Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Synthesis of α -CF₃ and α -CF₂H Amines via

Aminofluorination of Fluorinated Alkenes

Ling Yang,[‡] Wen–Xin Fan,[‡] E Lin , Dong-Hang Tan, Qingjiang Li and Honggen Wang*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

Supporting information

Content

I. General information	2
II.General procedures for the synthesis of α–CF ₃ amines	3
III. General procedures for the synthesis of α-CF ₂ H amines	4
IV. Mechanistic Studies	5
i.Radical inhibition experiments	5
ii. Radical clock experiment	5
V. Derivatizations of product	6
VII. References	23
VIII. NMR spectra for compounds	24

I. General information

Unless otherwise noted, all commercially available materials were used without further purification. All reactions were carried out in reaction vessels (75 ML) with Teflon screw caps under air.

NMR–spectra were recorded on Bruker AvanceIII–400M and AscendTM 500M in solvents as indicate. Chemical shifts (δ) are given in ppm relative to tetramethylsilane ($\delta = 0$). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm). The following abbreviations were used to describe peak splitting patterns: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets). Coupling constants (*J*) were reported in hertz unit (Hz).

High-resolution mass spectra (HRMS) were recorded on a Bruker VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Visualization was accomplished by UV light (254 nm), or KMnO₄ staining solutions followed by heating, also by Gas chromatograph-Mass spectrometer analysis (GC-MS) on Agilent Technologies 5977A MSD. Flash column chromatography was performed using silica gel (200–300 mesh).

No attempts were made to optimize yields for substrate synthesis.

All the starting materials^[1–3] were prepared according to literature procedures.

II. General procedures for the synthesis of α –CF₃ amines

General procedure A

To a solution of *gem*-difluoroalkene (0.5 mmol, 1.0 equiv), Selectfluor (1.0 mmol, 354 mg, 2.0 equiv) in MeCN (12.0 mL), was added Tf₂NH (1.0 mmol, 281 mg, 2.0 equiv) dissolved in MeCN (3.0 mL). The resulting mixture was stirred at 60 °C until the *gem*-difluoroalkene was consumed as monitored by TLC. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (Petroleum ether/ EtOAc =3:1) to give product **2** as white solid.

III. General procedures for the synthesis of α –CF₂H amines

General procedure B

To a solution of monofluoroalkene (0.3 mmol, 1.0 equiv), Selectfluor (0.6 mmol, 213 mg, 2.0 equiv) in MeCN (6.0 mL), was added Tf₂NH (0.6 mmol, 169 mg, 2.0 equiv) dissolved in MeCN (3.0 mL). The resulting mixture was stirred at 60 °C until the monofluoroalkene was consumed as monitored by TLC. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (Petroleum ether/ EtOAc =3:1) to give product **6** as white solid.

IV. Mechanistic Studies

i. Radical inhibition experiments

Following General procedure A, to a solution of *gem*–difluoroalkene **1g** (0.2 mmol, 46 mg, 1.0 equiv), Selectfluor (0.4 mmol, 142 mg, 2.0 equiv), BHT (0.4 mmol, 88 mg, 2.0 equiv) in MeCN (4.0 mL), was added Tf₂NH (0.4 mmol, 112 mg, 2.0 equiv) dissolved in MeCN (2.0 mL). The resulting mixture was stirred at 60 °C for 3 h. No desired product was observed by GC-MS.

Following General procedure B, to a solution of monofluoroalkene **5d** (0.1 mmol, 20 mg, 1.0 equiv), Selectfluor (0.2 mmol, 71 mg, 2.0 equiv), BHT (0.2 mmol, 44 mg, 2.0 equiv) in MeCN (2.0 mL), was added Tf₂NH (0.2 mmol, 57 mg, 2.0 equiv) dissolved in MeCN (1.0 mL). The resulting mixture was stirred at 60 °C for 13 h. No desired product was observed by GC-MS.

ii. Radical clock experiment

(1–cyclopropyl–2,2–difluorovinyl)–benzene (0.5 mmol, 90 mg, 1.0 equiv), Selectfluor (1.0 mmol, 354 mg, 2.0 equiv) in MeCN (12.0 mL), was added Tf₂NH (1.0 mmol, 281 mg, 2.0 equiv) in MeCN (3.0 mL). The resulting mixture was stirred at 60 °C for 45 min. Product **10** was obtained by chromatography (silica gel; petroleum ether/ EtOAc = 1:1) as a colorless oil (50 mg, 39%).

V. Derivatizations of product

1-([1,1'-Biphenyl]-4-yl)-2,2,2-trifluoroethan-1-amine (7)

HCl aqueous (2N, 0.14 mL) was added to a solution of compound **2a** (0.1 mmol, 29 mg) in MeOH (3.0 mL). The reaction mixture was refluxed overnight at 90 °C. After the reaction was complete as monitored by TLC, the saturated NaHCO₃ was added, then extracted with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The pure product was purified by flash column chromatography on silica with an eluent (Petroleum ether/ EtOAc 6:1 v/v) to afford the pure product **7** as a white solid (20 mg, 80 %).

1-([1,1'-Biphenyl]-4-yl)-2,2-difluoroethan-1-amine (8)

HCl aqueous (2N, 0.14 mL) was added to a solution of compound **6a** (0.1 mmol, 28 mg) in MeOH (3.0 mL). The reaction mixture was refluxed overnight at 90 °C. After the reaction was complete as monitored by TLC, the saturated NaHCO₃ was added, then extracted with EtOAc. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The pure product was purified by flash column chromatography on silica with an eluent (Petroleum ether/ EtOAc 6:1 v/v) to afford the pure product **8** as a white solid (12 mg, 52 %).

