10. A solution of $\mathbf{1 0}$ (1.12 $\mathrm{g}, 2.72 \mathrm{mmol}$) in EtOH (30 mL) was degassed then $\mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%, 100 \mathrm{mg})$ added. The reaction
mixture was stirred under an atmosphere of hydrogen (balloon) for 2 h at $35^{\circ} \mathrm{C}$. The mixture was filtered through a pad of Celite, washed with $\mathrm{EtOH}(2 \times 30 \mathrm{~mL})$ and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether: EtOAc; 3:1 $\rightarrow 2: 1$) to give $\mathbf{8}$ (635 mg , quant.) as a colourless oil.

18

Methyl (2S,3S)-3-(benzyloxy)-2-(methoxymethoxy)-2-methyldecanoate,
18. Alcohol 9 ($4.78 \mathrm{~g}, 14.8 \mathrm{mmol})$, DIPEA ($11.5 \mathrm{~g}, 88.8 \mathrm{mmol}$) and MOMCl ($3.57 \mathrm{~g}, 44.4 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45.0 \mathrm{~mL})$ in a sealed tube. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Additional MOMCl (530 $\mathrm{mg}, 4.23 \mathrm{mmol})$ and DIPEA ($1.52 \mathrm{~g}, 14.9 \mathrm{mmol}$) were added after 24 h and 48 h . On cooling, the mixture was diluted with ethyl acetate $(150 \mathrm{~mL})$ and quenched with aq. $2 \mathrm{M} \mathrm{HCl}(75 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine ($2 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; 20:1 $\rightarrow 10: 1$) to give $\mathbf{1 8}(4.98 \mathrm{~g}, 92 \%)$ as a 6:1 mixture of isomers and as a yellow oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{3 2}}-7.9\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.86\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-$ $\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}$), $4.62\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{Ph}\right), 4.55\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{Ph}\right), 3.80(\mathrm{dd}, J$ $=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OBn}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}\right), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 1.35-1.25\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}-$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 138.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 128.4(\mathrm{CH}(\mathrm{Ar}-\mathrm{o})), 127.6(\mathrm{CH}(\mathrm{Ar}-$ $\mathrm{m})$), $127.6(\mathrm{CH}(\mathrm{Ar}-\mathrm{p})), 92.5\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 83.9(\mathrm{CH}(\mathrm{OBn})), 81.6(\mathrm{C}(\mathrm{OMOM})), 74.6\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 56.3$ $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{2}\right), 15.3\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2952, 2926, 2856, 1453, 1739, 1131, 1027 cm^{-1}; MS (ESI+) m/z $389[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 389.2298$, found 389.2301 .

11
(2R,3S)-3-(Benzyloxy)-2-(methoxymethoxy)-2-methyldecan-1-ol, 11. To a solution of $18(3.69 \mathrm{~g}, 10.1 \mathrm{mmol}, 6: 1$ mixture of isomers) in THF (50.0 mL) was added dropwise DIBAL (1.0 M in hexane, $45.0 \mathrm{~mL}, 45.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and after addition stirred for 1 h . The reaction mixture was allowed to warm to room temperature and stirred for 1 h . The reaction mixture was hydrolysed with brine $(50 \mathrm{~mL})$ and carefully acidified with HCl (ca. 1 M , in water, 50.0 mL). The aqueous phase was extracted with ethyl acetate (100 mL , three times). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $10: 1 \rightarrow 5: 1)$ to give $11(2.84 \mathrm{~g}, 83 \%)$ as a pale yellow oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32} 1.4\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.84\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.75(\mathrm{~d}, J=11.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{Ph}\right), 4.74\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.65\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{Ph}\right)$, $3.73\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 3.62\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{OH}\right), 3.58(\mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{OBn}), 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.64-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.23(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0\left(\mathrm{CCH}_{2} \mathrm{O}\right), 128.5(\mathrm{CH}(\mathrm{Ar}-\mathrm{o})), 127.8(\mathrm{CH}(\mathrm{Ar}-\mathrm{m})), 127.7(\mathrm{CH}(\mathrm{Ar}-\mathrm{p})), 91.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 82.0$ $(\mathrm{C}(\mathrm{OMOM})), 81.8(\mathrm{CH}(\mathrm{OBn})), 74.9\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 65.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 55.7\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 15.9\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 14.3\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2924, 2855, 1722, 1496, 1094, $1027 \mathrm{~cm}^{-1}$; MS (ESI +) $m / z 361[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 361.2349$, found 361.2350.
(R)-5-((S)-1-(Benzyloxy)octyl)-8,8-diisopropyl-5,9-dimethyl-2,4,7-trioxa-8-siladecane, 19. To a

