Supplemental Information

Na_{1.5}La_{1.5}TeO₆: Na⁺ conduction in a novel Na-rich double perovskite

Marco Amores, Peter J. Baker, Edmund J. Cussen and Serena A. Corr*

Chemicals

All reagent-grade chemical employed were purchased from the following suppliers and used without further purification unless otherwise noted: NaOH (98%) and La_2O_3 (99%) from Sigma-Aldrich, and TeO₂ (99.99%) was purchased from Alfa Aesar.

Synthesis of the Na_{1.5}La_{1.5}TeO₆ double perovskite

For the microwave-assisted synthesis of the Na_{1.5}La_{1.5}TeO₆ double perovskite, stoichiometric amounts of La₂O₃ (previously dried at 900 °C for 24h), TeO₂ and NaOH were ball milled for 30 min at a vibrational frequency of 20 Hz in a stainless steel jar. Subsequently, the fine powder was pelleted at 3 tonnes under uniaxial pressure. The pelleted material was heated at 700 °C for 6 hours in a 2.45 GHz CEM Phoenix hybrid microwave furnace for the decomposition of the precursor materials. Subsequently, the material was reground and pelletized for a second heat treatment carried out in air at 900 °C for 6 hr in the same microwave furnace. The last treatment consisted in 1 hour at 1000 °C of the repelletised material in the same hybrid microwave furnace. In every calcination the heating rate was held at 2 °C/min.

Powder X-Ray Diffraction experiments and Rietveld Refinements

Powder X-Ray Diffraction (PXRD) has being the main tool employed for the assessment of the purity and study of the crystal parameters for the $Na_{1.5}La_{1.5}TeO_6$ material. A PANalytical X'Pert PRO Diffractometer was used for this purpose using Cu-K α radiation in the 2 θ range 10-140° with a nominal scan rate of 800 seconds per step and a step size of 0.0167° in reflection geometry at room temperature.

Rietveld refinements of PXRD patterns were performed with the Generalized Structure Analysis System (GSAS) along with the graphical user interface EXPGUI by means of a least square approach.

Scanning Electron Microscopy and Energy-Dispersive X-Ray spectroscopy

In order to analyse the size and morphology of the particles synthesised, Scanning Electron Microscopy (SEM) images were acquired with a Phillips XL30 ESEM microscope. The sample was ground and a tiny amount of the fine powder was deposited over a carbon-taped sample holder.

Energy-Dispersive X-Ray (EDX) spectra were recorded using an Oxford Instruments Energy 250 energy dispersive spectrometer system attached to the SEM device. Copper tape was employed as a standard for calibration and the voltage of the incident beam was 25 KeV.

Electrochemical Impedance Spectroscopy

Impedance measurements were performed on a Biologic VSP-3 multichannel potentiostat in the frequency range of $1-10^6$ Hz with a voltage perturbation of 500 mV and a temperature range between 20 and 70 °C. Na_{1.5}La_{1.5}TeO₆ powders were cold-pressed under uniaxial pressure at 5 tons and the resultant pellets were heated for 1 hour at 1000 °C. In order to enhance the connection between the pellet and the electrodes, a thin layer of gold was deposited on the pellet surface by physical vapor deposition.

μ⁺SR studies

 μ *SR studies were performed using the EMU instrument at the ISIS pulsed muon facility. The sample, *c.a.* 1.5 g, was packed into a disk of 30 mm diameter and 1.5 mm thickness and sealed in a titanium sample holder where the front window was made of 25 μ m thickness titanium foil. 3.2 MeV spin-polarised positive muons were implanted into the sample and the outcoming positrons were detected by 96 scintillator segments grouped in two circular arrays. The temperature was controlled up to 500 K by a hot stage attached to a closed cycle refrigerator and the measurements were acquired at three different applied longitudinal magnetic fields (0, 5 and 10 G). A 20 G transverse magnetic field was also applied for the initial asymmetry calibration.

Atom	Site	Frac.	x	у	Z	Uiso (100/Ų)
La1	4e	0.767(2)	0.0118(2)	0.9552(1)	0.7486(1)	0.91(2)
Na1	2d	1.00(1)	¹ / ₂	0	0	2.4(2)
Na2	4e	0.239(2)	0.0118(2)	0.9552(1)	0.7486(1)	2.4(2)
01	4e	1	0.279(1)	0.692(1)	0.9559(9)	1.5(2)
02	4e	1	0.168(1)	0.216(1)	0.9441(9)	1.4(2)
03	4e	1	0.910(1)	0.534(1)	0.7719(8)	1.3(2)
Te1	2c	1	¹ / ₂	0	¹ / ₂	0.16(2)

Table S1: Refined parameters of the PXRD data of the $Na_{1.5}La_{1.5}TeO_6$ double perovskite to the P2₁/n monoclinic space group and selected metal-oxygen distances.

a = 5.69186(2) Å, b = 5.83933(2) Å, c = 8.13119(3) Å, beta = 90.186(1)°, V = 270.253(1) Å³

 R_{wp} = 0.0743, R_{p} = 0.0530, X^{2} = 7.051

Bond	Distance (Å)		Bond	Distance (Å)
		B-site cations		
Te-O1 (2x)	1.976(7)		Na1-O1 (2x)	2.225(7)
Te-O2 (2x)	1.967(7)		Na1-O2 (2x)	2.315(6)
Te-O3 (2x)	1.932(6)		Na1-O3 (2x)	2.280(6)
		A-site cations		
Na2/La-O1	2.726(7)			
Na2/La -O1	2.482(7)			
Na2/La -O1	2.849(7)			
Na2/La -O2	2.387(7)			
Na2/La -O2	2.771(7)			
Na2/La -O2	2.878(7)			
Na2/La -O3	2.514(6)			
Na2/La -O3	2.456(6)			

Figure S1: Raman spectra of the Na_{1.5}La_{1.5}TeO₆ double perovskite under excitation of a wavelength λ = 532 nm Argon-ion laser.