VI. Characterization of Products

N–(1–([1,1'–Biphenyl]–4–yl)–2,2,2–trifluoroethyl)acetamide (2a)

Following general procedure A, **2a** was obtained in 75% F F vield (110 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.24. m.p. = 231.7 - 232.5 °C.

¹H NMR (400 MHz, (CD₃)₂CO) $\delta = 8.70$ (d, J = 9.7 Hz, 1H), 7.31 – 7.15 (m, 6H), 7.03 (t, J = 7.6 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 5.37 (p, J = 8.7 Hz, 1H), 1.53 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO) δ = 169.5, 140.8, 139.5, 132.4, 129.0, 129.0, 127.8, 126.9, 126.8, 124.9 (q, *J* = 281.9 Hz), 52.9 (q, *J* = 30.2 Hz), 22.4.

¹⁹F NMR (376 MHz, (CD₃)₂CO, composite pulse decoupling) $\delta = -72.58$.

HRMS: m/z Calculated for C₁₆H₁₅F₃NO, [M+H]⁺,294.1100; Found, 294.1088.

1-([1,1'- Bphenyl]-4-yl)-2,2,2-trifluoroethan-1-ol (3a)

 $\begin{array}{ccc} & \mathsf{OH} & \mathsf{From\ entry\ 1,\ 3a\ was\ obtained\ in\ 6\%\ yield\ (3\ mg)\ as\ a\ white} \\ & \mathsf{from\ entry\ 1,\ 3a\ was\ obtained\ in\ 6\%\ yield\ (3\ mg)\ as\ a\ white} \\ & \mathsf{solid\ after\ column\ chromatography\ (eluent\ =\ Petroleum\ ether/EtOAc\ 60:1\ v/v).\ R_f\ (Petroleum\ ether/EtOAc\ 64:1):\ 0.28.} \\ & \mathsf{m.p.\ =\ 118.4\ -\ 119.5\ °C.} \end{array}$

¹**H** NMR (500 MHz, CDCl₃) δ = 7.64 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 5.08 (q, *J* = 6.8 Hz, 1H), 2.66 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ = 142.62, 140.45, 132.99, 129.00, 128.01, 127.83, 127.49, 127.31, 124.41 (q, *J* = 282.5 Hz), 72.76 (q, *J* = 31.8 Hz).

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -78.28$.

HRMS: *m/z* Calculated for C₁₄H₁₁F₃O, [M]⁺,252.0762; Found, 252.0765.

1–(1–([1,1'–Biphenyl]–4–yl)–2,2,2–trifluoroethyl)–4–(chloromethyl)–1,4–diazabic yclo[2.2.2]octane–1,4–diium (4a)

Following General procedure A, to a solution of

gem-difluoroalkene 1a (1 mmol, 216 mg, 5.0 equiv), Selectfluor

(0.2 mmol, 71mg, 1.0 equiv), in MeCN (2.0 mL). The resulting mixture was stirred at 60 °C for 3 h. The crude product was given by silica gel column chromatography (Petroleum ether/ EtOAc =1:1 \rightarrow MeCN). After recrystallization with MeCN and DCM, the pure product **4a** (11mg, 10%) was obtained as white solid. m.p. = 214.3 - 220.0 °C.

¹**H NMR (500 MHz, (CD₃)₂CO)** $\delta = 8.00$ (dt, J = 16.2 Hz, 8.5 Hz, 3H), 7.91 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 7.9 Hz, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 6.28 (q, J = 7.2 Hz, 1H), 5.77 (s, 2H), 4.72 (dt, J = 11.3 Hz, 8.0 Hz, 3H), 4.63 (dd, J = 8.6 Hz, 4.8 Hz, 3H), 4.50 (d, J = 7.9 Hz, 6H).

¹³C NMR (101 MHz, (CD₃)₂CO) δ = 146.0, 139.6, 136.7, 130.1, 129.6, 129.4, 129.2, 128.0, 123.6 (q, J = 282.4), 122.6, 69.9, 76.3 (q, J = 30.8, 30.3), 53.0, 51.6.

¹⁹F NMR (376 MHz, (CD₃)₂CO, composite pulse decoupling) $\delta = -59.65, -153.08$. HRMS: m/z Calculated for C₂₁H₂₃ClF₃N₂, [M-2BF₄-H]⁺, 395.1496; Found, 395.1491.

N–(2,2,2–Trifluoro–1–(4–isopropylphenyl)ethyl)acetamide (2b)

H CF₃ Following general procedure A, **2b** was obtained in 60% NHAC yield (78 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.36. m.p. = 83.3 - 85.3 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.30 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 6.8 Hz, 2H), 6.09 (d, *J* = 10.5 Hz, 1H), 5.69 (p, *J* = 8.0 Hz, 1H), 2.92 (sep, *J* = 6.9 Hz, 1H), 2.07 (s, 3H), 1.25 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.7, 150.2, 130.3, 128.0, 127.2, 124.7 (q, J = 281.5 Hz), 54.1 (q, J = 31.3 Hz), 34.0, 24.0, 23.2.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -73.79$.

HRMS: *m/z* Calculated for C₁₃H₁₇ F₃NO, [M+H]⁺, 260.1257; Found, 260.1248.