19 solution of $11(1.01 \mathrm{~g}, 3.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added 2,6lutidine ($642 \mathrm{mg}, 6.00 \mathrm{mmol}$) and a solution of TIPSOTf $(1.38 \mathrm{~g}, 4.50$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and quenched by addition of brine (20 mL) and aq. $1 \mathrm{M} \mathrm{HCl}(2$ mL). The aqueous phase was extracted with ethyl acetate (3 x 100 mL). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; 20:1) to give 19 (1.48 g, quant.) as a pale yellow oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}$ $-6.5\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Ph}\right), 3.78(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{OTIPS}$), $3.73\left(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{OTIPS}\right), 3.53(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ $\mathrm{OBn}), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.79-1.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.65-1.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{\mathrm{a}} H_{b}\right), 1.36-$ $1.26\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 1.11-1.06\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 0.90(\mathrm{t}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 128.4(\mathrm{CH}(\mathrm{Ar}-\mathrm{o})$), 127.7 $(\mathrm{CH}(\mathrm{Ar}-\mathrm{m})), 127.5(\mathrm{CH}(\mathrm{Ar}-\mathrm{p})), 92.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 83.0(\mathrm{CH}(\mathrm{OBn})), 81.4(\mathrm{C}(\mathrm{OMOM})), 74.7\left(\mathrm{CH}_{2} \mathrm{Bn}\right)$, $67.9\left(\mathrm{CH}_{2} \mathrm{OTIPS}\right), 55.5\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 18.2\left(3 \mathrm{x} \mathrm{CH}_{3}, \mathrm{SiCH}\left(\mathrm{C}_{a} \mathrm{H}_{3}\right)\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{3}\right)\right), 18.2\left(3 \mathrm{x} \mathrm{CH}_{3}, \mathrm{SiCH}\left(\mathrm{C}_{\mathrm{a}} \mathrm{H}_{3}\right)\left(C_{b} \mathrm{H}_{3}\right)\right)$, 17.1 (C(OMOM)$\left.C \mathrm{H}_{3}\right), 14.3\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right), 12.1(3 \mathrm{x} \mathrm{CH}, \mathrm{SiCH})$; IR (film) 2925, 2865, 1724, 1463, 1098, $1029 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 517[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 517.3684$, found 517.3685.

12 3-ol, 12. A solution of $\mathbf{1 9}(1.47 \mathrm{~g}, 2.97 \mathrm{mmol})$ in EtOH (50 mL) was degassed and $\mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%, 150 \mathrm{mg})$ added. The reaction mixture was stirred under an atmosphere of hydrogen (balloon) for 2 h at $35^{\circ} \mathrm{C}$. The reaction mixture was filtrated though a pad of celite, washed with $\mathrm{EtOH}(2 \times 50 \mathrm{~mL})$ and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $20: 1 \rightarrow 10: 1)$ to give $\mathbf{1 2}(1.20 \mathrm{~g} \text {, quant.) as a colourless oil. [} \boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{3 2}}-19.5\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.79\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.73\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right)$, $3.76\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{OTIPS}\right), 3.74\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{OTIPS}\right), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHOH}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.11(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.63-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.21(\mathrm{~m}$, $\left.13 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{3}\right), 1.11-1.01\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 0.87\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}-$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 91.6\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 80.8(\mathrm{C}(\mathrm{OMOM})), 76.1(\mathrm{COH}), 68.6\left(\mathrm{CH}_{2} \mathrm{OTIPS}\right), 55.6$ $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 18.1\left(6 \mathrm{x} \mathrm{CH}_{3}\right.$, $\left.\operatorname{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.1\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right), 12.0(3 \mathrm{x} \mathrm{CH}, \mathrm{SiCH})$; IR (film) 2923, 2866, 1463, 1260, 1215, $1033 \mathrm{~cm}^{-1}$; MS (ESI+) m/z $427[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 427.3214$, found 427.3217.