The Raman spectrum of the Na_{1.5}La_{1.5}TeO₆ double perovskite presents bands that could be assigned to a monoclinic P2₁/n group with an irreducible representation $\Gamma = v_1(A_g + B_g) + v_2(2A_g + 2B_g) + v_5(3A_g + 3B_g) + T(3A_g + 3B_g) + L(3A_g + 3B_g)$ for the Raman active modes. Vibrational modes (v) are related to internal M-O stretching and bending modes, the translational modes (T) arise from translations of the A cations and the librational modes (L) are due to the asymmetric MO₆ octahedral rotation. Translational modes appear at low Raman shift, around 100 to 200 cm⁻¹ close to the elastic peak and the librational modes appear at higher Raman shift between 200 and 400 cm⁻¹. The symmetric stretch v₁ presents the most intense peak of the spectra at *ca*. 710 cm⁻¹ and the asymmetric stretch v₂ is observed at at *ca*. 565 cm⁻¹. The internal oxygen bending mode v₅ appears at *ca*. 440 cm⁻¹.

Processing option : All elements analysed (Normalised)

Spectrum	In st	Na	Те	La
Spectrum 1 Spectrum 2 Spectrum 3	Yes Yes	39.7 38.9 35.5	24.2 24.3 25.7	36.1 36.8 38.8
Mean Std. deviation Max. Min.		38.0 2.3 39.7 35.5	24.8 0.9 25.7 24.2	37.2 1.4 38.8 36.1

All results in atomic%

Material	Na (atomic %)	La (atomic %)	Te (atomic %)	Na:La:Te ratio
Na _{1.5} La _{1.5} TeO ₆	38(2)	37(1)	25(1)	1.52(8):1.48(4):1.00(4)

Figure S2: EDX analyses of the $Na_{1.5}La_{1.5}TeO_6$ material exposed to an electron beam of 25 kV for 2 min per spectrum. Value of atomic % for Te has been used as reference for the metal ratio calculation.

Table S2: Ionic conductivity values obtained from AC EIS measurements at different temperatures for the Na_{1.5}La_{1.5}TeO₆ double perovskite material. The conductivity values have been calculated by applying Pouillet's law, $\sigma = I / (A \times R)$, where I is the sample thickness, A the area of the pellet and R the resistance calculated from the Nyquist plots.

Temperature (K)	Total conductivity (S cm ⁻¹)
298	5.4 × 10 ⁻⁸
308	8.2 × 10 ⁻⁸
318	1.1 × 10 ⁻⁷
328	1.5 × 10 ⁻⁷
343	1.8 × 10 ⁻⁷

Figure S3: Nyquist plots of the EIS data for the symmetric $Na_{1.5}La_{1.5}TeO_6$ cell at 80 °C over time. Experimental data is represented in open circle and the fit to an R/Q equivalent electrical circuit is represented by the solid line.

Figure S4: Temperature dependence of v and Δ values obtained for the fits to the Keren function for the Na_{1.5}La_{1.5}TeO₆ material measured from 200 K to 500 K.

To obtain the fluctuation rate of the muons due to sodium-ion diffusion, the muon decay asymmetry data were fitted using Keren's analytic generalization of the Abragam function appropriate for μ SR Pz (t) = exp[$\Gamma(\Delta, v, \omega_L, t)$ t] where the $\Gamma(\Delta, v, \omega_L, t)$ term refers to the muon polarization after subtracting a fixed background component. The Δ parameter corresponds to the static width of the local field distribution at the implanted sites in the Na_{1.5}La_{1.5}TeO₆ material, v is the muon's spin fluctuation rate and ω_L is the Larmor precession frequency in the applied magnetic field. The temperature evolution of the muon's spin fluctuation rate (v) follows a plateau from 200 K to 300 K, experiencing an exponential increase above this latter temperature. This is indicative of thermally activate diffusion of the Na⁺ ions in the double perovskite structure above this temperature (*ca.* 300 K). In the case of the field width distribution (Δ), the parameter tends to a constant value of 0.15 MHz at low to medium temperatures, with a small increase towards 0.3 MHz at high temperatures. This slightly increase of the Δ parameter near 500 K could be related to possible small structural rearrangements, such as oxygen displacements near the muon implanting positions. The most important fact to note is the absence of a drastic decrease in Δ , which would have indicated muon self-diffusion in the material.

Figure S5: Representation of the $Na_{1.5}La_{1.5}TeO_6$ crystal structure where the proposed Na_A-Na_B hopping pathways are explicitly displayed in purple. Na^+ ions are represented in purple, La^{3+} in blue and Te^{6+} in brown with their coordination octahedron displayed also in brown with oxygen anions represented in red.