N–(2–(4–Bromophenyl)–1,1,1–trifluoropropan–2–yl)acetamide (2c)

 $\begin{array}{c} \mathsf{CF}_3 \\ \mathsf{NHAc} \end{array} \begin{array}{c} \mathsf{Following general procedure A, 2c was obtained in 58\%} \\ \mathsf{NHAc} \end{array} \begin{array}{c} \mathsf{yield} (90 \text{ mg}) \text{ as a white solid after column chromatography} \end{array}$

Br

(eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.21. m.p. = 165.0 - 166.0 °C.

¹**H NMR (400 MHz, CDCl₃)** δ = 7.50 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 6.06 (s, 1H), 2.07 (s, 3H), 2.03 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.4, 135.6, 131.6, 128.7, 125.4 (q, *J* = 284.2 Hz), 122.8, 62.0 (q, *J* = 27.2 Hz), 23.9, 19.6, 19.6.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -79.18$.

HRMS: m/z Calculated for C₁₁H₁₂BrF₃NO, $[M+H]^+$, 310.0049; Found, 310.0036.

Methyl 4–(2–acetamido–1,1,1–trifluoropropan–2–yl)benzoate (2d)

¹H NMR (400 MHz, CDCl₃) $\delta = 8.07 - 8.00$ (m, 2H), 7.51 (d, J = 8.2 Hz, 2H), 6.12 (s, 1H), 3.91 (s, 3H), 2.08 (d, J = 2.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 169.3, 166.7, 141.4, 130.2, 129.7, 127.1, 125.5 (q, J = 284.6 Hz), 62.3 (q, J = 27.2 Hz), 52.3, 24.0, 19.8.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -78.77$.

HRMS: *m/z* Calculated for C₁₃H₁₅F₃NO₃, [M+H]⁺, 290.0999; Found, 290.0985.

N–(2–(3–Chlorophenyl)–1,1,1–trifluoropropan–2–yl)acetamide (2e)

Cl CF_3 Following general procedure A, **2e** was obtained in 37% yield (49 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.27. m.p. = 126.6 - 127.5 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.40 (s, 1H), 7.32 (m, 3H), 6.09 (s, 1H), 2.08 (s, 3H), 2.04 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.1, 138.4, 134.6, 129.7, 128.8, 127.4, 125.4 (q, J = 285.30 Hz), 125.2, 62.2 (q, J = 27.0 Hz), 24.2, 19.7.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -79.01$.

HRMS: m/z Calculated for C₁₁H₁₂ClF₃NO, [M+H]⁺, 266.0554; Found, 266.0545.

N–(2,2,2–Trifluoro–1,1–diphenylethyl)acetamide (2f)

2f

Following general procedure A, **2f** was obtained in 65% yield (95 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.30. m.p. = 192.0 - 193.0 °C.

¹**H NMR (400 MHz, CDCl₃)** δ = 7.37 (s, 10H), 2.10 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.7, 137.0, 128.6, 128.4, 128.2 (d, *J* = 2.1 Hz), 125.6 (q, *J* = 288.0 Hz), 69.1 (q, *J* = 27.5 Hz), 24.3.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -67.43$.

HRMS: m/z Calculated for C₁₆H₁₅F₃NO, $[M+H]^+$, 294.1100; Found, 294.1088.

N–(2,2,2–Trifluoro–1–phenyl–1–(p–tolyl)ethyl)acetamide (2g)

Following general procedure A, **2g** was obtained in 77% yield (118 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.27. m.p. = 158.0 - 160.0 °C.

¹**H** NMR (400 MHz, CDCl₃) δ = 7.37 (s, 5H), 7.24 (d, *J* = 8.6 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.23 (s, 1H), 2.36 (s, 3H), 2.09 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.9, 138.5, 137.1, 134.1, 129.1, 128.5, 128.3, 128.1, 128.0, 125.6 (q, *J* = 288.0 Hz), 68.9 (q, *J* = 28.3 Hz), 24.2, 21.1.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -67.62$.

HRMS: m/z Calculated for C₁₇H₁₇F₃NO, [M+H]⁺, 308.1257; Found, 308.1245.

N–(2,2,2–Trifluoro–1–phenyl–1–(o–tolyl)ethyl)acetamide (2h)

Following general procedure A, **2h** was obtained in 78% yield (119 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.28. m.p. = 165.1 - 165.9 °C.

¹**H** NMR (500 MHz, CDCl₃) δ = 7.36 (s, 5H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.10 (m, 3H), 6.22 (s, 1H), 2.34 (s, 3H), 2.10 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.4, 138.1, 137.1, 129.5, 128.7, 128.7, 128.6, 128.4, 128.3, 128.2, 125.7 (q, *J* = 288.0 Hz), 125.4, 69.2 (q, *J* = 27.7 Hz), 24.5, 21.8. ¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) δ = -67.11.

HRMS: m/z Calculated for C₁₇H₁₇F₃NO, $[M+H]^+$, 308.1257; Found, 308.1246.

N–(2,2,2–Trifluoro–1–phenyl–1–(o–tolyl)ethyl)acetamide (2i)

Following general procedure A, **2i** was obtained in 80% yield (113 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.24. m.p. = 176.9 - 179.9 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.72 (d, *J* = 6.9 Hz, 1H), 7.41 – 7.27 (m, 5H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 2H), 6.32 (s, 1H), 2.11 (s, 3H), 1.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 167.8, 137.2, 135.8, 135.0, 132.9, 129.1, 128.7, 128.3 (d, *J* = 3.6 Hz), 128.2, 127.3, 125.9, 125.6 (q, *J* = 288.3 Hz), 67.8 (q, *J* = 27.7 Hz), 24.2, 21.7.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -69.09$.