Dimethyl 2-(((2R,3S)-2-(methoxymethoxy)-2-methyl-1-((triisopropyl-silyl)oxy)-decan3-yl)oxy)-maleate, 13. To a solution of $\mathbf{1 2}$ ($740 \mathrm{mg}, 1.83$ mmol) in THF (36 mL) at $-78^{\circ} \mathrm{C}$ was added n-BuLi (2.0 M in n-hexane, $20 \mathrm{~mol} \%, 0.18 \mathrm{~mL}$). The reaction mixture was stirred for 15 minutes at this temperature, then a solution of dimethyl acetylenedicarboxylate (freshly destilled, $520 \mathrm{mg}, 3.66 \mathrm{mmol}$) in THF (10.0 mL) was added dropwise via syringe pump over 40 minutes. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over 4 h . The reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine $(1: 1,5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $20: 1 \rightarrow 13: 1)$ to give $\mathbf{1 3}(741 \mathrm{mg}, 74 \%)$ as a pale yellow oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}+4.9\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.81\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.37(\mathrm{dd}, J=8.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{C}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.70(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{OTIPS}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right.$), $3.62\left(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{OTIPS}\right), 3.34$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.79-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.22(\mathrm{~m}$, $\left.9 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}+\mathrm{CH}_{2}\right), 1.11-1.00\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}\right), 0.87\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}-$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0\left(C_{a} \mathrm{O}_{2} \mathrm{Me}\right), 164.3\left(C_{b} \mathrm{O}_{2} \mathrm{Me}\right)$, $163.1(\mathrm{C}=\mathrm{CH})$, $93.4(\mathrm{C}=C \mathrm{H})$, $91.9(\mathrm{O}-$ $\left.\mathrm{CH}_{2}-\mathrm{O}\right), 83.6(\mathrm{CHOC}=\mathrm{C}), 80.2(\mathrm{C}(\mathrm{OMOM})), 67.4\left(\mathrm{CH}_{2} \mathrm{OTIPS}\right), 55.6\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 52.9\left(\mathrm{C}_{b} \mathrm{O}_{2} \mathrm{CH}_{3}\right)$, $51.6\left(\mathrm{C}_{a} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 18.1((3 \mathrm{x}$ $\left.\mathrm{CH}_{3}, \operatorname{SiCH}\left(\mathrm{C}_{a} \mathrm{H}_{3}\right)\left(\mathrm{C}_{\mathrm{b}} \mathrm{H}_{3}\right)\right)$, $18.1\left(3 \mathrm{x} \mathrm{CH}_{3}, \mathrm{SiCH}\left(\mathrm{C}_{\mathrm{a}} \mathrm{H}_{3}\right)\left(\mathrm{C}_{b} \mathrm{H}_{3}\right)\right), 17.3\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\right.$ C_{3}), 12.0 ($3 \mathrm{x} \mathrm{CH}, \mathrm{SiCH}$); IR (film) 2927, 2866, 1755, 1723, 1623, 1462, 1437, 1366, $1141 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 569[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 569.3480$, found 569.3485.