HRMS: m/z Calculated for C₁₇H₁₇F₃NO, [M+H]⁺, 308.1257; Found, 308.1249.

N-(1-(4-Bromophenyl)-2,2,2-trifluoro-1-phenylethyl)acetamide (2j)

¹**H NMR (400 MHz, CDCl₃)** δ = 7.50 (d, *J* = 8.8 Hz, 2H), 7.39 - 7.32 (m, 5H), 7.28 (d, *J* = 8.3 Hz, 2H), 6.24 (s, 1H), 2.10 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 168.6, 136.5, 135.7, 131.5, 130.1, 129.0, 128.5, 128.2, 125.4 (q, *J* = 288.3 Hz), 123.0, 68.9 (q, *J* = 27.9 Hz), 24.4.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -68.16$.

HRMS: m/z Calculated for C₁₆H₁₃BrF₃NO, [M+H]⁺, 372.0205; Found, 372.0201.

N–(2,2,2–Trifluoro–1–phenyl–1–(4–(trifluoromethyl)phenyl)ethyl)acetamide (2k)

Following general procedure A, **2k** was obtained in 59%

CF₃

AcHN CF3

yield (106 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.29. m.p. = 166.0 - 167 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.63 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 5.6 Hz, 3H), 7.32 (d, *J* = 8.5 Hz, 2H), 6.30 (s, 1H), 2.11 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.7, 140.4, 136.5, 130.7 (q, J = 32.7 Hz), 129.2, 129.0 (q, J = 2.3 Hz), 128.6, 128.2, 125.4 (q, J = 287.52 Hz) 125.3 (q, J = 3.6 Hz), 124.0 (q, J = 272.2 Hz), 69.0 (q, J = 27.6 Hz), 24.3.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -62.80, -68.10.$ HRMS: *m/z* Calculated for C₁₇H₁₄F₆NO, [M+H]⁺, 362.0974; Found, 362.0960.

N–(2,2,2–Trifluoro–1–(4–methoxyphenyl)–1–phenylethyl)acetamide (21)

Following general procedure A, **21** was obtained in 30% yield (48 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.19. m.p. = 140.0 - 142.0 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.37 (s, 5H), 7.27 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.26 (s, 1H), 3.81 (s, 3H), 2.07 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.5, 159.6, 137.1, 129.6 (d, *J* = 1.8 Hz), 129.1, 128.5, 128.3, 128.2 (d, *J* = 2.3 Hz), 125.7 (q, *J* = 287.9 Hz), 113.7, 69.0 (q, *J* = 27.5 Hz), 55.4, 24.4.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -67.84$.

HRMS: m/z Calculated for C₁₇H₁₇F₃NO₂, [M+H]⁺, 324.1206; Found, 324.1203.

N-(2,2,2-Trifluoro-1-(4-fluorophenyl)-1-phenylethyl)acetamide (2m)

AcHN CF₃ Following general procedure A, **2m** was obtained in 72% yield (112 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.30. m.p. = 181.9 - 182.6 °C.

¹**H NMR (400 MHz, CDCl3)** δ = 7.41 – 7.34 (m, 7H), 7.05 (t, *J* = 8.7 Hz, 2H), 6.22 (s, 1H), 2.10 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.3, 162.5 (d, J = 248.9 Hz), 136.7, 132.4, 130.3 (d, J = 8.2 Hz), 128.8, 128.4, 128.1, 125.4 (q, J = 287.8 Hz), 115.1 (d, J = 21.8 Hz), 68.8 (q, J = 27.0 Hz), 24.4.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -68.23, -113.33$.

HRMS: m/z Calculated for C₁₆H₁₄F₄NO, $[M+H]^+$, 312.1006; Found, 312.0991.

N–(2,2,2–Trifluoro–1–(2–fluorophenyl)–1–phenylethyl)acetamide (2n)

Following general procedure A, **2n** was obtained in 53% yield (83 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.31. m.p. = 164.8 - 165.8 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.44 (ddd, *J* = 9.9 Hz, 7.3 Hz, 1.8 Hz, 1H), 7.40 – 7.36 (m, 4H), 7.34 – 7.30 (m, 2H), 7.19 (td, *J* = 7.9 Hz, 1.4, 1H), 7.04 (ddd, *J* = 12.8 Hz, 8.2 Hz, 1.1 Hz, 1H), 6.56 (s, 1H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.8, 160.3 (d, J = 249.3 Hz), 137.3, 130.5 (dd, J = 5.0 Hz, 2.7 Hz), 129.1, 128.7, 127.2, 125.1 (q, J = 288.1 Hz), 124.6 (d, J = 8.2 Hz), 124.1 (d, J = 3.6 Hz), 116.8, 116.6, 66.7 (q, J = 28.7 Hz), 24.3.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -69.03, -109.73$.

HRMS: m/z Calculated for C₁₆H₁₄F₄NO, [M+H]⁺, 312.1006; Found, 312.0992.

N–(2,2,2–Trifluoro–1–(2–fluorophenyl)–1–(4–fluorophenyl)ethyl)acetamide (20)

Following general procedure A, **20** was obtained in 81% yield (133 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.27. m.p. = 174.9 - 175.3 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.40 – 7.31 (m, 4H), 7.20 – 7.16 (m, 1H), 7.09 – 7.03 (m, 3H), 6.54 (s, 1H), 2.07 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.7, 162.8 (d, *J* = 249.3 Hz), 160.4 (d, *J* = 248.9 Hz), 133.1 (d, *J* = 3.6 Hz), 130.9, 130.8 (d, *J* = 2.7 Hz), 129.4, 129.4, 125.1 (q, *J* = 288.3 Hz), 124.2 (d, *J* = 3.6 Hz), 116.9 (d, *J* = 23.6 Hz), 115.7 (d, *J* = 21.8 Hz), 66.7 (q, *J* = 29.2 Hz), 24.4.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -69.35$ (d, J = 6.9 Hz), -109.61, -112.61.

HRMS: m/z Calculated for C₁₆H₁₃F₅NO, [M+H]⁺, 330.0912; Found, 330.0905.

N–(1,1–Bis(4–bromophenyl)–2,2,2–trifluoroethyl)acetamide (2p)

¹**H NMR (400 MHz, CDCl₃)** δ = 7.50 (d, *J* = 8.8 Hz, 4H), 7.25 (d, *J* = 8.8 Hz, 4H), 6.21 (s, 1H), 2.08 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 168.8, 135.2, 131.6, 130.1, 125.1 (q, *J* = 287.7 Hz), 123.3, 68.8 (q, *J* = 27.8 Hz, 27.4 Hz), 24.3.

¹⁹F NMR (376 MHz, CDCl₃, composite pulse decoupling) $\delta = -68.94$.

HRMS: m/z Calculated for C₁₆H₁₃Br₂F₃NO, [M+H]⁺, 449.9310; Found, 449.9294.

N–(2,2,2–Trifluoro–1–(4–nitrophenyl)–1–phenylethyl)acetamide (2q)

AcHN CF₃ Following general procedure A, **2q** was obtained in 62% yield (105 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.15. m.p. = 190.7 - 192.7 °C.

¹**H NMR (500 MHz, (CD₃)₂CO)** δ = 8.49 (s, 1H), 7.81 (d, *J* = 6.9 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.98 (dq, *J* = 4.7 Hz, 2.4 Hz, 3H), 6.86 (d, *J* = 6.4 Hz, 2H), 1.57 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO) δ = 169.3, 146.9, 144.4, 136.0, 129.3, 128.8, 128.4, 128.1, 125.3 (q, *J* = 287.9 Hz), 123.2, 67.9 (q, *J* = 28.2 Hz), 23.4.

¹⁹F NMR (471 MHz, (CD₃)₂CO, composite pulse decoupling) $\delta = -66.12$.

HRMS: m/z Calculated for C₁₆H₁₄F₃N₂O₃, [M+H]⁺, 339.0951; Found, 339.0956.

N–(1–([1,1'–Biphenyl]–4–yl)–2,2–difluoroethyl)acetamide (6a)

H CF_2H Following general procedure B, **6a** was obtained in 48% NHAc yield (40 mg) as a white solid after column chromatography

S-14

6a

(eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.12. m.p. = 189.8 - 190.7 °C.

¹**H NMR (400 MHz, CDCl₃)** δ = 7.61 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 7.3 Hz, 2H), 7.51 - 7.40 (m, 4H), 7.37 (t, *J* = 7.3 Hz, 1H), 6.14 (d, *J* = 8.7 Hz, 1H), 6.07 (td, *J* = 55.5 Hz, 2.1 Hz, 1H), 5.46 (td, *J* = 14.8 Hz, 14.2 Hz, 8.0 Hz, 1H), 2.10(s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO) δ = 170.1, 141.8, 141.3, 135.5, 129.8, 129.6, 128.4, 127.9, 127.8, 116.4 (t, *J* = 244.3 Hz), 55.2 (t, *J* = 22.6 Hz), 22.8.

¹⁹F NMR (471 MHz, (CD₃)₂CO, composite pulse decoupling) $\delta = -125.77$ (d, J = 279.2 Hz), -126.96 (d, J = 279.2 Hz).

HRMS: m/z Calculated for C₁₆H₁₆F₂NO, $[M+H]^+$, 276.1194; Found, 276.1187.

N–(2,2–Difluoro–1–(4–isopropylphenyl)ethyl)acetamide (6b)

H CF₂H NHAc

6b

Following general procedure B, **6b** was obtained in 60% yield (43 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.17. m.p. = 80.9 - 82.5 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.27 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.15 (t, *J* = 8.7 Hz, 1H), 6.01 (t, *J* = 55.6 Hz, 1H), 5.44 – 5.30 (m, 1H), 2.91 (sep, *J* = 7.0 Hz, 1H), 2.06 (s, 3H), 1.24 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.9, 149.7, 131.5 (d, J = 4.5 Hz), 128.0, 127.2, 113.9 (t, J = 247.0 Hz), 54.7 (t, J = 20.9 Hz), 34.0, 24.0, 23.4.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -125.36$ (d, J = 280.6 Hz), -127.17 (d, J = 280.5 Hz).

HRMS: m/z Calculated for C₁₃H₁₈F₂NO, [M+H]⁺, 242.1351; Found, 242.1341.

N-(2-(4-Bromophenyl)-1,1-difluoropropan-2-yl)acetamide (6c)

6c

Following general procedure B, **6c** was obtained in 73% yield (64 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.14. m.p. = 157.0 - 157.5 °C. ¹**H NMR (500 MHz, CDCl₃)** δ = 7.49 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 6.30 (t, *J* = 56.5 Hz, 1H), 6.02 – 5.91 (m, 1H), 2.03 (s, 3H), 1.72 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.9, 138.2, 131.9, 128.0, 122.3, 116.3 (t, J = 249.3 Hz), 60.7 (t, J = 20.9 Hz), 23.9, 20.4.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -128.10$ (d, J = 276.6 Hz), -129.63 (d, J = 276.1 Hz).