20

Dimethyl 2-(((2R,3S)-1-hydroxy-2-(methoxymethoxy)-2-methyldecan-3yl)oxy)maleate, 20. To a solution of $13(820 \mathrm{mg}, 1.50 \mathrm{mmol})$ in THF (5 mL) in a polyethylene-vial was added a solution of HF•Pyridine $(2.5 \mathrm{~mL})$ in pyridine $(5.0 \mathrm{ml})(\mathrm{CAUTION})$. The reaction mixture was stirred for 18 h at $35{ }^{\circ} \mathrm{C}$ until complete consumption of the starting material (by TLC). The mixture was carefully quenched via the dropwise addition to a solution of $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $3: 2 \rightarrow 1: 1$) to give $20(538 \mathrm{mg}, 92 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}+4.1\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.56\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.27(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHOC}=\mathrm{C}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $2.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.74-1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.59-1.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{a} H_{\mathrm{b}}\right), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}\right) 1.26-1.16\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}^{\prime} \mathrm{H}_{a} H_{\mathrm{b}}, \mathrm{CH}_{2}\right), 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9\left(C_{a} \mathrm{O}_{2} \mathrm{Me}\right), 164.3\left(C_{b} \mathrm{O}_{2} \mathrm{Me}\right), 162.3(C=\mathrm{CH}), 94.0(\mathrm{C}=C \mathrm{H}), 90.9$
 $51.5\left(\mathrm{C}_{a} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 15.1$ (C(OMOM)-CH3), $14.1\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2953, 2924, 2854, 1753, 1720, 1624, 1370, 1172, $1035 \mathrm{~cm}^{-1}$; MS (ESI+) $\mathrm{m} / \mathrm{z} 413[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI+) Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 413.2146$, found 413.2147.

Dimethyl
2-(((2S,3S)-2-(methoxymethoxy)-2-methyl-1-oxodecan-3-
yl)oxy)maleate, 14. To a solution of $20(298 \mathrm{mg}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL})$ were added powdered $4 \AA$ molecular sieves $(2.5 \mathrm{~g}), N$-methylmorpholine N -oxide (148 mg, 0.84 mmol) and tetrapropylammonium perruthenate (13.4 $\mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred for 0.5 h at room temperature then the whole mixture, without concentration, was purified by column chromatography (petroleum ether:EtOAc; $5: 1 \rightarrow 3: 1)$ to give $\mathbf{1 4}(267 \mathrm{mg}, 90 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}-10.6\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR (400 MHz, CDCl_{3}) $\delta ; 9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}(=\mathrm{O})), 5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-$ $\left.\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.64\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.32(\mathrm{dd}, J=8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{C})$, $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.68-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-$ $1.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31-1.21\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}^{\prime} \mathrm{H}_{a} H_{\mathrm{b}}, \mathrm{CH}_{2}\right), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1(\mathrm{C}=\mathrm{O}), 166.6\left(C_{a} \mathrm{O}_{2} \mathrm{Me}\right), 163.9\left(C_{b} \mathrm{O}_{2} \mathrm{Me}\right), 162.2$ $(C=\mathrm{CH}), 94.7(\mathrm{C}=\mathrm{CH}), 92.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 83.9(\mathrm{C}(\mathrm{OMOM})), 83.5(\mathrm{CHOC}=\mathrm{C}), 56.1\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 53.0$ $\left(\mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 51.8\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$, $14.8\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 2954, 2857, 1750, 1722, 1627, 1438, $1449 \mathrm{~cm}^{-1}$; MS (ESI +) $m / z 411[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI +) Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 411.1989$, found 411.1993.

15

Dimethyl (2S,3R,4S)-2-heptyl-4-hydroxy-3-(methoxymethoxy)-3-methyl-
3,4-dihydro-2H-pyran-5,6-dicarboxylate, 15. A solution of 14 (300 mg , 0.77 mmol) in THF (3.0 mL) was added to NaHMDS (1.0 M in THF, 1.16 $\mathrm{mL}, 1.16 \mathrm{mmol})$ in THF $(10.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 0.5 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine $(1: 2$, 21 mL). The aqueous phase was extracted with ethyl acetate (3 x 50 mL). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether:EtOAc; $5: 1 \rightarrow 3: 1$) to give $\mathbf{1 5}(110 \mathrm{mg}, 37 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{3 2}}-32.6\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.89\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b^{-}}\right.$ $\left.\mathrm{OCH}_{3}\right), 4.78\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.54(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.97(\mathrm{dd}, J=8.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{C}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 3.65(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{CHOH}), 3.41$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.78-1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}\right), 1.36-1.23\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}^{\prime} \mathrm{H}_{a} H_{\mathrm{b}}\right.$, CH_{2}), $1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7$ $\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 163.3\left(\mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 151.3(\mathrm{OC}=C), 109.3(\mathrm{OC}=C), 91.5\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 82.8(C H O C=\mathrm{C}), 75.8$ $(\mathrm{C}(\mathrm{OMOM})), 70.1(\mathrm{COH}), 56.1\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 52.9\left(\mathrm{C}_{\mathrm{b}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 52.3\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2} \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right), 12.2\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right)$; IR (film) 2956, 1750, 1620, 1450, $1301 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 411[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 411.1989$, found 411.1993 .