HRMS: m/z Calculated for C₁₁H₁₃BrF₂NO, [M+H]⁺, 292.0143; Found, 292.0150.

N–(2,2–Difluoro–1,1–diphenylethyl)acetamide (6d)

AcHN CF₂H Following general procedure B, **6d** was obtained in 61% yield (50 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.28. m.p. = 158.0 - 159.8 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.40 – 7.34 (m, 6H), 7.31 (dd, J = 7.6 Hz, 2.3 Hz, 4H), 7.14 (t, J = 56.7 Hz, 1H), 6.29 (s, 1H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.8, 139.0, 128.6, 128.5, 127.9, 114.6 (t, J = 249.8 Hz), 67.3 (t, J = 21.6 Hz), 23.7.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -123.12$.

HRMS: m/z Calculated for C₁₆H₁₆F₂NO, [M+H]⁺, 276.1194; Found, 276.1186.

N–(2,2–Difluoro–1–(4–methoxyphenyl)–1–phenylethyl)acetamide (6e)

6e

Following general procedure B, **6e** was obtained in 50% yield (46 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.18. m.p. = 136.0 - 138.5 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.36 (td, *J* = 5.7 Hz, 2.8, 3H), 7.32 (dd, *J* = 7.8 Hz, 2.3, 3H), 7.22 - 7.19 (m, 2H), 7.11 (t, *J* = 56.9 Hz, 1H), 6.91 - 6.81 (m, 2H), 6.25 (s, 1H). 3.81 (s, 3H), 2.05 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.7, 159.5, 139.3, 131.0, 129.3, 128.6, 128.4, 127.8, 114.7 (t, *J* = 249.3 Hz), 113.9, 67.0 (t, *J* = 21.6 Hz), 55.4, 23.8.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -122.67$ (d, J = 280.0 Hz), -123.84 (d, J = 280.0 Hz).

HRMS: m/z Calculated for C₁₇H₁₈F₂NO₂, [M+H]⁺, 306.1300; Found, 306.1303.

N–(2,2–Difluoro–1–phenyl–1–(p–tolyl)ethyl)acetamide (6f)

AcHN CF_2H Following general procedure B, **6f** was obtained in 67% yield (58 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.30. m.p. = 176.2 - 177.8 °C.

¹**H NMR (400 MHz, CDCl₃)** δ = 7.36 (dt, *J* = 4.8, 2.5 Hz, 3H), 7.31 (dd, *J* = 7.6 Hz, 2.4 Hz, 3H), 7.18 (s,4H), 7.12 (t, *J* = 56.7 Hz, 1H), 6.25 (s, 1H), 2.35 (s, 3H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.8, 139.2, 138.3, 136.0, 129.3, 128.6, 128.4, 127.9 (t, *J* = 2.0), 127.8 (t, *J* = 2.0 Hz), 114.6 (t, *J* = 249.4 Hz), 67.1 (t, *J* = 21.7 Hz), 23.7, 21.2.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = 122.87$ (d, J = 280.6 Hz), 123.58 (d, J = 280.6 Hz).

HRMS: m/z Calculated for C₁₇H₁₈F₂NO, [M+H]⁺, 290.1351; Found, 290.1339.

N–(2,2–Difluoro–1–phenyl–1–(4–(trifluoromethyl)phenyl)ethyl)acetamide (6g)

¹**H NMR (500 MHz, CDCl₃)** δ = 7.64 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.35 (m, 3H), 7.26 – 7.24 (m, 2H), 7.12 (t, *J* = 56.6 Hz, 1H), 6.33(s, 1H), 2.07 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 170.0, 143.0, 138.1 (d, J = 2.7 Hz), 130.6 (q, J = 32.8 Hz), 128.9, 128.8, 128.3, 128.0, 125.6 (q, J = 3.8 Hz), 124.0 (q, J = 272.2 Hz), 114.3 (t, J = 249.9 Hz), 67.2 (t, J = 21.9 Hz), 23.5.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -62.76, -122.30$ (d, J = 281.2 Hz), -124.15 (d, J = 281.8 Hz).

HRMS: m/z Calculated for C₁₇H₁₅F₅NO, $[M+H]^+$, 344.1068; Found, 344.1056.

N–(2,2–Difluoro–1–(4–fluorophenyl)–1–phenylethyl)acetamide (6h)

Following general procedure B, 6h was obtained in 63% AcHN CF2H yield (56 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.27. m.p. = 170.5 - 171.0 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.39 – 7.35 (m, 3H), 7.33 – 7.27 (m, 4H), 7.11 – 6.98 (m, 3H), 6.26 (s, 1H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.7, 162.5 (d, J = 248.4 Hz), 138.6, 134.7, 127.7 (t, J = 2.0 Hz), 128.6, 128.5, 127.7, 127.7, 127.7, 115.4 (d, J = 21.3 Hz), 114.4 (t, J = 249.7 Hz), 66.8 (t, J = 21.8 Hz), 23.6.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -113.63, -123.24,$ -123.25.

HRMS: m/z Calculated for C₁₆H₁₅F₃NO, $[M+H]^+$, 294.1100; Found, 294.1090.