17
[2,3-c]pyrrole-5,7(2H,6H)-dione, 17. To a stirred solution of $15(140 \mathrm{mg}$, 0.36 mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added aq. $1 \mathrm{M} \mathrm{NaOH}(0.8 \mathrm{~mL})$. The reaction mixture was stirred overnight at $35{ }^{\circ} \mathrm{C}$ then acidified by addition of aq. $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$. The crude mixture was extracted with ethyl acetate (3 x 30 mL), the combined organic phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. This crude acid was used without further purification. To a solution of the acid $(123 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(75.2 \mathrm{mg}$, $0.90 \mathrm{mmol}), \mathrm{NEt}_{3}(145 \mathrm{mg}, 1.44 \mathrm{mmol}), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(97.2 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{EDC} \cdot \mathrm{HCl}(138 \mathrm{mg}$, 0.72 mmol). The reaction mixture was stirred over night at room temperature and after concentration in vacuo purified by column chromatography (petroleum ether:EtOAc; $2: 1 \rightarrow 1: 2$) to give $\mathbf{1 7}(24.1 \mathrm{mg}$, 18%) as a yellow oil and 16 ($58 \mathrm{mg}, 32 \%$) as a yellow oil. To a solution of $16(58 \mathrm{mg}, 0.11 \mathrm{mmol})$ in DMF $(2.0 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(0.1 \mathrm{~mL})$ and stirred at $60^{\circ} \mathrm{C}$ for 4 h . The crude mixture was purified after concentration in vacuo by column chromatography (petroleum ether:EtOAc; 1:1) to give 17 (31 $\mathrm{mg}, 73 \%)$ as a colourless oil. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{32}-40.5\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.93(\mathrm{~d}, J=$ $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{\mathrm{a}} H_{b}-\mathrm{OCH}_{3}\right), 4.65\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}-\mathrm{OCH}_{3}\right), 4.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 4.11(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{C}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NOCH}_{3}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.88-1.60$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{C}^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}\right), 1.33-1.20\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{C}^{\prime} \mathrm{H}_{a} H_{\mathrm{b}}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7\left(\mathrm{C}_{\mathrm{a}}=\mathrm{O}\right), 160.5\left(\mathrm{C}_{\mathrm{b}}=\mathrm{O}\right), 152.9(\mathrm{OC}=C), 109.4$ $(\mathrm{OC}=C), 91.3\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 86.0(\mathrm{CHOC}=\mathrm{C}), 77.1(\mathrm{C}(\mathrm{OMOM})), 68.5(\mathrm{COH}), 66.2\left(\mathrm{NOCH}_{3}\right), 56.3$ $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{C}_{6} \mathrm{H}_{12^{-}}\right.$ $\left.C H_{3}\right), 11.1\left(\mathrm{C}(\mathrm{OMOM})-\mathrm{CH}_{3}\right)$; IR (film) $3410,2935,1672,1560,1457,1225,1050 \mathrm{~cm}^{-1}$; MS (ESI+) $m / z 394[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI+) Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 394.1836$, found 394.1839.