N–(1–(4–Bromophenyl)–2,2–difluoro–1–phenylethyl)acetamide (6i)

6h

Following general procedure B, 6i was obtained in 47% yield (50 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.27. m.p. = 172.5 − 173.5 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.50 (d, J = 7.9 Hz, 2H), 7.41 – 7.34 (m, 3H), 7.27 (d, J = 6.3 Hz, 2H), 7.20 (d, J = 6.8 Hz, 2H), 7.03 (t, J = 56.6 Hz, 1H), 6.25 (s, 1H), 6.25 (s, 100)2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.9, 138.3, 138.1, 131.7, 129.6, 128.7, 128.7, 127.9, 122.7, 114.3 (t, J = 249.8 Hz), 67.0 (t, J = 22.0 Hz), 23. 6.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -122.74$ (d, J =280.9 Hz), -123.76 (d, J = 280.9 Hz).

HRMS: m/z Calculated for C₁₆H₁₅BrF₂NO, $[M+H]^+$, 354.0300; Found, 354.0293.

N–(2,2–Difluoro–1–phenyl–1–(m–tolyl)ethyl)acetamide (6j)

¹**H NMR (400 MHz, (CD₃)₂CO)** δ = 7.98 (s, 1H), 7.45 – 7.26 (m, 6H), 7.23 (dd, *J* = 15.1 Hz, 7.4 Hz, 2H), 7.19 – 7.12 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 2.30 (s, 3H), 2.01 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.7, 139.1, 139.0, 138.3, 129.3, 128.6, 128.5, 128.4, 127.9 (t, *J* = 2.0 Hz), 125.1, 114.6 (t, *J* = 249.5 Hz), 67.3 (t, *J* = 21.6 Hz), 23.7, 21.8.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -122.72$ (J = 280.24 Hz), -123.34 (J = 280.24 Hz).

HRMS: m/z Calculated for C₁₇H₁₈F₂NO, [M+H]⁺, 290.1351; Found, 290.1343.

N–(1,1–Bis(4–bromophenyl)–2,2–difluoroethyl)acetamide (6k)

¹**H NMR (400 MHz, CDCl₃)** δ = 7.50 (d, *J* = 8.8 Hz, 4H), 7.17 (d, *J* = 8.7 Hz, 4H), 6.97 (t, *J* = 56.5 Hz, 1H), 6.20 (s, 1H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.8, 137.5, 131.9, 129.6, 123.1, 114.1 (t, J = 250.0 Hz), 66.8 (t, J = 21.6 Hz), 23.7.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -123.33$.

HRMS: m/z Calculated for C₁₆H₁₄Br₂F₂NO, [M+H]⁺, 431.9405; Found, 431.9398.

N-(2,2-Difluoro-1-(2-fluorophenyl)-1-(4-fluorophenyl)ethyl)acetamide (61)

AcHN CF_2H F F F (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum 6] ether/EtOAc 3:1): 0.35. m.p. = 170.6 − 171.6 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.52 – 7.34 (m, 3H), 7.26 – 7.20 (m, 3H), 7.11 – 7.01 (m, 3H), 6.45 (s, 1H), 2.02 (s, 3H).

¹³C NMR (126 MHz, CDCl₃, composite pulse decoupling) $\delta = 170.3$, 162.9 (d, J = 248.9 Hz), 160.5 (d, J = 248.0 Hz), 132.6, 130.47 (d, J = 9.1 Hz), 129.6 (d, J = 8.2 Hz), 129.1 (dd, J = 5.0, 2.7 Hz), 126.9, 124.1 (d, J = 3.6 Hz), 117.1 (d, J = 22.7 Hz), 115.4 (d, J = 21.8 Hz), 112.7(t, J = 249.0 Hz), 65.0 (dd, J = 25.4 Hz, 20.4 Hz), 23.7. ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -109.96$ (d, J = 4.8), -113.2, -121.59 (dd, J = 22.7 Hz)

283.1 Hz, 5.6), -131.78 (d, J = 282.6 Hz).

HRMS: m/z Calculated for C₁₆H₁₄F₄NO, $[M+H]^+$, 312.1006; Found, 312.0998.

N–(2,2–Difluoro–1–(2–fluorophenyl)–1–phenylethyl)acetamide (6m)

Following general procedure B, **6m** was obtained in 72% yield (63 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.41. m.p. = 152.1 - 153.0 °C.

¹H NMR (500 MHz, CDCl₃) δ = 7.53 – 7.27 (m, 7H), 7.26 – 7.19 (m, 2H), 7.06 (dd, J = 12.4 Hz, 8.1 Hz, 1H), 6.49 (s, 1H), 2.03 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 170.2, 160.4 (d, *J* = 247.0 Hz), 136.7, 130.2 (d, *J* = 9.5 Hz), 129.2 – 128.9 (m), 128.8, 128.3, 127.6, 123.9 (d, *J* = 3.2 Hz), 116.9 (d, *J* = 22.7 Hz), 112.7 (dd, *J* = 248.8 Hz, 246.2 Hz), 65.2(dd, *J* = 24.9 Hz, 20.1 Hz), 23.6.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -109.94$ (d, J = 4.3 Hz), -109.94 (dd, J = 282.80 Hz, 4.3 Hz), -131.78 (d, J = 282.6 Hz).

HRMS: m/z Calculated for C₁₆H₁₅F₃NO, [M+H]⁺, 294.1100; Found, 294.1093.

N–(2,2–Difluoro–1–phenyl–1–(o–tolyl)ethyl)acetamide (6n)

Following general procedure B, **6n** was obtained in 71% yield (62 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 3:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.28. m.p. = 1179.9 - 180.9 °C.

¹**H NMR (500 MHz, CDCl₃)** δ = 7.63 – 7.57 (m, 1H), 7.50 – 7.32 (m, 4H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.18 (dd, *J* = 22.1 Hz, 7.5 Hz, 3H), 6.33 (s, 1H), 2.04 (s, 3H), 1.90 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 169.4, 137.5 (d, J = 4.1 Hz), 136.7, 135.9 (d, J = 1.8 Hz), 133.3, 128.8, 128.5, 128.2, 127.8, 127.7, 127.7, 125.8, 113.2 (t, J = 246.8 Hz), 66.8 (dd, J = 25.0 Hz, 18.6 Hz), 23.5, 22.1.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) $\delta = -120.68$ (d, J = 79.2 Hz), -131.89 (d, J = 279.2 Hz).

HRMS: m/z Calculated for C₁₇H₁₈F₂NO, $[M+H]^+$, 290.1351; Found, 290.1337.

1-([1,1'-Biphenyl]-4-yl)-2,2,2-trifluoroethan-1-amine (7)

Following diversification procedure, 7 was obtained in 80% J_2 yield (20 mg) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 6:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.26.

¹**H NMR (400 MHz, (CD₃)₂CO))** $\delta = 7.72 - 7.65$ (m, 4H), 7.59 (d, J = 8.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 - 7.34 (m, 1H), 5.19 (q, J = 7.9 Hz, 1H).

¹³C NMR (126 MHz, (CD₃)₂CO)) δ = 142.1, 141.2, 135.5, 130.4, 129.8, 128.5, 127.8, 127.8, 126.7 (q, *J* = 276.5 Hz), 66.1 (q, *J* = 28.2 Hz).

¹⁹F NMR (376 MHz, (CD₃)₂CO), composite pulse decoupling) $\delta = -74.81$.

HRMS: m/z Calculated for C₁₄H₁₃F₃N, [M+H]⁺, 252.0995; Found, 252.1005.

1-([1,1'-Biphenyl]-4-yl)-2,2-difluoroethan-1-amine (8)

Following diversification procedure, **8** was obtained in 39% NH_2 yield (90 mg) as a colorless liquid after column chromatography (eluent = Petroleum ether/EtOAc 6:1 v/v). R_f (Petroleum ether/EtOAc 3:1): 0.14.

¹**H** NMR (500 MHz, (CD₃)₂CO)) $\delta = 7.68 - 7.63$ (m, 4H), 7.54 (d, J = 8.4 Hz, 2H), .46 (dd, J = 8.5 Hz, 6.9 Hz, 2H), 7.39 - 7.34 (m, 1H), 6.12 (td, J = 56.5 Hz, 5.5 Hz, 1H), 4.83 (ddd, J = 12.5 Hz, 10.1 Hz, 5.4 Hz, 1H).

¹³C NMR (101 MHz, (CD₃)₂CO)) $\delta = 141.51, 141.44, 137.44, 137.37, 130.08,$

129.81, 128.35, 127.79, 118.41 (dd, *J*=245.0, 241.4), 67.20 (dd, *J*=23.8, 21.6).

¹⁹F NMR (471 MHz, (CD₃)₂CO), composite pulse decoupling) $\delta = -123.15$, (d, J = 275.2 Hz), -125.93 (d, J = 275.9 Hz).

HRMS: m/z Calculated for C₁₄H₁₄F₂N, [M+H]⁺, 234.1089; Found, 234.1079.

N–(5,5,5–Trifluoro–4–phenylpent–3–en–1–yl)acetamide (10)

AcHN

Following general procedure A, **10** was obtained in 39% yield (90 mg) as a colorless liquid after column chromatography (eluent F_{F} = Petroleum ether/EtOAc 1:1 v/v). R_f (Petroleum ether/EtOAc 1:1): 0.21. Z/E = 2:3.

E isomer ¹H NMR (500 MHz, CDCl₃) $\delta = 7.41 - 7.33$ (m, 3H), 7.23 - 7.19 (m, 2H), 6.40 (t, J = 7.5 Hz, 1H), 5.47 (s, 1H), 3.30 (q, J = 6.7 Hz, 2H), 2.24 (q, J = 7.2 Hz, 2H), 1.94 (s, 3H).

Mixture ¹³C NMR (126 MHz, CDCl₃) δ = 171.7, 171.4, 137.7 (d, *J* = 3.2 Hz), 136.0, 136.0, 134.2, 134.1, 134.0, 133.9, 133.6, 132.7 (q, *J* = 5.7 Hz), 132.0, 131.9, 131.6, 129.6, 128.9, 128.8, 128.5, 128.4, 128.2, 123.9 (d, *J* = 275.7 Hz), 123.3 (d, *J* = 273.1 Hz), 120.8, 118.3, 40.1, 39.0, 38.7, 29.0, 28.4, 23.2, 23.1, 20.0, 13.5.

¹⁹F NMR (471 MHz, CDCl₃, composite pulse decoupling) δ = -56.93, -66.00. HRMS: *m/z* Calculated for C₁₃H₁₅F₃NO, [M+H]⁺, 258.1100; Found, 258.1094.

VII. References

- [1] Hu, M. Y. et al. J. Am. Chem. Soc. 2013, 135, 17302
- [2] Tan, D. H. et al. Adv. Syn. Catal. 2018, 360, 1032.
- [3] Wu, J. J. et al. RSC Adv. 2015, 5, 34498.
- [4] Li, J. J. et al. Chem. Commun. 2017, 53, 10299.

VIII. NMR spectra for compounds

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

S-34

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

- 2.07

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

- 2.07

- 2.03

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4 4 4 4 4 4 6 7 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 7 6 6 7 7 7 6 6 7

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)