Phyllostictine A 3,4,6,7-tetrahydropyrano[2,3-c]pyrrol-5(2H)-one (phyllostictine A). To 17 $(8.1 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{MeMgBr}(3.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 0.15 \mathrm{~mL}, 0.45 \mathrm{mmol}$) dropwise. The reaction mixture was stirred for 25 min until complete consumption of the starting material then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5.0 \mathrm{~mL})$ and allowed to warm to room temperature. The aqueous phase was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$) , the organic phases combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated in vacuo. This material was used without further purification. The crude alcohol (8 mg) was dissolved in $10 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at room temperature for 30 min . The mixture was concentrated in vacuo and crude material purified by preparative TLC on silica (petroleum ether:EtOAc; 1:2) followed by preparative reverse phase HPLC to give phyllostictine A $(2.5 \mathrm{mg}, 35 \%)$ as a colourless oil. The HPLC purification was conducted on an Agilent PLRP-S RP $100 \AA(150 \times 25 \mathrm{~mm}, 8 \mu \mathrm{~m})$ column. The mobile phase consisted of a gradient of water and acetonitrile (HPLC grade) at a flow rate of $10 \mathrm{~mL} / \mathrm{min}$, with UV detection at 210, 254 and 280 nm . Elution Gradient: 0-3 min $5 \% \mathrm{AcCN} ; 3-10 \mathrm{~min}, 5-75 \% \mathrm{AcCN} ; 10-30 \mathrm{~min}, 75-100 \% \mathrm{AcCN}$; $\mathrm{R}_{\mathrm{t}}: 16.21 \mathrm{~min} .[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 1}}-83.3\left(c 0.03, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 5.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.96$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.00(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{C})$, $3.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.87-1.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}\right), 1.56-1.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{\prime} \mathrm{H}_{\mathrm{a}} H_{b}\right.$, C' ${ }^{\prime} H_{a} \mathrm{H}_{\mathrm{b}}$), $1.25-1.14\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{C}^{\prime}{ }^{\prime} \mathrm{H}_{\mathrm{a}} H_{b}\right), 1.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.79\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 166.5(\mathrm{C}=\mathrm{O}), 155.3(\mathrm{OC}=C), 137.1(\mathrm{NC}=\mathrm{C}), 104.8(\mathrm{OC}=C), 90.9$ $\left(\mathrm{NC}=\mathrm{CH}_{2}\right), 86.3(\mathrm{CHOC}=\mathrm{C}), 71.0\left(\mathrm{C}(\mathrm{OH}) \mathrm{CH}_{3}\right), 64.3(\mathrm{CHOH}), 63.8\left(\mathrm{NOCH}_{3}\right), 31.2\left(\mathrm{CH}_{2}\right), 28.7$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3}\right) 14.0\left(\mathrm{C}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3}\right)$; IR (film) 3389, 2926, 1707, 1635, 1453, 1379, $1065 \mathrm{~cm}^{-1}$; MS (ESI +) $m / z 348[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI+) Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 348.1781$, found 348.1781.

3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

OM,
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- d_{6})

${ }^{13}$ C-NMR (101 MHz , acetone- d_{6}

${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- d_{6})

${ }^{13} \mathbf{C}$-NMR (101 MHz , acetone- d_{6})

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { @ }}{\substack{\infty \\ \vdots}}$

${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl_{3})

${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\xrightarrow[\mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{Me}_{\mathrm{OH}}^{\mathrm{OH}}=\mathrm{CO}_{2} \mathrm{Me}]{ }
$$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

∞
$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$

[^0]${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\xrightarrow{\mathrm{BnO}=\mathrm{CO}_{2} \mathrm{Me}}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Bno, -OTIPS

[^1]${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
COTIPS

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$－NMR（101 MHz， CDCl_{3} ）

$\begin{aligned} & { }^{\mathrm{OMe}}=\mathrm{CO}_{2}^{\mathrm{Me}} \\ & =\mathrm{O}_{2} \mathrm{OTPS} \end{aligned}$			$\stackrel{+}{\text { ¢ }}$	 くり年
$\mathrm{C}_{6} \mathrm{H}_{13}-$ Me $^{\text {O}}$ OMOM				

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR (101 MHz, CDCl_{3})
$\mathrm{O}=\mathrm{OMe}$

$\mathrm{C}_{6} \mathrm{H}_{13}-\mathrm{Me}^{2} \mathrm{OMOM}$

[^2]${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{i}$

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$－NMR（101 MHz， CDCl_{3} ）

のルNのルN N

[^3]${ }^{1} \mathbf{H}-$ NMR (500 MHz , DMSO-d σ)

${ }^{13} \mathbf{C}$-NMR (125 MHz , DMSO-d6)

HMBC

HSQC

COSY

4. X-ray data for 5

Crystal Data for 5: $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}$ ($M=173.17 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$ (no. 14), $a=$ $9.7222(3) \AA, b=7.91107(17) \AA, c=11.6743(3) \AA, \beta=102.086(3)^{\circ}, V=878.00(4) \AA^{3}, Z=4$, $T=150(2) \mathrm{K}, \mu(\mathrm{CuK} \alpha)=0.923 \mathrm{~mm}^{-1}$, Dcalc $=1.310 \mathrm{~g} / \mathrm{cm}^{3}, 6016$ reflections measured $\left(13.31^{\circ} \leq 2 \Theta \leq 156.668^{\circ}\right), 1844$ unique $\left(R_{\text {int }}=0.0245, \mathrm{R}_{\text {sigma }}=0.0198\right)$ which were used in all calculations. The final R_{1} was 0.0382 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1115 (all data). Data deposited at Cambridge Crystallographic Data Centre: CCDC 1838655. Solid state structure of 5 with thermal ellipsoids drawn at 50% probability level:

5. Plant growth assays for 1,4 and synthetic phyllostictine A

The root growth assays were performed with Arabidopsis Col-0 seedlings, ecotype background. After surface sterilization seeds were sown onto square petri dishes containing 30 mL of half-strength Murashige and Skoog medium in 1.5% agar and with 0.5% sucrose. The seeds were stratified in the dark at $4^{\circ} \mathrm{C}$ for 48 hours before germination for 6 days under lights at $22^{\circ} \mathrm{C}$ for day and $18^{\circ} \mathrm{C}$ for night conditions, in 12 -hour cycles. Seedlings were then transferred to fresh plates with test compounds incorporated into the agar. The position of the primary root tip was marked and the seedlings were grown for another 6 days, after which the plates were scanned and the elongation of the primary root during treatment was measured using ImageJ 1.51 w .

Dose-response curves for root growth inhibition using Arabidopsis seedlings. A: Compound 4 $\left(\mathrm{IC}_{50}=205 \pm 19 \mu \mathrm{M}\right)$. B: Compound $1\left(\mathrm{IC}_{50}=35 \pm 6 \mu \mathrm{M}\right)$. C: Phyllostictine A $\left(\mathrm{IC}_{50}=9 \pm 1 \mu \mathrm{M}\right)$. D: Glyphosate $\left(\mathrm{IC}_{50}=7 \pm 2 \mu \mathrm{M}\right)$. In D , a series of control plates were read to establish growth in untreated seedlings and anchor the fit and in this experiment growth was recorded after 4 days. In all the other root growth assays growth was recorded after 6 days. Error bars represent standard deviations of the means and the curves are fitted utilizing the formula $y=M /\left(1+\exp \left(-k^{*}(x-x 0)\right)\right)$ where y is the root length, x is the logarithm base 10 of the concentration, and the parameters to fit are M, k and $\mathrm{x} 0 . \mathrm{M}$ is the maximum root length, k is a parameter inversely related to the width of the transition region, and x 0 is the logarithm base 10 of the IC_{50}.

6. References

1. W. J. Croxall and H. J. Schneider, J. Am. Chem. Soc., 1949, 71, 1257.
2. M.-J. Fan, G.-Q. Li and Y.-M. Liang, Tetrahedron, 2006, 62, 6782.
3. S. Balieu, G. E. Hallett, M. Burns, T. Bootwicha, J. Studley and V. K. Aggarwal, J. Am. Chem. Soc., 2015, 137, 4398.
4. S. Sano, T. Takehisa, S. Ogawa, K. Yokoyama and Y. Nagao, Chem. Pharm. Bull., 2002, 50, 1300.
5. T. Nawrath, K. Gerth, R. Mueller and S. Schulz, Chem. Biodivers., 2010, 7, 2228.
6. V. V. Abzianidze, E. V. Poluektova, K. P. Bolshakova, T. L. Panikorovskii, A. S. Bogachenkov and A. Berestetskiy, Acta Cryst E., 2015, 71, 625.

[^0]: $\begin{array}{llllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & (\mathrm{ppm})\end{array}$

[^2]:

[^3]:

